EP1408168B1 - Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude - Google Patents

Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude Download PDF

Info

Publication number
EP1408168B1
EP1408168B1 EP03023101A EP03023101A EP1408168B1 EP 1408168 B1 EP1408168 B1 EP 1408168B1 EP 03023101 A EP03023101 A EP 03023101A EP 03023101 A EP03023101 A EP 03023101A EP 1408168 B1 EP1408168 B1 EP 1408168B1
Authority
EP
European Patent Office
Prior art keywords
kpa
dowel
render
dowels
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP03023101A
Other languages
English (en)
French (fr)
Other versions
EP1408168A1 (de
Inventor
Lothar Bihy
Michael Becker
Horst Keller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Isover G+H AG
Original Assignee
Saint Gobain Isover G+H AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32010437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1408168(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Saint Gobain Isover G+H AG filed Critical Saint Gobain Isover G+H AG
Publication of EP1408168A1 publication Critical patent/EP1408168A1/de
Application granted granted Critical
Publication of EP1408168B1 publication Critical patent/EP1408168B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/02Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
    • E04F13/04Bases for plaster
    • E04F13/045Means for fastening plaster-bases to a supporting structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/762Exterior insulation of exterior walls
    • E04B1/7629Details of the mechanical connection of the insulation to the wall
    • E04B1/7633Dowels with enlarged insulation retaining head

Definitions

  • the invention relates to a thermal insulation composite system and a hereby equipped building.
  • Thermal insulation composite systems of the type in question include insulation boards of bonded mineral wool, which are arranged side by side flat on the facade. Dowels screwed into the subsurface penetrate the insulation boards with large dowel plates and thus secure the position of the insulation boards on the façade.
  • a reinforced exterior plaster is usually mounted in such a way that in a flush a reinforcing layer is embedded, which is completed with a finishing plaster to the outside.
  • the thermal insulation composite system is exposed to loads due to its own weight, due to hygrothermal effects and in particular due to wind suction. Against charges due to the weight of the dowels Although a so-called. Konsoltrag Quant, but shear forces are collected by the weight above all by a coating with adhesive mortar on the back of the insulation boards, which the rough outer surface of the substrate with the rough rear surface of the insulation boards in a non-positive manner be it by friction, whether by bond, connects.
  • the greatest mechanical load of the thermal insulation composite system is generally due to the wind suction forces. These introduce perpendicular to the substrate over the cross section of the thermal insulation composite system acting tensile forces in the thermal insulation composite system, which are absorbed by the dowels and discharged into the ground. The intended for receiving the shear stresses by the weight adhesive mortar remains unconsidered; in tear tests for the experimental determination of the required number of dowels no adhesive mortar is used.
  • lamella plates Since the late 80s of the last century, it is known to attach so-called lamella plates to form a thermal insulation composite system exclusively by adhesive mortar and without all dowels to the substrate; even in sections of the building facade with a height of 80 m and more.
  • Such large-format lamellar plates are produced by cutting off strips of a relatively thick laminar mineral fiber fleece and rotating them by 90 ° such that the main orientation of the fibers now lies in the direction of the thickness of the lamellar plate.
  • the predominant fiber orientation in the direction of the thickness of the lamella plate results in a lower thermal resistance than laminar fiber orientation, but excellent tensile strength in the direction of plate thickness, ie a high intrinsic strength of the lamella plate against tearing under tensile load perpendicular to the large surface of the plate.
  • This inherent strength of the insulation board against tearing is referred to below as transverse tensile strength of the insulation board.
  • transverse tensile strength of the insulation board In the case of a lamella plate, this is in the range above 80 kPa.
  • the adhesive bond between the insulation board and adhesive mortar can be tested for a tear strength of 80 kPa as a starting tear strength, which leads to a minimum tear resistance after aging of about 30 kPa after taking into account all safety deductions.
  • the adhesive bond by means of the adhesive mortar between a lamellar plate and a substrate is the "weakest link" against tearing, since the resulting forces must be transferred into the wall.
  • 30 kPa after aging are still sufficient to secure the insulated panels of the thermal insulation composite system, which are designed as lamella plates, against falling down even in height sections of the building façade of up to 100 m without any use of dowels.
  • Insulation panels for thermal insulation composite systems are produced as laminar or as compressed panels.
  • laminar plates the orientation of the fibers in the tray under the fiberizing aggregate is substantially maintained so that the fiber orientation is parallel to the large areas of the plates.
  • laminar plates have low transverse tensile strength of, for example, 3.5 kPa or even less, but have a high thermal resistance in the transverse direction of the plate extension, so that with them the heat conduction group 035 can be achieved.
  • Such laminar plates are often formed as two-layer plates, for example, with unilaterally or on both sides more resistant hard skin layers.
  • Bumped plates are formed from laminar plates when the mineral wool is compressed prior to curing, so that the fibers "set up” from their lying main direction.
  • a higher transverse tensile strength of, for example, 15 kPa is achieved, albeit much lower than with lamellar plates, but a reduced thermal resistance in the transverse direction of the plate than in laminar plates, so that at most the heat conductivity group 040 can be achieved with such plates.
  • the insulation board Due to the relatively low transverse tensile strength in these cases, the insulation board is the "weakest link" in resistance to wind suction forces, since the strength of the compound of the adhesive mortar with at least 30 kPa, even after aging is significantly higher than the transverse tensile strength of the insulation boards. Therefore, in a sole adhesive attachment of these insulation boards, the thermal insulation composite system would yield under the wind suction forces by lifting the outer areas of the insulation boards of their detained interior areas.
  • the disclosure European Patent Application EP 1 203 846 A1 a thermal insulation composite system and insulation elements and a manufacturing method thereof.
  • the thermal insulation composite system consists of plate-shaped insulation elements with a building adhesive and / or the insulating elements sweeping mechanical fasteners on building surfaces, especially in the facade area of buildings fastened and in particular with a cover, such as a decking can be covered.
  • the applied plaster layers reveal the underlying insulation holder is provided that the insulating elements are fastened with a plurality of plate-shaped elements which preferably overlap the insulating elements, wherein the elements are arranged flush with the surface in recesses of the insulating elements and are connected to the building with the mechanical fastening elements.
  • dowel used as it were as an aid to improve the transverse tensile strength of the insulation boards, and not as an autonomous holding means for the entire thermal insulation composite system on the ground.
  • a reduced number of dowels can be used, namely at most three dowels per m 2 and in particular only at most two dowels per m 2 with correspondingly favorable loading and / or strength conditions.
  • This reduced number of dowels would not be able to support the inventive thermal insulation composite system without consideration of the holding effect of the adhesive mortar against wind suction forces; Rather, it would come to a passage of the anchor plate by the material of the insulation boards, so that the insulation boards would fall down with the exterior plaster.
  • Fig. 1 1a is the supporting substrate, that is to say the wall building material 1 of the building wall and 2 an old plaster applied thereto or a compensation plaster to be applied if necessary, which will be explained in more detail below.
  • adhesive mortar is called, which is applied in a layer thickness of at least about 3 mm over the entire surface or in bead-point bonding (applying a peripheral bead along the circumference of the adhesive board to be bonded with a central point application) with at least 40% area.
  • the adhesive mortar layer 3 can be made up to 20 mm thick, with adhesive mortars are used, which are generally approved by the building inspectorate for the corresponding purpose.
  • the substrate 1a (including the plaster layer 2) is "adhesive-suitable", as will be explained in more detail below. Furthermore, it has a consistency that allows a permissible load capacity of fasteners (dowels) of at least 0.20 kN / dowel.
  • the insulation boards 4 are either laminar or compressed mineral wool insulation boards.
  • Laminar mineral fiber insulation boards are generally 40 mm to 200 mm thick, "non-combustible (building material class DIN 4102-A1) boards” according to DIN 18165-1 type WV and the thermal conductivity group 035.
  • the apparent density is between 70 and 150 kg / m 3 , preferably between 100 and 140 kg / m 3 , in the example, in particular at 120 kg / m 3 ⁇ 15%.
  • the tensile strength perpendicular to the board plane (transverse tensile strength) according to DIN EN 1607 is 3.5 kPa.
  • the side dimensions may be 800 mm x 625 mm in the example case.
  • the plates are composed of a compacted cover layer and a lower layer. The cover layer is marked and mounted so that the densified cover layer is on the outside.
  • laminar mineral wool insulation board 4 is about the product "Sillatherm WVP 1-035" of the Applicant, as explained in detail in the general building inspection approval Z-33.40-142 from 29.05.2000 of the German Institute of Construction.
  • a compressed insulation board 4 whose density is in the range of 80 to 160 kg / m 3 , in particular from 110 to 150 kg / m 3 , and may for example have a nominal value of 130 kg / m 3 ⁇ 15%.
  • These are "non-combustible (construction material class DIN 4102-A1) panels” according to DIN 18165-1 of type WD (strength class HD) and thermal conductivity group 040.
  • the tensile strength perpendicular to the panel level (transverse tensile strength) according to DIN EN 1607 is 14 kPa.
  • These compressed mineral wool insulation boards are preferably used in side dimensions of 800 mm x 625 mm and with thicknesses of 40 to 140 mm.
  • the practical upper limit of insulation thickness of 200 mm can be made by using such compressed mineral wool insulation boards with a smaller thickness of 140 mm by "doubling", ie the bonding of two layers of insulation with staggered joints.
  • An example of such a compressed mineral wool insulation board 4 is the product "Sillatherm WVP 1-040" of the Applicant, as explained in detail in the general building inspection approval Z-33.40-142 of 29.05.2000 of the Deutsches Institut für Bautechnik.
  • the exterior plaster consists in the example of a flush 6 and a top coat 7.
  • the flush 6 is applied with a layer thickness between about 3 and 8 mm or more in a first layer 8 with central reinforcement fabric 9 and a second layer 10 wet-on-wet.
  • those sub-plasters can be used that are generally approved by the building authorities for mineral fiber insulating materials and the corresponding type of fastening (approval of the system manufacturer).
  • finishing coat 7 in particular thin-layered topcoats are used, which are applied and structured in grain size. It is possible to use the top plasters which are generally approved by the building authorities for mineral fiber insulating materials and the corresponding type of fastening (approval of the system manufacturer).
  • the system of substrate 1a, adhesive mortar layer 3, insulation boards 4 and external plaster 5 described hitherto could absorb the forces occurring, in particular the wind suction forces, for at least 30 kPa between and within all layers or layers of the system would be present after aging.
  • the substrate 1a is so designed, selected or formed that the substrate 1a is suitable for a permanent tensile load of 30 kPa or more, preferably with the inclusion of all conceivable safety surcharges a tear-off of 80 kPa should be achieved to all building requirements to meet a stickable substrate 1a safely.
  • the surface of Wandbaustoffes 1 must be flat, dry, free of grease and dust.
  • the tear resistance can usually be achieved without further Evidence must be provided.
  • the tear resistance test must - if required - be carried out in accordance with DIN 18555-6.
  • the adhesive may comprise the edge-side fibers and thus bring about a bonding or holding effect in addition to the adhesive action.
  • insulation boards 4 in the form of lamellar plates provide a tear-off strength of over 80 kPa on adhesive mortar 3, this is certainly the case with laminar or compressed insulation boards 4: in laminar insulation boards, the majority of the surface-side fibers are parallel to the large areas, and also at upset insulation boards 4 prevails in the edge regions of this fiber orientation. Therefore, the tear resistance between adhesive mortar 3 and insulation board 4 in the case of laminar and compressed Mineralwolledämmplatten is given safely.
  • insulation boards 4 in the form of lamellae in accordance with the illustration Fig. 1 have predominantly horizontal fiber flow relatively straight from the adhesive layer 3 in the direction of the outer plaster 5 and therefore have a tensile strength perpendicular to the plane of the plate, here referred to as transverse tensile strength, which is greater than 80 kPa; laminar or compressed insulating panels 4, however, have - with significantly higher thermal resistance - a transverse tensile strength, which is quite considerably below 30 kPa, in the case of a laminar insulation board 4 only in the range of 3.5 kPa or slightly more.
  • dowels 11a are therefore provided as additional fastening means, which have a dowel plate 11, a dowel shaft 12 and a dowel screw 13. With the dowel screw 13, the dowel 11a is held in a pre-drilled bore 14 in the substrate 1a.
  • Such dowels 11a are commercially available and have a diameter of the anchor plate 11 of usually 60 mm or a little more. The anchor plate 11 therefore presses flat on the adjacent surface areas of the insulation board. 4
  • the dowel 11a can be provided with an additional insulation support plate 15, as self-explanatory Fig. 1 is apparent.
  • This one usually has a diameter 90 mm or more, for example, 110 mm or 140 mm, and thus provides an even larger holding surface than the anchor plate 11 alone.
  • dowels 11a are used in practice in sufficient numbers to mechanically hold the entire thermal insulation composite system. For this purpose, a minimum of four dowels / m 2 is required because the wind suction forces must be 100% intercepted over the dowel plates.
  • the dowels 11a in the system of the present invention effectively serve to suppress rupture or slipping of the laminar or compressed insulation panels 4 under the influence of wind suction forces. It has been shown that this, depending on the specific transverse tensile strength of the insulation boards 4 used, a reduced and possibly significantly reduced number of anchors is required compared with the number of dowels that are required to support the thermal insulation composite system against wind suction.
  • the insulating panel 4 has a transverse tensile strength of at least 2 kPa, in particular of at least 3.5 kPa, a smaller number of dowels per square meter than four is sufficient to ensure the stability of the thermal insulation composite system in the lower section of buildings against the wind suction forces that occur. in addition to the holding action of the adhesive mortar 3, to ensure.
  • a reduced number of dowels 11 a means a reduced number of dowel holes 14 to be prefabricated and thus a considerable acceleration of the work progress in the assembly of the thermal insulation composite system. Since the assembly costs and the time required for construction are the critical factors, an assembly-related saving in a double-digit percentage range means a considerable increase in productivity.
  • the insulating panels 4 are made of mineral wool by the Randwulst-point method or very flat surfaces over the entire surface of the substrate 1a glued (at least 40% of the surface is glued).
  • the adhesive mortar 3 is in the form of "beads” and “batzen” or - if a smooth surface such. Concrete precast elements is present - all over the insulation boards 4 applied.
  • the adhesive mortar 3 should be incorporated when using mineral wool insulating materials in the surface (thin Preßspachtelung) and then applied. This requires two operations, namely the wetting of the insulating material and the application of the adhesive mortar 3.
  • the thus coated with the adhesive mortar 3 plate 4 is set as described below.
  • the insulation boards 4 are joint-tight.
  • the joints do not need to be mortared. Unintentionally on the front sides of the insulation boards 4 mortar is removed.
  • the plates 4 are then pressed against the wall, slightly shifted back and forth several times ("floated") and pressed over the entire surface against the substrate 1 a. This can be done by repeated pressing with the flat hand or with the aid of a suitable tool (for example a float, grape box etc.).
  • the thermal processing of composite systems has increasingly achieved the mechanical processing of adhesive and plaster mortars.
  • the thermal insulation composite system with mineral wool insulation boards.
  • the mineral wool insulation boards 4 can be factory-coated with a bonding agent.
  • the adhesive mortar 3 can on the one hand by means of a "Nozzle" are applied to the pump hose of the mortar pump on the insulation board 4, wherein a mortar bead is created on the edge of the insulation board and the mortar is applied in strips on the insulating board surface. With this technique, a 40% bond - with glued plate edges - can be generated.
  • the insulation boards 4 can be glued in such a way that the mortar is sprayed onto the wall and the plates are placed in this mortar bed.
  • the mortar can be sprayed onto the wall in strips.
  • the insulation boards must then be immediately set up, floated and pressed.
  • these mortar strips are sprayed vertically, so that the individual horizontally laid plates are applied to many mortar strips.
  • the glue bead should have a thickness of at least 1 cm in the middle and not less than 5 cm wide. The center distance of the beads is to be chosen so that the adhesive surface portion described above is achieved.
  • the insulating boards should i.a. at least 60% of the area, but nowhere less than 50% are glued. This requirement is to ensure that the adhesive beads are not placed too far away from the plate edges in insulation boards.
  • the insulation layer is laid in two layers.
  • the adhesive mortar must be incorporated into the surface of the first insulating layer and the second insulating layer.
  • the surface of the first insulation board layer should already meet the requirements of DIN 18202 for "ready-to-use” walls.
  • the flush can be applied in a position in which the reinforcing fabric is then "ironed" with a smoother.
  • a second thin layer of the concealed plaster is applied (wet-on-wet).
  • a primer adheresion promoter
  • the topcoat can be applied and immediately structured (dispensed).
  • building-approved dowels 11a with an effective plate diameter of at least 90 mm, preferably 110 or 140 mm, can be selected. These diameters are usually by Dämmstoffhalteller 15 in the Fig. 1 achieved apparent manner. These dowels 11a are also placed under the reinforcement fabric 9.
  • Fig. 2 an exemplary arrangement of the dowel 11a is illustrated on the wall of a family home to 8 m building height.
  • facade edge areas 16 results in wind stress increased requirements due to discontinuities of wind flow, vortex shedding, etc.
  • anchors 11a required than in the edge areas 16 circumscribed areas 17 of the facade or the thermal insulation composite system.
  • these facade surface areas 17, with which the present invention is concerned make up most of the facade surface.
  • Insulation boards 4 are used with dimensions 800 mm x 625 mm. Two insulation boards 4 thus cover one square meter of the façade surface. In the context of the invention thus require two insulation boards 4 two dowels, so it is a dowel per insulation board required.
  • the dowels 11a As shown, the dowels 11a, as can be seen, placed in the surface areas 17 on the vertical joints of the insulation panels 4, such that each anchor the edge of two insulation boards 4, each half, with his plate 11 and the insulation holding plate 15 overlaps and holds , This results in a relatively homogeneous holding action. Characterized in that the insulating panels 4 are also connected to a bonding mortar layer 3 by bonding to the substrate 1a, the dowels 11a in the surface areas 17 are only needed to additionally support the transverse tensile strength or tear resistance of the insulating panels 4. This has proven to be possible with a significantly reduced number of dowels 11a compared to the case that the dowels 11a are provided for full absorption of the wind suction forces.

Description

  • Die Erfindung betrifft ein Wärmedämm-Verbundsystem sowie ein hiermit ausgestattetes Gebäude.
  • Wärmedämm-Verbundsysteme der hier in Rede stehenden Art umfassen Dämmplatten aus gebundener Mineralwolle, die flächig nebeneinander auf der Fassade angeordnet sind. In den Untergrund eingeschraubte Dübel durchgreifen die Dämmplatten mit großflächigen Dübeltellern und sichern so die Lage der Dämmplatten an der Fassade. An der Außenseite der Dämmplatten und der Dübelteller ist ein armierter Außenputz in der Regel in der Weise angebracht, daß in einem Unterputz eine Armierungsschicht eingebettet ist, der mit einem Oberputz nach außen abgeschlossen ist.
  • Das Wärmedämm-Verbundsystem ist Belastungen durch Eigengewicht, durch hygrothermische Einwirkungen und insbesondere durch Windsog ausgesetzt. Gegen Belastungen durch das Eigengewicht kommt den Dübeln zwar eine sog. Konsoltragwirkung zu, jedoch werden Schubkräfte durch das Eigengewicht vor allem durch eine Beschichtung mit Klebemörtel an der Rückseite der Dämmplatten aufgefangen, welche die raue Außenfläche des Untergrundes mit der rauen Rückfläche der Dämmplatten in kraftschlüssiger Weise, sei es durch Reibung, sei es durch Haftverbindung, verbindet.
  • In Folge der hygrothermischen Einwirkungen (Schwinden des Putzes und Temperatur- sowie Feuchteschwankungen) treten Zwängungsspannungen im Putzsystem sowie Verschiebungen der Außenhaut in Fassadenrandbereichen auf. Mit den Verschiebungen in Scheibenebene sind Schubkräfte verbunden, die sich den Kräften aus Eigenlasten überlagern. Im Hinblick auf die Gebrauchsfähigkeit des Systems ist insoweit nur bedeutsam, ob die Zwängungsspannungen Risse verursachen können, und im Hinblick auf die Standsicherheit ist lediglich auszuschließen, daß die hygrothermisch bedingten Verschiebungen zu Ablösungen bzw. zum Abscheren des Systems in Fassadenrand- und Fassadeneckbereichen führen.
  • Die größte mechanische Belastung des Wärmedämm-Verbundsystems erfolgt im allgemeinen durch die Windsogkräfte. Diese führen senkrecht zum Untergrund über den Querschnitt des Wärmedämm-Verbundsystems wirkende Zugkräfte in das Wärmedämm-Verbundsystem ein, die von den Dübeln aufgenommen und in den Untergrund abgeleitet werden. Der zur Aufnahme der Schubspannungen durch das Eigengewicht vorgesehene Klebemörtel bleibt dabei unberücksichtigt; in Abreißversuchen zur experimentellen Ermittlung der erforderlichen Dübelanzahl wird gar kein Klebemörtel verwendet.
  • Die Windsogkräfte wirken umso stärker, je höher der betrachtete Abschnitt der Gebäudefassade über dem Boden liegt. Dementsprechend steigt die unter Berücksichtigung der erforderlichen Sicherheitszuschläge notwendige Anzahl der Dübel pro m2 Dämmfläche an. Bereits im untersten Gebäudeabschnitt bis zu einer Höhe von 8 m haben sich vier bis sechs Dübel pro m2 im Gebäudeflächenbereich (also im Abstand von den Rändern der Fassade) als notwendig erwiesen.
  • Seit Ende der 80er Jahre des vergangenen Jahrhunderts ist es bekannt, sog. Lamellenplatten zur Bildung eines Wärmedämm-Verbundsystems ausschließlich durch Klebemörtel und ohne alle Dübel am Untergrund zu befestigen; selbst in Abschnitten der Gebäudefassade mit einer Höhe von 80 m und mehr. Derartige großformatige Lamellenplatten werden dadurch hergestellt, daß von einem relativ dicken laminaren Mineralfaservlies Streifen abgeschnitten und diese um 90° gedreht werden, derart, daß die Hauptausrichtung der Fasern nunmehr in Richtung der Dicke der Lamellenplatte liegt.
  • Durch die überwiegende Faserausrichtung in Richtung der Dicke der Lamellenplatte ergibt sich zwar ein geringerer Wärmedurchlaßwiderstand als bei laminarer Faserorientierung, dafür aber eine hervorragende Zugfestigkeit in Richtung der Plattendicke, also eine hohe Eigenfestigkeit der Lamellenplatte gegen Abreißen unter Zugbelastung senkrecht zur Großfläche der Platte. Diese Eigenfestigkeit der Dämmplatte gegen Abreißen wird nachfolgend als Querzugfestigkeit der Dämmplatte bezeichnet. Im Falle einer Lamellenplatte liegt diese im Bereich oberhalb von 80 kPa. Damit kann die Klebeverbindung zwischen Dämmplatte und Klebemörtel auf eine Abreißfestigkeit von 80 kPa als Start-Abreißfestigkeit getestet werden, was nach Berücksichtigung aller Sicherheitsabschläge zu einer minimalen Abreißfestigkeit nach Alterung von etwa 30 kPa führt. Im Ergebnis ist also die Klebeverbindung mittels des Klebemörtels zwischen einer Lamellenplatte und einem Untergrund das "schwächste Glied" gegen Abreißen, da hier die anfallenden Kräfte in die Wand übertragen werden müssen. In jedem Falle reichen 30 kPa nach Alterung immer noch aus, um die als Lamellenplatten ausgebildeten Dämmplatten des Wärmedämm-Verbundsystems auch in Höhenabschnitten der Gebäudefassade von bis zu 100 m ohne jeden Einsatz von Dübeln gegen Herabfallen zu sichern.
  • Die Montage von Dübeln an der Fassade ist sehr arbeitsintensiv. Insbesondere müssen die Bohrlöcher im Untergrund angerissen und angebracht werden, was schon aufwändig ist. Um zu vermeiden, daß der Verarbeiter den Dübelteller auf die Armierung des noch feuchten Unterputzes des Außenputzes setzen und anschließend den Oberputz über den Dübeltellern anbringen muß, werden bei Wärmedämmsystemen der hier betrachteten Art die Dübelteller auf der trockenen Oberfläche der Dämmplatten positioniert, bevor irgenwelche Außenputzschichten aufgebracht werden, und liegen daher unter der Armierungsschicht, die somit in bezug auf die Dübel keinen Festigkeitsbeitrag gegen Abreißen leisten kann. Dieser Verzicht auf einen Beitrag der Armierungsschicht zur Dübelauszugs-Festigkeit führt aber zu einer entsprechenden Erhöhung der Anzahl der Dübel und somit zur Notwendigkeit einer höheren Anzahl von Dübellöchem, was die Kosten erhöht.
  • Daher ist generell anzustreben, wie im Falle von Lamellenplatten unter 100 m ganz ohne Dübel, oder wenigstens mit einer verminderten Anzahl von Dübeln arbeiten zu können.
  • Dämmplatten für Wärmedämm-Verbundsysteme werden, wenn sie nicht als Lamellenplatten hergestellt werden, als laminare oder als gestauchte Platten hergestellt. Im Falle von laminaren Platten wird die Ausrichtung der Fasern bei der Ablage unter dem Zerfaserungsaggregat im wesentlichen beibehalten, so daß die Faserhauptausrichtung parallel zu den Großflächen der Platten liegt. Derartige laminare Platten haben geringe Querzugsfestigkeit von beispielsweise 3,5 kPa oder noch weniger, weisen dafür aber einen hohen Wärmedurchlasswiderstand in Querrichtung der Plattenerstreckung auf, so daß mit ihnen die Wärmeleitgruppe 035 erreicht werden kann. Derartige laminare Platten werden häufig als Zwei-Schicht-Platten etwa mit einseitig oder beidseitig widerstandsfähigeren Harthautschichten ausgebildet. Gestauchte Platten entstehen aus laminaren Platten, wenn die Mineralwolle vor der Aushärtung gestaucht wird, derart, daß sich die Fasern aus ihrer liegenden Hauptrichtung "aufstellen". Dadurch wird eine höhere Querzugfestigkeit von beispielsweise 15 kPa erreicht, wenn auch noch viel geringer als bei Lamellenplatten, jedoch ein verminderter Wärmedurchlasswiderstand in Querrichtung der Platte als bei laminaren Platten, so daß mit solchen Platten allenfalls die Wärmeleitfähigkeitsgruppe 040 erzielbar ist.
  • Aufgrund der relativ geringen Querzugsfestigkeit ist in diesen Fällen die Dämmplatte das "schwächste Glied" beim Widerstand gegen Windsogkräfte, da die Festigkeit der Verbindung des Klebemörtels mit mindestens 30 kPa selbst nach Alterung erheblich höher liegt als die Querzugsfestigkeit der Dämmplatten. Daher würde bei einer alleine klebenden Befestigung dieser Dämmplatten das Wärmedämm-Verbundsystem unter den Windsogkräften durch Abheben der Außenbereiche der Dämmplatten von ihren festgehaltenen Innenbereichen nachgeben.
  • Aus der deutschen Offenlegungsschrift DE 31 24 686 A1 ist ein Fassadenverkleidungssystem für die Außenfassade von Gebäuden bekannt, bei welchem durch die Verwendung einer Tragkonstruktion aus Doppel-T- Trägern zur Abstandshalterung eine Vielzahl von Halteflächen im Abstand von der Außenfläche des Untergrundes geschaffen wird, an denen übliche Putzträgerplatten begrenzter Dicke über Klebemörtel und zusätzliche mechanische Befestigungsmittel befestigt werden können. Auf diese Weise lassen sich Dämmdicken von insgesamt über 30 cm über der Außenfläche des Untergrunds erreichen.
  • Weiterhin offenbart die europäische Patentanmeldung EP 1 203 846 A1 ein Wärmedämmverbundsystem sowie Dämmstoffelemente und ein Herstellungsverfahren hierfür. Das Wärmedämmverbundsystem besteht dabei aus plattenförmigen Dämmstoffelementen die mit einem Baukleber und/oder die Dämmstoffelemente durchgreifenden mechanischen Befestigungselementen auf Gebäudeflächen, insbesondere im Fassadenbereich von Gebäuden befestigbar und insbesondere mit einer Abdeckung, beispielsweise einem Deckputz abdeckbar sind. Um ein Wärmedämmverbundsystem bzw. ein Dämmstoffelement zu schaffen, welches insbesondere die Anzahl der erforderlichen Dämmstoffhalter in bestimmten Schemata erleichtert, um eine möglichst gleichmäßige Anordnung auch dann erkennbar zu machen, wenn aufgrund von Witterungsbedingungen die aufgetragenen Putzschichten die darunter liegenden Dämmstoffhalter erkennen lassen, ist vorgesehen, dass die Dämmstoffelemente mit mehreren, vorzugsweise die Dämmstoffelemente übergreifenden plattenförmigen Elemente befestigt sind, wobei die Elemente oberflächenbündig in Vertiefungen der Dämmstoffelemente angeordnet sind und mit den mechanischen Befestigungselementen mit dem Gebäude verbunden sind.
  • Erfindungsgemäß werden - bei Einhaltung bestimmter Parameter, wie in den Ansprüchen angegeben - Dübel gewissermaßen als Hilfsmittel zur Verbesserung der Querzugfestigkeit der Dämmplatten eingesetzt, und nicht als autonomes Haltemittel für das gesamte Wärmedämm-Verbundsystem am Untergrund. Aus diesem Grunde kann eine verminderte Anzahl von Dübeln zum Einsatz gelangen, nämlich höchstens drei Dübel pro m2 und insbesondere auch nur höchstens zwei Dübel pro m2 bei entsprechend günstigen Belastungs- und/oder Festigkeitsbedingungen. Diese verminderte Anzahl von Dübeln wäre nicht in der Lage, das erfindungsgemäße Wärmedämm-Verbundsystem ohne Berücksichtigung der Haltewirkung des Klebemörtels gegen Windsogkräfte abzustützen; es würde vielmehr zu einem Durchzug der Dübelteller durch das Material der Dämmplatten kommen, so daß die Dämmplatten mit dem Außenputz herabfallen würden. In ihrer Funktion als Hilfsmittel zur Verbesserung der sich insgesamt ergebenden Querzugfestigkeit der Dämmplatten hingegen erfolgt eine Grundfestigkeit gegen Windsoglast durch die Klebeverbindung des Klebemörtels, und eine Sicherung gegen Aufschiefern bzw. Abheben der Oberschichten der Dämmplatten unter den Windsogkräften durch die verminderte Anzahl von Dübeln. An der Position der Dübelteller erfolgt natürlich eine unmittelbare Absicherung des Materials der Dämmplatten gegen Windsogkräfte, im Bereich zwischen den Dübeln jedoch tragen die Dübel durch Abspannung der Oberflächenbereiche der Dämmplatten durch oberflächenseitige Zugkräfte zu den Dübeln hin zu einer Verbesserung der sich insgesamt ergebenden Querzugfestigkeit bei. Dies ist ein ähnlicher Effekt wie beim Niederhalten einer Oberfläche durch eine Steppdecke an mehreren Steppknöpfen im Vergleich zu einem homogenen Federbett, welches unter Sogkräften erheblich größeren Oberflächenverformungen ausgesetzt wäre.
  • Weitere Einzelheiten, Merkmale und Vorteil der Erfindung ergeben sich aus der nachfolgenden Beschreibung einer Ausführungsform anhand der Zeichnung.
  • Es zeigt
    • Fig. 1 einen Vertikalschnitt durch ein beispielhaftes Wärmedämm-Verbundsystem der Erfindung und
    • Fig. 2 eine beispielhafte Dübelanordnung bei einem erfindungsgemäßen Wärmedämm-Verbundsystem.
  • In Fig. 1 ist mit 1a der tragende Untergrund, also der Wandbaustoff 1 der Gebäudewand und mit 2 ein darauf angebrachter Altputz oder ein bei Bedarf darauf anzubringender Ausgleichsputz bezeichnet, was weiter unten noch näher erläutert wird.
  • Mit 3 ist Klebemörtel bezeichnet, der in einer Schichtdicke von mindestens etwa 3 mm vollflächig oder in Randwulst-Punkt-Verklebung (Aufbringen eines randseitigen Wulstes entlang des Umfangs der zu klebenden Dämmstoffplatte mit einem zentralen Punktauftrag) mit mindestens 40% Flächenanteil aufgetragen ist. Die Klebemörtelschicht 3 kann bis zu 20 mm dick ausgeführt werden, wobei Klebemörtel zum Einsatz kommen, die für den entsprechenden Einsatzzweck allgemein bauaufsichtlich zugelassen sind.
  • Der Untergrund 1a (samt Putzschicht 2) ist "klebegeeignet", wie dies weiter unten noch näher erläutert ist. Weiterhin hat er eine Konsistenz, die eine zulässige Tragfähigkeit von Befestigern (Dübeln) von mindestens 0,20 kN/Dübel zuläßt.
  • Mit 4 ist eine ausschnittsweise dargestellte Dämmplatte bezeichnet, wobei es sich versteht, daß eine Vielzahl derartiger Dämmplatten nebeneinander die gesamte Fassadenfläche abdeckt, wie dies Fig. 2 veranschaulicht.
  • Die Dämmplatten 4 sind entweder laminare oder gestauchte Mineralwolle-Dämmplatten.
  • Laminare Mineralfaser-Dämmplatten sind in der Regel 40 mm bis 200 mm dicke, "nichtbrennbare (Baustoffklasse DIN 4102-A1) Platten" nach DIN 18165-1 vom Typ WV und der Wärmeleitfähigkeitsgruppe 035. Die Rohdichte liegt zwischen 70 und 150 kg/m3, bevorzugt zwischen 100 und 140 kg/m3, im Beispielsfalle insbesondere bei 120 kg/m3 ± 15%. Die Zugfestigkeit senkrecht zur Plattenebene (Querzugsfestigkeit) nach DIN EN 1607 beträgt 3,5 kPa. Die Seitenabmessungen mögen im Beispielsfalle 800 mm x 625 mm betragen. Die Platten setzen sich aus einer verdichteten Deckschicht und einer Unterschicht zusammen. Die Deckschicht ist gekennzeichnet und so angebracht, daß die verdichtete Deckschicht außen liegt.
  • Ein Beispiel für eine derartige laminare Mineralwolle-Dämmplatte 4 ist etwa das Produkt "Sillatherm WVP 1-035" der Anmelderin, wie sie in der allgemeinen bauaufsichtlichen Zulassung Z-33.40-142 vom 29.05.2000 des Deutschen Instituts für Bautechnik in Einzelheiten erläutert ist.
  • Im Falle einer gestauchten Dämmplatte 4 liegt deren Rohdichte im Bereich von 80 bis 160 kg/m3, insbesondere von 110 bis 150 kg/m3, und kann beispielsweise einen Nennwert von 130 kg/m3 ± 15% haben. Es handelt sich dabei um "nichtbrennbare (Baustoffklasse DIN 4102-A1) Platten" nach DIN 18165-1 vom Typ WD (Festigkeitsklasse HD) und Wärmeleitfähigkeitsgruppe 040. Die Zugfestigkeit senkrecht zur Plattenebene (Querzugsfestigkeit) nach DIN EN 1607 beträgt 14 kPa. Diese gestauchten Mineralwolle-Dämmplatten werden bevorzugt in Seitenabmessungen von 800 mm x 625 mm und mit Dicken von 40 bis 140 mm eingesetzt. Die praktische Obergrenze der Dämmstoffdicke von 200 mm kann bei Verwendung von derartigen gestauchten Mineralwolle-Dämmplatten mit einer geringeren Dicke von 140 mm durch "Aufdoppelung" hergestellt werden, d.h. das Verkleben von zwei Lagen des Dämmstoffes mit versetzten Fugen. Ein Beispiel für eine derartige gestauchte Mineralwolle-Dämmplatte 4 ist das Produkt "Sillatherm WVP 1-040" der Anmelderin, wie sie in der allgemeinen bauaufsichtlichen Zulassung Z-33.40-142 vom 29.05.2000 des Deutschen Instituts für Bautechnik in Einzelheiten erläutert ist.
  • An der Außenseite der Dämmplatten 4 ist ein insgesamt mit 5 bezeichneter Außenputz vorgesehen. Der Außenputz besteht im Beispielsfalle aus einem Unterputz 6 und einem Oberputz 7. Der Unterputz 6 ist mit einer Schichtdicke zwischen etwa 3 und 8 mm oder mehr in einer ersten Lage 8 mit mittigen Bewehrungsgewebe 9 und einer zweiten Lage 10 naß-in-naß aufgebracht. Es können in der Praxis diejenigen Unterputze zum Einsatz kommen, die für Mineralfaserdämmstoffe und die entsprechende Befestigungsart allgemein bauaufsichtlich zugelassen sind (Zulassung der Systemhersteller).
  • Als Oberputz 7 kommen insbesondere dünnschichtige Oberputze zur Anwendung, die in Kornstärke aufgezogen und strukturiert werden. Es können die Oberputze zum Einsatz kommen, die für Mineralfaserdämmstoffe und die entsprechende Befestigungsart allgemein bauaufsichtlich zugelassen sind (Zulassung der Systemhersteller).
  • Zum Abschluß erfolgt bei Anwendung von Strukturputzen im allgemeinen eine Beschichtung mit einer systemzugehörigen Egalisierungsfarbe. Vor dem Auftrag des Oberputzes kann ein zugehöriger "Haftvermittler" aufgebracht werden.
  • Das bislang beschriebene System aus Untergrund 1a, Klebemörtelschicht 3, Dämmplatten 4 und Außenputz 5 könnte, jedenfalls für den untersten Gebäudeabschnitt, die auftretenden Kräfte, insbesondere die Windsogkräfte, aufnehmen, wenn zwischen und innerhalb sämtlicher Schichten oder Lagen des Systems eine Zugfestigkeit von mindestens 30 kPa nach Alterung vorliegen würde. Dabei ist der Untergrund 1a so beschaffen, gewählt oder ausgebildet, daß der Untergrund 1a für eine dauerhafte Zugbelastung von 30 kPa oder mehr geeignet ist, wobei bevorzugt unter Einschluß aller denkbaren Sicherheitszuschläge eine Abreißfestigkeit von 80 kPa erreicht werden sollte, um auch alle bauaufischtlichen Anforderungen an einen klebegeeigneten Untergrund 1a sicher zu erfüllen.
  • Hierzu muß die Oberfläche des Wandbaustoffes 1 eben, trocken, fett- und staubfrei sein. Bei Untergründen aus Mauerwerk nach DIN 1053 ohne Putz oder Beton nach DIN 1045 ohne Putz kann die Abreißfestigkeit in der Regel ohne weitere Nachweise vorausgesetzt werden. Die Prüfung der Abreißfestigkeit muß - falls erforderlich - nach DIN 18555-6 erfolgen.
  • Die dauerhafte Verträglichkeit eventuell vorhandener Beschichtungen mit dem Klebemörtel 3 ist sachkundig zu prüfen. Unebenheiten ≤ 1 cm/m dürfen überbrückt werden; größere Unebenheiten müssen mechanisch egalisiert oder durch einen Putz 2 nach DIN 18550-2 ausgeglichen werden. Die Abreißfestigkeit des Putzes muß nach der Erhärtung kontrolliert werden. Stark saugende oder sandende Untergründe 1a müssen mit einer Grundierung verfestigt werden.
  • Zwischen der Klebemörtelschicht 3 und den Mineralfaser-Dämmplatten 4 ist bei geeigneter Wahl des Klebemörtels 3 eine Abreißfestigkeit von mehr als 30 kPa und insbesondere mehr als 80 kPa problemlos zu erzielen. Dies ist aus entsprechenden Klebeverbindungen mit sog. Lamellenplatten als Dämmplatten 4 bekannt und verifizierbar. Hier steht ein erheblicher Teil der Mineralwollefasem senkrecht zur Großfläche der Dämmplatte 4, in der Darstellung gemäß Fig. 1 also horizontal in den Klebemörtel 3 hinein. Dies ist ein relativ ungünstiger Verbindungsfall, da eine mit ihrem Ende in eine Klebeschicht hineinstehende Faser ausschließlich durch Haftkräfte gehalten wird, und keinerlei Formschlußkräfte die Verbindung unterstützen. Bei einem Faserverlauf abschnittsweise parallel zur Erstreckung der Großfläche bzw. der Kleberschicht hingegen kann der Kleber die randseitigen Fasern umfassen und so neben der Haftwirkung auch eine Forschluß-Halte- oder -Verkrallwirkung zum Einsatz bringen. Wenn somit Dämmplatten 4 in Form von Lamellenplatten eine Abreißfestigkeit von über 80 kPa am Klebemörtel 3 erbringen, so ist dies bei laminaren oder gestauchten Dämmplatten 4 erst recht der Fall: bei laminaren Dämmplatten liegt der Großteil der oberflächenseitigen Fasern parallel zu den Großflächen, und auch bei gestauchten Dämmplatten 4 herrscht in den Randbereichen diese Faserausrichtung vor. Daher ist die Abreißfestigkeit zwischen Klebemörtel 3 und Dämmplatte 4 im Falle laminarer und gestauchter Mineralwolledämmplatten unbedenklich gegeben.
  • Die selben Überlegungen gelten bezüglich der Verbindung zwischen der Außenseite der Dämmplatten 4 und der im Beispielsfalle ersten Lage 8 des Innenputzes 6.
  • Ein entscheidendes Problem besteht jedoch darin, daß zwar Dämmplatten 4 in Form von Lamellenplatten einen in der Darstellung gemäß Fig. 1 überwiegend horizontalen Faserverlauf relativ geradlinig von der Kleberschicht 3 in Richtung auf den Außenputz 5 aufweisen und daher eine Zugfestigkeit senkrecht zur Plattenebene, hier als Querzugfestigkeit bezeichnet, besitzen, die über 80 kPa liegt; laminare oder gestauchte Dämmplatten 4 hingegen weisen - bei erheblich höherem Wärmedurchlaßwiderstand - eine Querzugfestigkeit auf, die ganz erheblich unter 30 kPa liegt, im Falle einer laminaren Dämmplatte 4 nur im Bereich von 3,5 kPA oder wenig mehr. Dies hat zur Folge, daß eine Klebebefestigung wie im Falle von Dämmplatten 4 in Form von Lamellenplatten nicht möglich ist, da unter dem Einfluß der Kräfte, insbesondere der Windsogkräfte, die Dämmplatte 4 in ihrem Zusammenhalt versagt und auseinandergerissen wird, wobei ein Innenbereich der Dämmplatte 4 am Klebemörtel 3 gehalten bleibt, während der Außenbereich der Dämmplatte 4 mit dem Außenputz 5 abfällt.
  • Erfindungsgemäß sind daher als zusätzliche Befestigungsmittel Dübel 11a vorgesehen, die einen Dübelteller 11, einen Dübelschaft 12 und eine Dübelschraube 13 aufweisen. Mit der Dübelschraube 13 wird der Dübel 11a in einer vorgebohrten Bohrung 14 im Untergrund 1a gehalten.
  • Derartige Dübel 11a sind handelsüblich und besitzen einen Durchmesser des Dübeltellers 11 von in der Regel 60 mm oder wenig mehr. Der Dübelteller 11 drückt daher flächig auf die benachbarten Oberflächenbereiche der Dämmplatte 4.
  • Um eine noch großflächigere Anlage auf einfache Weise zu erzielen, kann der Dübel 11a mit einem zusätzlichen Dämmstoffhalteteller 15 versehen werden, wie dies selbsterklärend aus Fig. 1 ersichtlich ist. Dieser hat einen Durchmesser von in der Regel 90 mm oder mehr, beispielsweise 110 mm oder 140 mm, und bietet somit eine noch größere Haltefläche als der Dübelteller 11 alleine.
  • Derartige Dübel 11a werden in der Praxis in ausreichender Anzahl benutzt, um das gesamte Wärmedämmverbundsystem mechanisch zu halten. Hierzu ist ein Minimum von vier Dübeln/m2 erforderlich, da die Windsogkräfte zu 100% über die Dübelteller abgefangen werden müssen.
  • Eine Verminderung der Anzahl der Dübel pro Flächeneinheit wäre zwar dadurch denkbar, daß die Dübelteller 11 außerhalb des Bewehrungsgewebes 9 gesetzt werden, so daß das Bewehrungsgewebe 9 Zugkräfte zwischen benachbarten Dübeln übertragen kann und so das Wärmedämm-Verbundsystem stabilisiert. Dies erfordert jedoch ein Setzen der Dübel in den nassen Putz, was arbeitsintensiv und unangenehm ist und daher von den Verarbeitern nur selten akzeptiert wird.
  • Erfindungsgemäß gelingt jedoch eine Verminderung der Anzahl der Dübel auch dadurch, daß die Dübel nicht als eigenständige Haltemittel gegen die Windsogkräfte betrachtet werden, sondern vielmehr lediglich als ergänzende Hilfsmittel, zusätzlich zur Befestigung an der Klebemörtelschicht 3, zur Verbesserung der Querzugfestigkeit oder des Reißverhaltens der Dämmplatten 4. Die Dübel 11a dienen im System der vorliegenden Erfindung gewissermaßen dazu, ein Aufreißen oder Aufschiefern der laminaren oder gestauchten Dämmplatten 4 unter dem Einfluß der Windsogkräfte zu unterdrücken. Es hat sich gezeigt, daß hierzu, je nach spezifischer Querzugsfestigkeit der verwendeten Dämmplatten 4, eine verminderte und ggf. ganz erheblich verminderte Anzahl von Dübeln erforderlich ist, verglichen mit derjenigen Anzahl der Dübel, die zur Abstützung des Wärmedämm-Verbundsystems gegen Windsogkräfte erforderlich sind. Soweit die Dämmplatte 4 eine Querzugfestigkeit von wenigstens 2 kPa, insbesondere von wenigstens 3,5 kPa aufweist, ist bereits eine geringere Anzahl von Dübeln pro Quadratmeter als vier ausreichend, um die Stabilität des Wärmedämm-Verbundsystems im unteren Abschnitt von Gebäuden gegen die auftretenden Windsogkräfte, ergänzend zur Haltewirkung des Klebemörtels 3, zu gewährleisten.
  • Eine verminderte Anzahl von Dübeln 11a bedeutet eine verminderte Anzahl von vorzufertigenden Dübelbohrungen 14 und somit eine erhebliche Beschleunigung des Arbeitsfortschritts bei der Montage des Wärmedämmverbundsystems. Da die Montagekosten und der Zeitbedarf am Bau die kritischen Größen sind, bedeutet eine montagetechnische Einsparung in einem zweistelligen Prozentbereich einen ganz erheblichen Produktivitätsfortschritt.
  • Zur Herstellung des erfindungsgemäßen Wärmedämm-Verbundsystems werden die Dämmplatten 4 aus Mineralwolle nach der Randwulst-Punkt-Methode oder bei sehr ebenen Oberflächen vollflächig auf den Untergrund 1a geklebt (mindestens 40% der Fläche ist verklebt). Der Klebemörtel 3 wird in Form von "Wülsten" und "Batzen" oder - wenn ein ebenmäßiger Untergrund wie z.B. Beton-Fertigteilelemente vorliegt - vollflächig auf die Dämmplatten 4 aufgetragen. Der Klebemörtel 3 soll bei Verwendung von Mineralwolle-Dämmstoffen in deren Oberfläche eingearbeitet (dünne Preßspachtelung) und dann aufgetragen werden. Dies erfordert zwei Arbeitsgänge, nämlich das Benetzen des Dämmstoffes und das Auftragen des Klebemörtels 3. Die so mit dem Klebemörtel 3 bestrichene Platte 4 wird wie unten beschrieben angesetzt. Zur Vermeidung von Wärmebrücken sind die Dämmplatten 4 fugendicht zu stoßen. Die Fugen brauchen nicht vermörtelt werden. Unbeabsichtigt auf die Stirnseiten der Dämmplatten 4 gelangter Mörtel wird entfernt. Die Platten 4 werden dann an die Wand gedrückt, mehrmals leicht hin und her verschoben ("eingeschwommen") und ganzflächig gegen den Untergrund 1a gepreßt. Dies kann durch mehrmaliges Andrücken mit der flachen Hand oder mit Hilfe eines geeigneten Werkzeuges (z.B. Reibebrett, Kartätsche etc.) geschehen.
  • In den vergangenen Jahren hat sich bei Wärmedämm-Verbundsystemen zunehmend die maschinelle Verarbeitung der Klebe- und Putzmörtel durchgesetzt. Dies ist beim Wärmedämm-Verbundsystem mit Mineralwolle-Dämmplatten ebenfalls möglich. Hierfür können die Mineralwolle-Dämmplatten 4 werksseitig mit einer Haftbrücke beschichtet werden. Der Klebemörtel 3 kann zum einen mittels einer "Zapfpistole" am Pumpschlauch der Mörtelpumpe auf die Dämmplatte 4 aufgetragen werden, wobei ein Mörtelwulst am Dämmplattenrand erstellt wird und der Mörtel streifenförmig auf die Dämmplattenfläche aufgebracht wird. Mit dieser Arbeitstechnik kann eine 40%ige Verklebung - mit verklebten Plattenrändern - erzeugt werden. Zum anderen können die Dämmplatten 4 in der Weise verklebt werden, daß der Mörtel auf die Wand gespritzt wird und die Platten in dieses Mörtelbett gesetzt werden. Der Mörtel kann streifenförmig auf die Wand gespritzt werden. Die Dämmplatten sind dann unverzüglich anzusetzen, einzuschwimmen und anzupressen. Zweckmäßig werden diese Mörtelstreifen vertikal aufgespritzt, so daß die einzelnen horizontal verlegten Platten auf vielen Mörtelstreifen angesetzt werden. Der Kleberwulst sollte in der Mitte eine Dicke von mindestens 1 cm aufweisen und nicht weniger als 5 cm breit sein. Der Achsabstand der Wülste ist so zu wählen, daß der oben beschriebene Klebeflächenanteil erreicht wird.
  • Um einen hinreichenden Haftverbund zwischen Dämmplatten 4 und vorgespritztem Klebemörtel 3 zu gewährleisten, ist eine zügige Arbeitsfolge zweckmäßig. Eine den Haftverbund beeinträchtigende Hautbildung des Klebemörtels sollte noch nicht eingesetzt haben. An Arbeitsfugen ist überschüssiger Klebemörtel zu entfernen.
  • Gemäß dem Stand experimenteller Untersuchungen sollten die Dämmplatten i.a. zu mindestens 60% der Fläche, aber nirgendwo weniger als zu 50% verklebt werden. Mit dieser Forderung soll gewährleistet werden, daß bei Dämmplatten die Kleberwülste nicht zu weit von den Plattenrändern entfernt platziert sind.
  • Es kann auch eine "Aufdoppelung" der Dämmschicht vorgenommen werden: Dabei wird die Dämmschicht in zwei Lagen verlegt. Bei nicht mit einer Haftbrücke beschichteten Mineralwolle-Dämmstoffen muß der Klebemörtel in die Oberfläche der ersten Dämmschicht und der zweiten Dämmschicht eingearbeitet werden.
  • Die Oberfläche der ersten Dämmplattenlage sollte hinsichtlich der Ebenheit bereits die Anforderungen der DIN 18202 an "flächenfertige" Wände erfüllen.
  • Unmittelbar nach dem Verkleben des Dämmstoffes oder erst nach hinreichendem Erhärten der Dämmstoffverklebung werden die Dübel 11a montiert.
  • Der Unterputz kann in einer Lage aufgebracht werden, in die das Bewehrungsgewebe anschließend mit einem Glätter "eingebügelt" wird. Alternativ wird gegebenenfalls eine zweite dünne Lage des Unterputzes aufgezogen (nass-in-nass).
  • Nach hinreichender Standzeit des Unterputzes (gemäß Herstellerrichtlinien) kann eine Grundierung (Haftvermittler) aufgetragen und wiederum nach deren Austrocknen der Oberputz aufgezogen und sofort strukturiert (gescheibt) werden.
  • Zum Abschluß kann bei Verwendung von dünnschichtigen Oberputzen ein systemzugehöriger Egalisierungsanstrich aufgetragen werden.
  • Auf den Einbau von Zubehörteilen wie Fugendichtbänder, Sockelschienen, Fugenprofilen, Gewebeeckwinkeln etc. wird an dieser Stelle nicht näher eingegangen.
  • Bei Verwendung gestauchter Mineralwolle-Dämmplatten 4 können bauaufsichtlich zugelassene Dübel 11a mit Tellerdurchmessem von mindestens 60 mm zur Anwendung kommen. Diese Dübel werden unter dem Bewehrungsgewebe 9 gesetzt.
  • Werden laminare Mineralwolle-Dämmplatten 4 verwendet, so können bauaufsichtlich zugelassene Dübel 11a mit einem wirksamen Tellerdurchmesser von wenigstens 90 mm, bevorzugt 110 oder 140 mm gewählt werden. Diese Durchmesser werden in der Regel durch Dämmstoffhalteller 15 in der aus Fig. 1 ersichtlichen Weise erreicht. Auch diese Dübel 11a werden unter dem Bewehrungsgewebe 9 gesetzt.
  • Die vorstehenden Angaben bezüglich Normen, bauaufsichtlichen Vorschriften, Sicherheitszuschlägen usw. gelten in der vorliegenden Form für das Gebiet der Bundesrepublik Deutschland. In anderen Staaten gelten andere Vorschriften, die jedoch einen analogen Sachverhalt reglementieren und somit in diesen Ländern entsprechend herangezogen werden sollen.
  • In Fig. 2 ist eine beispielhafte Anordnung der Dübel 11a an der Wand eines Einfamilienhauses bis 8 m Gebäudehöhe veranschaulicht.
  • Zu unterscheiden ist grundsätzlich zwischen Fassadenrandbereichen 16 und von diesen umschlossenen Fassadenflächenbereichen 17. In den Fassadenrandbereichen 16 ergeben sich bei Windbelastung erhöhte Anforderungen in Folge von Unstetigkeiten der Windströmung, Wirbelablösungen usw. Hier ist eine erheblich größere Dichte an Dübeln 11a erforderlich als in den von den Randbereichen 16 umschriebenen Flächenbereichen 17 der Fassade bzw. des Wärmedämm-Verbundsystems. Diese Fassadenflächenbereiche 17, mit welcher sich die vorliegende Erfindung beschäftigt, machen jedoch den größten Teil der Fassadenfläche aus.
  • Beim Beispiel gemäß Fig. 2 sind Dämmplatten 4 mit Abmessungen 800 mm x 625 mm verwendet. Zwei Dämmplatten 4 bedecken somit einen Quadratmeter der Fassadenfläche. Im Rahmen der Erfindung erfordern somit zwei Dämmplatten 4 zwei Dübel, es ist also ein Dübel pro Dämmplatte erforderlich.
  • In dem in Fig. 2 dargestellten Anwendungsfall sind die Dübel 11a, wie ersichtlich, in den Flächenbereichen 17 auf die vertikalen Fugen der Dämmplatten 4 gesetzt, derart, daß jeder Dübel den Rand zweier Dämmplatten 4, je zur Hälfte, mit seinem Teller 11 bzw. dem Dämmstoffhalteteller 15 übergreift und haltert. Dies ergibt eine relativ homogene Haltewirkung. Dadurch, daß die Dämmplatten 4 auch mit einer Klebemörtelschicht 3 durch Klebung mit dem Untergrund 1a verbunden sind, werden die Dübel 11a in den Flächenbereichen 17 lediglich benötigt, um ergänzend die Querzugfestigkeit oder die Reißbeständigkeit der Dämmplatten 4 zu unterstützen. Dies hat sich als mit einer erheblich verminderten Anzahl von Dübeln 11a verglichen mit dem Fall als möglich erwiesen, daß die Dübel 11a zur vollständigen Aufnahme der Windsogkräfte vorgesehen sind. In diesem Falle sind mindestens vier Dübel pro Quadratmeter, also im Beispielsfalle der Fig. 2 zwei Dübel pro Dämmplatte 4 erforderlich, im erfindungsgemäßen Fall hingegen lediglich zwei Dübel pro Quadratmeter bzw. ein Dübel pro Dämmplatte 4, was also wenigstens eine glatte Halbierung der erforderlichen Dübelmenge in den Flächenbereichen 17 bedeutet. Diese Halbierung der Dübelmenge führt zu einer entsprechenden Halbierung des Montageaufwands zur Anbringung von entsprechenden Haltebohrungen 14 im Untergrund 1a für die Dübel.

Claims (8)

  1. Wärmedämm-Verbundsystem für den untersten, maximal 12 m, insbesondere maximal 8 m hohen Abschnitt von Gebäudefassaden, insbesondere für Gebäude mit einer Putzhöhe von bis zu 12 m,
    mit einem Untergrund (1a), der eine Abreißfestigkeit von mindestens 30 kPa, insbesondere mindestens 80 kPa aufweist und eine Dübellast von wenigstens 0,20 kN/Dübel, d.h. Lastklasse der Dübeltragfähigkeit ≥ 0,20kN zuläßt,
    welches Dämmplatten (4) aus gebundener laminarer Mineralwolle mit einer Dicke von 40 mm oder mehr und mit einer Zugfestigkeit senkrecht zur Plattenebene (Querzugfestigkeit) von wenigstens 2 kPa, insbesondere von wenigstens 3,5 kPa aufweist, die als Putzträgerplatten für gewebearmierten Außenputz (5) auf den Untergrund (1a) der Gebäudefassade mit wenigstens 40 % ihrer Fläche geklebt und am Untergrund (1a) mit Dübeln (11a) mit einem wirksamen Tellerdurchmesser von wenigstens 90 mm mit unter dem Außenputz (5) und dem Armierungsgewebe (9) angeordnetem Dübelteller (11, 15) befestigt sind, und
    bei dem im Fassadenflächenbereich (17) höchstens 3, insbesondere höchstens 2 Dübel pro m2 Dämmfläche vorgesehen sind.
  2. Wärmedämm-Verbundsystem für den untersten, maximal 12 m, insbesondere maximal 8 m hohen Abschnitt von Gebäudefassaden, insbesondere für Gebäude mit einer Putzhöhe von bis zu 12 m,
    mit einem Untergrund (1a), der eine Abreißfestigkeit von mindestens 30 kPa, insbesondere mindestens 80 kPa aufweist und eine Dübellast von wenigstens 0,20 kN/Dübel, d.h. Lastklasse der Dübeltragfähigkeit ≥ 0,20kN zuläßt,
    welches Dämmplatten (4) aus gebundener gestauchter Mineralwolle mit einer Dicke von 40 mm oder mehr und mit einer Zugfestigkeit senkrecht zur Plattenebene (Querzugfestigkeit) von wenigstens 2 kPa, insbesondere von wenigstens 3,5 kPa aufweist, die als Putzträgerplatten für gewebearmierten Außenputz (5) auf den Untergrund (1a) der Gebäudefassade mit wenigstens 40 % ihrer Fläche geklebt und am Untergrund (1a) mit Dübeln (11a) mit einem wirksamen Tellerdurchmesser von wenigstens 60 mm mit unter dem Außenputz (5) und dem Armierungsgewebe (9) angeordnetem Dübelteller (11, 15) befestigt sind, und
    bei dem im Fassadenflächenbereich (17) höchstens 3, insbesondere höchstens 2 Dübel pro m2 Dämmfläche vorgesehen sind.
  3. Wärmedämm-Verbundsystem nach Anspruch 1 oder 2, bei dem die Dämmplatten (4) eine Plattengröße von 0,3 bis 0,7 m2, vorzugsweise 0,4 bis 0,6 m2, insbesondere von 0,5 m2 aufweisen.
  4. Wärmedämm-Verbundsystem nach einem der Ansprüche 1 bis 3, bei dem die Dübel (11a) auf den Fugen zwischen den Dämmplatten (4) angeordnet sind.
  5. Gebäude mit einem Wärmedämm-Verbundsystem an einem bis zu 12 m, insbesondere bis zu 8 m hohen Abschnitt der Gebäudefassade, oder Gebäude mit einer Putzhöhe von bis zu 12 m,
    mit einem Untergrund (1a), der eine Abreißfestigkeit von mindestens 30 kPa, insbesondere mindestens 80 kPa aufweist und eine Dübellast von wenigstens 0,20 kN/Dübel, d.h. Lastklasse der Dübeltragfähigkeit ≥ 0,20kN, zuläßt,
    welches Dämmplatten (4) aus gebundener laminarer Mineralwolle mit einer Dicke von 40 mm oder mehr und mit einer Zugfestigkeit senkrecht zur Plattenebene (Querzugfestigkeit) von wenigstens 2 kPa, insbesondere von wenigstens 3,5 kPa aufweist, die als Putzträgerplatten für gewebearmierten Außenputz (5) auf den Untergrund (1a) der Gebäudefassade mit wenigstens 40 % ihrer Fläche geklebt und am Untergrund (1a) mit Dübeln (11a) mit einem wirksamen Tellerdurchmesser von wenigstens 90 mm mit unter dem Außenputz (5) und dem Armierungsgewebe (9) angeordnetem Dübelteller (11, 15) befestigt sind, und
    bei dem im Fassadenflächenbereich (17) höchstens 3, insbesondere höchstens 2 Dübel pro m2 Dämmfläche vorgesehen sind.
  6. Gebäude mit einem Wäremdämm-Verbundsystem an einem bis zu 12 m, insbesondere bis zu 8 m hohen Abschnitt der Gebäudefassade, oder Gebäude mit einer Putzhöhe von bis zu 12 m,
    mit einem Untergrund (1a), der eine Abreißfestigkeit von mindestens 30 kPa, insbesondere mindestens 80 kPa aufweist und eine Dübellast von wenigstens 0,20 kN/Dübel, d.h. Lastklasse der Dübeltragfähigkeit ≥ 0,20kN, zuläßt,
    welches Dämmplatten (4) aus gebundener gestauchter Mineralwolle mit einer Dicke von 40 mm oder mehr und mit einer Zugfestigkeit senkrecht zur Plattenebene (Querzugfestigkeit) von wenigstens 2 kPa, insbesondere von wenigstens 3,5 kPa aufweist, die als Putzträgerplatten für gewebearmierten Außenputz (5) auf den Untergrund (1a) der Gebäudefassade mit wenigstens 40 % ihrer Fläche geklebt und am Untergrund (1a) mit Dübeln (11a) mit einem wirksamen Tellerdurchmesser von wenigstens 60 mm mit unter dem Außenputz (5) und dem Armierungsgewebe (9) angeordnetem Dübelteller (11, 15) befestigt sind, und
    bei dem im Fassadenflächenbereich (17) höchstens 3, insbesondere 2 Dübel pro m2 Dämmfläche vorgesehen sind.
  7. Gebäude nach Anspruch 5 oder 6, bei dem die Dämmplatten (4) eine Plattengröße von 0,3 bis 0,7 m2, vorzugsweise 0,4 bis 0,6 m2, insbesondere von 0,5 m2 aufweisen.
  8. Gebäude nach einem der Ansprüche 5 bis 7, bei dem die Dübel (11a) auf den Fugen zwischen den Dämmplatten (4) angeordnet sind.
EP03023101A 2002-10-11 2003-10-10 Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude Revoked EP1408168B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10247457 2002-10-11
DE10247457A DE10247457A1 (de) 2002-10-11 2002-10-11 Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude

Publications (2)

Publication Number Publication Date
EP1408168A1 EP1408168A1 (de) 2004-04-14
EP1408168B1 true EP1408168B1 (de) 2008-06-25

Family

ID=32010437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03023101A Revoked EP1408168B1 (de) 2002-10-11 2003-10-10 Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude

Country Status (4)

Country Link
EP (1) EP1408168B1 (de)
AT (1) ATE399233T1 (de)
DE (2) DE10247457A1 (de)
DK (1) DK1408168T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180104A1 (de) 2008-10-21 2010-04-28 Rockwool International A/S Fassadenisolierungssystem

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004048584B4 (de) * 2004-10-04 2008-03-06 Deutsche Amphibolin-Werke Von Robert Murjahn Stiftung & Co Kg Wärmedämmverbundsystem und Verwendung einer Außenunterputzzubereitung
EP1840286A1 (de) * 2006-03-29 2007-10-03 Rockwool International A/S Isolierendes Wandbausystem für eine Gebäudestruktur
DE102007018774A1 (de) 2007-04-20 2008-10-23 Saint-Gobain Isover G+H Ag Fassadendämmplatte für die Dämmung von Außenfassaden von Gebäuden, Wärmedamm-Verbundsystem mit derartigen Fassadendämmplatten sowie Verfahren zur Herstellung einer Fassadendämmplatte
ITMO20080300A1 (it) * 2008-11-21 2010-05-22 Angelo Marchesi Pannello isolante prefabbricato per il rivestimento di costruzioni edilizie, rivestimento isolante da esso ottenibile e relativo metodo di produzione
CN101914960A (zh) * 2009-09-29 2010-12-15 上海一金节能科技有限公司 一种机械锚固化学纤维网加筋聚苯板的外保温墙体
CN101864815A (zh) * 2010-05-27 2010-10-20 上海一金节能科技有限公司 一种机械锚固玻璃纤维网加筋聚苯板的外保温墙体
CN101967861A (zh) * 2010-09-28 2011-02-09 上海一金节能科技有限公司 机械锚固网格加强筋聚氨酯板的外保温墙体及施工工艺
CN101906828A (zh) * 2010-08-06 2010-12-08 周金烈 机械锚固网格加强筋岩棉板的外保温墙体及施工工艺
DE102010061539A1 (de) 2010-12-23 2012-06-28 Saint-Gobain Isover G+H Ag Wärmedämmverbundsystem sowie Fassadendämmplatte hierfür und Verfahren zur Herstellung der Fassadendämmplatte
BR112013017497A2 (pt) 2011-01-17 2016-09-27 Constr Res & Tech Gmbh sistema de isolamento térmico composto
FR2975417B1 (fr) * 2011-05-19 2013-05-10 Saint Gobain Isover Paroi exterieure de batiment en laine minerale dense
DK177775B1 (en) * 2012-04-20 2014-06-23 Rockwool Int Insulation system for covering a facade of a building
EP3239430B1 (de) * 2016-04-29 2019-12-18 STO SE & Co. KGaA Verfahren zur herstellung eines fassadensystems und vorrichtung zur durchführung des verfahrens
MD1438Z (ro) * 2019-12-19 2021-02-28 Серджиу ТЕРМИКАН Procedeu de termoizolare şi protecţie împotriva factorilor atmosferici ai pereţilor exteriori ai structurilor de construcţie de îngrădire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2358521A2 (fr) * 1976-07-12 1978-02-10 Miplacol Procede d'isolation thermique et phonique de batiments
DE3124686A1 (de) * 1981-06-24 1983-01-13 Grünzweig + Hartmann und Glasfaser AG, 6700 Ludwigshafen Fassadenverkleidungssystem fuer die aussenfassade von gebaeuden
EP0719365B2 (de) * 1994-05-26 2001-01-31 KOCH MARMORIT GmbH Verfahren zum verkleben der schnittflächen von mineralwolleplatten
DE10066165B4 (de) * 2000-11-06 2006-08-03 Deutsche Rockwool Mineralwoll Gmbh + Co Ohg Wärmedämmverbundsystem sowie bandförmiges Element für die Befestigung von Dämmstoffelementen
EP1225287A3 (de) * 2001-01-18 2003-11-19 Deutsche Rockwool Mineralwoll GmbH & Co. OHG Vorrichtung zur Bearbeitung und/oder Verarbeitung von plattenförmigen Bauelementen auf Baugerüsten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180104A1 (de) 2008-10-21 2010-04-28 Rockwool International A/S Fassadenisolierungssystem
WO2010046074A1 (en) 2008-10-21 2010-04-29 Rockwool International A/S Facade insulation system
EP3216933A1 (de) 2008-10-21 2017-09-13 Rockwool International A/S Fassadenisolierungssystem

Also Published As

Publication number Publication date
DE10247457A1 (de) 2004-04-22
DK1408168T3 (da) 2008-10-20
EP1408168A1 (de) 2004-04-14
DE50310030D1 (de) 2008-08-07
ATE399233T1 (de) 2008-07-15

Similar Documents

Publication Publication Date Title
EP1408168B1 (de) Wärmedämm-Verbundsystem sowie hiermit ausgestattetes Gebäude
EP0386324B1 (de) Bituminöser Haftvermittler zum Verlegen von Fliesen oder zum Auftragen von Putz
DE4032769C2 (de) Wärmedämmsystem
WO2011022849A1 (de) Bewehrungsmatte für eine armierte mörtel- oder spritzmörtelschicht auf einer unterlage sowie verfahren zu deren einbau und damit erstellte armierte mörtelbeschichtung
AT511073B1 (de) Fassadenkonstruktion zur Wärmedämmung und Verkleidung von Gebäudeaußenwänden sowie Verfahren zur Herstellung einer solchen Fassadenkonstruktion
EP1088945B1 (de) Fassadendämmelement
EP0682163B1 (de) Bausatz für Wärmeverbundsysteme und hinterlüftete Fassaden
EP2295660B1 (de) Verfahren zur installation von dämmplatten
EP2708677B1 (de) Mehrschichtige Wand mit angeklebten Ziegeln
DE202009017955U1 (de) Wandbekleidung
EP0719365B2 (de) Verfahren zum verkleben der schnittflächen von mineralwolleplatten
DE3444881A1 (de) Schallabsorbierender gebaeudewand- bzw. -deckenaufbau
EP1799926B1 (de) Gebäudedach sowie dämmschichtaufbau und mineralfaserdämmstoffelement für ein gebäudedach
EP2137359B2 (de) Fassadendämmplatte für die dämmung von aussenfassaden von gebäuden, wärmedämm-verbundsystem mit derartigen fassadendämmplatten sowie verfahren zur herstellung einer fassadendämmplatte
DE3444815A1 (de) Gebaeudewand- bzw. -deckenaufbau
DE19913496C5 (de) Bodendämmelement
DE102010061539A1 (de) Wärmedämmverbundsystem sowie Fassadendämmplatte hierfür und Verfahren zur Herstellung der Fassadendämmplatte
EP0936321B1 (de) Dämmstoffelement
DE19806454C2 (de) Dämmstoffelement
WO2008003276A2 (de) Plattenförmiges bauelement
EP2733272B1 (de) Wärmedämmverbundsysteme für Gebäudefassaden
DE102019128891B3 (de) Wiederaufnahmefähiger Bodenaufbau mit Fliesen und Verfahren zur Errichtung desselben
DE4101133C2 (de) Verfahren zur Befestigung von Bahnen an Holzwolle-Leichtbauplatten
WO2003076735A1 (de) Wärme- und/oder schalldämmsystem sowie dämmelement
EP3106578B1 (de) Fassadenelement, fassadensystem sowie verfahren zur herstellung eines fassadensystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040914

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20051010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: THERMAL INSULATION SYSTEM AND BUILDING FITTED WITH SAME

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50310030

Country of ref document: DE

Date of ref document: 20080807

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081006

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

BERE Be: lapsed

Owner name: SAINT GOBAIN ISOVER G+H A.G.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080925

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

26 Opposition filed

Opponent name: ROCKWOOL INTERNATIONAL A/S

Effective date: 20090326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081010

NLR1 Nl: opposition has been filed with the epo

Opponent name: ROCKWOOL INTERNATIONAL A/S

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081226

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080926

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R064

Ref document number: 50310030

Country of ref document: DE

Ref country code: DE

Ref legal event code: R103

Ref document number: 50310030

Country of ref document: DE

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20131025

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20131024

Year of fee payment: 11

Ref country code: CZ

Payment date: 20131016

Year of fee payment: 11

Ref country code: SE

Payment date: 20131029

Year of fee payment: 11

Ref country code: FR

Payment date: 20131028

Year of fee payment: 11

Ref country code: DE

Payment date: 20131105

Year of fee payment: 11

Ref country code: AT

Payment date: 20131021

Year of fee payment: 11

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20131028

Year of fee payment: 11

Ref country code: RO

Payment date: 20131001

Year of fee payment: 11

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20131126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080625

Ref country code: LI

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20080625

REG Reference to a national code

Ref country code: DE

Ref legal event code: R107

Ref document number: 50310030

Country of ref document: DE

Effective date: 20140508

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 399233

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131126

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC