EP1409651A2 - Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur - Google Patents

Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur

Info

Publication number
EP1409651A2
EP1409651A2 EP02772100A EP02772100A EP1409651A2 EP 1409651 A2 EP1409651 A2 EP 1409651A2 EP 02772100 A EP02772100 A EP 02772100A EP 02772100 A EP02772100 A EP 02772100A EP 1409651 A2 EP1409651 A2 EP 1409651A2
Authority
EP
European Patent Office
Prior art keywords
cell
cells
culture medium
culture
agglomerates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02772100A
Other languages
English (en)
French (fr)
Inventor
Johannes Schwarz
Sigrid Schwarz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neuroprogen GmbH Leipzig
Original Assignee
Neuroprogen GmbH Leipzig
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neuroprogen GmbH Leipzig filed Critical Neuroprogen GmbH Leipzig
Publication of EP1409651A2 publication Critical patent/EP1409651A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • C12N5/0623Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/58Adhesion molecules, e.g. ICAM, VCAM, CD18 (ligand), CD11 (ligand), CD49 (ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • C12N2501/585Integrins

Definitions

  • the invention relates to a method for the cultivation of cell cultures, in particular for the production of isolated cell cultures, comprising a plurality of cells, the method comprising one or more process steps from the group of expanding and modifying the cell culture in a culture medium.
  • the invention further relates to a culture medium for expanding or modifying a cell culture with a plurality of cells.
  • the invention further relates to a cell culture consisting of a multiplicity of cells which has been obtained from a culture medium in which a multiplicity of cells has been expanded and / or modified.
  • cell cultures are expanded in a culture medium, i.e. the cell number in the cell culture is increased by multiplying the cells, and / or modified, one or more cells being transferred into the expansion medium which usually contains components which are necessary or beneficial for cell multiplication or modification.
  • the cells are cultivated, cell-cell contacts are formed from certain cell concentrations in the culture medium, as a result of which a large number of cells combine to form coherent cell clusters, which can often only be separated with the addition of digestive enzymes and with a high cell loss.
  • progenitor cells such cell clusters are referred to as neurospheres.
  • neurospheres are currently the most widespread form of expansion of neural progenitor cells.
  • Such neurospheres grow in suspension cultures, and the invention relates in particular to neurospheres in which the growth of the cells can be dependent in particular on EGF (epidermal growth factor) and / or FGF (fibroblast growth factor) and / or LIF (leukemia inhibitory factor)
  • EGF epidermal growth factor
  • FGF fibroblast growth factor
  • LIF leukemia inhibitory factor
  • CEE chicken embryo extract
  • Such cell clusters or "spheres" are not limited to neurospheres, but can also occur with other cell types.
  • progenitor cells in particular neural progenitor cells
  • cell clusters spheroids or neurospheres
  • This Cell clusters form a relatively compact tissue with a cell count from a few to several million adherent cells (cell cluster diameter: typically 0.01-5 mm), the central areas of these cell clusters (or cell spheres) in particular tending to differentiate or to necrosis. These central sections of the spheroids are usually lost when these cell clusters are sustained.
  • a reduction in the size of the spheroids to obtain single cell suspensions is, however, absolutely necessary for many culture techniques (e.g. subcloning, transfection, cell sorting, cell counting).
  • the formation of the cell clusters impedes the accessibility of the membrane receptors of the cells that are not in direct contact with the culture medium and are arranged within the cell clump.
  • the multiplication of the cells is hindered by the restricted accessibility of the nutrient medium, and manipulations of the cells are hindered by exogenous factors which, for example, are intended to differentiate the cells or other cell transformations.
  • the invention is therefore based on the object of providing a method in which the expansion and / or modification of precursor cells takes place more quickly and / or more uniformly in relation to the total number of cells in the culture medium. Furthermore, the invention is based on the object of providing a cell culture which enables a faster multiplication of, in particular, precursor cells which tend to form cell clusters and which facilitates the modification of the cells by exogenous factors.
  • the object is achieved according to the invention by a method for the cultivation of progenitor cells, in particular for the production of isolated cell cultures of progenitor cells, in which the progenitor cells during expansion and / or modification to a significant extent as single cells and / or agglomerates with weak cell-cell interactions are present, especially with weak cell-cell interactions between progenitor cells, and thus no aggregates containing progenitor cells with clear cell-cell contacts arise.
  • cells in particular progenitor cells and / or neuronal cells, which have so far been expanded as spheroids, can be converted into single cell suspensions by transfer into the nutrient media according to the invention, the adhesive cell-cell interactions of the agglomerates by external action on the culture medium without damaging the predominant part of the cells can be separated into separate individual cells by transferring the agglomerates.
  • the expansion and / or modification of the precursor cells and / or neural cells can then be facilitated or carried out more uniformly on cells which are present as single cells and / or as agglomerates with the weak adhesive cell-cell interactions characterized above, since in the Culture medium contained nutrients or other active substances such as growth substances, coenzymes, plasmids, vectors or the like are much more accessible to the cells. This allows, for example, an accelerated multiplication of the cells compared to the cells present in cell clusters (spheroids). The same applies to cells that are present in agglomerates with weak cell-cell interactions.
  • the cell culture according to the invention or the cell culture used in the method according to the invention partially, preferably more than 25% or more than 50%, particularly preferably more than 75% or more than 90% (in each case based on the total cell number of the culture or on a representative sample ) or practically exclusively, ie more than 98%, progenitor cells (also called progenitor cells) and / or indirect and / or direct descendants of these progenitor cells, which are further differentiated or differentiated.
  • progenitor cells also called progenitor cells
  • Precursor cells in the sense of the invention are pluripotent (divisible from omnipotent stem cells), divisible cells that can differentiate into certain or only certain cell types by the action of exogenous factors. With different exogenous factors or exposure conditions, differentially differentiated cells of a limited number of possible cell types can result in qualitatively or quantitatively differentiated.
  • the resultant cells can differ in their composition in qualitative or quantitative terms when exposed to different exogenous factors, for example in the sense that a first cell type predominantly arises when a first exogenous factor acts and another cell type predominantly or exclusively arises when a different exogenous factor acts ,
  • neural progenitor cells in the sense of the invention are those that are exclusively or under certain cultivation conditions predominantly in neuronal cells and / or differentiate glial cells including astrocytes and oligodendrocytes.
  • the neuronal cells can exclusively or preferably comprise one or more neuronal cell types from the group of dopaminergic, cholinergic, serotoninergic and / or GABAergic neurons, the proportions of the cell types being able to vary depending on the exogenous factors or exposure conditions.
  • the growth of the cells according to the invention can depend on EGF (epidermal growth factor) and / or FGF (fibroblast growth factor) and / or L1F (leukemia inhibitory factor), but the cells do not require CEE (chicken embryo extract) for growth.
  • the progenitor cells differentiate with the addition of conventional nutrient solutions over sufficiently long periods of time, after transplantation into host animals, including humans, or after sufficiently long contacting of vessel walls made of glass, plastic or the like, as are used in conventional culture vessels.
  • neural progenitor cells are to be understood in a broader sense as all progenitor cells which can be removed from the brain, with the exception of stem cells, in particular embryonic stem cells, in a special embodiment.
  • stem cells in particular embryonic stem cells, in a special embodiment.
  • the invention also encompasses progenitor cells of other types, for example those which differentiate into muscle cells, liver cells or skin cells.
  • Neural cells in the sense of the invention are preferably postmitotic cells.
  • Neural cells and neural progenitor cells can also be referred to as neuronal cells or neuronal progenitor cells in the context of the invention.
  • Cell cultures according to the invention are preferably present or are used in the method according to the invention in which the process steps of expansion and / or modification do not relate to tumor cells.
  • the cell cultures according to the invention or used in the method according to the invention are practically free of tumor cells, i.e. contain less than 5% tumor cells based on the total number of cells or no detectable proportions.
  • Tumor cells are understood here to mean both benign and malignant (metastatic tumor cells with infiltrating growth) tumor cells.
  • Cells in the sense of the invention are always to be understood to mean progenitor cells, in particular neural progenitor cells, in the following, unless explicitly stated otherwise or if this results from the context.
  • cell-cell contacts within the meaning of the invention are always precursor cell contacts or contacts between precursor cells and other cells, in particular further or completely differentiated cells, in particular unless specifically stated otherwise or this results from the context or fully differentiated neural cells, or understand contacts between neural cells.
  • Modification of the cells in the sense of the invention is understood to mean any change in a characteristic of the cells, in particular with regard to a subsequent expansion and / or differentiation, including a change with regard to the expression of a gene.
  • a modification can be carried out in particular by differentiation, in particular partial differentiation, priming, genetic manipulation, such as transfection or similar, generally known methods.
  • Cell-cell contacts in the sense of the invention include direct cell-cell contacts in which cells adhere to one another through direct cell-cell interactions, for example by means of adhesion proteins such as cadherins, selectins and / or immunoglobulins, without being limited to these .
  • adhesion proteins such as cadherins, selectins and / or immunoglobulins
  • cell-cell contacts with homotypic interactions or with heterotypic interactions can be eliminated in order to avoid the formation of cell clusters, these cell-cell contacts being "initial" contacts, which are a cell connection with tissue-stabilizing, one Metabolism enabling or other properties that lead to a complementary effect of the cells with each other, such as the formation of tight junctions, desmosomes or gap junctions, upstream.
  • cell-cell contacts in the sense of the invention are understood to mean indirect cell-cell contacts in which the cells are at least partially connected to one another by an extracellular matrix.
  • An extracellular matrix in the sense of the invention is in particular a collection of secreted proteins and carbohydrates, which fills the space between the cells of an animal tissue and which can contain collagens and / or proteoglycans.
  • any organic or non-organic material with increased structural strength compared to the culture medium in particular material separated by phase boundaries compared to the culture medium, can be regarded as a matrix, such as, for example, organic tissue materials. in particular animal cell tissue, inorganic structural materials or structural materials such as vessel walls of any kind.
  • the cell agglomerates present, used and / or obtained in the method or cell cultures according to the invention preferably have fewer than 100 cells, in particular precursor cells, particularly preferably 2 to 16 cells, in particular precursor cells, per cell cluster.
  • the agglomerates can be separated into individual cells by weak external influences, in particular by weak mechanical influences.
  • the agglomerates can be separated by weak mechanical influences, for example by simple pipetting, by stirring at a low stirring speed, for example in the range from 50 to 250 revolutions per minute, where appropriate lower or higher stirring speeds can also be used, by ultrasound or by other suitable means, as long as the predominant part of the cells, in particular the precursor cells, of the cell culture is not damaged.
  • the external action on the agglomerates for separating them is preferably such that the cells, in particular the precursor cells, are damaged only to a minor extent (preferably ⁇ 20 or ⁇ 5 to 10% or ⁇ 1% of the cells or precursor cells), particularly there is preferably no significant damage to the cells. Damage to the cells is assumed if the cells' perception or differentiation behavior is perceptibly influenced by the external influence or if the cell membranes are destroyed.
  • the cultivation, ie the expansion and / or modification, of the cell culture is preferably carried out on a cell culture in which the proportion of cells which is present as single cells or as cell agglomerates with weak cell-cell interactions, based on the total number of cells in the culture, is more than 25 %, preferably more than 50%, particularly preferably more than 75%, in particular more than 95% or more than 99%, or in which virtually all cells of the cell culture are present as individual cells and / or agglomerates with weak cell-cell interactions.
  • the proportion of cells in the total cell number of the culture which are present as individual cells is particularly preferably more than 25%, preferably more than 50%, more than 75% or in particular more than 95% or more than 98% to practically 100%.
  • the above information on the proportion of cells based on the total number of cells is understood as a proportion of progenitor cells, as a proportion of neural progenitor cells or alternatively as a proportion of neuronal cells.
  • the cells present as individual cells and / or in the form of agglomerates with weak cell-cell interactions, in particular progenitor cells, in particular neural progenitor cells, or neuronal cells can contain 100 to 10,000,000 cells or more / ml in the culture medium Culture medium, preferably 1000 to 1,000,000 cells / ml culture medium, particularly preferably 10,000 to 500,000 cells / ml culture medium. In particular, the cells can be present with a cell number of approximately 100,000 to 500,000 cells / ml of culture medium.
  • the precursor cells and / or neural cells are preferably cultivated under conditions which at least partially block the activity of the cell receptors responsible for cell-cell adhesion.
  • Blocking can take place, for example, by preventing expression or activation of the receptors which cause cell-cell adhesion under the culture conditions, for example by making a substance necessary for activating the receptors inaccessible to the receptors, for example by not making them available to the culture medium is added or by adding masking agents to the culture medium which prevent binding of the activating substance to the receptors.
  • substances can be added to the culture medium which result in immediate blocking of the receptors, for example by binding these substances to the receptors and thereby preventing cell-cell adhesions.
  • blocking the receptors is also understood to mean measures which lead to a degradation, in particular a selective degradation, of the receptors.
  • the method steps of the method according to the invention are therefore preferably carried out on cells that are in a cell stage in which these cells can express adhesion molecules under suitable culture conditions, in particular e-NCAM (psa-NCAM) and / or N-cadherin and / or L1.
  • suitable culture conditions in particular e-NCAM (psa-NCAM) and / or N-cadherin and / or L1.
  • the cell cultures according to the invention preferably relate to those in which the cells are in a cell stage in which they can express adhesion molecules under suitable culture conditions, in particular e-NCAM and / or N-cadherin and / or L1.
  • the manipulation of the precursor cells and / or neural cells is preferably carried out under culture conditions under which more than 25%, preferably more than 75%, particularly preferably more than 90% or more than 95% of those for cell-cell adhesion and / or for Multi-adhesion proteins specific cell receptors are blocked. In particular, more than 99% or practically all of the receptors can be blocked.
  • the cell culture can be manipulated, in particular, under conditions in which specific cell receptors of the precursor cells and / or neural cells that generate direct cell-cell contacts are partially or completely blocked for adhesion molecules.
  • Such cell receptors which can be integrated into the cell membranes of the respective cells, can in particular cadherins, selectins, integrins and / or receptors of the immunoglobulin (lg) superfamily such as, in particular, NCAM, in particular embryonic NCAM (e-NCAM or psa-NCAM) and / or ICAM and / or L1, without being limited thereto.
  • psa-NCAM can be effectively inactivated via endoneuraminidase or its expression can be reduced by inhibiting NF-kappaB.
  • the culture medium thus preferably contains effective proportions of enzymes which break down carbohydrates, such as endoneuraminidase, in order to block more than 10% or more than 25%, preferably more than 75%, particularly preferably more than 95% or more than 99% or practically completely psa-NCAM ,
  • the other cell receptors mentioned, in particular N-cadherin and / or L1 can be blocked by suitable inhibitors.
  • the cell cultures can be manipulated, alternatively or cumulatively, under conditions in which cell receptors specific for multi-adhesive proteins are partially or completely blocked.
  • multi-adhesive proteins that occur in the extracellular matrix and can interact with collagens and proteoglycans are fibronectins that can adhere to cell surfaces by means of special integrins.
  • An advantageous embodiment of the method according to the invention for producing isolated cell cultures is when the expansion and / or manipulation of the precursor cells and / or neural cells of the cell culture takes place in a culture medium which has an effective Ca 2+ concentration of 1 1 mmol / l culture medium, preferably ⁇ 0.5 mmol / l culture medium, particularly preferably ⁇ 0.1 mmol / l.
  • the total concentration of Ca 2+ ions in the culture medium is preferably equal to the effective concentration.
  • the Ca 2+ ions can be masked by suitable masking agents which reduce the concentration of free Ca 2+ ions which can couple to the receptors responsible for cell-cell adhesion.
  • suitable masking agents can be used, for example, complexing agents such as EGTA, EDTA, crown ether or other suitable agents.
  • the culture medium may optionally be free of Ca 2+ ions except for inevitable impurities, and the medium is preferably not free of Ca 2+ ions.
  • a minimum content of Ca 2+ ions of 0.001-0.1 mmol / l, in particular 0.01 or 0.05 to 0.1 mmol / l culture medium has proven to be favorable in various ways.
  • the culture medium preferably contains only a low magnesium ion concentration or is free of magnesium ions except for unavoidable impurities.
  • the magnesium concentration in the culture medium can be 2 2 mmol / l culture medium, preferably 1 1 mmol / l culture medium, in particular 0,6 0.6 or 0,1 0.1 mmol / l culture medium.
  • the cells can be expanded and / or modified in the presence of inhibitors (e.g. receptor antagonists, receptor antibodies or antisense against the corresponding receptor RNA). which are specific for the receptors forming the cell-cell contacts of the cell membranes of the cells to be expanded.
  • inhibitors e.g. receptor antagonists, receptor antibodies or antisense against the corresponding receptor RNA
  • the cell medium can be cultivated with a culture medium which has effective amounts of one or more inhibitors which are specific for cadherins, selectins, integrins and / or immunoglobulins (Ig family), in particular for eNCAM, N-cadherin and / or L1 , These inhibitors attach directly to the receptors and thus block cell-cell adhesion. Inhibitors specific for E-, P-, N-cadherins are preferred; the culture medium can also have specific inhibitors for cadherins of other types. As an alternative or in addition, the culture medium can have inhibitors for receptors of the NCAM (in particular eNCAM) and / or ICAM family and / or receptors specific for L1. The inhibitors can be present in the culture medium in concentrations sufficient to block all or a desired proportion of the receptors.
  • Ig family immunoglobulins
  • the inhibitors can in each case individually and / or in the presence of several different inhibitors in total, in concentrations in the range from about 0.001 to about 10 ⁇ mol / l culture medium, for example 0.01 to 1 ⁇ mol / l or 0.1 to 1 ⁇ mol / l.
  • the inhibitors can optionally also be present in lower or higher concentrations, for example depending on the Ca 2+ ion concentration of the culture medium, provided the receptors are sufficiently blocked.
  • the culture medium can also have both a low content of Ca 2+ ions, for example 0,1 0.1 mmol / l culture medium in the presence of inhibitors specific for cell-cell adhesion receptors, in order to reduce the proportion of single cells and / or agglomerates with weak adhesive cells - Adjust cell interactions on the total number of cells in the culture medium.
  • the method according to the invention allows an at least 2-fold increase in telomerase activity compared to progenitor cells obtained from rodents or human tissue under otherwise identical conditions, and this method additionally prevents the reduction in telomerase activity in neural progenitors from human tissue, which was observed in the previous culture techniques.
  • telomerase is a ribonucleoprotein that catalyzes telomer repeats of all 3 ⁇ nd of the cDNA that are lost when cells divide. Due to the high telomerase activity, the cell cycle is shortened and the senescence of the cells is abolished or reduced.
  • the telomerase activity can be determined, for example, with a PCR ELISA according to the "Telomeric Repeat Amplification Protocol" (TRAP).
  • TRAP Telomeric Repeat Amplification Protocol
  • FIG. 1 in a TRAP assay in a cell culture according to the invention at Ca 2+ ion concentrations of 0.01 to 0.5 mmol / l, in particular in the range of 0.01 to 0.1 mmol / l, compared with a control sample C A pronounced telomerase activity was found in a tumor cell line.
  • Ca 2+ ion concentrations or in a Ca 2+ -free medium little or practically no telomerase activity is found.
  • Telomerase activity is preferably measured using an enzymatic luminometric PPj assay (ELIPA) (Xu SQ et al., 2002, Bioluminescent Method for Detecting Telomerase Activity; Clinical Chemistry 48: 7, pp1016-1020).
  • ELIPA enzymatic luminometric PPj assay
  • the extension of the telomere repeats according to the "Telomeric Repeat Amplification Protocol” (TRAP) is catalyzed by telomerase, which releases 6 PPj for each TTAGGG repeat.
  • the released PPj forms quantitatively with adenosine 5'-phosphosulfate with the addition of ATP-sulfurylase adenosine tri-phosphate (ATP).
  • the luciferase luminance system is based on the measurement of light generated by the luciferase-catalyzed reaction of ATP with luciferin. The light emission is independent of the time and is proportional to the ATP formed.
  • telomerase ELIPA assay with a cell culture according to the invention at Ca + ion concentrations of 0.01 to 0.5 mmol / l, in particular in the range of 0.01 to 0.1 mmol / l, compared to a control sample C of Tumor cell line A549 (CA cells of the lungs, Xu et al., 2002) found pronounced telomerase activity.
  • telomerase activity is found in tumor cells.
  • Ca + ion concentrations or in a Ca 2+ -free medium little or practically no telomerase activity is found.
  • progenitor cells from mammals in particular human progenitor cells
  • progenitor cells can be obtained by the method according to the invention, which have a telomerase activity of more than 20%, preferably more than 33%, more preferably more than Have 50%, more preferably more than 75%, most preferably more than 90% of the telomerase activity of the control sample of the tumor cell line.
  • the cells can in particular be neural progenitor cells.
  • the method according to the invention and the culture medium according to the invention can be used in particular, without being limited to this, in connection with the method according to WO 00/78931, which is based on the concept of keeping and multiplying neuronal progenitor cells in culture. After sufficient expansion, these cells can then be differentiated into specific neurons, for example dopaminergic neurons, by the action of suitable active ingredients.
  • cell cultures are used and / or obtained or cultures or cell media according to the invention can be present which are more than 25% or more than 50%, preferably more than 75% or practically exclusively from the desired neural cells (one or more neural cells Cell types) or their immediate precursors and other cells, in particular immunocompetent glial cells, only in proportions of ⁇ 90%, ⁇ 95%, ⁇ 98% or ⁇ 99%, more preferably ⁇ 10%, even more preferably ⁇ 5% or ⁇ 2 % based on the total number of cells in the cell culture.
  • glial cells are only contained in portions which no longer have a physiological effect, in particular are no longer detectable.
  • Cells are to be understood as immediate precursors in the abovementioned sense, which after transplantation into a host tissue, contact with a vessel wall of a conventional culture vessel such as a glass wall and / or transfer into a nutrient solution of a conventional composition which is used for culturing or multiplying the cells, differentiate directly into differentiated cells.
  • the method according to the invention described here can advantageously be further developed according to WO 00/78931.
  • the progenitor cells of the cell culture at least in one, preferably in all, of the above-mentioned process steps of expansion and / or partial differentiation and / or selection to a substantial extent (ie more than 25%, more than 75%, more than 90%, more than 95% or more than 98%) as single cells and / or agglomerates with weak cell-cell interactions, in which the cell-cell interactions can be separated by separate action on the culture medium without damaging the majority of the precursor cells by transferring the agglomerates into separate single cells.
  • the cells are present as immediately above successive steps of expansion and partial differentiation, possibly also during an immediately subsequent selection, as individual cells or weak cell-cell agglomerates defined above. The above steps can be followed by a final differentiation.
  • cell material can be obtained more easily and reproducibly, or a cell culture according to the invention can be present which comprises more than 25% or more than 50% or more than 75% or practically exclusively dopaminergic neurons and / or cholinergic neurons and / or GABAergic striatal and / or serotoninergic neurons individually or in combinations, ie the proportion of said neurons in the cell material is greater than 90%, preferably greater than 95% or greater than 99% or does not contain any physiologically active portions of other cells, in particular glial cells.
  • the neural progenitor cells used according to the invention through their multiplication, selection and initially partial and finally differentiation in a subsequent method step cell cultures or transplantable cell material can be obtained, can be made from both fetal and adult neural cell material (brain, preferably midbrain or spinal cord) of a mammal including human beings.
  • the removed brain parts can originate in particular from those brain areas which contain such neurons to which the progenitor cells differentiate partially or completely or to which the progenitor cells are applied for the therapy of a brain malfunction.
  • the adult cell material is advantageously prepared from periventricular sections.
  • the fetal material can be prepared from fetuses 3 to 25 weeks old, preferably 5 to 11 weeks or 6 to 20 weeks after fertilization.
  • the neuronal progenitor cells can also be obtained from blood stem cells from umbilical cord tissue. For the isolation and cultivation of the cells, see Daadi, Weiss, J. Neursci. 1999; Magrassi et al. Developement 1998, 54: 105-115; Ptak et al. Cell transplant 1995, 4: 299-310; Liepelt et a. Brain Res. Dev. Brain Res.
  • a transplantable neural cell material can be provided by a method which comprises an expansion of the human progenitor cells obtained directly or indirectly from cell material from mammals, including humans, a partial in vitro differentiation and a selection, the neural cultures ultimately obtained without the addition of other factors or genetic manipulations with a high percentage can be differentiated into the desired cell type or differentiate after transplantation. If necessary, after a partial differentiation or selection step of the progenitor cells, the cell material can be expanded again, the steps of partial differentiation and selection can be repeated several times, the manner in which they are carried out can differ in each case.
  • the invention makes it possible to select and differentiate neural progenitor cells to such an extent that, after adding nutrient media, contacting a vessel wall of a conventional culture vessel or after transplantation, a specific cell type predominantly differentiates.
  • the method according to the invention can comprise one or more steps of modifying cells in the form of a partial or complete differentiation and selecting cells.
  • One, several or all of the process steps of differentiation, in particular partial differentiation, and / or selection can be carried out with a medium which partially or practically exclusively precursor cells, in particular neural precursor cells, in the form of single cells and / or agglomerates with weak cell Contains cell interactions.
  • one, several or all of the above-mentioned process steps can be carried out with a medium which contains no precursor cells, single cells and / or agglomerates with weak cell-cell interactions, or only in negligible proportions based on the total number of cells in the medium.
  • the partial or final differentiation which can take place under in vitro conditions, can take place on progenitor cells, in particular on neuronal progenitor cells, whereby progenitor cells of other types, for example those which differentiate into muscle cells, liver cells or skin cells, can be used without being limited to this his.
  • the differentiation, in particular partial differentiation takes place not only significantly faster under these culture conditions but also more reproducibly and selectively than with a final differentiation or partial differentiation in the presence of cell clusters (spheres).
  • culture media according to the invention containing individual cells and / or agglomerates with weak cell-cell interactions in the partial differentiation of progenitor cells by priming and / or by genetic manipulation, in particular by transfection (for example transient or non-transient transfection), where the partial or final differentiation can also take place under hypoxic conditions, as described in more detail below.
  • a partial differentiation of the cells can take place in particular by treatment with one or more components from the group cytokines, growth factors, transcription factors, neurotransmitters, hormones and gangliosides, which can also be used in particular in a priming step.
  • the partial differentiation of neural progenitor cells is described in particular in WO 00/79931, the disclosure content of which with respect to the above-mentioned components is hereby to be included in full.
  • EGF epidermal growth factor
  • EGF1 and FGF2 transforming growth factor
  • TGF transforming growth factor
  • FGF1 and FGF2 nerve growth factor
  • NGF nerve growth factor
  • BDNF brain-derived neurotrophic factor
  • NT neurotrophins
  • IGF insulin-like growth factors
  • IGF-1 and IGF-2 glial cell line-derived neurotrophic factor
  • GDNF glial cell line-derived neurotrophic factor
  • NTN neurotrophic factor
  • PGP vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • IL 1-16 leukemia inhibitory factor
  • CNTF ciliary neurotrophic factor
  • TNF tumor necrosis factor
  • IFN interferons
  • cytokines - ⁇ macrophage inhibitory or stimulating factors, in particular acrophage migration inhibitory factor (MIF), mitochondrial import stimulation factor (MSF) and retinoic acid.
  • MIF acrophage migration inhibitory factor
  • MSF mitochondrial import stimulation factor
  • One or more of the group dopamine, acetylcholine, GABA, glutamate, glycine, taurine, proline, noradrenaline, serotonin and neuropeptides, in particular substance P and enkephalin, can be used as neurotransmitters.
  • the neurotransmitters can be used alone or in the presence of growth factors and / or cytokines.
  • hormones such as growth hormones, thyroid hormones (in particular for differentiating the progenitor cells to dopaminergic neurons), steroid hormones or gangliosides, in each case including their derivatives, can be used.
  • GDNF, LIF and one or more of IL1-11 can be used individually or in combination to generate dopaminergic neurons, in particular the combination IL-1, GDNF, LIF, IL-11, in each case including their subgroups.
  • the exogenous factors can be used individually or in combination in each case in concentrations of 25,000 to 0.005 ng / ml, preferably 1 to 100 ng / ml expansion solution, without being restricted thereto.
  • IL-1 can be used for differentiation in concentrations of 0.005 to 50 ng / ml or from 0.005 to 10 ng / ml, preferably 0.01 to 25 ng / ml or 0.05 to 0.25 ng / ml.
  • IL-11 and LIF can each be used in concentrations of 0.01 to 100 ng / ml, preferably 0.5 to 2.5 ng / ml.
  • GDNF can be used in concentrations of 1 to 25,000 ng / ml, preferably 1 to 100 to 2,500 ng / ml.
  • the factors can also be used in combination in these concentrations.
  • concentrations to be used are not limited to the values mentioned above and can vary, inter alia, depending on the other factors used.
  • Partial differentiation in the form of a priming is understood here to mean a method which involves the treatment of (monoclonal) neural progenitor cells with one or more exogenous substances, in particular one or more substances the group of growth factor, cytokines, neurotransmitters, in which a partial differentiation of the progenitor cells into further differentiated cell types takes place. That is, those in which the cells have further features of the finally differentiated cells, such as the expression of certain genes or certain external features.
  • conditioned media can also be used for this purpose, that is to say culture media which are used for the cultivation, in particular, of the neurons of a specific desired nerve cell population (for example dopaminergic neurons, cholinergic neurons, GABAergic neurons and / or serotoninergic neurons or also glial cells).
  • a specific desired nerve cell population for example dopaminergic neurons, cholinergic neurons, GABAergic neurons and / or serotoninergic neurons or also glial cells.
  • These exogenous factors are then withdrawn at a point in time when the cells can still differentiate back into a state that enables the cells to expand further.
  • the contact time with the exogenous factors can usually be about 1 to 12 hours, preferably about 3 to 6 hours, in exceptional cases also shorter or longer periods.
  • Such reconverted progenitor cells are called primed cells.
  • the progenitor cells differentiate much more quickly.
  • primed monoclonal cell lines can be obtained which already express genes which ensure a higher specificity.
  • progenitor cells in particular neural progenitor cells, in the form of single cells and / or agglomerates with weak cell-cell interactions, which are partially differentiated in such a way that they are still capable of priming, i.e. to a partial or complete reconversion after withdrawal of the medium causing partial differentiation, the state of the partial differentiation being independent of whether such priming is actually carried out or not.
  • the neuronal progenitor cells are therefore in a particularly early stage of differentiation.
  • a culture medium according to the invention containing portions of individual cells and / or agglomerate with weak cell interactions can also be used for partial differentiation by transfection.
  • Such a transfection can also be used as part of the priming described above or as an alternative to this.
  • the independent of the specifically used methods includes an insertion or a transfer of a gene or genes into the respective cells, a differentiation of the progenitor cells into a desired cell type, in particular into specific neuron types, can be favored.
  • This also includes a transient expression of these genes, which does not change the genetic material of the cell and, after a transplantation that may have been carried out into a tissue, for example into the brain, does not introduce any foreign genes into the tissue, but which determines the further fate of the cells.
  • genes can be used as genes which are specific for certain neural cell types, the genes mentioned in WO 00/79931 under the chapter "Partial Differentiation by Transfection” being hereby included by reference.
  • the development of dopaminergic neurons can be controlled by the transfection of genes which encode members of the steroid and thyroid hormone receptor family such as tyrosine hydroxylase, Nurr-1 and / or Nurr-77 receptors or by genes of the vesicular monoamine transporter or the Dopamine transporters, generally genes that are specific for dopaminergic neurons.
  • genes of the nicotinergic acetylcholine receptor in particular presynaptic ⁇ and ⁇ subunits, in particular ⁇ -7, genes of the nerve growth factor (NGF) receptor or cholinesterase.
  • NGF nerve growth factor
  • the partial differentiation of striatal neurons can be controlled in particular by genes coding for ⁇ -aminobutyric acid (GABA) transporter, genes coding for dopamine receptor, genes coding for glutamate receptor, enkephalin or substance P coding genes.
  • GABA ⁇ -aminobutyric acid
  • a transient or stable transfection of the progenitor cells is possible using commercial transfection reagents (e.g. Effectene, QIAGEN).
  • the corresponding cDNAs are amplified from the human genome using a polymerase chain reaction.
  • the transfection is carried out using the standard methods given in the literature. This enables transient or stable transfection of the prognostic cells.
  • the method step of selecting the cells can preferably be carried out by subcloning or by other suitable methods.
  • the subcloning can, in particular, be carried out by one or more methods from the following group, which are carried out in a suitable chronological order, without being limited to these: subcloning by final dilution, in particular as plating out of individual cells; Subcloning using micromanipulation marked vital cells; Subcloning of cell sorting of marked vital cells activated by fluorescence; Subcloning by magnetic concentration of magnetically marked cells. Regardless of this, reference is hereby made to the chapter "Selection by subcloning" of WO 00/78931 regarding the implementation of the selection, which is incorporated by reference in its entirety in the present explanations.
  • a cell sorting in which a number of cells with the same characteristic are selected from the cell culture in the manner of a screening of the cell sample, for example by micromanipulation of marked vital cells, subcloning by fluorescence-activated cell sorting of marked vital cells and / or subcloning by magnetic concentration of magnetically marked cells, can expediently, for example, after expansion and / or partial differentiation and before further selection by final dilution to increase the efficiency of the process.
  • the cells can be sorted under dysoxic conditions.
  • different techniques can be used in individual steps, which sort according to different characteristics of the cells. For example, in a first step a cell sorting according to a characteristic determining the differentiation state of the cells, e.g.
  • a second sorting step e.g. after a partial differentiation, for example a sorting according to the cell type, e.g. aligned to dopaminergic neurons, the order of the two previously mentioned sorting can also be reversed.
  • sorting according to other markers can take place than in the first step. It has proven to be particularly expedient to carry out a first cell sorting using IL-1 alpha receptor antibodies (e.g. Santa Cruz, 1-10 ⁇ g / ml) after an expansion of the cell culture and, after a subsequent partial differentiation, in particular by means of priming, a Cells are sorted using NCAM antibodies (e.g. DSHB, 1-10 ⁇ g / ml).
  • IL-1 alpha receptor antibodies e.g. Santa Cruz, 1-10 ⁇ g / ml
  • NCAM antibodies e.g. DSHB, 1-10 ⁇ g / ml
  • the cells are sorted by loading the antibodies with magnetizable particles by means of biotinylation, which are then absorbed by magnetizing columns (e.g. Mylteni GmbH).
  • the subcloning of the progenitor cells can, in particular, be carried out independently of the chosen method in such a way that only one cell remains in each culture vessel (especially in the case of subcloning by final dilution), or that only one or more cells of a selected cell type, which is defined by appropriate selection of the cell-typical markers used, remain in a culture vessel, provided that cell-type-specific subcloning was carried out, for example by fluorescence labeling, FACS , magnetic concentration in combination with cell type specific markers.
  • the cells plated in this way can then be expanded, resulting in monoclonal cell lines. Mitogenic substances are preferably added to the media (see growth factors given above) in order to achieve multiplication from a single cell.
  • the expansion, differentiation and characterization then takes place as described above for polyclonal progenitor cell suspensions. This preferably applies regardless of the subcloning method chosen.
  • the subcloning of the progenitor cells can be carried out by micromanipulation after fluorescent labeling of the vital cells by staining the living cells with a marker specific to the respective cell population.
  • a marker for dopaminergic cells the cells can, for example, temporarily with the gene for the green fluorescent "enhanced green-fluorescence protein" (EGFP, Clontech), which are expressed under the control of specifically dopaminergic promoters (tyrosine hydroxylase and / or dopamine transporter promoter) The green glowing cells can then be cloned as described.
  • EGFP green fluorescent "enhanced green-fluorescence protein”
  • cholinergic cells For cholinergic cells the same technique is used with the promoter of choline acetyl transferase (ChAT), for GABAergic neurons with the promoter for glutamyl decarboxylase (GAD) or other suitable Promoters, WO 00/78931 describes how specific cell types, in particular dopaminergic, cholinergic or GABAergic cells, can be selected by other subcloning methods, so that single cells or several cells of a specific cell type are present.
  • ChAT choline acetyl transferase
  • GAD glutamyl decarboxylase
  • WO 00/78931 describes how specific cell types, in particular dopaminergic, cholinergic or GABAergic cells, can be selected by other subcloning methods, so that single cells or several cells of a specific cell type are present.
  • this preferably takes place at a stage of the cells in which the greatest possible differentiation has taken place without reducing the ability of the cells to divide, i.e. after priming, genetic manipulation, change in the atmosphere or treatment with exogenous factors.
  • the steps of partial differentiation, selection (cloning) and / or expansion described above can be combined and repeated if necessary.
  • the selection of the progenitor cells can be followed by one or more process steps of the multiplication of the progenitor cells, the partial and / or complete differentiation of the progenitor cells or the renewed selection of the progenitor cells.
  • the cells can be applied in vitro by plating on poly-L-lysine-coated cover strips or 48-hole plates in neurobasal medium (Gibco).
  • FCS neurobasal medium
  • cytokines and / or striatally conditioned media can be added to the media.
  • the cytokines IL-1 ⁇ , IL-1ß, IL-4, IL-11, LIF, GDNF or other exogenous factors as described under the section "Priming" can be used.
  • the cells are kept at 37 for 7 to 10 days ° C differentiated in a humidified atmosphere before fixation and further examinations.
  • the functional integrity of the neurons, e.g. DA and GABA neurons can be determined by measuring the uptake of tritiated neurotransmitters. After preincubation for 10 minutes in an incubation buffer containing 100 ⁇ M pargylin, 1mM ascorbate and 2mM ß-alanine (and to determine the non-specific uptake: 3 ⁇ M GBR12909 and 1mM 2,4-diamino-n-butyric acid; DABA), 50 nM [ ⁇ ] DA, [ ⁇ ] choline or [ ⁇ ] GABA are added for 15 minutes at 37 ° C. Uptake can be stopped by washing the plates with cold PBS and the remaining radioactivity of the cell lysate can be measured by using liquid scintillation counting. The specific exposure can be determined as the difference between the absence (total) and the exposure in the presence of GBR12909 and DABA (non-specific).
  • the method for cell cultivation according to the invention can also include expansion and / or modification of the cells, for example by partial differentiation, in particular in the form of priming, and / or selection of the cells or one or more other method steps under dysoxic conditions.
  • dysoxic conditions can include a decrease or increase in oxygen activity compared to air under standard conditions (oxygen content 21% by volume) or conditions that can be induced by a reduced or increased oxygen activity.
  • the oxygen activity can correspond to an oxygen content of the atmosphere of 15 15% by volume, preferably 5 5% by volume or 3 3% by volume, particularly preferably 1 1% by volume.
  • the nitrogen content of the gas which is in exchange with the culture medium compared to air increased under standard conditions or additional gases such as CO 2 added, with a CO 2 content of 1 to 15, preferably about 5-10 vol .-% can be present without being limited to these values.
  • additional gases such as CO 2 added
  • CO 2 content 1 to 15
  • CO 2 content of 1 to 15 preferably about 5-10 vol .-%
  • These substances can be present in amounts which reduce the oxygen concentration in the atmosphere from 21% by volume to ⁇ 15% by volume, preferably ⁇ 5% by volume or ⁇ 3% by volume, particularly preferably ⁇ 1% by volume .-% corresponds.
  • the invention further relates to a culture medium which can be used in the expansion and / or modification of a cell culture with a multiplicity of cells, the cells preferably tending to form cell clusters (spheres) in the culture medium.
  • the culture medium is set in such a way that cells that tend to form cells (spheres), in particular progenitor cells such as neural progenitor cells or neural cells, are at least partially present in the culture medium as single cells or agglomerates with weak cell-cell interactions.
  • the culture medium preferably has the features as described for the culture medium used in carrying out the method according to the invention, so that reference is made to avoid repetition.
  • the culture medium can be set such that at cell numbers of 100 to 10 million / ml of culture medium, progenitor cells on, such as neural progenitor cells or on neural cells, the cells at least partially, preferably to a proportion of> 25%, particularly preferably practically exclusively as individual cells or as agglomerates with weak cell-cell interactions, which preferably have a size of ⁇ 32 cells, cell receptors which are responsible for the formation of cell-cell adhesions being at least partially blocked.
  • the cell medium can contain a calcium ion concentration of ⁇ than 0.5 mmol / l culture medium, in particular ⁇ than 0.1 mmol / l culture medium, particularly preferably ⁇ 0.05 mmol / l culture medium or, apart from inevitable impurities, be practically calcium-free.
  • the culture medium can have inhibitors for cell-cell adhesion-causing receptors, as described above.
  • the culture medium can furthermore promote and / or essential active substances, such as one or more active substances from the group consisting of amino acids, nucleic acids or precursors, salts, vitamins, provitamins, enzyme cofactors, hormones, growth factors, physiologically active carbon sources, physiologically active nitrogen sources, trace elements and / or each contain their precursor.
  • the culture medium can contain the substances which are conducive to expansion and / or essential in a concentration such that the cells are in the culture medium for a period of from 1 hour to 10 days or longer, for example at least 1-3 or 5 days, without being restricted thereto preferably without significant impairment, their properties can survive and / or can carry out 1 to 10 or more, preferably at least 3 division cycles.
  • the culture medium can contain approx. 0.00001 mmol soluble copper salts (e.g. CuSO 4 ), approx. 0.003 mmol soluble iron salts (e.g. FeSO), approx. 3-4 mmol KCI, approx. 100 mmol NaCI, approx. 15 mmol NaHC0 3 , approx. 0.45 mmol KPO 4 , approx. 0.9 mmol NaH 2 PO 4 , approx. 0.05 ZnSO, selenic acid, approx. 1-25, preferably 3 - 15 mmol, in particular approx. 10 mmol Glucose (the named glucose content can be advantageous regardless of the other composition of the culture medium), approx.
  • soluble copper salts e.g. CuSO 4
  • soluble iron salts e.g. FeSO
  • KCI e.g. 100 mmol NaCI
  • approx. 15 mmol NaHC0 3 approx. 0.45 mmol KPO 4
  • the culture medium according to the invention can be free of cells for storage purposes. If the culture medium has a cell culture which can consist partly or completely of single cells and / or of agglomerates with weak cell-cell interactions an isolated cell material which is essentially separated from the culture medium can be obtained by conventional methods such as centrifugation or by other suitable methods.
  • the cell material cultivated in a calcium-poor, ie with a calcium concentration of less than 0.5 mmol / l culture medium, is particularly characterized by a high telomerase activity.
  • Another aspect of the invention is the use of a culture medium according to the invention for producing a cell culture according to the invention.
  • the precursor cells of the cell culture according to the invention also differ from previous neural progenitors in that differentiation is at least inhibited or completely prevented during expansion.
  • the expression of neuronal and glial markers (MAP2, NeuN, NCAM, GFAP, etc.) that can be detected in conventional spheroids is largely suppressed.
  • DNA fragmentation at the onset of apoptosis which is observed in the conventional spheroids by 5-20%, is practically no longer present in the cells according to the invention, i.e. less than 2%, preferably less than 1% to less than 0.5%, particularly preferably no longer detectable.
  • DNA fragmentation can be determined by generally known methods (TUNEL staining, DAPI staining, e.g. cell death detection kit, Röche Biochemicals).
  • the cell cultures produced according to the invention are not only characterized in that they are easier to expand and modify compared to cultures consisting of cell clusters, they can also be used particularly advantageously in therapeutic processes in which specific cell material is applied to patients. Such an application can be carried out by transplantation, but also, for example, by infusion or by another suitable means.
  • FIG. 1 shows a TRAP ELISA assay of tumor control tissue (positive control) and neural progenitor cells in medium with increasing Ca concentration.
  • the telomerase activity of neural progenitor cells is at a maximum at Ca concentrations of 0.01 mM and 0.05mM.
  • Figure 2 shows the working principle of ELIPA. T1, primer (5'-TTAGGGTTAGGGTTAGGG-3 ') to extend the telomere repeats (according to Xu et al., Clin Chem 2002).
  • the brain tissue is prepared in the usual way and then the brain tissue is homogenized.
  • a suitable concentration is added to the tissue with a proteolytically active enzyme, for example a serine protease, in order to loosen the tissue bond.
  • tissue prepared in this way is then mixed with a DNase solution in a suitable concentration. After an incubation period of approx. 10 minutes, the digested tissue parts are homogenized by pulling them into a Pasteur pipette.
  • the expansion medium contains a calcium content of 0.02 mmol / l (as CaCl 2 ) and a magnesium content of 0.4 mmol / l (as MgCl 2 and MgSO 4 ).
  • the expansion medium contains the usual proportions of further components as specified above for an exemplary culture medium. Inositol, EGF, FGF and LIF were included as growth factors. Other common substances used in culture media such as insulin, cortisone, penicillin, streptocin, etc. were contained in the usual concentrations.
  • the cultivation medium is apart from human albumin, which is approved for use on humans, serum and serum extract free.
  • the expansion takes place under an atmosphere with a reduced oxygen content of 0.1 - 5% by volume (guide value 3%) and a carbon dioxide content of 5 - 10% by volume, preferably 1 - 5% by volume (guide value 5%) supplemented by 90 - 94% nitrogen (guideline 92%).
  • the expanded tissue is homogenized with an Eppendorf pipette and the cell number is determined with a hemocytometer.
  • the cell suspension which consists almost entirely of single cells and loose cell agglomerates, is diluted with the expansion medium to a cell count of approximately 300,000 cells / ml. 8 ml of this cell suspension are placed on a 25 cbm bottle and the cells are cultivated with an atmosphere of 1-5% by volume oxygen, 5-10% by volume CO2 and 84-94% by volume nitrogen at 37 ° C.
  • the cells are converted once or twice a week into fresh expansion medium according to the invention with a calcium content of approximately 0.05 mmol / l expansion medium, for which the cells are transferred into plastic tubes and then centrifuged. The supernatant is suctioned off and 2 ml of fresh expansion solution according to the invention are added, followed by homogenization. The homogenized solution is divided into several samples, transferred to new bottles and mixed with 8 ml of the low-calcium expansion solution.
  • the neural progenitor cells expanded in this way can be deep-frozen in a conventional manner for storage in liquid nitrogen.
  • the cell preparation is carried out as usual (here, reference is made to the disclosure content of WO 00/78931, which is hereby to be included in full).
  • the cells are also taken up by an expansion medium with a calcium content of approx. 0.05 mmol / l culture medium.
  • the freezer preparation can be thawed in a water bath and the cryotube disinfected with 70% ethanol.
  • the cell suspension is slowly mixed with an expansion medium containing about 0.05 mmol of Ca 2 7l expansion medium while shaking, centrifuged again and taken up with expansion medium.
  • the sample is then incubated in a culture bottle in an atmosphere with 5% by volume CO 2 /95% air (preferably 3% oxygen and 92% nitrogen) at 37 ° C. for about one week.
  • the cells are expanded further as described above.
  • a partial differentiation of the progenitor cells can be done with freshly expanded or thawed samples.
  • sample treatment of thawed samples and the use of the recording media reference is made to the disclosure content of WO 00/78931, which is hereby included in full.
  • the recording medium that essentially the recording medium I of WO 00/78931 here too, preferably has a calcium ion concentration of ⁇ 0.1 mmol / l culture medium.
  • the samples are then processed according to variant a) or b).
  • the samples are then incubated for 7 to 21 days in an atmosphere with an oxygen content of 2% by volume.
  • the cells obtained are then selected by subcloning in an atmosphere with 5% by volume oxygen, after which the steps of expansion and partial differentiation described above are repeated.
  • the resulting cell suspensions can be taken up in a phosphate-buffered saline solution for transplantation.
  • preparations were obtained from dopaminergic neurons that are practically free of glial cells.
  • the cells can then be transplanted.
  • a culture medium was used for the expansion of the cell culture, which had a Ca 2+ content of approximately 0.1 mmol / l culture medium and a concentration of N- and E-cadherin inhibition by N- and E-cadherin Antisense and antibody from 1 ⁇ g / ml culture medium contained.
  • the procedure led to practically the same result; in particular, DNA fragmentation due to the beginning of apoptosis of less than 1% was also observed here.
  • the samples are then incubated for partial differentiation by means of priming for 6 hours in the presence of IL-1 ⁇ (10 ng / ml) in an atmosphere with an oxygen content of 3% by volume, and the medium is then removed for partial differentiation.
  • the cells obtained are then selected by subcloning in an atmosphere with 3% by volume oxygen, whereupon the steps of expansion and partial differentiation described above can be repeated to increase the efficiency of the process.
  • the resulting cell suspensions can be taken up in a phosphate-buffered saline solution for transplantation.
  • telomere activity of the cells which was determined as described above, corresponded to FIG. 1 with a corresponding Ca (2 +) ion concentration.
  • the specificity of the method can be further increased by carrying out a cell sorting after the expansion (in particular by means of IL-1 ⁇ receptor antibodies) and after the partial differentiation (in particular by means of NCAM antibodies, as described above).

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Neurosurgery (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Kultivierung von Zellkulturen enthaltend eine Vielzahl von Zellen, wobei das Verfahren ein oder mehrere Verfahrensschritte aus der Gruppe Expansion der Zellkultur und Modifikation der Zellen der Zellkultur in einem Kulturmedium umfasst. Um eine schnellere und bezüglich der vorhandenen Zellen gleichmässigere Kultivierung zu erreichen, wird vorgeschlagen, eine Zellkultur zu verwenden, bei der die Zellen bei dem Verfahrensschritt zu einem wesentlichen Anteil als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Zellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind. Vorzugsweise erfolgt die Expansion und/oder Modifikation der Zellen unter Kulturbedingungen, die die für die Ausbildung von Zell-Zell-Adhäsionen verantwortlichen Rezeptoren der Zellen zumindest teilweise blockiert. Das Kulturmedium kann eine Ca2+-Konzentration von ≤ 0,5 mmol/l Kulturmedium und/oder Inhibitoren aufweisen, die für Zell-Zell-Wechselwirkungen eingehende Rezeptoren der Zellmembran der Zellen spezifisch sind.

Description

Verfahren zur Herstellung isolierter Zellkulturen, Kulturmedium zur Kultivierung von
Zellkulturen und Zellkultur
Die Erfindung betrifft ein Verfahren zur Kultivierung von Zellkulturen, insbesondere zur Herstellung isolierter Zellkulturen, enthaltend eine Mehrzahl von Zellen, wobei das Verfahren einen oder mehrere Verfahrensschritte aus der Gruppe der Expansion und Modifizierung der Zellkultur in einem Kulturmedium umfasst. Des weiteren betrifft die Erfindung ein Kulturmedium zur Expansion oder Modifikation einer Zellkultur mit einer Mehrzahl von Zellen. Ferner betrifft die Erfindung eine Zellkultur, bestehend aus einer Vielzahl von Zellen, die aus einem Kulturmedium erhalten wurde, in welchem eine Mehrzahl von Zellen expandiert und/oder modifiziert wurde.
Üblicherweise werden Zellkulturen in einem Kulturmedium expandiert, d.h. die Zellzahl in der Zellkultur durch Vermehrung der Zellen erhöht, und/oder modifiziert, wobei eine oder mehrere Zellen in das Expansionsmedium überführt werden, welches üblicherweise für die Zellvermehrung oder Modifikation notwendige oder förderliche Komponenten enthält. Bei der Kultivierung der Zellen erfolgt ab gewissen Zellkonzentrationen in dem Kulturmedium eine Ausbildung von Zell-Zellkontakten, wodurch sich eine Vielzahl von Zellen zu zusammenhängenden Zellhaufen verbinden, die oft nur unter Zugabe von Verdauungsenzymen und mit einem hohen Zellverlust getrennt werden können. Insbesondere bei postmitotischen neuronalen Zellen beziehungsweise deren Vorläuferzellen (sogenannte Progenitorzellen) werden derartige Zellhaufen als Neurospheres bezeichnet. Diese Neu- rospheres sind derzeit die am weitesten verbreitete Expansionsform neuraler Vorläuferzellen. Derartige Neurospheres wachsen in Suspensionskulturen, wobei sich die Erfindung insbesondere auf Neurospheres bezieht, bei denen das Wachstum der Zellen insbesondere abhängig sein kann von EGF (Epidermal Growth Factor) und/oder FGF (Fibroblast Growth Factor) und/oder LIF (Leukemia Inhibitory Factor), die Zellen erfordern zum Wachstum jedoch nicht CEE (Hühnerembryoextrakt). Derartige Zellhaufen oder "Spheres" sind nicht auf Neurospheres beschränkt, sondern können auch bei anderen Zelltypen auftreten.
Die Expansion von Progenitorzellen, insbesondere von neuralen Progenitorzellen, erfolgte bisher über die Expansion derartiger Zellhaufen (Spheroide bzw. Neurospheres). Diese Zellhaufen bilden ein relativ kompaktes Gewebe mit einer Zellzahl von wenigen bis hin zu mehreren Millionen adherierender Zellen (Zellhaufendurchmesser: typischerweise 0.01-5 mm), wobei insbesondere die zentralen Bereiche dieser Zellhaufen (oder Zellkugeln) zur Differenzierung oder zur Nekrose neigen. Diese zentralen Abschnitte der Spheroide gehen in aller Regel bei Andauung dieser Zellhaufen verloren. Eine Verkleinerung der Spheroide bis hin zur Gewinnung von Einzelzellsuspensionen ist aber für viele Kulturtechniken (z. B. Subklonierung, Transfektion, Zellsortierung, Zellzählung) zwingend erforderlich. Ferner wird durch die Bildung der Zellhaufen die Zugänglichkeit der Membranrezeptoren der nicht unmittelbar mit dem Kulturmedium in Kontakt stehenden und innerhalb des Zellhaufens angeordneten Zellen behindert. Hierdurch wird zum einen die Vermehrung der Zellen durch die behinderte Zugänglichkeit des Nährmediums behindert, zudem werden Manipulationen der Zellen durch exogene Faktoren, die beispielsweise die Differenzierung der Zellen oder andere Transformationen der Zellen bewirken sollen, behindert.
Eine möglichst effiziente Expansion und/oder Modifizierung von Zellen stellt eine in vielen Anwendungsbereichen wichtige Voraussetzung dar, beispielsweise bei der Bereitstellung von neuralen Progenitoren als Resource für die restaurative Therapie neurologischer Erkrankungen wie dem Morbus Parkinson, dem Morbus Alzheimer oder anderen, wie sie beispielsweise in der WO 00/78931 beschrieben wurden. Es besteht somit ein allgemeines Bedürfnis, die Einwirkung von Kultur- oder Manipulationsmedien auf die Zellen im Kulturmedium zu erhöhen und zu vergleichmässigen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren bereitzustellen, bei dem die Expansion und/oder Modifizierung von Vorläuferzellen schneller und/oder bezogen auf die Gesamtzahl der Zellen des Kulturmediums gleichmässiger erfolgt. Ferner liegt der Erfindung die Aufgabe zugrunde, eine Zellkultur bereitzustellen, welche eine schnellere Vermehrung von insbesondere Vorläuferzellen, die zur Bildung von Zellhaufen neigen, ermöglicht sowie die Modifikationen der Zellen durch exogene Faktoren erleichtert.
Die Aufgabe wird erfindungsgemäß durch ein Verfahren zur Kultivierung von Vorläuferzellen, insbesondere zur Herstellung isolierter Zellkulturen von Vorläuferzellen, gelöst, bei welchem die Vorläuferzellen bei der Expansion und/oder Modifikation zu einem wesentlichen Anteil als Einzelzellen und/ oder Agglomerate mit schwachen Zell-Zell- Wechselwirkungen vorliegen, insbesondere mit schwachen Zell-Zell-Wechselwirkungen zwischen Vorläuferzellen, und somit keine Aggregate enthaltend Vorläuferzellen mit deutlichen Zell-Zellkontakten entstehen. Andererseits können aber auch Zellen, insbesondere Vorläuferzellen und/oder neuronale Zellen, die bisher als Spheroide expandiert wurden, durch die Überführung in die erfindungsgemässen Nährmedien in Einzelzellsuspensionen überführt werden, wobei die adhäsiven Zell-Zell-Wechselwirkungen der Agglomerate durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Zellen unter Überführung der Agglomerate in separierte Einzelzellen auftrennbar sind. Die Expansion und/oder Modifikation der Vorläuferzellen und/oder neuralen Zellen, kann dann an Zellen, die als Einzelzellen und/oder als Agglomerate mit den oben gekennzeichneten schwachen adhäsiven Zell-Zell- Wechselwirkungen vorliegen, erleichtert bzw. gleichmäßiger durchgeführt werden, da in dem Kulturmedium enthaltene Nährstoffe oder andere Wirkstoffe wie Wachstumsstoffe, Koenzyme, Plasmide, Vektoren oder dergleichen den Zellen wesentlich leichter zugänglich sind. Hierdurch kann beipielsweise eine beschleunigte Vermehrung der Zellen verglichen mit den in Zellhaufen (Spheroide) vorliegenden Zellen erfolgen. Entsprechendes gilt für Zellen, die in Agglomeraten mit schwachen Zell-Zell-Wechselwirkungen vorliegen.
Insbesondere enthält die erfindungsgemäße Zellkultur oder die bei dem erfindungsgemäßen Verfahren eingesetzte Zellkultur teilweise, vorzugsweise mehr als 25 % oder mehr als 50 %, besonders bevorzugt mehr als 75 % oder mehr als 90% (jeweils bezogen auf die Gesamtzellzahl der Kultur oder auf eine repräsentative Probe) oder praktisch ausschließlich, d.h. mehr als 98%, Vorläuferzellen (auch Progenitorzellen genannt) und/oder mittelbare und/oder unmittelbare Nachkommen dieser Vorläuferzellen, die weiter differenziert oder ausdifferenziert sind.
Vorläuferzellen im Sinne der Erfindung sind pluripotente (von omnipotenten Stammzellen verschiedene), teilungsfähige Zellen, die durch Einwirkung exogener Faktoren in bestimmte oder nur in bestimmte Zelltypen ausdifferenzieren können. Bei unterschiedlichen exogenen Faktoren oder Einwirkungsbedingungen können qualitativ oder quantitativ unterschiedlich ausdifferenzierte Zellen einer begrenzten Anzahl möglicher Zelltypen resultieren. Die resultierenden Zellen können sich bei Einwirkung unterschiedlicher exogener Faktoren in ihrer Zusammensetzung in qualitativer oder quantitativer Hinsicht unterscheiden, beispielsweise in dem Sinne, dass bei Einwirkung eines ersten exogenen Faktors überwiegend ein erster Zelltyp und bei Einwirkung eines verschiedenen exogenen Faktors ein anderer Zelltyp überwiegend oder ausschließlich entsteht.
Im speziellen sind neurale Vorläuferzellen im Sinne der Erfindung solche, die ausschließlich oder unter bestimmten Kultivierungsbedingungen überwiegend in neuronale Zellen und/oder gliale Zellen einschliesslich Astrocyten und Oligodendrocyten differenzieren können. Die neuronalen Zellen können ausschließlich oder vorzugsweise einen oder mehrere neuronale Zelltypen der Gruppe dopaminerge, cholinerge, serotoninerge und/oder GABAerge Neuronen umfassen, wobei in Abhängigkeit von den exogenen Faktoren oder Einwirkungsbedingungen die Anteile der Zelltypen variieren können. Das Wachstum der erfindungsgemässen Zellen kann abhängig sein von EGF (Epidermal Growth Factor) und/oder FGF (Fibroblast Growth Factor) und/oder L1F (Leukemia Inhibitory Factor), die Zellen erfordern zum Wachstum jedoch nicht CEE (Hühnerembryoextrakt). Die Vorläuferzellen differenzieren unter Zugabe von üblichen Nährlösungen über ausreichend lange Zeiträume, nach Transplantation in Wirtstiere, einschliesslich Mensch oder nach ausreichend langer Kontaktierung von Gefässwandungen aus Glas, Kunststoff oder dergleichen, wie sie bei üblichen Kulturgefässen verwendet werden, aus.
Ferner seien unter neuralen Vorläuferzellen im weiteren Sinne alle dem Gehirn entnehmbaren Vorläuferzellen verstanden, wobei in einer speziellen Ausführungsform Stammzellen, insbesondere embryonale Stammzellen, ausgenommen sind. Die Erfindung umfasst jedoch auch Progenitorzellen anderer Typen, beispielsweise solche, die in Muskelzellen, Leberzellen oder Hautzellen differenzieren.
Neurale Zellen im Sinne der Erfindung sind vorzugsweise postmitotische Zellen. Neurale Zellen und neurale Vorläuferzellen können im Rahmen der Erfindung auch als neuronale Zellen bzw. neuronale Vorläuferzellen bezeichnet werden.
Vorzugsweise liegen erfindungsgemäße Zellkulturen vor bzw. werden im erfindungsgemäßen Verfahren verwendet, bei denen die Verfahrensschritte der Expansion und/oder Modifizierung nicht Tumorzellen betreffen. Vorzugsweise sind die erfindungsgemässen bzw. im erfindungsgemässen Verfahren verwendeten Zellkulturen praktisch frei von Tumorzellen, d.h. enthalten weniger als 5% Tumorzellen bezogen auf die Gesamtzellzahl oder keine nachweisbaren Anteile. Unter Tumorzellen seien hier insbesondere sowohl benigne als auch maligne (metastasierende Tumorzellen mit infiltrierendem Wachstum) Tumorzellen verstanden.
Unter Zellen im Sinne der Erfindung seien im folgenden sofern nicht explizit etwas anderes gesagt ist oder sich dies aus dem Zusammenhang ergibt, stets Vorläuferzellen, insbesondere neurale Vorläuferzellen, verstanden. Unter Zell-Zell-Kontakten im Sinne der Erfindung seien im folgenden sofern nicht explizit etwas anderes gesagt ist oder sich dies aus dem Zusammenhang ergibt, stets Vorläuferzell-Kontakte oder Kontakte zwischen Vorläuferzellen und anderen Zellen, insbesondere weiter oder vollständig ausdifferenzierten Zellen, im speziellen weiter oder vollständig ausdifferenzierten neuralen Zellen, oder Kontakte zwischen neuralen Zellen untereinander verstanden.
Unter einer Modifizierung der Zellen im Sinne der Erfindung sei jegliche Änderung eines Merkmales der Zellen verstanden, insbesondere bezüglich einer nachfolgenden Expansion und/oder Differenzierung, einschließlich einer Änderung bezüglich der Expression eines Gens. Eine Modifizierung kann insbesondere durch eine Differenzierung, insbesondere eine partielle Differenzierung, ein Priming, eine genetische Manipulation, wie Transfektion oder ähnliche allgemein bekannte Verfahren erfolgen.
Unter Zell-Zell-Kontakte im Sinne der Erfindung fallen direkte Zell-Zell-Kontakte, bei denen Zellen untereinander durch direkte Zell-Zell-Wechselwirkungen aneinander haften, beispielsweise vermittels Adhäsionsproteinen wie Cadherine, Selectine und/oder Immunglobuline, ohne auf diese beschränkt zu sein. Durch das erfindungsgemäße Verfahren können Zell-Zell-Kontakte mit homotypischen Wechselwirkungen oder mit heterotypischen Wechselwirkungen aufgehoben werden, um die Bildung von Zellhaufen zu vermeiden, wobei diese Zell-Zell-Kontakte "anfängliche" Kontakte sind, die einer Zeil- Verbindung mit gewebestabilisierenden, einen Stoffaustausch ermöglichenden oder anderen Eigenschaften, die zu einer Ergänzung der Wirkung der Zellen untereinander führen, wie die Ausbildung von Tight Junctions, Desmosomen oder Gap Junctions, vorgelagert sind.
Ferner seien unter Zell-Zell-Kontakten im Sinne der Erfindung indirekte Zell-Zell-Kontakte verstanden, bei denen die Zellen untereinander zumindest teilweise durch eine extrazelluläre Matrix miteinander verbunden sind. Eine extrazelluläre Matrix im Sinne der Erfindung stellt insbesondere eine Ansammlung sezernierter Proteine und Kohlenhydrate dar, die den Raum zwischen den Zellen eines tierischen Gewebes füllt und die Kollagene und/oder Proteoglycane enthalten kann. Allgemein gesagt kann jedes organische oder nichtorganische Material mit erhöhter Strukturfestigkeit gegenüber dem Kulturmedium, insbesondere durch Phasengrenzen gegenüber dem Kulturmedium abgetrenntes Material, als Matrix angesehen werden, wie beispielsweise organische Gewebematerialien, insbesondere tierisches Zellgewebe, anorganische Strukturmaterialien oder Strukturmaterialien wie Gefäßwandungen jeglicher Art.
Die in dem erfindungsgemässen Verfahren bzw. Zellkulturen vorliegenden, eingesetzten und/oder erhaltenen Zellagglomerate weisen vorzugsweise weniger als 100 Zellen, insbesondere Vorläuferzellen, besonders bevorzugt 2 bis 16 Zellen, insbesondere Vorläuferzellen, je Zellhaufen auf. Die Agglomerate sind durch schwache externe Einwirkungen, insbesondere durch schwache mechanische Einwirkungen, in Einzelzellen separierbar. Die Separation der Agglomerate durch schwache mechanische Einwirkungen kann beispielsweise durch einfaches Pipettieren, durch Rühren mit geringer Rührgeschwindigkeit, beispielsweise im Bereich von 50 bis 250 Umdrehungen pro Minute, wobei gegebenenfalls auch niedrigere oder höhere Rührgeschwindigkeiten anwendbar sind, durch Ultraschall oder durch andere geeignete Weise erfolgen, solange keine Beschädigung des überwiegenden Anteils der Zellen, insbesondere der Vorläuferzellen, der Zellkultur erfolgt. Die externe Einwirkung auf die Agglomerate zur Auftrennung derselben erfolgt vorzugsweise derart, dass eine Beschädigung der Zellen, insbesondere der Vorläuferzellen, nur in untergeordnetem Ausmaß (vorzugsweise < 20 oder < 5 bis 10 % oder < 1% der Zellen bzw. Vorläuferzellen) erfolgt, besonders bevorzugt erfolgt keine signifikante Beschädigung der Zellen. Eine Beschädigung der Zellen wird dann angenommen, wenn die Zellen in ihrem Proliferations- oder Differenzierungsverhalten wahrnehmbar durch die externe Einwirkung beeinflusst oder wenn die Zellmembranen zerstört werden.
Die Kultivierung, d.h. die Expansion und/oder Modifizierung, der Zellkultur erfolgt vorzugsweise an einer Zellkultur, bei welcher der Anteil der Zellen, der als Einzeizellen oder als Zellagglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegt, bezogen auf die Gesamtzellzahl der Kultur mehr als 25 %, vorzugsweise mehr als 50 %, besonders bevorzugt mehr als 75 %, insbesondere mehr als 95 % oder mehr als 99% beträgt oder bei der praktisch sämtliche Zellen der Zellkultur als einzelne Zellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen. Besonders bevorzugt beträgt der Anteil der Zellen an der Gesamtzellzahl der Kultur die als Einzelzellen vorliegen mehr als 25 %, vorzugsweise mehr als 50 %, mehr als 75 % oder insbesondere mehr als 95 % oder mehr als 98% bis praktisch 100 %. Die obigen Angaben zu dem Anteil der Zellen bezogen auf die Gesamtzellzahl versteht sich als Anteil an Vorläuferzellen, als Anteil an neuralen Vorläuferzellen oder alternativ als Anteil an neuronalen Zellen. Die als Einzelzellen und/oder in Form von Agglomeraten mit schwachen Zell-Zell- Wechselwirkungen vorliegenden Zellen, insbesondere Vorläuferzellen, im speziellen neurale Vorläuferzellen, oder neuronale Zellen, können in dem Kulturmedium mit einer Zellzahl von 100 bis 10.000.000 Zellen oder mehr/ml Kulturmedium, vorzugsweise 1000 bis 1.000.000 Zellen/ml Kulturmedium, besonders bevorzugt 10.000 bis 500.000 Zellen/ml Kulturmedium vorliegen. Insbesondere können die Zellen mit einer Zellzahl von ca. 100.000 bis 500.000 Zellen/ml Kulturmedium vorliegen.
Die Kultivierung der Vorläuferzellen und/oder neuralen Zellen erfolgt vorzugsweise unter Bedingungen, die die Aktivität der für die Zell-Zell-Adhäsion verantwortlichen Rezeptoren der Zellen zumindest teilweise blockiert. Eine Blockierung kann hierbei beispielsweise dadurch erfolgen, dass unter den Kulturbedingungen eine Expression oder Aktivierung der die Zell-Zell-Adhäsion bewirkenden Rezeptoren verhindert wird, indem beispielsweise ein zur Aktivierung der Rezeptoren notwendiger Stoff den Rezeptoren nicht zugänglich gemacht wird, indem dieser beispielsweise dem Kulturmedium nicht zugesetzt wird oder indem Maskierungsmittel dem Kulturmedium zugegeben werden, die eine Anbindung des aktivierenden Stoffes an den Rezeptoren verhindern. Zusätzlich oder alternativ können dem Kulturmedium Stoffe zugegeben werden, die eine unmittelbare Blockierung der Rezeptoren ergeben, beispielsweise indem diese Stoffe an die Rezeptoren anbinden und hierdurch Zell- Zell-Adhäsionen unterbinden. Desweiteren seien unter einer Blockierung der Rezeptoren auch Maßnahmen verstanden, die zu einem Abbau, insbesondere einem selektiven Abbau, der Rezeptoren führen.
Die Verfahrensschritte des erfindungsgemässen Verfahrens, insbesondere die Expansion und/oder Modifizierung der Zellen bzw. Vorläuferzellen, insbesondere neurale Vorläuferzellen, erfolgt daher vorzugsweise an Zellen, die in einem Zellstadium vorliegen, in dem diese Zellen bei geeigneten Kulturbedingungen Adhäsionsmoleküle exprimieren können, insbesondere e-NCAM (psa-NCAM) und/oder N-Cadherin und/oder L1. Entsprechend beziehen sich die erfindungsgemässen Zellkulturen vorzugsweise auf solche, bei denen die Zellen in einem Zellstadium vorliegen, in dem diese bei geeigneten Kulturbedingungen Adhäsionsmoleküle exprimieren können, insbesondere e-NCAM und/oder N-Cadherin und/oder L1.
Vorzugsweise erfolgt die Manipulation der Vorläuferzellen und/oder neuralen Zellen unter Kulturbedingungen, unter welchen mehr als 25 %, vorzugsweise mehr als 75 %, besonders bevorzugt mehr als 90 % oder mehr als 95 % der für die Zell-Zell-Adhäsion und/oder für Multiadhäsionsproteine spezifischen Rezeptoren der Zellen blockiert sind. Insbesondere können mehr als 99 % oder praktisch alle der Rezeptoren blockiert sein.
Die Manipulation der Zellkultur kann insbesondere unter Bedingungen erfolgen, bei welchen für Adhäsionsmoleküle spezifische Zellrezeptoren der Vorläuferzellen und/oder neuralen Zellen, die direkte Zell-Zell-Kontakte generieren, teilweise oder vollständig blockiert sind. Derartige Zellrezeptoren, die in die Zellmembranen der jeweiligen Zellen integriert sein können, können insbesondere Cadherine, Selektine, Integrine und/oder Rezeptoren der lmmunoglobulin-(lg-)Superfamilie wie insbesondere NCAM, im besonderen embryonales NCAM (e-NCAM oder psa-NCAM) und/oder ICAM und/oder L1 , ohne auf diese beschränkt zu sein, sein.
So kann beispielsweise psa-NCAM wirksam über Endoneuraminidase inaktiviert bzw. seine Expression durch eine Hemmung von NF-kappaB reduziert werden. Das Kulturmedium enthält somit vorzugsweise wirksame Anteile an Kohlehydrate spaltenden Enzymen wie Endoneuraminidase, um mehr als 10% oder mehr als 25%, vorzugsweise mehr als 75%, besonders bevorzugt mehr als 95% oder mehr als 99% oder praktisch vollständig psa- NCAM zu blockieren. Entsprechend können durch geeignete Inhibitoren die anderen genannten Zellrezeptoren blockiert werden, insbesondere N-Cadherin und/oder L1.
Ferner kann die Manipulation der Zellkulturen, alternativ oder kumulativ, unter Bedingungen erfolgen, bei denen für Multiadhäsivproteine spezifische Zellrezeptoren teilweise oder vollständig blockiert sind. Als derartige Multiadhäsivproteine, die in der extrazellulären Matrix vorkommen und Wechselwirkungen mit Kollagenen und Proteoglycanen eingehen können, seien beispielhaft Fibronectine genannt, die mittels spezieller Integrine an Zelloberflächen anhaften können.
Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens zur Herstellung isolierter Zellkulturen liegt vor, wenn die Expansion und/oder Manipulation der Vorläuferzellen und/oder neuralen Zellen der Zellkultur in einem Kulturmedium erfolgt, welches eine wirksame Ca2+-Konzentration von ≤ 1 mmol/l Kulturmedium, vorzugsweise ≤ 0,5 mmol/l Kulturmedium, besonders bevorzugt ≤ 0,1 mmol/l aufweist. Vorzugsweise ist die Gesamtkonzentration an Ca2+-lonen in dem Kulturmedium gleich der wirksamen Konzentration. Gegebenenfalls kann eine Maskierung der Ca2+-lonen durch geeignete Maskierungsmittel, die die Konzentration an freien Ca2+-lonen, die an die für die Zell-Zell- Adhäsion verantwortlichen Rezeptoren ankoppeln kann, verringert, erfolgen. Als derartige Mittel können beispielsweise Komplexierungsmittel wie beispielsweise EGTA, EDTA, Kronenether oder andere geeignete Mittel verwendet werden.
Das Kulturmedium kann gegebenenfalls bis auf unvermeidliche Verunreinigungen frei von Ca2+-lonen sein, vorzugsweise ist das Medium nicht frei von Ca2+-lonen. Es hat sich verschiedentlich ein Mindestgehalt an Ca2+-lonen von 0,001-0,1 mmol/l, insbesondere 0,01 oder 0,05 bis 0,1 mmol/l Kulturmedium als günstig erwiesen.
Desweiteren enthält das Kulturmedium vorzugsweise eine nur geringe Magnesiumionen- Konzentration oder ist bis auf unvermeidbare Verunreinigungen frei von Magnesiumionen. Insbesondere kann die Magnesium-Konzentration in dem Kulturmedium ≤ 2 mmol/l Kulturmedium, vorzugsweise ≤ 1 mmol/l Kulturmedium, insbesondere ≤ 0,6 oder ≤ 0,1 mmol/l Kulturmedium liegen.
Zur Blockierung der Rezeptoren, die für die Ausbildung von adhäsiven Zell-Zell-Kontakten spezifisch sind, kann die Expansion und/oder Modifizierung der Zellen in Gegenwart von Inhibitoren (z. B. Rezeptorantagonisten, Rezeptorantikörper oder Antisense gegen entsprechende Rezeptor-RNA) erfolgen, die für die die Zell-Zell-Kontakte ausbildenden Rezeptoren der Zellmembranen der zu expandierenden Zellen spezifisch sind.
Insbesondere kann die Kultivierung des Zellmediums mit einem Kulturmedium erfolgen, das wirksame Mengen eines oder mehrerer Inhibitoren aufweist, die für Cadherine, Selektine, Integrine und/oder Immunglobuline (Ig-Familie) spezifisch sind, insbesondere für eNCAM, N-Cadherin und/oder L1. Diese Inhibitoren lagern sich unmittelbar an die Rezeptoren an und blockieren so eine Zell-Zell-Adhäsion. Für E-, P-, N-Cadherine spezifische Inhibitoren sind bevorzugt, das Kulturmedium kann auch für Cadherine anderen Typs spezifische Inhibitoren aufweisen. Das Kulturmedium kann alternativ oder zusätzlich Inhibitoren für Rezeptoren der NCAM (insbesondere eNCAM) und/oder ICAM-Familie und/oder für L1 spezifische Rezeptoren aufweisen. Die Inhibitoren können in dem Kulturmedium in Konzentrationen vorhanden sein, die ausreichen, alle oder einen gewünschten Anteil der Rezeptoren zu blockieren.
Die Inhibitoren können jeweils einzeln und/oder bei gleichzeitiger Anwesenheit mehrerer verschiedener Inhibitoren insgesamt, in Konzentrationen im Bereich von ca. 0,001 bis ca. 10 μmol/l Kulturmedium, beispielsweise 0,01 bis 1 μmol/l oder 0,1 bis 1 μmol/l, vorliegen. Die Inhibitoren können ggf. auch in niedrigeren oder höheren Konzentrationen vorliegen, beispielsweise in Abhängigkeit von der Ca2+-lonenkonzentration des Kulturmediums, sofern eine ausreichende Blockierung der Rezeptoren erfolgt.
Das Kulturmedium kann auch sowohl einen niedrigen Gehalt an Ca2+-lonen, beispielsweise ≤ 0,1 mmol/l Kulturmedium in Gegenwart von für Zell-Zell-Adhäsionsrezeptoren spezifische Inhibitoren aufweisen, um den Anteil der Einzelzellen und/oder Agglomeraten mit schwachen adhäsiven Zell-Zell-Wechselwirkungen an der Gesamtzellzahl in dem Kulturmedium einzustellen.
Besonders bevorzugt ist es, wenn die Manipulation der Einzelzellen und/oder Zellagglomerate mit schwachen Zell-Zell-Wechselwirkungen bei einer hohen Telomerase- Aktivität der Zellen erfolgt. Das erfindungsgemäße Verfahren erlaubt einen mindestens 2fachen Anstieg der Telomerase-Aktivität gegenüber aus Nagetieren oder humanem Gewebe gewonnenen Progenitorzellen unter sonst gleichen Bedingungen und diese Methode verhindert zusätzlich die Reduktion der Telomeraseaktivität in neuralen Progenitoren aus humanem Gewebe, welche bei den bisherigen Kulturtechniken beobachtet wurde.
Hierbei ist insbesondere die Verwendung calciumarmer Kulturmedien besonders vorteilhaft, da durch den niedrigen Calciumgehalt neben einer fehlenden Aktivierung von Adhäsionsmolekülen zugleich auch die Telomerase nur wenig oder praktisch nicht inhibiert wird. Die Inhibition der Telomerase kann weniger als 50%, 75% oder 90% bezogen auf die in dem Kulturmedium vorhandene vollständig aktivierte Telomerase, vorzugsweise weniger als 25%, besonders bevorzugt weniger als 10% betragen. Telomerase ist ein Ribonucleoprotein, das Telomer Repeats aller 3Εnden der cDNA katalysiert, die bei Zellteilung verloren gehen. Durch die hohe Telomerase-Aktivität wird zugleich der Zellzyklus verkürzt und die Seneszenz der Zellen aufgehoben oder verringert.
Die Telomerase-Aktivität kann beispielsweise mit einem PCR ELISA nach dem "Telomeric Repeat Amplification Protocol" (TRAP) bestimmt werden. Gemäß Figur 1 wird in einem TRAP-Assay bei einer erfindungsgemäßen Zellkultur bei Ca2+-lonenkonzentrationen von 0,01 bis 0,5 mmol/l, insbesondere im Bereich von 0,01 bis 0,1 mmol/l, verglichen mit einer Kontrollprobe C einer Tumorzellinie eine ausgeprägte Telomeraseaktivität gefunden. Bei sehr hohen Ca2+-lonenkonzentrationen oder in Ca2+-freiem Medium wird demgegenüber eine nur geringe oder praktisch keine Telomeraseaktivität gefunden. Die Telomerase-Aktivität wird bevorzugt mit einem enzymatischen luminometrischen PPj Assay (ELIPA) gemessen (Xu SQ et al., 2002, Bioluminescent Method for Detecting Telomerase Activity; Clinical Chemistry 48:7, pp1016-1020). Die Verlängerung der Telomere Repeats -gemäß dem "Telomeric Repeat Amplification Protocol" (TRAP) wird katalysiert durch Telomerase, die 6 PPj für jedes TTAGGG Repeat freisetzt. Das freigesetzte PPj bildet quantitativ mit Adenosine-5'-phosphosulfat unter Zugabe von ATP- Sulfurylase Adenosin-tri-Phosphat (ATP). Das Luziferase Luminiszenz System basiert auf der Messung von Licht, das durch die Luziferase-katalysierte Reaktion von ATP mit Luciferin gebildet wird. Die Lichtemission ist unabhängig von der Zeit und ist proportional zum gebildeten ATP.
Es wird in einem Telomerase ELIPA -Assay bei einer erfindungsgemässen Zellkultur bei Ca +-lonenkonzentrationen von 0,01 bis 0,5 mmol/l, insbesondere im Bereich von 0,01 bis 0,1 mmol/l, verglichen mit einer Kontrollprobe C der Tumorzelllinie A549 (CA Zellen der Lunge, Xu et al., 2002) eine ausgeprägte Telomerase-Aktivität gefunden.
In Tumorzellen wird eine ausgeprägte Telomeraseaktivität gefunden. Bei sehr hohen Ca +- lonenkonzentrationen oder in Ca2+-freiem Medium wird demgegenüber eine nur geringe oder praktisch keine Telomeraseaktivität gefunden.
Durch Einstellung der Ca(2+)-lonenkonzentration oder durch andere geeignete Massnahmen können somit durch das erfindungsgemässe Verfahren Progenitorzellen von Säugetieren, insbesondere humane Progenitorzellen, erhalten werden, die eine Telomeraseaktivität von mehr als 20%, bevorzugt mehr als 33%, bevorzugter mehr als 50%, noch bevorzugter mehr als 75%, am bevorzugtesten mehr als 90% der Telomerase- Aktivität der Kontrollprobe der Tumorzellinie aufweisen. Die Zellen können insbesondere neurale Progenitorzellen sein.
Das erfindungsgemäße Verfahren und das erfindungsgemäße Kulturmedium können insbesondere, ohne hierauf beschränkt zu sein, in Zusammenhang mit dem Verfahren nach der WO 00/78931 eingesetzt werden, das auf dem Konzept basiert, neuronale Progenitorzellen in Kultur zu halten und zu vermehren. Nach ausreichender Expansion können diese Zellen dann durch Einwirkung geeigneter Wirkstoffe sekundär in spezifische Neuronen, z.B. dopaminerge Neuronen, differenziert werden. Unabhängig hiervon können bei einem Verfahrensschritt gemäss dem erfindungsgemäßen Verfahren, insbesondere bei einer partiellen Differenzierung, bei dem die Differenzierungsbedingungen nach der WO 00/78931 hiermit durch Inbezugnahme mit umfasst sein sollen, und/oder bei einer Modifikation und/oder Expansion und/oder Selektion der Zellen, Zellkulturen eingesetzt und/oder erhalten werden oder es können erfindungsgemäße Kulturen bzw. Zellmedien vorliegen, die zu mehr als 25% oder mehr als 50%, vorzugsweise zu mehr als 75% oder praktisch ausschließlich aus den gewünschten neuralen Zellen (eines oder mehrerer neuraler Zelltypen) oder deren unmittelbaren Vorläufern bestehen und andere Zellen, insbesondere immunkompetente gliale Zellen, nur noch in Anteilen von < 90%, < 95%, < 98% oder < 99%, bevorzugter < 10%, noch bevorzugter < 5% oder < 2% bezogen auf die Gesamtzellzahl der Zellkultur enthalten. Besonders bevorzugt sind gliale Zellen nur in Anteilen enthalten, die keine physiologische Wirkung mehr haben, insbesondere nicht mehr nachweisbar sind. Als unmittelbare Vorläufer im oben genannten Sinn sind Zellen zu verstehen, die nach Transplantation in ein Wirtsgewebe, Kontaktierung mit einer Gefässwandung eines üblichen Kulturgefässes wie beipielsweise einer Glaswandung und/oder Überführung in eine Nährlösung üblicher Zusammensetzung, die zur Kultivierung oder Vermehrung der Zellen verwendet wird, unmittelbar in ausdifferenzierte Zellen differenzieren. Durch die hier beschriebene erfindungsgemäße Verfahrensdurchführung kann das Verfahren nach der WO 00/78931 vorteilhaft weitergebildet werden.
Insbesondere können bei einem Verfahren zur Herstellung einer wachstumsfähigen Zellkultur aus Vorläuferzellen, enthaltend die folgenden Verfahrensschritte, insbesondere in dieser Reihenfolge:
- Entnahme von Hirnteilen eines Säugetieres,
- Selektion von Vorläuferzellen,
- Expansion der Vorläuferzellen, gegebenenfalls unmittelbar nachfolgend
Durchführung einer Selektion,
- partielle Differenzierung der Progenitorzellen, gegebenenfalls Selektion und falls erwünscht nachfolgende Expansion der selektierten Zellen,
- bei Bedarf ein- oder mehrmalige Wiederholung eines oder mehrerer der Schritte der
Expansion, Selektion und/oder partiellen Differenzierung, die Vorläuferzellen der Zellkultur zumindest bei einem, vorzugsweise bei sämtlichen, der oben genannten Verfahrensschritte der Expansion und/oder der partiellen Differenzierung und/oder Selektion zu einem wesentlichen Anteil (d.h. zu mehr als 25%, mehr als 75%, mehr als 90%, mehr als 95% oder mehr als 98%) als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Vorläuferzellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind. Insbesondere liegen erfindungsgemäss die Zellen bei unmittelbar nacheinanderfolgenden Schritten der Expansion und partiellen Differenzierung, gegebenenfalls auch bei einer unmittelbar nachfolgenden Selektion, als oben definierte Einzelzellen oder schwache Zell-Zell-Agglomerate vor. Den oben genannten Schritten kann sich eine endgültige Differenzierung anschliessen.
So kann mittels des erfindungsgemäßen Verfahrens Zellmaterial einfacher und reproduzierbarer erhalten werden bzw. eine erfindungsgemäße Zellkultur vorliegen, das/die zu mehr als 25% oder mehr als 50% oder mehr als 75% oder praktisch ausschließlich dopaminerge Neurone und/oder cholinerge Neurone und/oder GABAerge striatale und/oder serotoninerge Neurone einzeln oder in Kombinationen enthält, d.h. der Anteil der genannten Neuronen an dem Zellmaterial beträgt größer 90%, vorzugsweise größer 95% oder größer 99% bzw. enthält keine physiologisch wirksamen Anteile anderer Zellen, insbesondere glialer Zellen.
Die erfindungsgemäß eingesetzten neuralen Progenitorzellen, durch deren Vermehrung, Selektion und zunächst partielle und in einem nachfolgenden Verfahrensschritt endgültige Differenzierung Zellkulturen bzw. transplantationsfähiges Zellmaterial gewonnen werden kann, können sowohl aus fetalem als auch aus adultem neuralem Zellmaterial (Gehirn, vorzugsweise Mittelhirn oder Rückenmark) eines Säugetiers einschließlich Mensch gewonnen werden. Die entnommenen Hirnteile können insbesondere solchen Hirnarealen entstammen, die derartige Neurone enthalten, zu denen die Progenitorzellen partiell oder vollständig differenzieren oder denen die Progenitorzellen zur Therapie einer Hirnfehlfunktion appliziert werden. Das adulte Zellmaterial wird vorteilhafterweise aus periventrikulären Abschnitten präpariert. Das fetale Material kann aus Föten mit einem Alter von 3 bis 25 Wochen, vorzugsweise 5 bis 11 Wochen oder 6 bis 20 Wochen nach der Befruchtung präpariert werden. Insbesondere kann es sich um fetales Gewebe handeln, das nach Abschluß der Embryonalentwicklung bis zur 12. Schwangerschaftswoche entnommen wurde. Es handelt sich in der Regel nicht um Gewebe aus menschlichen Embryonen. Alternativ kann mesenchymales Gewebe eingesetzt werden. Die neuronalen Progenitorzellen können auch aus Stammzellen des Blutes aus Nabelschnurgewebe erhalten werden. Zur Isolierung und Kultivierung der Zellen sei hier auf Daadi, Weiss, J. Neursci. 1999; Magrassi et al. Developement 1998, 54 : 105-115; Ptak et al. Cell Transplant 1995, 4:299-310; Liepelt et a. Brain Res. Dev. Brain Res. 1990, 51:267-278, Buc-Caron, Neurobiol Dis 1995, 2 :37-47, Svendsen CN et al., Exp. Neurol 1997, 148 :135-146 ; Sah et al., Nat Biotechnol 1997, 15 :574-580 ; Chalmers-Redman et al. Neuroscience 1997 ; 76 :1121-1128 verwiesen, die hiermit durch Inbezugnahme vollständig mitumfasst sind.
Erfindungsgemäß kann eine Bereitstellung von transplantationsfähigem neuralem Zellmaterial durch ein Verfahren erfolgen, das eine Expansion der mittelbar oder unmittelbar aus Zellmaterial von Säugetieren einschließlich Mensch gewonnenen humanen Progenitorzellen, eine partielle in vitro Differenzierung und eine Selektionierung umfasst, wobei die letztlich erhaltenen neuralen Kulturen ohne Zugabe weiterer Faktoren oder genetischer Manipulationen mit hohem Prozentsatz in den gewünschten Zelltyp ausdifferenziert werden können oder nach Transplantation ausdifferenzieren. Gegebenenfalls kann nach einem partiellen Differenzierungs- oder Selektionierungsschritt der Progenitorzellen eine erneute Expansion des Zellmaterials erfolgen, die Schritte der partiellen Differenzierung und Selektion können mehrmals wiederholt werden, wobei die Art und Weise der Durchführung sich jeweils unterscheiden kann.
Durch die Erfindung ist es insgesamt möglich neurale Progenitorzellen soweit zu selektieren und differenzieren, dass nach Zugabe von Nährmedien, Kontaktierung mit einer Gefässwandung eines üblichen Kulturgefässes bzw. nach Transplantation überwiegend ein spezifischer Zelltyp ausdifferenziert.
Das erfindungsgemäße Verfahren, beispielsweise als Weiterbildung der Verfahrens nach der WO 00/78931 , ohne hierauf beschränkt zu sein, kann einen oder mehrere Schritte der Modifizierung von Zellen in Form einer partiellen oder vollständigen Differenzierung und der Selektion von Zellen umfassen. Einer, mehrere oder sämtliche der Verfahrensschritte der Differenzierung, insbesondere partiellen Differenzierung, und/oder Selektion kann/können mit einem Medium durchgeführt werden, das teilweise oder praktisch ausschließlich Vorläuferzellen, insbesondere neurale Vorläuferzellen, in Form von Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen enthält. Alternativ oder zusätzlich kann/können einer, mehrere oder sämtliche der oben genannten Verfahrensschritte mit einem Medium durchgeführt werden, das keine Vorläuferzellen Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen enthält oder nur in vernachlässigbaren Anteilen bezogen auf die Gesamtzellzahl in dem Medium. Die partielle oder endgültige Differenzierung, die unter in vitro-Bedingungen erfolgen kann, kann an Progenitorzellen erfolgen, insbesondere an neuronalen Progenitorzellen, wobei Progenitorzellen anderer Typen, beispielsweise solche, die in Muskelzellen, Leberzellen oder Hautzellen differenzieren, eingesetzt werden können, ohne hierauf beschränkt zu sein. Die Differenzierung, insbesondere partielle Differenzierung, erfolgt unter diesen Kulturbedingungen nicht nur wesentlich schneller sondern auch reproduzierbarer und selektiver als bei einer endgültigen Differenzierung oder partiellen Differenzierung in Gegenwart von Zellhaufen (Spheres).
Besonders vorteilhaft ist es, erfindungsgemäße Kulturmedien enthaltend Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen bei der partiellen Differenzierung von Progenitorzellen durch Priming und/oder durch genetische Manipulation, insbesondere durch Transfektion (z.B. transiente oder nichttransiente Transfektion), zu verwenden, wobei die partielle oder endgültige Differenzierung jeweils auch unter hypoxischen Bedingungen, wie unten näher beschrieben, erfolgen kann.
Eine partielle Differenzierung der Zellen kann insbesondere durch Behandlung mit einer oder mehreren Komponenten aus der Gruppe Zytokine, Wachstumsfaktoren, Transkriptionsfaktoren, Neurotransmitter, Hormone und Ganglioside erfolgen, die insbesondere auch in einem Priming-Schritt einsetzbar sind. Die partielle Differenzierung von neuralen Progenitorzellen ist insbesondere in der WO 00/79931 beschrieben, deren Offenbarungsgehalt bezüglich der oben genannten Komponenten hiermit vollumfänglich mit umfasst sein soll.
Als Wachstumsfaktoren können einer oder mehrere aus der Gruppe epidermal growth factor (EGF), insbesondere EGF1, EGF2, EGF3 mit den Subgruppen α und ß, transforming growth factor (TGF) α und ß, LIN-3-Protein, fibroblast growth factor (FGF), FGF1 und FGF2, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), Neurotrophine (NT), insbesondere NT-3, NT-4, NT-5, NT-6, insulin-like growth factors (IGF), insbesondere IGF-1 und IGF-2, glial cell line-derived neurotrophic factor (GDNF), Neurturin (NTN), Persephin (PSP), vascular endothelial growth factor (VEGF), einschließlich deren Untergruppen oder Faktoren ähnlicher Wirkung verwendet werden.
Als Zytokine können einer oder mehrere aus der Gruppe Interleukine (IL 1-16), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), tumor necrosis faktor (TNF), insbesondere TNF-α, Interferone (IFN), insbesondere IFN-α, makrophage inhibitory oder stimulating factors, insbesondere acrophage migration inhibitory factor (MIF), mitochondrial import Stimulation factor (MSF) und Retinsäure eingesetzt werden.
Als Neurotransmitter können einer oder mehrere aus der Gruppe Dopamin, Acetylcholin, GABA, Glutamat, Glycin, Taurin, Prolin, Noradrenalin, Serotonin und Neuropeptide, insbesondere Substanz P und Enkephalin, eingesetzt werden.
Die Neurotransmitter können allein oder in Gegenwart von Wachstumsfaktoren und/oder Zytokinen eingesetzt werden.
Einzeln oder in Kombination mit den oben genannten Stoffen oder Stoffkombinationen können Hormone wie Wachstumshormone, Schilddrüsenhormone (insbesondere zur Differenzierung der Progenitorzellen zu dopaminergen Neuronen), Steroidhormone oder Ganglioside, jeweils einschließlich deren Derivate, eingesetzt werden.
Zur Erzeugung von dopaminergen Neuronen können insbesondere GDNF, LIF und eine oder mehrere von IL1-11 einzeln oder in Kombination eingesetzt werden, insbesondere die Kombination IL-1, GDNF, LIF, IL-11 , jeweils einschließlich deren Untergruppen.
Die exogenen Faktoren können einzeln oder in Kombination jeweils in Konzentrationen von 25,000 bis 0,005 ng/ml, vorzugsweise 1 bis 100 ng/ml Expansionslösung eingesetzt werden, ohne hierauf beschränkt zu sein. Insbesondere können zur Differenzierung jeweils IL-1 in Konzentrationen von 0,005 bis 50 ng/ml oder von 0,005 bis 10 ng/ml, vorzugsweise 0,01 bis 25 ng/ml oder 0,05 bis 0,25 ng/ml eingesetzt werden. IL-11 und LIF können jeweils in Konzentrationen von 0,01 bis 100 ng/ml, vorzugsweise 0,5 bis 2,5 ng/ml eingesetzt werden. GDNF kann in Konzentrationen von 1 bis 25.000 ng/ml, vorzugsweise 1 bis 100 bis 2.500 ng/ml eingesetzt werden.
Die Faktoren können auch in Kombination in diesen Konzentrationen eingesetzt werden. Die einzusetzenden Konzentrationen sind jedoch nicht auf die oben genannten Werte beschränkt und können unter anderem können in Abhängigkeit von den jeweils anderen eingesetzten Faktoren variieren.
Unter einer partiellen Differenzierung in Form eines Priming sei hierbei ein Verfahren verstanden, welches die Behandlung von (monoklonalen) neuralen Progenitorzellen mit einem oder mehreren exogenen Stoffen, insbesondere einem oder mehreren Stoffen aus der Gruppe Wachstumsfaktor, Zytokine, Neurotransmitter, umfasst, bei welchem eine partielle Differenzierung der Progenitorzellen in weiter ausdifferenzierte Zelltypen erfolgt. d.h. solche, bei denen die Zellen weitere Merkmale der endgültig ausdifferenzierten Zellen, wie die Expression bestimmter Gene oder bestimmte äussere Merkmale, aufweisen. Gegebenenfalls können hierzu auch sogenannte konditionierte Medien eingesetzt werden, d.h. Kulturmedien, die zur Kultivierung insbesondere der Neuronen einer bestimmten gewünschten Nervenzellpopulation (beispielsweise dopaminerge Neuronen, cholinerge Neuronen, GABAerge Neuronen und/oder serotoninerge Neuronen oder auch Glialzellen) verwendet werden. Diese exogenen Faktoren werden dann zu einem Zeitpunkt entzogen, zu welchem die Zellen noch in einen Zustand zurückdifferenzieren können, der eine weitere Expansion der Zellen ermöglicht. Die Kontaktierungszeit mit den exogenen Faktoren kann üblicherweise ca. 1 bis 12 Stunden, vorzugsweise ca. 3 bis 6 Stunden betragen, in Ausnahmefällen auch kürzere oder längere Zeiträume. Derartige rückumgewandelte Progenitorzellen werden als geprimte Zellen bezeichnet. Bei einer erneuten Exposition mit wirksamen exogenen Faktoren, die auch bereits in der Überführung der Zellen in ein anderes Medium, beispielsweise die Transplantation in ein Gewebe wie beispielsweise ein Gehirn, beinhalten kann, kommt es dann zu einer vielfach schnelleren Differenzierung der Progenitorzellen. Bei einer erneuten Expansion der geprimten Zellen können dann geprimte monoklonale Zelllinien gewonnen werden, die bereits Gene exprimieren, die eine höhere Spezifität gewährleisten.
Besonders vorteilhaft ist es, das erfindungsgemäße Verfahren mit Vorläuferzellen, insbesondere neuralen Vorläuferzellen, in Form von Einzelzellen und/oder Agglomeraten mit schwachen Zell-Zell-Wechselwirkungen durchzuführen, die derart partiell differenziert sind, dass sie zu einem Priming noch befähigt sind, d.h. zu einer partiellen oder vollständigen Rückumwandlung nach Entzug des partielle Differenzierung bewirkenden Mediums, wobei der Zustand der partiellen Differenzierung unabhängig davon ist, ob ein derartiges Priming tätsächlich durchgeführt wird oder nicht. Die neuronalen Progenitorzellen liegen somit in einem besonders frühen Differenzierungsstadium vor.
Insbesondere kann im Rahmen des erfindungsgemässen Verfahrens auch zur partiellen Differenzierung durch Transfektion ein erfindungsgemäßes Kulturmedium enthaltend Anteile an Einzelzellen und/oder Agglomerat mit schwachen Z^ll-Zell-Wechselwirkungen eingesetzt werden. Eine derartige Transfektion kann auch im Rahmen des zuvor beschriebenen Primings oder alternativ zu diesem eingesetzt werden. Durch die Transfektion (auch Transformation oder Transduktion genannt) die unabhängig von dem speziell verwendeten Verfahren eine Insertion oder einen Transfer eines Gens oder von Genen in die jeweiligen Zellen umfasst, kann eine Differenzierung der Progenitorzellen in einen gewünschten Zelltyp, insbesondere in spezifische Neuronentypen begünstigt werden. Hierbei sei auch eine vorübergehende Expression dieser Gene, welche das Erbmaterial der Zelle nicht verändert und nach einer gegebenenfalls durchgeführten Transplantation in ein Gewebe, beispielsweise in das Gehirn, keine Fremdgene in das Gewebe einschleust, jedoch das weitere Schicksal der Zellen determiniert, mit umfasst.
Als Gene können insbesondere Gene verwendet werden, die für bestimmte neurale Zelltypen spezifisch sind, wobei die in der WO 00/79931 unter dem Kapitel "Partielle Differenzierung durch Transfektion" genannten Gene hiermit durch Inbezugnahme eingeschlossen werden. Beispielhaft kann die Entwicklung von dopaminergen Neuronen durch die Transfektion von Genen gesteuert werden, die Mitglieder der Steroid- und Thyroid-Hormon-Rezeptor-Familie wie Tyrosinhydroxylase, Nurr-1 und/oder Nurr-77 Rezeptoren kodieren oder durch Gene des vesikulären Monoamintransporters oder des Dopamintransporters, allgemein Gene, die für dopaminerge Neurone spezifisch sind. Zur Selektion cholinerger Neuronen können für diese Neuronen spezifische Gene transferiert werden, insbesondere Gene des nikotinergen Acetylcholinrezeptors, insbesondere präsynaptische α- und ß-Untereinheiten, insbesondere α-7, Gene des Nervenwachs- tumsfaktor (NGF)-Rezeptors oder der Cholinesterase. Die partielle Differenzierung striatale Neurone kann insbesondere durch γ-Aminobuttersäure (GABA)-Transporter kodierende Gene, Dopaminrezeptor kodierende Gene, Glutamatrezeptor kodierende Gene, Enkephalin oder Substanz P kodierende Gene gesteuert werden.
Mittels kommerzieller Transfektionsreagenzien (z. B. Effectene, QIAGEN) ist eine transiente oder stabile Transfektion der Progenitorzellen möglich. Die entsprechenden cDNA's werden mittels Polymerasekettenreaktion aus dem humanen Genom amplifiziert. Die Transfektion erfolgt mit den in der Literatur angegebenen Standardverfahren. So ist eine transiente oder stabile Transfektion der Prognitorzellen möglich.
Der Verfahrensschritt der Selektion der Zellen, insbesondere der Selektion von Progenitorzellen, kann vorzugsweise durch eine Subklonierung oder durch andere geeignete Verfahren erfolgen. Die Subklonierung kann insbesondere durch eines oder mehrere in geeigneter zeitlicher Abfolge ausgeführter Verfahren aus der folgenden Gruppe erfolgen, ohne auf diese beschränkt zu sein: Subklonierung durch Endverdünnung, insbesondere als Ausplattierung von Einzelzellen; Subklonierung durch Mikromanipulation markierter vitaler Zellen; Subklonierung durch Fluoreszenz aktivierte Zellsortierung markierter vitaler Zellen; Subklonierung durch magnetische Aufkonzentrierung von magnetisch markierten Zellen. Unabhängig hiervon wird hiermit bezüglich der Durchführung der Selektion auf das Kapitel "Selektion durch Subklonierung" der WO 00/78931 verwiesen, das durch Inbezugnahme vollinhaltlich in die vorliegenden Ausführungen mit aufgenommen sei.
Eine Zellsortierung, bei der in Art eines Screenings der Zellprobe eine Vielzahl von Zellen mit gleichem Merkmal aus der Zellkultur selektiert wird, beispielsweise durch Mikroma- nipulation markierter vitaler Zellen, Subklonierung durch Fluoreszenz aktivierte Zellsortierung markierter vitaler Zellen und/oder Subklonierung durch magnetische Aufkonzentrierung von magnetisch markierten Zellen, kann zweckmässigerweise nach einer Expansion und/oder partiellen Differenzierung und vor einer weitergehenden Selektion z.B. durch Endverdünnung durchgeführt werden, um die Effizienz des Verfahrens zu erhöhen. Die Zellsortierung kann unter dysoxischen Bedingungen erfolgen. Bei mehrfacher Zellsortierung können in einzelnen Schritten unterschiedliche Techniken eingesetzt werden, die eine Sortierung nach unterschiedlichen Merkmalen der Zellen vornehmen. Beispielsweise kann in einem ersten Schritt eine Zellsortierung nach einem den Differenzierungszustand der Zellen bestimmenden Merkmal, z.B. hinsichtlich der Expression bestimmter Marker, erfolgen. In einem zweiten Sortierungsschritt, z.B. einer partiellen Differenzierung nachgelagert, kann beipielsweise eine Sortierung bezüglich des Zelltyps, z.B. ausgerichtet auf dopaminerge Neurone, erfolgen, wobei die Reihenfolge der beiden zuvor genannten Sortierungen auch vertauscht sein kann. In dem zweiten Schritt kann auch eine Sortierung nach anderen Markern erfolgen, als in dem ersten Schritt. Als besonders zweckmässig hat es sich erwiesen, nach einer Expansion der Zellkultur eine erste Zellsortierung mittels IL-1 alpha Rezeptor Antikörpern (z. B. Santa Cruz, 1-10μg/ml) durchzuführen und nach einer anschliessenden partiellen Differenzierung, insbesondere mittels Priming, eine Zellsortierung mittels NCAM Antikörpern (z. B. DSHB, 1-10μg/ml) vorzunehmen.
Die Zellen werden sortiert, indem die Antikörper mittels Biotinylierung mit magnetisierbaren Partikeln beladen werden, die dann durch magnetisierende Säulen (z. B. Mylteni GmbH) absorbiert werden.
Die Subklonierung der Progenitorzellen kann insbesondere unabhängig von der gewählten Methode so durchgeführt werden, dass lediglich eine Zelle in jedem Kulturgefäß verbleibt (insbesondere bei Subklonierung durch Endverdünnung), oder dass nur eine oder mehrere Zellen eines ausgewählten Zelltyps, der durch entsprechende Wahl der verwendeten zelltypischen Marker definiert ist, in einem Kulturgefäß verbleibt, sofern eine zell- typenspezifische Subklonierung erfolgte wie z.B. durch Fluoreszenz-Markierung, FACS, magnetische Aufkonzentrierung in Kombination mit zelltypenspezifischen Markern. Die so ausplatierten Zellen können anschließend expandiert werden, wodurch man monoklonale Zelllinien erhält. Dabei werden die Medien vorzugsweise mit mitogenen Substanzen versetzt (siehe oben angegebene Wachstumsfaktoren), um eine Vermehrung aus einer Einzelzelle zu erreichen. Die Expansion, Differenzierung und Charakterisierung erfolgt dann im weiteren wie bereits oben für polyklonale Progenitorzellsuspensionen beschrieben. Dies gilt vorzugsweise unabhängig von der gewählten Methode der Subklonierung.
Nur beispielhaft sei ausgeführt, dass die Subklonierung der Progenitorzellen durch Mikromanipulation nach Fluoreszenz-Markierung der vitalen Zellen erfolgen kann, indem die lebenden Zellen mit einem für die jeweilige Zellpopulation spezifischen Marker gefärbt werden. Als Marker für dopaminerge Zellen können die Zellen beispielsweise mit dem Gen für das grün fluoreszierende „enhanced green-fluorescence protein" (EGFP, Clontech), welche unter der Kontrolle spezifisch dopaminerger Promotoren exprimiert werden (Tyrosinhydroxylase- und/oder Dopamintransporter-Promotor), vorübergehend transfiziert werden. Die grün leuchtenden Zellen können anschließend wie beschrieben kloniert werden. Für cholinerge Zellen wird die gleiche Technik mit dem Promotor der Cholin-Acetyl- Transferase (ChAT), für GABAerge Neuronen mit dem Promotor für Glutamyl- Decarboxylase (GAD) oder anderen geeigneten Promotoren, verwandt. In der WO 00/78931 ist beschrieben, wie durch andere Subklonierungsverfahren spezifische Zelltypen, insbesondere dopaminerge, cholinerge oder GABAerge Zellen, selektiert werden können, so dass Einzelzellen oder mehrere Zellen eines spezifischen Zelltyps vorliegen.
Bei allen Verfahren der Subklonierung erfolgt diese vorzugsweise in einem Stadium der Zellen, in dem eine möglichst weitgehende Differenzierung erfolgt ist, ohne daß die Teilungsfähigkeit der Zellen gemindert wird, also nach einem Priming, genetischer Manipulation, Veränderung der Atmosphäre oder Behandlung mit exogenen Faktoren.
Die oben beschriebenen Schritte der partiellen Differenzierung, Selektion (Klonierung) und/oder Expansion können bei Bedarf kombiniert und wiederholt angewandt werden. An die Selektion der Progenitorzellen können sich einer oder mehrere Verfahrensschritte der Vermehrung der Progenitorzellen, der partiellen und/oder vollständigen Differenzierung der Progenitorzellen oder der erneuten Selektion der Progenitorzellen anschließen.
Zur endgültigen Differenzierung der Progenitorzellen können die Zellen in vitro durch Platierung auf Poly-L-Lysin-beschichtete Abdeckstreifen oder 48-Lochplatten in neurobasalem Medium (Gibco) aufgebracht werden. Die Medien können mit FCS, Zytokinen und/oder striatal-konditionierten Medien versetzt werden. Es können beispielsweise die Zytokine IL-1α,IL-1ß,IL-4,IL-11, LIF, GDNF oder andere exogene Faktoren wie unter dem Abschnitt „Priming" beschrieben, verwendet werden. Die Zellen werden für 7 bis 10 Tage bei 37°C in einer befeuchteten Atmosphäre vor der Fixierung und weiteren Untersuchungen differenziert.
Die funktionelle Integrität der Neuronen, z.B. DA und GABA-Neuronen, kann durch Messung der Aufnahme von tritiierten Neurotransmittem bestimmt werden. Nach der Präinkubation für 10 Minuten in einem Inkubationspuffer enthaltend 100 μM Pargylin, 1mM Ascorbat und 2mM ß-Alanin (und zur Bestimmung der unspezifischen Aufnahme: 3μM GBR12909 und 1mM 2,4-Diamino-n-buttersäure; DABA) können 50 nM [Η]DA, [Η]Cholin oder [Η]GABA für 15 Minuten bei 37°C zugegeben werden. Die Aufnahme kann durch Waschen der Platten mit kaltem PBS gestoppt werden und die verbleibende Radioaktivität des Zell-Lysates kann durch Messung unter Verwendung flüssiger Szintillationszählung erfolgen. Die spezifische Aufnahme kann als die Differenz zwischen der Aufnahme in Abwesenheit (gesamt) und der bei Anwesenheit von GBR12909 und DABA (unspezifisch) erfolgten Aufnahme bestimmt werden.
Des weiteren kann das erfindungsgemäße Verfahren zur Zellkultivierung auch eine Expansion und/oder Modifizierung der Zellen, beispielsweise durch partielle Differenzierung, insbesondere in Form eines Priming, und/oder Selektion der Zellen oder einen oder mehrere andere Verfahrensschritte unter dysoxischen Bedingungen umfassen. Derartige dysoxische Bedingungen können eine Erniedrigung oder Erhöhung der Sauerstoffaktivität verglichen mit Luft unter Standardbedingungen (Sauerstoffgehalt 21 Vol.- %) oder Bedingungen umfassen, die durch eine reduzierte oder erhöhte Sauerstoffaktivität induziert werden können. Die Sauerstoffaktivität kann einem Sauerstoffgehalt der Atmosphäre von ≤ 15 Vol.-%, vorzugsweise ≤ 5 Vol.-% oder ≤ 3 Vol.-%, besonders bevorzugt ≤ 1 Vol.-% entsprechen. Gegebenenfalls kann hierbei gleichzeitig der Stickstoff- gehalt des Gases, das im Austausch mit dem Kulturmedium steht, verglichen mit Luft unter Standardbedingungen erhöht oder zusätzliche Gase wie beispielsweise CO2, zugesetzt werden, wobei ein CO2-Gehalt von 1 bis 15, vorzugsweise ca. 5-10 Vol.-% vorliegen kann, ohne auf diese Werte beschränkt zu sein. Alternativ oder zusätzlich zur Absenkung des Sauerstoffgehaltes des mit dem Kulturmedium in Austausch stehenden Gases können auch Substanzen eingesetzt werden, die die Energiegewinnung beeinträchtigen und einen verminderten Sauerstoffgehalt simulieren, insbesondere Hemmer der mitochondrialen Atmung, wie beispielsweise Rotenon, MPP+, Malonat oder andere. Diese Substanzen können in Gehalten zugegen sein, die einer Verminderung der Sauerstoff konzentration der Atmosphäre von 21 Vol.-% auf ≤ 15 Vol.-%, vorzugsweise ≤ 5 Vol.-% oder ≤ 3 Vol.-%, besonders bevorzugt ≤ 1 Vol.-% entspricht.
Die Erfindung betrifft ferner ein Kulturmedium, das bei der Expansion und/oder Modifikation einer Zellkultur mit einer Vielzahl von Zellen verwendet werden kann, wobei die Zellen vorzugsweise zur Bildung von Zellhaufen (Spheres) in dem Kulturmedium neigen. Gemäß der Erfindung ist das Kulturmedium derart eingestellt, dass zur Bildung von Zellhaufen (Spheres) neigenden Zellen, insbesondere Vorläuferzellen wie neurale Vorläuferzellen oder neurale Zellen, in dem Kulturmedium zumindest teilweise als Einzelzellen oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen. Vorzugsweise weist das Kulturmedium die Merkmale auf, wie sie für das bei der Durchführung des erfindungsgemäßen Verfahrens verwendeten Kulturmediums beschrieben wurden, so dass zur Vermeidung von Wiederholungen hierauf verwiesen wird. Insbesondere kann das Kulturmedium derart eingestellt sein, dass bei Zellzahlen von 100 bis 10 Millionen/ml Kulturmedium Vorläuferzellen an, wie neurale Vorläuferzellen oder an neuralen Zellen, die Zellen zumindest teilweise, vorzugsweise zu einem Anteil von > 25 %, besonders bevorzugt praktisch ausschließlich als Einzelzellen oder als Agglomerate mit schwachen Zell-Zell- Wechselwirkungen, die die vorzugsweise eine Größe von < 32 Zellen aufweisen, vorliegen, wobei Zellrezeptoren, die für die Ausbildung von Zell-Zell-Adhäsionen verantwortlich sind, zumindest teilweise blockiert sind.
Insbesondere kann das Zellmedium eine Calciumionenkonzentration von < als 0,5 mmol/l Kulturmedium, insbesondere < als 0,1 mmol/l Kulturmedium, besonders bevorzugt < 0,05 mmol/l Kulturmedium enthalten oder bis auf unvermeidbare Verunreinigungen praktisch calciumfrei sein. Alternativ oder zusätzlich kann das Kulturmedium Inhibitoren für eine Zell- Zell-Adhäsion bewirkende Rezeptoren aufweisen, wie sie oben beschrieben wurden. Das Kulturmedium kann des weiteren zur Expansion förderliche und/oder essentielle Wirkstoffe wie einen oder mehrere Wirkstoffe aus der Gruppe Aminosäuren, Nukleinsäuren oder Precursor' derselben, Salze, Vitamine, Provitamine, Enzymcofaktoren, Hormone, Wachstumsfaktoren, physiologisch aktive Kohlenstoffquellen, physiologisch aktive Stickstoffquellen, Spurenelemente und/oder jeweils deren Precursor enthalten. In Abhängigkeit von den gewünschten Kulturbedingungen ist es nicht erforderlich, eine oder mehrere der oben genannten Komponenten in dem Kulturmedium bereitzustellen oder es können weitere Komponenten in dem Kulturmedium enthalten sein.
Das Kulturmedium kann die zur Expansion förderlichen und/oder essentiellen Stoffe in einer Konzentration enthalten, dass die Zellen für einen Zeitraum von 1 Stunde bis 10 Tagen oder länger, beispielsweise mindestens 1-3 oder 5 Tagen, ohne hierauf beschränkt zu sein, in dem Kulturmedium vorzugsweise ohne signifikante Beeinträchtigung deren Eigenschaften überleben und/oder 1 bis 10 oder mehr, vorzugsweise mindestens 3 Teilungszyklen durchführen können.
Beispielsweise kann das Kulturmedium je Liter jeweils ca. 0,00001 mmol-lösliche Kupfersalze (z.B. CuSO4), ca. 0,003 mmol-lösliche Eisensalze (z.B. FeSO ), ca. 3-4 mmol KCI, ca. 100 mmol NaCI, ca. 15 mmol NaHC03, ca. 0,45 mmol KPO4, ca. 0,9 mmol NaH2PO4, ca. 0,05 ZnSO , Selensäure, ca. 1-25, vorzugsweise 3 - 15 mmol insbesondere ca. 10 mmol Glukose (wobei der genannte Glukosegehalt unabhängig von der sonstigen Zusammensetzung des Kulturmediums vorteilhaft sein kann), ca. 30 mmol HEPES, ca. 0,03 Natriumhypoxanthin, jeweils 0,001 bis 0,003 mmol Liponsäure, Phenolrot, Natriumputreszin, ca. 2 mmol Natriumpyruvat, Aminosäuren, Biotin, Vitamine und Provitamine wie d-Calciumpantothenat, Cholin, Chlorid, Folsäure, Niacinamid, Pyrodoxin, Riboflavin, Thiamine, Thymidine, Vitamin B12, Wachstumsfaktoren wie Inositol oder EGF, Cortikoide wie Dexamethason, Hydrocortison oder Cortison, Insulin, Humanalbumin, Choleratoxin, Phosphorethanolamin, FGF (beispielsweise bFGF) oder LIF enthalten. Es versteht sich, dass für bestimmte Anwendungsfälle gegebenenfalls einige dieser Komponenten nicht zwingend notwendig sind oder dass andere übliche in Kulturmedien verwendete Komponenten eingesetzt werden können. Von besonderer Bedeutung sind jedoch die Komponenten Choleratoxin, Kortison, Insulin und Humanalbumin.
Das erfindungsgemäße Kulturmedium kann zu Vorratszwecken frei von Zellen vorliegen. Weist das Kulturmedium eine Zellkultur, die teilweise oder vollständig aus Einzelzellen und/oder aus Agglomeraten mit schwachen Zell-Zell-Wechselwirkungen besteht kann, auf so kann durch übliche Verfahren wie zentrifugieren oder durch andere geeignete Verfahren ein isoliertes und von dem Kulturmedium im wesentlichen abgetrenntes Zellmaterial gewonnen werden. Das in einem calciumarmen, d.h. mit einer Calciumkonzentration von weniger als 0,5 mmol/l Kulturmedium, kultivierte Zellmaterial zeichnet sich insbesondere durch eine hohe Telomeraseaktivität aus.
Ein weiterer Aspekt der Erfindung ist die Verwendung eines erfindungsgemäßen Kulturmediums zur Herstellung einer erfindungsgemäßen Zellkultur.
Die Vorläuferzellen der erfindungsgemäßen Zellkultur unterscheiden sich ferner von bisherigen neuralen Progenitoren dadurch, dass eine Differenzierung während der Expansion zumindest gehemmt oder vollständig verhindert wird. Die Expression neuronaler und glialer Marker (MAP2, NeuN, NCAM, GFAP, etc.), die in herkömmlichen Spheroiden nachgewiesen werden können, wird weitgehend unterdrückt.
Des weiteren ist die DNA-Fragmentierung bei beginnender Apoptose, die in den herkömmlichen Spheroiden zu 5 - 20% beobachtet wird, bei erfindungsgemäßen Zellen praktisch nicht mehr vorhanden, d.h. kleiner 2%, vorzugsweise kleiner 1% bis kleiner 0,5%ι, besonders bevorzugt nicht mehr nachweisbar. Die DNA Fragmentierung kann hierbei durch allgemein bekannte Methoden bestimmt werden (TUNEL Färbung, DAPI Färbung, z. B. cell death detection kit, Röche Biochemicals).
Die erfindungsgemäßen hergestellten Zellkulturen zeichnen sich nicht nur dadurch aus, dass diese verglichen mit aus Zellhaufen bestehenden Kulturen leichter expandierbar und modifizierbar sind, sie können auch bei therapeutischen Verfahren besonders vorteilhaft eingesetzt werden, bei denen spezifisches Zellmaterial Patienten appliziert wird. Eine derartige Applikation kann durch Transplantation, beispielsweise aber auch durch Infusion oder durch andere geeignete Weise erfolgen.
Figur 1 zeigt einen TRAP ELISA Assay von Tumorkontrollgewebe (positiv Kontrolle) und neuralen Progenitorzellen in Medium mit zunehmender Ca Konzentration. Die Telomerase Aktivität von neuralen Progenitorzellen ist maximal bei Ca Konzentrationen 0,01 mM und 0,05mM. Figur 2 zeigt das Arbeitsprinzip von ELIPA. T1, Primer (5'-TTAGGGTTAGGGTTAGGG-3') zur Verlängerung der Telomere Repeats (nach Xu et al., Clin Chem 2002).
Im nachfolgenden wird die Anwendung des erfindungsgemäßen Verfahrens und Kulturmediums an Ausführungsbeispielen beschrieben, die sich auf eine derartige Anwendung beziehen. Bezüglich weiterer Details sei auf die Kapitel "Allgemeine Verfahrensdurchführung" sowie das Ausführungsbeispiel der WO 00/78931 verwiesen, das hiermit durch Inbezugnahme vollinhaltlich mit umfasst sei, wobei im folgenden im wesentlichen die Unterschiede zu dem Ausführungsbeispiel der WO 00/78931 beschrieben seien.
Beispiele
Zur Gewinnung der neuralen Progenitorzellen erfolgt eine Präparation des Hirngewebes auf übliche Weise und anschließend eine Homogenisierung des Hirngewebes. Hierzu wird das Gewebe mit einem proteolytisch wirkenden Enzym, beispielsweise einer Serin-Protease, mit einer geeigneten Konzentration versetzt, um den Gewebeverband zu lockern.
Das derart präparierte Gewebe wird anschließend mit einer DNase-Lösung in einer geeigneten Konzentration versetzt. Nach einer Inkubationszeit von ca. 10 Minuten werden die angedauten Gewebeteile durch Aufziehen in eine Pasteur-Pipette homogenisiert.
Anschließend wird das Gewebe mit einer wirksamen Menge des erfindungsgemäßen Expansionsmediums versetzt, welches einen Calciumgehalt von 0,02 mmol/l (als CaCI2) und einen Magnesiumgehalt von 0,4 mmol/l (als MgCI2 und MgSO4) enthält. Des weiteren enthält das Expansionsmedium übliche Anteile an weiteren Komponenten wie sie oben für ein beispielhaftes Kulturmedium angegeben wurden. Als Wachstumsfaktoren waren Inositol, EGF, FGF und LIF enthalten. Weitere übliche in Kulturmedien eingesetzte Stoffe wie Insulin, Cortisone, Penizillin, Strepto yzin usw. waren in üblichen Konzentrationen enthalten. Das Kultivierungsmedium ist abgesehen von Humanalbumin, welches für die Anwendung an Menschen zugelassen ist serum- und serumextraktfrei.
Die Expansion erfolgt unter einer Atmosphäre mit reduziertem Sauerstoffgehalt von 0.1 - 5 Vol.-% (Richtwert 3%) und einem Kohlendioxidgehalt von 5 - 10 Vol.-%, bevorzugt 1 - 5 Vol.-% (Richtwert 5%) ergänzt durch 90 - 94 % Stickstoff (Richtwert 92%). Das expandierte Gewebe wird mit einer Eppendorf-Pipette homogenisiert und die Zellzahl mit einem Hämozytometer bestimmt. Die Zellsuspension, die praktisch ausschließlich aus Einzelzellen und losen Zellagglomeraten besteht, wird mit dem Expansionsmedium auf eine Zellzahl von ca. 300.000 Zellen/ml verdünnt. 8 ml dieser Zellsuspension werden auf eine 25 cbm Flasche aufgesetzt und die Zellen mit einer Atmosphäre aus 1 - 5 Vol.-% Sauerstoff, 5 - 10 Vol.-% CO2 und 84 - 94 Vol.-% Stickstoff bei 37°C kultiviert.
Die Zellen werden ein- bis zweimal pro Woche in frisches erfindungsgemäßes Expansionsmedium mit einem Calciumgehalt von ca. 0,05 mmol/l Expansionsmedium umgesetzt, wozu die Zellen in Plastikröhrchen überführt und anschließend zentrifugiert werden. Der Überstand wird abgesaugt und 2 ml frische erfindungsgemäße Expansionslösung werden zugefügt, anschließend wird homogenisiert. Die homogenisierte Lösung wird in mehrere Proben aufgeteilt, in neue Flaschen überführt und mit 8 ml der calciumarmen Expansionslösung versetzt.
Die derart expandierten neuralen Progenitorzellen können zur Lagerung in flüssigem Stickstoff in üblicher Weise tiefgefroren werden. Die Zellpräparation erfolgt hierbei wie üblich (hierbei sei auf den Offenbarungsgehalt der WO 00/78931 Bezug genommen, der hiermit vollinhaltlich eingeschlossen sein soll). Die Aufnahme der Zellen erfolgt auch hier durch ein Expansionsmedium mit einem Calciumgehalt von ca. 0,05 mmol/l Kulturmedium.
Zur partiellen Differenzierung der Progenitorzellen kann das Gefrierpräparat in einem Wasserbad aufgetaut und das Kryoröhrchen mit 70 %igem Ethanol desinfiziert werden. Die Zellsuspension wird langsam mit einem Expansionsmedium enthaltend ca. 0,05 mmol Ca27l Expansionsmedium unter Schütteln versetzt, erneut zentrifugiert und mit Expansionsmedium aufgenommen. Anschließend wird die Probe in einer Kulturflasche in einer Atmosphäre mit 5 Vol.-% CO2/95% Luft (vorzugsweise 3 % Sauerstoff und 92 % Stickstoff) bei 37°C für ca. eine Woche inkubiert. Die weitere Expansion der Zellen erfolgt wie oben beschrieben.
Eine partielle Differenzierung der Progenitorzellen kann mit frisch expandierten oder mit aufgetauten Proben erfolgen. Bezüglich der Probenbehandlung aufgetauter Proben und der Verwendung der Aufnahmemedien sei auf den Offenbarungsgehalt der WO 00/78931 Bezug genommen, der hiermit vollinhaltlich eingeschlossen sein soll. Das Aufnahmemedium, dass im wesentlichen dem Aufnahmemedium I der WO 00/78931 entspricht, weist auch hier vorzugsweise eine Caiciumionenkonzentration von < 0,1 mmol/l Kulturmedium auf.
Die Proben werden anschließend nach Variante a) oder b) weiter verarbeitet.
Variante a):
Die Proben werden anschließend für 7 bis 21 Tage in einer Atmosphäre mit einem Sauerstoffgehalt von 2 Vol.-% inkubiert. Anschließend werden die erhaltenen Zellen durch Subklonierung in einer Atmosphäre mit 5 Vol-% Sauerstoff selektioniert, worauf die oben beschriebenen Schritte der Expansion und partiellen Differenzierung wiederholt werden.
Die entstandenen Zellsuspensionen können für Transplantationen in einer Phosphatgepufferten Salzlösung aufgenommen werden.
Es wurden jeweils Präparate aus dopaminergen Neuronen erhalten, die praktisch frei von glialen Zellen sind. Die Zellen können dann transplantiert werden.
In Abwandlung des obigen Versuchsbeispiels wurde bei der Expansion der Zellkultur ein Kulturmedium eingesetzt, das einen Ca2+-Gehalt von ca. 0,1 mmol/l Kulturmedium und eine Konzentration von N- und E-Cadherin Inhibition durch N- und E- Cadherin Antisense und Antikörper von 1 μ g/ml Kulturmedium enthielt. Das Verfahren führte praktisch zum gleichen Ergebnis, insbesondere wurde auch hier eine DNA-Fragmentierung aufgrund beginnender Apoptose von weniger als 1% beobachtet.
Variante b):
Die Proben werden anschließend zur partiellen Differenzierung mittels Priming für 6 Stunden in Gegenwart von IL-1 α (10 ng/ml) in einer Atmosphäre mit einem Sauerstoffgehalt von 3 Vol.-% inkubiert und das Medium zur partiellen Differenzierung anschliessend entzogen.
Anschließend werden die erhaltenen Zellen durch Subklonierung in einer Atmosphäre mit 3 Vol.-% Sauerstoff selektiert, worauf die oben beschriebenen Schritte der Expansion und partiellen Differenzierung zur Effizienzsteigerung des Verfahrens wiederholt werden können. Die entstandenen Zellsuspensionen können für Transplantationen in einer Phosphatgepufferten Salzlösung aufgenommen werden.
Nach endgültiger Differenzierung durch 10-tägige Inkubation in Gegenwart des Differenzierungsmediums, wie oben beschrieben, wurden jeweils Präparate aus dopaminergen Neuronen erhalten, die praktisch frei von glialen Zellen sind.
So differenzieren nach einmaliger Durchführung der Schritte der partiellen Differenzierung durch Priming bei vermindertem Sauerstoffgehalt, Selektion und nachfolgender Expansion in einem abschliessenden Differenzierungsschritt ca. 15% der gewonnen monoklonalen Zellinien zu jeweils über 90% in dopaminerge Neuronen, bei einer Wiederholung der Verfahrensschritte der partiellen Differenzierung, Selektion und Expansion bei der anschliessenden endgültigen Differenzierung ca. 21% der monoklonalen Zellinien zu jeweils ca. 95% in dopamierge Neuronen. Die DNA-Fragmentierung aufgrund beginnender Apoptose betrug weniger als 1%. Die Telomerase-Aktivität der Zellen, die wie oben beschrieben bestimmt wurde, entsprach bei entsprechender Ca(2+)-lonenkonzentration Figur 1.
Durch Vornahme einer Zellsortierung nach der Expansion (insbesondere mittels IL-1 α Rezeptor Antikörpern) und nach der partiellen Differenzierung (insbesondere mittels NCAM Antikörpern, wie jeweils oben beschrieben) kann die Spezifizität des Verfahrens weiter erhöht werden.

Claims

Patentansprüche
1. Verfahren zur Kultivierung von Zellkulturen enthaltend eine Vielzahl von Vorläuferzellen, wobei das Verfahren einen oder mehrere Verfahrensschritte aus der Gruppe Expansion der Vorläuferzellen und Modifikation der Vorläuferzellen der Zellkultur in einem Kulturmedium umfasst, dadurch gekennzeichnet, dass die Vorläuferzellen der Zellkultur bei dem Verfahrensschritt zu einem wesentlichen Anteil als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell- Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Vorläuferzellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Vorläuferzellen zumindest teilweise oder praktisch ausschließlich bis auf unvermeidbare Anteile an Fremdzellen neurale Vorläuferzellen sind.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Verfahrensschritt aus der Gruppe der Expansion und Modifikation der Vorläuferzellen unter Kulturbedingungen erfolgt, die die für die Ausbildung von Zell-Zell-Adhäsionen verantwortlichen Rezeptoren der Zellen zumindest teilweise blockiert.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Verfahrensschritt aus der Gruppe der Expansion und Modifikation in einem Kulturmedium mit einer Ca2+-Konzentration von ≤ 1,0 mmol/l, vorzugsweise ≤ 0,5 mmol/l Kulturmedium, besonders bevorzugt ≤ 0,1 mmol/l Kulturmedium durchgeführt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Mg2+-Konzentration des Kulturmediums < 2 mmol/l Kulturmedium, vorzugsweise < 0,6 mmol/l Kulturmedium beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Verfahrensschritt in Gegenwart von Inhibitoren, die für Zell-Zell-Wechselwirkungen eingehende Rezeptoren der Zellmembran der Zellen spezifisch sind, erfolgt.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Verfahrensschritt in Gegenwart von Inhibitoren erfolgt, die für zumindest einen Stoff aus der Gruppe Cadherine, Selectine, Integrine und Immunoglobuline spezifisch sind.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Verfahrensschritt in Gegenwart von einem oder mehreren der Stoffe eNCAM, L1 , N- Cadherin erfolgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Verfahrensschritt in Gegenwart von aktiver Telomerase erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Verfahrensschritt in einem serum- und/oder serumextraktfreien Expansionsmedium erfolgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in Form von Spheroiden vorliegende Vorläuferzellen in ein Kulturmedium überführt werden, das zumindest teilweise eine Aufhebung von Zell-Zell-Kontakten der Vorläuferzellen bewirkt, und dass die Vorläuferzellen für einen ausreichend langen Zeitraum in dem Kulturmedium, vorzugsweise vor Durchführung eines weiteren Verfahrensschrittes belassen werden, bis die Vorläuferzellen teilweise oder überwiegend als Einzelzellen oder als Agglomerate mit schwachen Zell-Zell- Wechselwirkungen vorliegen.
12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das Verfahren einen oder mehrere weitere Verfahrensschritte, insbesondere aus der Gruppe der partiellen Differenzierung, Subklonierung und Priming, umfasst, dem jeweils Vorläuferzellen unterzogen werden.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass der weitere Verfahrensschritt mit einer Zellkultur durchgeführt wird, die zu einem wesentlichen Anteil Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen enthält.
14. Verfahren zur Herstellung einer wachstumsfähigen Zellkultur aus Vorläuferzellen, enthaltend die folgenden Verfahrensschritte:
- Entnahme von Hirnteilen eines Mammals,
- Selektion von Vorläuferzellen,
- Expansion der Vorläuferzellen
- partielle Differenzierung der Progenitorzellen
- bei Bedarf ein- oder mehrmalige Wiederholung einer oder mehrere der Schritte der Expansion, Selektion und/oder partiellen Differenzierung, dadurch gekennzeichnet, dass die Vorläuferzellen der Zellkultur zumindest bei einem der Verfahrensschritte der Expansion und/oder der partiellen Differenzierung zu einem wesentlichen Anteil als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Vorläuferzellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind.
15. Kulturmedium zur Kultivierung von Zellkulturen, dadurch gekennzeichnet, dass das Kulturmedium derart eingestellt ist, dass die eine Zell-Zell-Adhäsion bewirkenden Rezeptoren von in das Kulturmedium eingebrachten Vorläuferzellen zumindest teilweise blockiert sind.
16. Kulturmedium nach Anspruch 15, dadurch gekennzeichnet, dass die Ca2+-Konzentration ≤ 1,0 mmol/l, vorzugsweise ≤ 0,5 mmol/l Kulturmedium, besonders bevorzugt ≤ 0,1 mmol/l Kulturmedium beträgt.
17. Kulturmedium nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass das Kulturmedium einen oder mehrere Inhibitoren enthält, die für einen oder mehrere Stoffe aus der Gruppe Cadherine, insbesondere E-, P- und N-Cadherin, Selectine,
?• Integrine, Immunoglobuline, insbesondere NCAM, im speziellen eNCAM, spezifisch sind.
18. Kulturmedium nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, dass das Kulturmedium im wesentlichen serum- und/oder serumextraktfrei ist.
19. Zellkultur enthaltend eine Vielzahl von Zellen, die Vorläuferzellen sind, dadurch gekennzeichnet, dass die Vorläuferzellen zu einem wesentlichen Anteil als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der Vorläuferzellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind.
20. Zellkultur nach Anspruch 19, dadurch gekennzeichnet, dass die Vorläuferzellen zumindest teilweise oder praktisch ausschließlich bis auf unvermeidbare Anteile an Fremdzellen neurale Vorläuferzellen sind.
21. Zellkultur enthaltend eine Vielzahl von Zellen, die neurale Zellen sind, dadurch gekennzeichnet, dass die neuralen Zellen zu einem wesentlichen Anteil als Einzelzellen und/oder Agglomerate mit schwachen Zell-Zell-Wechselwirkungen vorliegen, bei denen die Zell-Zell-Wechselwirkungen durch externe Einwirkung auf das Kulturmedium ohne Beschädigung des überwiegenden Anteils der neuralen Zellen unter Überführung der Agglomerate in separate Einzelzellen auftrennbar sind.
22. Zellkultur nach einem der Ansprüche 19 bis 21, dadurch gekennzeichnet, dass die Vorläuferzellen und/oder neuralen Zellen in einer Konzentration von mindestens 10.000 Zellen/ml Kulturmedium in Form von Einzelzellen und/oder Agglomeraten mit schwachen Zell-Zell-Wechselwirkungen vorliegen.
23. Zellkultur, insbesondere nach einem der Ansprüche 19 bis 22, die nach Durchführung eines oder mehrerer Verfahrensschritte der Ansprüche 1 bis 14 und gegebenenfalls nach weiteren Verfahrensschritten isoliert wurde.
24. Zellkultur nach einem der Ansprüche 19 bis 23 in einer zur Applizierung bei einem Tier, einschließlich Mensch, geeigneten Form.
5. Verwendung eines Kulturmediums nach einem der Ansprüche 15 bis 18 zur Herstellung einer Zellkultur nach einem der Ansprüche 19 bis 24.
EP02772100A 2001-07-20 2002-07-19 Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur Withdrawn EP1409651A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10134667 2001-07-20
DE10134667A DE10134667A1 (de) 2001-07-20 2001-07-20 Verfahren zur Herstellung isolierter Zellkulturen, Kulturmedium zur Kultivierung von Zellkulturen und Zellkultur
PCT/EP2002/008086 WO2003010304A2 (de) 2001-07-20 2002-07-19 Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur

Publications (1)

Publication Number Publication Date
EP1409651A2 true EP1409651A2 (de) 2004-04-21

Family

ID=7692040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02772100A Withdrawn EP1409651A2 (de) 2001-07-20 2002-07-19 Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur

Country Status (7)

Country Link
US (1) US20040265996A1 (de)
EP (1) EP1409651A2 (de)
JP (1) JP2004536606A (de)
AU (1) AU2002336930A1 (de)
CA (1) CA2454552A1 (de)
DE (1) DE10134667A1 (de)
WO (1) WO2003010304A2 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003286808A1 (en) * 2002-11-01 2004-06-07 The Regents Of The University Of Colorado Dopamine neurons from human embryonic stem cells
US20080025953A1 (en) * 2006-07-25 2008-01-31 Kiminobu Sugaya Vigor Enhancement of Animals Via Administration of Stem Cells
US20090183795A1 (en) 2008-01-23 2009-07-23 Kevin John Ward Multi-Layer Papermaker's Forming Fabric With Long Machine Side MD Floats
US8993231B2 (en) * 2008-03-18 2015-03-31 Marshall University Research Corporation Methods for stem cell production and therapy
US7766053B2 (en) 2008-10-31 2010-08-03 Weavexx Corporation Multi-layer papermaker's forming fabric with alternating paired and single top CMD yarns
US8251103B2 (en) 2009-11-04 2012-08-28 Weavexx Corporation Papermaker's forming fabric with engineered drainage channels
WO2012048275A2 (en) 2010-10-08 2012-04-12 Caridianbct, Inc. Configurable methods and systems of growing and harvesting cells in a hollow fiber bioreactor system
CN105793411B (zh) 2013-11-16 2018-04-17 泰尔茂比司特公司 生物反应器中的细胞扩增
EP3613841B1 (de) 2014-03-25 2022-04-20 Terumo BCT, Inc. Passives ersetzen von medien
US20160090569A1 (en) 2014-09-26 2016-03-31 Terumo Bct, Inc. Scheduled Feed
CN107208064A (zh) * 2015-01-29 2017-09-26 国立大学法人东京大学 细胞的培养方法、细胞的凝集体、细胞凝集控制剂以及培养基
WO2017004592A1 (en) 2015-07-02 2017-01-05 Terumo Bct, Inc. Cell growth with mechanical stimuli
EP3464565A4 (de) 2016-05-25 2020-01-01 Terumo BCT, Inc. Zellexpansion
US11104874B2 (en) 2016-06-07 2021-08-31 Terumo Bct, Inc. Coating a bioreactor
US11685883B2 (en) 2016-06-07 2023-06-27 Terumo Bct, Inc. Methods and systems for coating a cell growth surface
EP3565887A4 (de) * 2017-01-06 2020-12-02 The Regents of The University of California Verfahren zur erzeugung von skelettmuskelvorläuferzellen
JP7393945B2 (ja) 2017-03-31 2023-12-07 テルモ ビーシーティー、インコーポレーテッド 細胞増殖
US11624046B2 (en) 2017-03-31 2023-04-11 Terumo Bct, Inc. Cell expansion
CN114438020A (zh) * 2022-01-08 2022-05-06 广东省疾病预防控制中心 一种多能干细胞诱导为神经祖细胞培养扩增方法及其应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998030678A1 (en) * 1997-01-07 1998-07-16 Steindler Dennis A Isolated mammalian neural stem cells, methods of making such cells, and methods of using such cells
EP0879602A1 (de) * 1997-05-21 1998-11-25 Rijksuniversiteit te Leiden Methode zur Steigerung der Überlebung transplantierter Zellen
US6812027B2 (en) * 1998-03-25 2004-11-02 Cornell Research Foundation, Inc. Discovery, localization, harvest, and propagation of an FGF2 and BDNF-responsive population of neural and neuronal progenitor cells in the adult human forebrain
KR19990014353A (ko) * 1998-10-17 1999-02-25 윤태욱 췌도의 대량 배양증식방법
DE19928210B4 (de) * 1999-06-19 2005-08-18 Neuroprogen Gmbh Leipzig Neuronales Zellmaterial und Verfahren zu dessen Herstellung
MXPA02000610A (es) * 1999-07-16 2010-06-02 Prescient Neuropharma Inc Metodos para producir y preparar celulas para terapia celular.
US6998513B1 (en) * 1999-09-17 2006-02-14 The Regents Of The University Of California Human inflammatory breast carcinoma xenograft capable of lymphovascular invasion and methods for its use
WO2001048148A1 (en) * 1999-12-28 2001-07-05 The Regents Of The University Of Michigan Process for ex vivo formation of mammalian bone and uses thereof
JP5943533B2 (ja) * 2000-05-17 2016-07-06 アステリアス バイオセラピューティクス インコーポレイテッド 神経前駆細胞の集団

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03010304A3 *

Also Published As

Publication number Publication date
JP2004536606A (ja) 2004-12-09
WO2003010304A3 (de) 2003-09-25
AU2002336930A1 (en) 2003-02-17
CA2454552A1 (en) 2003-02-06
DE10134667A1 (de) 2003-02-06
US20040265996A1 (en) 2004-12-30
WO2003010304A2 (de) 2003-02-06

Similar Documents

Publication Publication Date Title
EP1409651A2 (de) Verfahren zur herstellung isolierter zellkulturen, kulturmedium zur kultivierung von zellkulturen und zellkultur
DE69737949T3 (de) Isolierung, vermehrung und gezielte differenzierung von säugetierstammzellen des zentralnervensystems
DE60017875T2 (de) Verwendung von collagenase in der zubereitung von neuralen stammzellkulturen
DE19756864C1 (de) Neurale Vorläuferzellen, Verfahren zu ihrer Herstellung und ihre Verwendung zur Therapie von neuralen Defekten
Imura et al. Phenotypic and functional heterogeneity of GFAP‐expressing cells in vitro: Differential expression of LeX/CD15 by GFAP‐expressing multipotent neural stem cells and non‐neurogenic astrocytes
DE69332759T3 (de) Biologische faktoren und neuronale stammzellen
DE60318920T2 (de) Induktion von Insulin-produzierenden Zellen
Tabata et al. A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons
DE112005003001T5 (de) Aus humanem Fettgewebe abgeleitete multipotente Stammzellen und diese enthaltende Zelltherapeutika
WO1998030678A1 (en) Isolated mammalian neural stem cells, methods of making such cells, and methods of using such cells
DE60035191T2 (de) Materialien und methoden zur entwicklung von dopaminergen neuronen
CN107326013A (zh) 定向诱导hiPSC分化后的神经细胞体系、诱导方法及应用
DE102019127604A1 (de) Herstellung von Skelettmuskelzellen und Skelettmuskelgewebe aus pluripotenten Stammzellen
DE69924728T2 (de) Nicht-embryonale ependymale neuronale stammzellen und methoden zu ihrer isolierung
DE69919531T2 (de) Aus normalem menschlichem hautgewebe immortalizierte zellinien
Lu et al. Regulation of neurogenesis by neurotrophins: implications in hippocampus-dependent memory
Taylor et al. Regenerative medicine in Parkinson's disease: generation of mesencephalic dopaminergic cells from embryonic stem cells
DE102006043891B4 (de) Serumfreies Medium zur Differenzierung von Stammzellen
Mahoney et al. Cultures of cells from fetal rat brain: methods to control composition, morphology, and biochemical activity
US20030113901A1 (en) Cell production
EP1185625B1 (de) VERFAHREN ZUR Herstellung von Neuronalem Zellmaterial
DE10127008C1 (de) Zellpopulationen zur Auffindung neuronaler Targets und potentieller Wirkstoffe
EP2554663A2 (de) Verfahren zur gewinnung von oligodendrocytvorläuferzellen
JP2022527854A (ja) 小脳顆粒細胞前駆細胞(GCP)のin vitro培養のための安定な系、前記細胞のin vitro培養のための安定な方法、およびin vitro培養のための前記系または方法の使用。
DE10220480C1 (de) Verfahren zur Herstellung von Zellen mit erhöhtem Entwicklungspotential

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031216

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100202