EP1415079A1 - Verfahren und steuergerät zur funktionsdiagnose eines tankentlüftungsventils einer brennstofftankanlage insbesondere eines kraftfahrzeugs - Google Patents

Verfahren und steuergerät zur funktionsdiagnose eines tankentlüftungsventils einer brennstofftankanlage insbesondere eines kraftfahrzeugs

Info

Publication number
EP1415079A1
EP1415079A1 EP02754259A EP02754259A EP1415079A1 EP 1415079 A1 EP1415079 A1 EP 1415079A1 EP 02754259 A EP02754259 A EP 02754259A EP 02754259 A EP02754259 A EP 02754259A EP 1415079 A1 EP1415079 A1 EP 1415079A1
Authority
EP
European Patent Office
Prior art keywords
ventilation valve
tank ventilation
operating variable
pressure source
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02754259A
Other languages
English (en)
French (fr)
Other versions
EP1415079B1 (de
Inventor
Martin Streib
Dieter Lederer
Karl-Bernhard Lederle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1415079A1 publication Critical patent/EP1415079A1/de
Application granted granted Critical
Publication of EP1415079B1 publication Critical patent/EP1415079B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space

Definitions

  • the invention relates to a method for testing the functionality of a tank ventilation valve arranged in a fuel tank system, in particular a motor vehicle, and a control device for carrying out the method according to the preambles of the respective independent claims.
  • Modern internal combustion engines used in motor vehicles are known to have a fuel storage tank and a control device for monitoring and, if necessary, to prevent emission of fuel vapors formed in the fuel storage tank.
  • the control device is used in particular to capture any fuel vapor that may occur by means of an activated carbon trap or an activated carbon filter and to temporarily store it in the activated carbon trap.
  • Volatile fuel vapors which are mostly hydrocarbon vapors, are formed, for example, during a refueling process of the vehicle or due to a rising fuel temperature in the tank and the associated increase in fuel vapor pressure.
  • the activated carbon trap is connected via a tank ventilation valve (TEV) to an intake pipe serving to draw in combustion air via a throttle valve to the internal combustion engine. Opening the TEV creates a pressure drop between the activated carbon trap and the intake manifold, by means of which the hydrocarbon stored in the activated carbon trap is fed into the intake manifold in order to ultimately be burned in the internal combustion engine and thus disposed of.
  • TEV tank ventilation valve
  • a first known approach to diagnosing the TEV involves operating the TEV at idle at a sufficiently stable operating point and observing the change in the mixture composition supplied to the internal combustion engine and the change in the energy flow via the throttle valve.
  • the energy flow mentioned corresponds to the product of the air mass flow discharged via the throttle valve and the ignition angle efficiency. This method therefore requires a high intake manifold vacuum.
  • the diagnosis takes place as part of a normal leak test of the tank system.
  • a normal leak test of the tank system Such a method can be seen, for example, from the publications US 5,349,935, PE 106 36 431.0 Ali, DE 108 '09 304.5 AI and DE 196 25 702 A1J.
  • the tank system is pressurized by means of a pump and then evaluated of the pressure curve, if necessary, concluded that there is a leak.
  • ⁇ JP-'G "173'l3-9- / f-mid.
  • the present invention is therefore based on the object of developing a method and a control device of the type mentioned at the outset such that the highest possible level of diagnostic reliability is provided with the shortest possible diagnostic duration.
  • the object is achieved by the features of the independent claims.
  • Advantageous refinements of the method according to the invention and further developments of the control unit are the subject of the subclaims.
  • the invention proposes to control the tank ventilation valve to open or close, to carry out a specific pressure change, to record at least one operating variable of the pressure source and to conclude from the recorded operating variable that there is a functionally opening or closing tank ventilation valve.
  • the tank ventilation valve is actuated in a closing manner and a certain pressure build-up is generated in the tank ventilation system by means of the pressure source.
  • the at least one operating variable of the pressure source is recorded and, from the recorded operating variable, if necessary, a closed tank ventilation valve is closed.
  • the tank venting valve is then actuated opening and the at least one operating variable of the pressure source is recorded when the pressure is reduced.
  • the tank ventilation valve can be actuated in an opening manner and for the pressure in the tank ventilation system to be reduced, the at least one operating variable of the pressure source and a closed operable tank ventilation valve is deduced from the recorded operating variable, and that the tank ventilation valve is then actuated in closing, when the pressure builds up, the at least one operating variable of the pressure source is recorded and, if necessary, a closed tank ventilation valve is concluded from the recorded operating variable.
  • the tank ventilation valve is activated in a closing manner and the pressure source is initially activated briefly. An idle operating variable of the pressure source is recorded. Subsequently, the tank ventilation valve is actuated in an opening manner and, from the relative change in the at least one operating variable of the pressure source compared to the idling operating variable, the operational functionality of the tank ventilation valve may be inferred.
  • the proposed method can also be applied to systems with only a low intake manifold vacuum, for example WT systems.
  • the method does not require pumping upstream of the actual TEV diagnosis against a reference leak and subsequent pressure build-up until a reference current level is reached.
  • a significantly shortened TEV diagnosis time and at the same time a higher information Security provided.
  • a quantitative statement about the actual volume flow behavior of the TEV is also possible.
  • the invention can be used advantageously not only in motor vehicle technology, but in all areas in which tank systems are to be kept free of volatile substances in the manner mentioned at the beginning. For example, only the petrochemical sector is given here.
  • FIG. 1 shows a fuel tank system in which a method making use of the invention or a control unit according to the invention are used ?
  • FIG. 2 control signals provided in accordance with a first exemplary embodiment and measurement data resulting therefrom as a function of time;
  • FIG. 3 shows a diagram corresponding to FIG. 2 according to a second exemplary embodiment.
  • the fuel tank system shown in block diagram form in FIG. 1 comprises a tank 10 which is connected to an activated carbon filter 14 via a tank connection line 12.
  • An intake manifold 16 (not shown) of an internal combustion engine (not shown) has a throttle valve, is also connected to the tank 10 via the activated carbon filter 14, via an intake line 18 and via a tank ventilation valve (TEV) 20.
  • TAV tank ventilation valve
  • volatile hydrocarbon vapors are formed in the tank, which pass through the line 12 into the activated carbon filter 14 and are reversibly bound in a known manner.
  • a leak diagnosis unit 28 connected to the activated carbon filter 14 is provided.
  • the diagnostic unit 28 comprises a vane pump 30.
  • the switching valve 32 already mentioned is connected upstream of the pump 30.
  • a reference leak 36 is introduced into a separate line branch 34.
  • the reference leak 36 is opened or closed by means of a magnetic slide valve 38.
  • the respective dimensioning of the reference leak 36 is chosen such that it corresponds to the size of the leak to be detected. In the case of the US standard mentioned at the outset, the reference leak therefore has an opening cross section of 0.5 mm.
  • the changeover valve 32 has two switching positions. In the first position, the pump 30 is connected to the tank 10 in a pressure-conducting manner via the activated carbon filter 14 and thus pumps outside air into the tank 10. The current consumption of the pump 30 is continuously recorded while the fresh air is being pumped into the tank 10. To carry out a reference measurement, the changeover valve 32 is completely closed, so that the current consumption of the pump 30 can now be detected by means of the magnetic slide valve 38 due to the dynamic pressure building up in front of the reference leak 36. The control of the pump 30 by means of the control unit 21 and the reading out of the current consumption data takes place via corresponding control and data lines 44, 46.
  • Figures 2 and 3 show temporal profiles of the control voltage U_UmschV of the changeover valve 32, the control of the TEV 20, the pump current and the pump Current consumption I_Pumpe and the pressure in the tank system p_Tankanl., As they occur in two different configurations of the method according to the invention.
  • the TEV 20 is then activated 106 at t2, which, when the TEV 20 is actually opened, leads to a pressure drop 108 in the tank system and thus to a drop 110 in the current consumption of the pump 30. If the amount of this drop in a second threshold value I_Schw2, which is again to be determined empirically, is exceeded, a correctly opening TEV 20 is inferred.
  • the above-described cycle of pressure build-up 100 and pressure reduction 108 with closed 112 or open 106 controlled TEV 20 can be repeated several times to increase the quality of the functional diagnosis, as shown in the example. So there is a second pressure increase between t3 and t4 and subsequently a pressure drop between t4 and t5.
  • the TEV 20 can be controlled with different duty cycles to open, for example by detecting the time gradient of the current consumption I_Pumpe of the pump 30 the actual, by the TEV 20 flowing mass or To be able to calculate volume flow.
  • FIG. 3 shows a second exemplary embodiment in a representation similar to FIG. 2, in which, in contrast to FIG. 2, the TEV diagnosis is carried out using a negative pressure method.
  • the pump 30 is briefly activated and its current consumption I_Pumpe under idle 202 detected.
  • the TEV 20 is actuated opening 204, as a result of which a pressure reduction 206 occurs in the tank system due to the existing intake manifold vacuum when the TEV 20 is actually opened.
  • the functionality of the TEV 20 is inferred from the difference in the detected idle current 202.
  • the cycles are repeated several times and, as described above, different duty cycles may be used.
  • the above-described method steps for diagnosing the TEV 20 can be implemented by appropriate programming of the control unit 21, for example by inserting an appropriate program code into an EEPROM.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)

Abstract

Bei einem Verfahren zur Prüfung der Funktionsfähigkeit eines in einer Tankanlage insbesondere eines Kraftfahrzeuges angeordneten, mittels einer Steuereinheit (21) ansteuerbaren und mit einem Saugrohr (16) verbundenen Tankentlüftungsventils (20), wobei eine Druckquelle (30) zur Prüfung der Dichtheit der Tankanlage mittels Über- oder Unterdruck vorgesehen ist und wobei die Funktionsfähigkeit des Tankentlüftungsventils anhand wenigstens einer Betriebsgrösse (102) der Druckquelle erfolgt, ist zur Erreichung einer kurzen Diagnosedauer und eines höchstmöglichen Masses an Diagnosesicherheit vorgesehen, dass das Tankentlüftungsventil öffnend oder schliessend angesteuert und eine bestimmte Druckänderung (100, 108) durchgeführt wird, und dass die wenigstens eine Betriebsgrösse (102) der Druckquelle erfasst und aus der erfassten Betriebsgrösse auf ein funktionsfähig öffnendes bzw. schliessendes Tankentlüftungsventil geschlossen wird.

Description

VERFAHREN UND STEUERGERÄT ZUR FUNKTIONSDIAGNOSE EINES TANKENTLUFTUNGSVENTILS EINER BRENNSTOFFTANKANLAGE INSBESONDERE EINES KRAFTFAHZEUGS
Beschreibung
Die Erfindung betrifft ein Verfahren zur Prüfung der Funktionsfähigkeit eines in einer Brennstofftankanlage insbesondere eines Kraftfahrzeuges angeordneten Tan- kentlüftungsventils sowie ein Steuergerät zur Durchführung des Verfahrens gemäß den Oberbegriffen der jeweiligen unabhängigen Ansprüche.
Moderne in Kraftfahrzeugen eingesetzte Brennkraftmaschinen weisen bekanntermaßen einen Kraftstoffvorratstank sowie eine Kontrolleinrichtung zur Überwachung und gegebenenfalls zur Verhinderung der Emission von in dem Kraftstoffvorratstank gebildeten Kraftstoffdämpfen auf. Die Kontrolleinrichtung dient insbesondere daziu, etwa auftretenden Kraftstoffdampf mittels einer Aktivkohlefalle bzw. eines Aktivkohlefilters einzufangen und in der Aktivkohlefalle vorübergehend zu speichern. Flüchtige Kraftstoffdämpfe, das sind meist Kohlenwasserstoffdämpfe, bilden sich bspw. während eines Betan- kungsvorganges des Fahrzeugs oder aufgrund einer ansteigenden Kraftstofftemperatur im Tank und des damit einhergehenden Anstiegs des Kraftstoffdampfdruckes.
Das Speichervermögen der Aktivkohlefalle nimmt nun mit steigender Menge an gespeichertem Kohlenwasserstoff stetig ab und daher ist es erforderlich, die Aktivkohlefalle zeitweilig zu regenerieren, d.h. den gespeicherten Kohlenwasserstoff aus dieser wieder herauszulösen. Zu diesem Zweck ist die Aktivkohlefalle über ein Tankentluftungsventil (TEV) mit einem zum Ansaugen von Verbrennungsluft dienenden Saugrohr über eine Drosselklappe mit der Brennkraftmaschine verbunden. Durch Öffnen des TEV entsteht ein Druckgefälle zwischen der Aktivkohlefalle und dem Saugrohr, mittels dessen der in der Aktivkohlefalle gespeicherte Kohlenwasserstoff in das Saugrohr geführt wird, um letztlich in der Brennkraftmaschine verbrannt und damit entsorgt zu werden.
Es wird in dem vorliegenden Zusammenhang auf die in einigen Ländern, wie den USA, verschärften gesetzlichen Regelungen beim Betrieb von Brennkraftmaschinen hinge- wiesen, wonach es erforderlich ist, dass Kraftfahrzeuge, bei denen flüchtige Brennstoffe wie Benzin eingesetzt werden, eine eingangs genannte Kontrolleinrichtung aufweisen, die in der Lage ist, eine etwa bestehende Undichtigkeit (Leckage) einer Öffnungsgröße von 0,5 mm im Tank bzw. der gesamten Brennstofftankanlage allein mit Bordmitteln aufspüren zu können.
Die genannte Regenerierung der Aktivkohlefalle hängt nun empfindlich von der Funktion des TEV ab. Es besteht demnach ein Erfordernis, das TEV regelmäßig auf seine ordnungsgemäße Funktion hin zu überprüfen. Ein erster bekannter Ansatz zur Diagnose des TEV sieht vor, das TEV in einem hinreichend stabilen Arbeitspunkt im Leerlauf zu betreiben und die Änderung der der Brennkraftmaschine zugeführten Gemischzusammensetzung sowie die Änderung des Energiestroms über die Drosselklappe zu beobachten. Der genannte Energiestrom entspricht dabei dem Produkt aus dem über die Drosselklappe abgeführten Luftmassenstrom und dem Zündwinkelwirkungsgrad. Diese Methode setzt daher einen hohen Saugrohrunterdruck voraus .
Gemäß einem zweiten bekannten Ansatz erfolgt die Diagnose als Teil einer üblichen Dichtheitsprüfung der Tankanlage. Ein solches Verfahren geht bspw. aus den Druckschriften US 5,349,935, PE 106 36 431.0 Ali, DE 108' 09 304.5 AI und DE 196 25 702 A1J hervor. Bei diesen wird die Tankanlage mittels einer Pumpe mit einem Überdruck beaufschlagt und durch anschließendes Auswerten des Druckverlaufs ggf. auf das Vorhandensein eines Lecks geschlossen. Überdies sind aus /der ιJP-'G"173'l3-9—/ f-mid. der US 5,347,971 ähnliche Verfahren bekannt geworden, bei denen der Tankanlage ein Referenzleck parallel zugeschaltet wird und bei denen durch Vergleich der Messungen mit und ohne Referenzleck eine Aussage über das Vorhandensein eines Lecks getroffen wird. Des ei- teren ist aus der DE 196 36 431.0 AI bekannt, bei der Dichtheitsprüfung eine Betriebsgröße der Pumpe, bspw. die elektrische Stromaufnahme, heranzuziehen. Zur Funktionsdiagnose des TEV wird dabei üblicherweise zunächst anhand der genannten Referenzleck-Methode geprüft, ob die Tankanlage dicht ist. Ausgehend von einem dichten Zustand wird das TEV öffnend angesteuert. Wird dann ein signifikanter Stromabfall der Pumpe beobachtet, so wird das TEV als ordnungsgemäß funktionierend angenommen.
Die genannten Vorgehensweisen bei der Funktionsdiagnose des TEV erfordern zeitaufwendige Messungen und lassen keine quantitative Aussage hinsichtlich einer ordnungsgemäßen Funktion des TEV zu.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und ein Steuergerät der eingangs genannten Art dahingehend weiterzubilden, dass bei möglichst kurzer Diagnosedauer ein höchstmögliches Maß an Diagnosesicherheit bereitgestellt wird. Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens sowie Weiterbildungen der Steuereinheit sind Gegenstand der Unteransprüche.
Die Erfindung schlägt vor, das Tankentluftungsventil öffnend oder schließend anzusteuern, eine bestimmte Druckänderung durchzuführen, dabei wenigstens eine Betriebsgröße der Druckquelle zu erfassen und aus der erfassten Betriebsgröße auf ein funktionsfähig öffnendes bzw. schließendes Tankentluftungsventil zu schließen.
In einer ersten Variante wird das Tankentluftungsventil schließend angesteuert und mittels der Druckquelle ein bestimmter Druckaufbau in der Tankentlüftungsanlage erzeugt. Dabei wird die wenigstens eine Betriebsgröße der Druckquelle erfasst und aus der erfassten Betriebsgröße ggf. auf ein funktionsfähig schließendes Tankentluftungsventil geschlossen. Um entsprechend auch auf ein funktionsfähig öffnendes Tankentluftungsventil schließen zu können, wird das Tankentluftungsventil nachfolgend öffnend angesteuert und bei dem erfolgenden Druckabbau die wenigstens eine Betriebsgröße der Druckquelle erfasst.
Alternativ kann vorgesehen sein, dass das Tankentluftungsventil öffnend angesteuert wird und dabei ein Druckabbau in der Tankentlüftungsanlage erfolgt, wobei die wenigstens eine Betriebsgröße der Druckquelle er- fasst und aus der erfassten Betriebsgröße auf ein funktionsfähig öffnendes Tankentluftungsventil geschlossen wird, und dass das Tankentluftungsventil nachfolgend schließend angesteuert wird, bei dem erfolgenden Druckaufbau die wenigstens eine Betriebsgröße der Druckquelle erfasst und aus der erfassten Betriebsgröße ggf. auf ein funktionsfähig schließendes Tankentluftungsventil geschlossen wird.
Gemäß einer zweiten Variante wird das Tankentluftungsventil schließend angesteuert und die Druckquelle zunächst kurzzeitig aktiviert. Dabei wird eine Leerlaufbetriebsgröße der Druckquelle erfasst. Nachfolgend wird das Tankentluftungsventil öffnend angesteuert und aus der relativen Änderung der wenigstens einen Betriebsgröße der Druckquelle gegenüber der Leerlaufbetriebsgröße ggf. auf die Funktionsfähigkeit des Tankentlüftungsventils geschlossen.
Das vorgeschlagene Verfahren kann, im Unterschied zum eingangs beschriebenen ersten Ansatz auch auf Systeme mit nur geringem Saugrohrunterdruck, bspw. WT-Systeme, angewendet werden. Im Unterschied zum als zweiten Ansatz bezeichneten Konzept erfordert das Verfahren nicht das der eigentlichen TEV-Diagnose vorgeschaltete Pumpen gegen ein Referenzleck und einen sich anschließenden Druckaufbau bis zum Erreichen eines Referenzstromniveaus . Demgegenüber werden eine erheblich verkürzte TEV-Diagnosedauer und gleichzeitig eine höhere Aussage- Sicherheit bereitgestellt. .Gemäß einer besonderen Ausgestaltung wird zudem eine quantitative Aussage über das tatsächliche Volumenstromverhalten des TEV ermöglicht.
Es versteht sich, dass die Erfindung nicht nur in der Kraftfahrzeugtechnik, sondern auf sämtlichen Gebieten, in denen Tankanlagen in der eingangs genannten Weise von flüchtigen Stoffen freizuhalten sind, vorteilhaft einsetzbar ist. Beispielhaft sei hier nur der Bereich der Petrochemie angegeben.
Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen erläutert, aus denen sich weitere Merkmale und Vorteile der Erfindung ergeben. Es zeigen
Fig. 1 eine Brennstofftankanlage, bei welcher ein von der Erfindung Gebrauch machendes Verfahren bzw. eine erfindungsgemäße Steuereinheit zur Anwendung kommen?
Fig. 2 gemäß einem ersten Ausführungsbeispiel bereitgestellte Steuersignale und sich dabei ergebende Messdaten als Funktion der Zeit; und
Fig. 3 ein der Fig. 2 entsprechendes Diagramm gemäß einem zweiten Ausführungsbeispiel. Die in der Fig. 1 in Blockdiagrammform dargestellte Brennstofftankanlage umfasst einen Tank 10, der über eine Tankanschlussleitung 12 mit einem Aktivkohlefilter 14 verbunden ist. Ein eine (nicht gezeigte) Drosselklappe aufweisendes Saugrohr 16 einer (ebenfalls nicht gezeigten) Brennkraftmaschine ist, ebenfalls über den Aktivkohlefilter 14, über eine Ansaugleitung 18 und über ein Tankentluftungsventil (TEV) 20 mit dem Tank 10 verbunden.
Im Betrieb der Brennkraftmaschine oder beim Betanken des Tanks 10 bilden sich im Tank flüchtige Kohlenwasserstoffdämpfe, die über die Leitung 12 in den Aktivkohlefilter 14 gelangen und in diesem in bekannter Weise reversibel gebunden werden.
Bei von einer Steuereinheit 21 über eine erste elektrische Steuerleitung 40 zeitweilig öffnend angesteuertem TEV 20 und entsprechend über eine zweite Steuerleitung 42 angesteuertem Umschaltventil 32 wird nun Frischluft 22 aus der Umgebung durch den Aktivkohlefilter 14 hindurch angesaugt, wobei darin etwa gespeicherter Kraftstoff an die eingesaugte Luft abgegeben wird und der Aktivkohlefilter 14 sich im Ergebnis regeneriert.
Um die Dichtigkeit des Tanks 10 bzw. der gesamten Tankanlage zu diagnostizieren, ist eine mit dem Aktivkohlefilter 14 verbundene Leckdiagnoseeinheit 28 vorgesehen. Die Diagnoseeinheit 28 umfasst eine Flügelzellenpumpe 30. Der Pumpe 30 vorgeschaltet ist das bereits genannte Umschaltventil 32. In einen separaten Leitungszweig 34 ist ein Referenzleck 36 eingebracht. Das Referenzleck 36 wird in dem Beispiel mittels eines Magnetschiebeven- tils 38 geöffnet bzw. geschlossen. Die jeweilige Dimensionierung des Referenzlecks 36 ist so gewählt, dass sie der Größe des zu erfassenden Lecks entspricht. Im Falle der eingangs genannten US-Norm weist das Referenzleck demnach einen Öffnungsquerschnitt von 0,5 mm auf.
Das Umschaltventil 32 hat zwei Schaltstellungen. In der ersten Stellung wird die Pumpe 30 über den Aktivkohlefilter 14 mit dem Tank 10 druckleitend verbunden und pumpt damit Außenluft in den Tank 10. Während des Pum- pens der Frischluft in den Tank 10 wird die Stromaufnahme der Pumpe 30 kontinuierlich erfasst. Zur Durchführung einer Referenzmessung wird das Umschaltventil 32 vollständig geschlossen, so dass mittels des Magnetschiebeventils 38 nunmehr die Stromaufnahme der Pumpe 30 aufgrund des sich vor dem Referenzleck 36 aufbauenden Staudrucks erfasst werden kann. Die Ansteuerung der Pumpe 30 mittels der Steuereinheit 21 sowie das Auslesen der Stromaufnahmedaten erfolgt über entsprechende Steuer- und Datenleitungen 44, 46.
Die Figuren 2 und 3 zeigen zeitliche Verläufe der Steuerspannung U_UmschV des Umschaltventils 32, der Ansteuerung des TEV 20, des Pumpenstroms bzw. der Pumpen- Stromaufnahme I_Pumpe sowie des Drucks in der Tankanlage p_Tankanl., wie sie bei zwei unterschiedlichen Ausgestaltungen des erfindungsgemäßen Verfahrens auftreten.
Wie aus der Fig. 2 zu ersehen, wird nach Bestromen des Umschaltventils 32 mit U_UmschV bei tl und bei schließend angesteuertem TEV 20 durch die Pumpe 30 ein Überdruck 100 in der Tankanlage erzeugt. Dabei wird die aufgrund des sich ausbildenenden Gegendrucks ebenfalls ansteigende Stromaufnahme 102 der Pumpe 30 kontinuierlich oder diskret in kurzen Zeitabständen erfasst. Steigt nun die Stromaufnahme 102, ausgehend von dem. Leerlaufström 104, um einen vorab empirisch zu bestimmenden ersten Schwellenwert I_Schwl an, so wird aus dem damit korrelierenden Druckaufbau 100 in der Tankanlage auf ein korrekt schließendes TEV 20 geschlossen. Dabei kann zumindest von einem, trotz schließender Ansteuerung, nicht mehr als minimal und damit unterhalb einer Diagnoseschwelle geöffneten TEV 20 ausgegangen werden.
Anschließend wird das TEV 20 bei t2 öffnend angesteuert 106, was bei tatsächlichem Öffnen des TEV 20 zu einem Druckabfall 108 in der Tankanlage und damit zu einem Abfall 110 der Stromaufnahme der Pumpe 30 führt. Bei Überschreiten des Betrags dieses Abfalls eines wiederum empirisch zu bestimmenden zweiten Schwellenwertes I_Schw2 wird auf ein korrekt öffnendes TEV 20 geschlossen. Der vorbeschriebene Zyklus von Druckaufbau 100 und Druckabbau 108 bei geschlossen 112 bzw. geöffnet 106 angesteuertem TEV 20 kann zur Erhöhung der Güte der Funktionsdiagnose, wie in dem Beispiel gezeigt, mehrfach wiederholt werden. So erfolgt hier ein zweiter Druckanstieg zwischen t3 und t4 und nachfolgend wieder ein Druckabfall zwischen t4 und t5.
Um darüber hinaus auch eine quantitative Unterscheidung zwischen ordnungsgemäßer und nicht-ordnungsgemäßer Funktion des TEV 20 zu ermöglichen, kann das TEV 20 mit unterschiedlichen Tastverhältnissen öffnend angesteuert werden, um bspw. durch Erfassen des zeitlichen Gradienten der Stromaufnahme I_Pumpe der Pumpe 30 den tatsächlichen, durch das TEV 20 hindurchfließenden Massenbzw. Volumenstrom berechnen zu können. Dabei kann sich bekanntermaßen der Zusammenhang DELTA_V/DELTA_t ist proportional zu DELTA_p/DELTA_t und DELTA_p/DELTA_t ist wiederum proportional zu DELTA_I/DELTA_t (mit V = Strömungsvolumen, p = Druck, I = Stromaufnahme, t = Zeit) zunutze gemacht werden.
Die Fig. 3 zeigt ein zweites Ausführungsbeispiel in einer der Fig. 2 ähnlichen Darstellung, bei dem, im Unterschied zur Fig. 2, die TEV-Diagnose mittels einer Unterdruckmethode erfolgt. Bei zunächst schließend 200 angesteuertem TEV 20 wird die Pumpe 30 kurzzeitig aktiviert und ihre Stromaufnahme I_Pumpe unter Leerlauf 202 erfasst. Bei t2 wird das TEV 20 öffnend 204 angesteuert, wodurch sich aufgrund des bestehenden Saugrohrunterdrucks bei tatsächlichem Öffnen des TEV 20 ein Druckabbau 206 in der Tankanlage einstellt. Nach erneutem Schließen des TEV 20 bei t3 und erneutem Aktivieren der Pumpe 30 wird aus dem Unterschied des erfassten LeerlaufStroms 202 auf die Funktionsfähigkeit des TEV 20 geschlossen. Auch in diesem Ausführungsbeispiel werden die Zyklen mehrfach wiederholt und es können dabei, wie vorbeschrieben, ggf. unterschiedliche Tastverhältnisse zur Anwendung kommen.
Die vorbeschriebenen Verfahrensschritte zur Diagnose des TEV 20 lassen sich durch entsprechende Programmierung der Steuereinheit 21, bspw. durch Einbringen eines entsprechenden Programmcodes in einen EEPROM, realisieren.

Claims

Ansprüche
Verfahren zur Prüfung der Funktionsfähigkeit eines in einer Tankanlage insbesondere eines Kraftfahrzeuges angeordneten, mittels einer Steuereinheit (21) ansteuerbaren und mit einem Saugrohr (16) verbundenen Tankentlüftungsventils (20), wobei eine Druckquelle (30) zur Prüfung der Dichtheit der Tankanlage mittels Über- oder Unterdruck vorgesehen ist und wobei die Prüfung der Funktionsfähigkeit des Tankentlüftungsventils (20) anhand wenigstens einer Betriebsgröße (102) der Druckquelle (30) erfolgt, dadurch gekennzeichnet, dass das Tankentluftungsventil (20) öffnend oder schließend angesteuert und eine bestimmte Druckänderung (100, 108) durchgeführt wird, und dass die wenigstens eine Betriebsgröße (102) der Druckquelle (30) erfasst und aus der erfassten Betriebsgröße (102) auf ein funktionsfähig öffnendes bzw. schließendes Tankentluftungsventil (20) geschlossen wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Tankentluftungsventil (20) schließend angesteuert (112) und mittels der Druckquelle (30) ein bestimmter Druckaufbau (100) in der Tankentlüftungsanlage durchgeführt wird, wobei die wenig- stens eine Betriebsgröße (102) der Druckquelle (30) erfasst und aus der erfassten Betriebsgröße (102) auf ein funktionsfähig schließendes Tankentluftungsventil (20) geschlossen wird, und dass das Tankentluftungsventil (20) nachfolgend öffnend angesteuert wird (106), bei dem erfolgenden Druckabfall (110) die wenigstens eine Betriebsgröße (102) der Druckquelle (30) erfasst und aus der erfassten Betriebsgröße (102) auf ein funktionsfähig öffnendes Tankentluftungsventil (20) geschlossen wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Tankentluftungsventil (20) öffnend angesteuert wird (106) und dabei ein Druckabfall (108) in der Tankentlüftungsanlage erfolgt, wobei die wenigstens eine Betriebsgröße (110) der Druckquelle (30) erfasst und aus der erfassten Betriebsgröße (110) auf ein funktionsfähig öffnendes Tankentluftungsventil (20) geschlossen wird, und dass das Tankentluftungsventil (20) nachfolgend schließend angesteuert wird, bei dem erfolgenden Druckaufbau die wenigstens eine Betriebsgröße der Druckquelle (30) erfasst und aus der erfassten Betriebsgröße auf ein funktionsfähig schließendes Tankentluftungsventil (20) geschlossen wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die wenigstens eine Betriebsgröße im Leerlauf (104) der Druckquelle (30) (Leerlaufbetriebsgröße) erfasst und aus der relativen Änderung der Betriebsgröße gegenüber der Leerlaufbetriebsgröße auf die Funktionsfähigkeit des Tankentlüftungsventils (20) geschlossen wird.
Verfahren zur Prüfung der Funktionsfähigkeit eines in einer Tankanlage insbesondere eines Kraftfahrzeuges angeordneten, mittels einer Steuereinheit (21) ansteuerbaren und mit einem Saugrohr (16) verbundenen Tankentlüftungsventils (20), wobei eine Druckquelle (30) zur Prüfung der Dichtheit der Tankanlage mittels Über- oder Unterdruck vorgesehen ist und wobei die Funktionsfähigkeit des Tankentlüftungsventils (20) anhand wenigstens einer Betriebsgröße der Druckquelle (30) erfolgt, dadurch gekennzeichnet, dass das Tankentluftungsventil (20) schließend angesteuert wird (200), wobei die Druckquelle (30) kurzzeitig aktiviert und dabei die wenigstens eine Betriebsgröße (202) im Leerlauf der Druckquelle (30) (Leerlaufbetriebsgröße) erfasst wird, und dass das Tankentluftungsventil (20) nachfolgend öffnend angesteuert (204) und aus der relativen Änderung der wenigstens einen Betriebsgröße (I_Pumpe) der Druckquelle (30) gegenüber der Leerlaufbetriebsgröße auf die Funktionsfähigkeit des Tankentlüftungsventils (20) geschlossen wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Über- bzw. Unterschreiten eines vorgegebenen Schwellenwertes (I__Schwl, I_Schw2) der wenigstens einen Betriebsgröße der Druckquelle (30) auf die Funktionsfähigkeit des Tankentlüftungsventils (20) geschlossen wird.
7. Verfahren nach einem der vorhergehenden Ansprüche , dadurch gekennzeichnet, dass die bestimmte Druckänderung wenigstens zweimal durchgeführt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die wenigstens zweimaligen Druckänderungen mit jeweils unterschiedlichem Tastverhältnis erfolgen und aus dem Gradienten der Änderung der wenigstens einen Betriebsgröße der Druckquelle (30) auf das quantitative Funktionsverhalten des Tankentlüftungsventils (20) geschlossen wird.
9. Steuergerät zur Durchführung des Verfahrens nach einem der vorhergehenden Ansprüche.
10. Tankleckdiagnosegerät zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8.
EP02754259A 2001-07-25 2002-06-21 Verfahren und steuergerät zur funktionsdiagnose eines tankentlüftungsventils einer brennstofftankanlage insbesondere eines kraftfahrzeugs Expired - Lifetime EP1415079B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10136183 2001-07-25
DE10136183A DE10136183A1 (de) 2001-07-25 2001-07-25 Verfahren und Steuergerät zur Funktionsdiagnose eines Tankentlüftungsventils einer Brennstofftankanlage insbesondere eines Kraftfahrzeuges
PCT/DE2002/002297 WO2003012278A1 (de) 2001-07-25 2002-06-21 Verfahren und steuergerät zur funktionsdiagnose eines tankentluftungsventils einer brennstofftankanlage insbesondere eines kraftfahzeugs

Publications (2)

Publication Number Publication Date
EP1415079A1 true EP1415079A1 (de) 2004-05-06
EP1415079B1 EP1415079B1 (de) 2004-12-22

Family

ID=7693014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754259A Expired - Lifetime EP1415079B1 (de) 2001-07-25 2002-06-21 Verfahren und steuergerät zur funktionsdiagnose eines tankentlüftungsventils einer brennstofftankanlage insbesondere eines kraftfahrzeugs

Country Status (5)

Country Link
US (1) US7162914B2 (de)
EP (1) EP1415079B1 (de)
JP (1) JP2004536998A (de)
DE (2) DE10136183A1 (de)
WO (1) WO2003012278A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004007520A1 (de) * 2004-02-17 2005-08-25 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine
DE102007016217A1 (de) 2007-04-04 2008-10-09 Audi Ag Verfahren und Vorrichtung zum Prüfen einer Bewegbarkeit eines Unterdruckventils einer Kraftstoffanlage eines Kraftfahrzeugs
DE102008000759A1 (de) * 2008-03-19 2009-09-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit eines Tankentlüftungsventils
US20100147232A1 (en) * 2008-12-12 2010-06-17 Solutions With Water, Llc System and method for improving fuel economy in combustion engines
DE102008063758B4 (de) 2008-12-19 2018-02-15 Volkswagen Ag Verfahren zum Prüfen eines Tankentlüftungssystems
DE102008064345A1 (de) * 2008-12-20 2010-06-24 Audi Ag Verfahren zur Prüfung der Funktion eines Tankentlüftungsventils
DE102010031216B4 (de) 2009-09-18 2024-03-14 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit eines Tankabsperrventils einer Kraftstoff-Tankanlage
EP2333291B1 (de) * 2009-11-30 2014-01-08 Ford Global Technologies, LLC Kraftstofftank
US8560167B2 (en) 2011-02-18 2013-10-15 Ford Global Technologies, Llc System and method for performing evaporative leak diagnostics in a vehicle
DE102011084859B4 (de) * 2011-10-20 2024-04-25 Robert Bosch Gmbh Verfahren zur Diagnose eines Tankentlüftungsventils
JP5582367B2 (ja) * 2012-07-25 2014-09-03 株式会社デンソー 蒸発燃料処理装置
CN103983406A (zh) * 2014-05-07 2014-08-13 青岛双凌科技设备有限公司 一种汽车制动橡胶皮碗低温密封性能试验装置
CN106197902B (zh) * 2016-07-22 2019-01-18 华中科技大学 一种气密检测装置及其伺服控制方法
JP6654522B2 (ja) 2016-07-27 2020-02-26 愛三工業株式会社 蒸発燃料処理装置
CN108680311A (zh) * 2018-05-31 2018-10-19 广东国华人防科技有限公司 气密检测装置及其检测人防过滤吸收器的气密性的方法
US10717355B2 (en) 2018-12-19 2020-07-21 Ford Global Technologies, Llc Systems and methods for fuel tank grade vent valve diagnostics
DE102019215472B4 (de) * 2019-10-09 2023-05-11 Vitesco Technologies GmbH Verfahren sowie Vorrichtung zur Ermittlung des Durchflusses durch ein Taktventil
CN115126635A (zh) * 2021-03-26 2022-09-30 重庆金康赛力斯新能源汽车设计院有限公司 一种基于obd的燃油泄漏诊断方法和装置
US11428184B1 (en) 2021-04-26 2022-08-30 Ford Global Technologies, Llc Method and system for diagnosing grade vent valves

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3909887A1 (de) * 1989-03-25 1990-09-27 Bosch Gmbh Robert Verfahren und vorrichtung zur ueberpruefung der steuerbarkeit eines tankentlueftungsventils
DE4124465C2 (de) 1991-07-24 2002-11-14 Bosch Gmbh Robert Tankentlüftungsanlage und Kraftfahrzeug mit einer solchen sowie Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer solchen
US5273020A (en) * 1992-04-30 1993-12-28 Nippondenso Co., Ltd. Fuel vapor purging control system for automotive vehicle
JP3116556B2 (ja) 1992-06-08 2000-12-11 株式会社デンソー 内燃機関の燃料タンク系の気密チェック装置
DE4222298B4 (de) 1992-07-08 2005-11-03 Robert Bosch Gmbh Verfahren zur Dämpfung von auftretenden Ruckelschwingungen für Brennkraftmaschinen
DE4401887C2 (de) * 1993-01-29 1997-07-24 Siemens Ag Verfahren zur Diagnose von Komponenten eines Tankentlüftungssystems
FR2731467B1 (fr) * 1995-03-06 1997-04-18 Siemens Automotive Sa Procede de diagnostic du fonctionnement de la vanne de purge d'un systeme de recuperation de vapeurs de carburant, pour un vehicule automobile
JP3886587B2 (ja) 1996-03-01 2007-02-28 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング 内燃機関付車両のタンク系統の気密試験方法
US5685279A (en) * 1996-03-05 1997-11-11 Chrysler Corporation Method of de-pressurizing an evaporative emission control system
DE19625702A1 (de) 1996-06-27 1998-01-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Dichtheitsprüfung eines Behältnisses
DE19636431B4 (de) * 1996-09-07 2009-05-14 Robert Bosch Gmbh Verfahren und Vorrichtung zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
US5817925A (en) * 1997-03-26 1998-10-06 Siemens Electric Limited Evaporative emission leak detection system
DE19809384C2 (de) * 1998-03-05 2000-01-27 Bosch Gmbh Robert Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage
DE19836295B4 (de) * 1998-08-11 2004-07-08 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage eines Fahrzeugs
US6282945B1 (en) * 1999-12-16 2001-09-04 Siemens Automotive, Inc. Method and system for aggressive cycling of leak detection pump to ascertain vapor leak size
DE10006186C1 (de) * 2000-02-11 2001-06-13 Bosch Gmbh Robert Verfahren zur Dichtheitsprüfung eines Tanksystems eines Fahrzeugs
DE10006185C1 (de) * 2000-02-11 2001-06-13 Bosch Gmbh Robert Verfahren zur Dichtheitsprüfung einer Tankanlage eines Fahrzeugs
EP1272755B1 (de) * 2000-04-06 2006-12-27 Robert Bosch Gmbh Verfahren zur dichtheitsprüfung einer tankentlüftungsanlage eines fahrzeugs
DE10019935A1 (de) * 2000-04-06 2001-10-25 Bosch Gmbh Robert Verfahren zur Dichtheitsprüfung einer Tankentlüftungsanlage eines Fahrzeugs
DE10018441B4 (de) * 2000-04-13 2005-12-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur umweltschonenden Dichtheitsprüfung eines Behältnisses
DE10019905C2 (de) * 2000-04-20 2002-04-25 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung der Vereisungsgefahr bei zur Tankleckdiagnose bei Kraftfahrzeugen eingesetzten Pumpen
DE10043071A1 (de) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur Diagnose des Tankentlüftungsventils
DE10116693A1 (de) * 2001-04-04 2002-10-17 Bosch Gmbh Robert Beheizbare Tankleckdiagnoseeinheit insbesondere für Kraftfahrzeuge
JP4538989B2 (ja) * 2001-06-01 2010-09-08 マツダ株式会社 蒸発燃料処理装置の故障診断装置
DE10204132B4 (de) * 2002-02-01 2012-03-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Dichtheitsprüfung eines Behältnisses
DE10209483B4 (de) * 2002-03-05 2006-07-06 Robert Bosch Gmbh Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage und Tankentlüftungsanlagen bei Kraftfahrzeugen
US6887284B2 (en) * 2002-07-12 2005-05-03 Dannie B. Hudson Dual homogenization system and process for fuel oil
JP2004232521A (ja) * 2003-01-29 2004-08-19 Denso Corp 蒸発燃料処理装置のリークチェック装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03012278A1 *

Also Published As

Publication number Publication date
US7162914B2 (en) 2007-01-16
WO2003012278A1 (de) 2003-02-13
JP2004536998A (ja) 2004-12-09
EP1415079B1 (de) 2004-12-22
DE10136183A1 (de) 2003-02-20
US20050034513A1 (en) 2005-02-17
DE50201855D1 (de) 2005-01-27

Similar Documents

Publication Publication Date Title
EP1415079B1 (de) Verfahren und steuergerät zur funktionsdiagnose eines tankentlüftungsventils einer brennstofftankanlage insbesondere eines kraftfahrzeugs
DE102012201208B4 (de) Verfahren und System zur Kraftstoffdampfsteuerung
DE102013204761B4 (de) Kraftstoffsystemdiagnose
DE102013223067B4 (de) Kraftstoffsystem-diagnose
DE102011084403A1 (de) Tankentlüftungssystem und Verfahren zu dessen Diagnose
DE102014201486A1 (de) Steuern der Schließkraft eines Kanisterentleerungsventils vor dem Ausführen der Undichtigkeitsdiagnostik
DE102012220147A1 (de) Verfahren und system zur kraftstoffdampfsteuerung
WO1991015670A1 (de) Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit
DE102016210579A1 (de) Verfahren zur diagnose von leckagen nach der entlüftungsdurchfluss-steuerblende
DE102010013602A1 (de) Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
DE102017201530A1 (de) Tankentlüftungssystem für eine Verbrennungskraftmaschine und Verfahren zur Regenerierung eines Sorptionsspeichers
DE102016111193A1 (de) Vorrichtung zur Verarbeitung von verdampftem Kraftstoff
DE102006056384A1 (de) Verfahren zur Funktionsüberprüfung eines Druckschalters einer Tankentlüftungsanlage, Steuereinrichtung und Brennkraftmaschine
DE102009002746A1 (de) Verfahren zur Prüfung der Funktionsfähigkeit eines Tankentlüftungsventils
DE10204132B4 (de) Verfahren und Vorrichtung zur Dichtheitsprüfung eines Behältnisses
DE60031086T2 (de) Diagnosevorrichtung für Kraftstoffdampfentlüftungsanlage und Drucksensor
DE102008030089A1 (de) Verfahren und Vorrichtung zum Steuern einer Tankentlüftungsvorrichtung für ein Kraftfahrzeug
EP1377741A1 (de) Beheizbare tankleckdiagnoseeinheit insbesondere für kraftfahrzeuge
DE102014208987A1 (de) Verfahren zur Diagnose eines Tankentlüftungsventils
DE102004007520A1 (de) Verfahren zur Prüfung der Funktionsfähigkeit einer Tankentlüftungsanlage eines Kraftfahrzeugs mit einer Brennkraftmaschine
WO2020078789A1 (de) Tankentlüftungsventileinheit
DE102008063758A1 (de) Verfahren zum Prüfen eines Tankentlüftungssystems
DE102009033451B4 (de) Verfahren zum Überprüfen der Funktionsfähigkeit eines Ventils in einem Gaskanal einer Brennkraftmaschine sowie Steuervorrichtung
DE10126521B4 (de) Verfahren und Vorrichtung zur Tankleckdiagnose bei erhöhter Brennstoffausgasung
DE102012212109A1 (de) Tankentlüftungsanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201855

Country of ref document: DE

Date of ref document: 20050127

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050923

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070626

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070828

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070619

Year of fee payment: 6

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080622