EP1401992A1 - Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene - Google Patents

Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene

Info

Publication number
EP1401992A1
EP1401992A1 EP02745465A EP02745465A EP1401992A1 EP 1401992 A1 EP1401992 A1 EP 1401992A1 EP 02745465 A EP02745465 A EP 02745465A EP 02745465 A EP02745465 A EP 02745465A EP 1401992 A1 EP1401992 A1 EP 1401992A1
Authority
EP
European Patent Office
Prior art keywords
emulsion
radicals
water
constituent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02745465A
Other languages
German (de)
English (en)
Inventor
Gérald GUICHARD
Ian Hawkins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1401992A1 publication Critical patent/EP1401992A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • B29C33/62Releasing, lubricating or separating agents based on polymers or oligomers
    • B29C33/64Silicone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M155/00Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
    • C10M155/02Monomer containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/16Polysiloxanes containing silicon bound to oxygen-containing groups to hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/26Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/02Unspecified siloxanes; Silicones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/042Siloxanes with specific structure containing aromatic substituents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/043Siloxanes with specific structure containing carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/044Siloxanes with specific structure containing silicon-to-hydrogen bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/045Siloxanes with specific structure containing silicon-to-hydroxyl bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/046Siloxanes with specific structure containing silicon-oxygen-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/048Siloxanes with specific structure containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/051Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing halogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/052Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/053Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing sulfur
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/05Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon
    • C10M2229/054Siloxanes with specific structure containing atoms other than silicon, hydrogen, oxygen or carbon containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • the invention relates to an improved process for the preparation of a lubricating composition, suitable in particular for the lubrication of vulcanization bladders used during the shaping and vulcanization of pneumatic or semi-pneumatic tires.
  • the invention also relates to the lubricant compositions thus obtained. It also relates to their use for the lubrication of various articles, in particular vulcanization bladders as well as pneumatic or semi-pneumatic tires. It also relates to various articles, in particular vulcanization bladders as well as pneumatic or semi-pneumatic tires, coated with said lubricating composition.
  • Rubber tires for vehicles are usually manufactured by molding and vulcanizing a raw (or unvulcanized) and unshaped casing, in a molding press in which the raw casing is pressed outward against the surface of a mold. by means of an internal fluid expandable bladder.
  • the raw envelope is shaped against the external surface of the mold which defines the design of the tread of the envelope and the configuration of the sides.
  • the envelope is vulcanized.
  • the bladder is expanded by the internal pressure supplied by a fluid such as hot gas, hot water and / or steam, which also participates in the transfer of heat for vulcanization.
  • the envelope is then allowed to cool a little in the mold, this cooling being sometimes favored by the introduction of cold or cooler water into the bladder.
  • the mold is opened, the bladder is deflated by releasing the pressure of the internal fluid and the envelope is removed from the envelope mold.
  • This use of shell vulcanization bladders is well known in the art.
  • the bladder If adequate lubrication is not provided between the bladder and the inner surface of the envelope, the bladder generally tends to curl, which results in deformation of the envelope in the mold and also excessive wear and etching. from the surface of the bladder itself.
  • the surface of the bladder also tends to stick on the inner surface of the envelope after the vulcanization of the envelope and during the part of the vulcanization cycle of the envelope during which the bladder is deflated.
  • air bubbles can be trapped between the surfaces of the bladder and the envelope, and favor the appearance of vulcanization defects in the envelopes resulting from an inadequate heat transfer.
  • the external surface of the bladder or the internal surface of the raw or unvulcanized casing is coated with an appropriate lubricant, sometimes referred to as "jacketing cement", so as to facilitate sliding, and thus minimizing the risks of sticking, between the external surface of the bladder and the internal surface of the raw envelope.
  • an appropriate lubricant sometimes referred to as "jacketing cement”
  • the various qualities which one should expect from a good lubricating composition are to have excellent durability properties (the durability of a lubricating composition corresponds to the number of tires produced without degradation of the external surface of the bladder) and excellent elasticity properties (marked by a tensile elongation at break of the film of crosslinked lubricating composition, at least equal to 200%, measured according to standard AFNOR-T 46002).
  • lubricant compositions described in FR-A-2 494 294 are known in particular, which contain, as main constituents, a reactive polydimethylsiloxane preferably having hydroxyl end groups, a crosslinking agent preferably comprising Si-H functions and optionally a polycondensation catalyst.
  • crosslinking agent with Si-H function (s) examples are methyltrihydrogénosiiane and diméthyldihydrogénosilane.
  • the disadvantage of lubricating compositions of this type is their instability on storage. There is indeed a creaming of the emulsion following the evolution of hydrogen during transport and storage of the lubricant composition. The evolution of hydrogen responsible for the instability of the compositions of the prior art results essentially from the decomposition of the constituents with Si-H function (s).
  • compositions which are the subject of EP ⁇ A-0 635 559 are lubricating compositions based on polysiloxanes which partly meet these requirements. These compositions are in particular more stable in that they do not give off hydrogen during storage.
  • These compositions, which are in the form of emulsions comprise, as essential constituents, a non-reactive polydimethylsiloxane, a reactive polydimethylsiloxane, preferably with hydroxy or alkoxy termination and a crosslinking agent based on a hydrolysable organosilane. Their durability is however insufficient for practical use in the production of pneumatic or semi-pneumatic tires.
  • the present invention provides an improved process for the preparation of an improved lubricating composition which does not release hydrogen and which, moreover, has excellent sliding, durability and elasticity properties, which makes them perfectly suitable in particular for the lubrication of vulcanization bladders used during shaping and vulcanization of pneumatic and semi-pneumatic tires.
  • the present invention relates to a process for the preparation of a lubricating composition in the form of an oil-in-water emulsion, characterized in that it comprises the direct mixing of two oil-in-water emulsions (A) and (B) made beforehand, said prior emulsions (A) and (B) meeting the following characteristics of constitution (i) to (4i): (i) the prior emulsion (A) comprises:
  • the monovalent organic substituents identical or different from one another, bonded to silicon atoms are chosen from alkyl, cycoalkyl, alkenyl, aryl, alkylarylene and arylalkylene radicals,
  • component (d) a condensation catalyst capable of catalyzing the reaction of component (b) with component (c);
  • each of the previous emulsions (A) and (B) has the following composition by weight, the composition by weight of (A) possibly being identical or different from that of (B):
  • component (b) - from 0.5 to 50 parts by weight of component (b); - from 0.1 to 20 parts by weight of the constituent (c);
  • the emulsion (A) / emulsion (B) weight ratio, at the time of mixing the pre-emulsions, is in the range from 1.5 to 4, preferably from 1.8 to 3, and so more preferred from 2.1 to 2.6.
  • constituents (a), (a 1 ), (b), (c), (d) and (e) of the emulsions are defined with reference to their initial chemical structure, that is to say that which characterizes them before emulsification.
  • dynamic viscosity in the context of the invention the Newtonian type viscosity, that is to say the dynamic viscosity, measured in a manner known per se at a given temperature, at a sufficiently low shear rate gradient so that the viscosity measured is independent of the speed gradient.
  • Each of the non-reactive polydiorganosiloxane oils of component (a) has a dynamic viscosity generally between 5.10 "2 and 30.10 2 Pa.s at 25 ° C.
  • the dynamic viscosity varies between 5.10 " 2 and 30 Pa.s, better still between 0.1 and 5 Pa.s.
  • non-reactive means an oil which, under the conditions of emulsification, preparation of the lubricating composition and use, does not react chemically with any of the constituents of the composition.
  • radicals R 2 and R 3 monovalent organic substituents of the various siloxyl units mentioned above, have the following definitions: • the radicals R 2 , identical or different from each other, are chosen from: linear or branched alkyl radicals in C ⁇ C 6 (such as for example methyl, ethyl, propyl, isopropyl, butyie, isobutyl, t-butyl, n-pentyl, n-hexyl), C 3 -C 8 cycloalkyl radicals (such as for example cyclopentyl, cyclohexyl), and linear or branched C 2 -C 8 alkenyl radicals (such as for example vinyl, allyl),
  • radicals R 3 are chosen from: aryl radicals C 6 -C 10 (such as for example phenyl, naphthyl), alkylarylene radicals C 6 -C ⁇ 5 (such as for example tolyls , xylyl), C 6 -C 5 arylalkylene radicals (such as for example benzyl); and - where 5 to 50%, and better still 8 to 35%, in number of the substituents R 2 , R 3 and R 4 are aromatic radicals R 3 .
  • aryl radicals C 6 -C 10 such as for example phenyl, naphthyl
  • alkylarylene radicals C 6 -C ⁇ 5 such as for example tolyls , xylyl
  • C 6 -C 5 arylalkylene radicals such as for example benzyl
  • component (a) consists of at least one linear polyorganosiloxane:
  • radicals R 2 identical or different between them, are chosen from the methyl, ethyl, propyl and isopropyl radicals
  • radicals R 3 identical or different from each other, are chosen from the phenyl, tolyl and benzyl radicals
  • R 2 and R 3 are phenyl, tolyl and / or benzyl radicals.
  • At least one linear polyorganosiloxane is used as constituent (a) having, per molecule, a ratio (in number) of aromatic substituents R 3 / Si at least equal to 0.04, preferably ranging from 0.09 to 1 and better going from 0.16 to 0.7.
  • Component (a) is generally introduced into the prior emulsion (A) at a rate of 5 to 95 parts by weight per 100 parts by weight of the mixture of constituents (a) + (b) + (c) + (d), preferably 50 to 95, more preferably 75 to 95.
  • Each of the reactive linear polydiorganosiloxane oils of component (a 1 ) having at least two OH groups per molecule has a dynamic viscosity at 25 ° C generally between 5.10 "2 and 30.10 2 Pa.s. Preferably, the viscosity varies between 5.10 2 and 30 Pa.s, better still between 0.1 and 5 Pa.s.
  • the term "reactive" designates the reactivity of the constituent
  • the constituent (a 1 ) reacts with the crosslinking agent under the conditions for preparing the emulsion.
  • the monovalent organic substituents of the oil (a ') are: linear or branched alkyl radicals; linear or branched alkenyl radicals; cycloalkyl or cycloalkenyl radicals; cycloalkylalkylene or cycloalkenylalkylene radicals; these radicals are optionally substituted by -OH and / or amino (optionally substituted) and / or halogen and / or cyano groups.
  • the substituent of the amino group can be an alkyl radical, a cycloaikyl radical or a cycloalkyialkylene radical. Mention may be made, as halogen, of chlorine, fluorine, bromine or iodine, fluorine being more specifically suitable.
  • the organic substituents of (or) oil (s) (a ′) are: CC 6 alkyl radicals; C 3 -C 8 cycloalkyls; C 2 -C 8 alkenyls; or C 5 -C 8 cycloalkenyl; said radicals optionally substituted with hydroxyl and / or amino (optionally substituted), and / or halo, and / or cyano.
  • the substituents of the amino group are for example: (d-CeJalkyle; (C 2 -C 8 ) alkenyl; (C 3 -C 8 ) cycloalkyle.
  • R 5 and R 6 identical or different, represent: (CC 6 ) alkyl; (C 3 -C 8 ) cycloalkyl; (C 2 -C 8 ) alkenyl; (C 5 -C 8 ) cycloalkenyl; each of the aforementioned radicals being optionally substituted with a halogen atom (and preferably fluorine) or a cyano residue.
  • oil (s) (a ') to ⁇ , ⁇ -dihydroxypolydimethylsiloxanes, and in particular oils of this type prepared by the anionic polymerization process described in the aforementioned American patents: US 2 891,920 and especially US 3,294,725 (cited as reference).
  • the constituent (a ') is introduced into the prior emulsion (B) at a rate of 5 to
  • Component (b) is formed of at least one polyorganosiloxane resin, carrier before emulsification of condensed hydroxyl groups.
  • each substituent R 1 represents a monovalent organic group.
  • R 1 is a C ⁇ -C 20 hydrocarbon radical optionally carrying one or more substituents.
  • hydrocarbon radicals are: an alkyl radical, linear or branched, having from 1 to 6 carbon atoms; an alkenyl radical, linear or branched, having from 2 to 8 carbon atoms; a cycloaikyl radical having from 3 to 8 carbon atoms; or a cycloalkenyl radical having 5 to 8 carbon atoms.
  • the substituents of the hydrocarbon radical may be groups -OR 'or -O-CO-R' in which R 'is a hydrocarbon radical as defined above for R 1 , unsubstituted.
  • Other substituents of the hydrocarbon radical can be amino, amidated, epoxidized or ureido functions.
  • R a represents a valential bond or represents a divalent alkylene radical, linear or branched, in C C-io; and R 7 and R 8 independently represent: H; a (C -, - C 6 ) alkyl radical; a (C 3 -C 8 ) cycloalkyl radical; or an (C 6 -C ⁇ 0 ) aryl radical;
  • R 9 and R 11 identical or different, represent:
  • R 10 represents: a hydrogen atom; (C ⁇ -C 6 ) alkyl, for example methyl; (C 2 -C 7 ) alkylcarbonyl; (C 6 -C ⁇ 0 ) aryl and for example phenyl; (C 6 -C 10 ) aryl- (C CeJalkylène and for example benzyl; or alternatively R 10 represents O; and • the function of formula:
  • R 9 and R 10 are as defined above. It is however preferable that the concentration of -OR ′, -O-CO-R ′, amino, amidated, epoxidized or ureido functions, when they are present in the resin, is limited, so as not to exceed the tolerance threshold beyond which the stability of the emulsion would be compromised.
  • the silicone resins (b) are well-known branched organopolysiloxane polymers whose methods of preparation are described in numerous patents. As concrete examples of resins which can be used, mention may be made of MQ, MDQ,
  • each OH group is carried by a silicon atom belonging to an M, D or T motif.
  • hydroxylated organopolysiloxane resins not comprising, in their structure, a Q motif. More preferably, mention may be made of hydroxylated DT and MDT resins comprising - at least 20% by weight of T units and having a weight content of hydroxyl group ranging from 0.1 to 10% and better still from 0.2 to 5%.
  • hydroxylated DT and MDT resins comprising - at least 20% by weight of T units and having a weight content of hydroxyl group ranging from 0.1 to 10% and better still from 0.2 to 5%.
  • the resin (b) is liquid at room temperature.
  • the resin has a dynamic viscosity at 25 ° C of between 0.2 and 200 Pa.s.
  • the resin is incorporated in the preliminary emulsions (A) and (B) in an amount of 0.5 to 50 parts by weight per hundred parts by weight of the sum of the constituents (a), (b), (c) and (d ) or (a 1 ), (b), (c) and (d), preferably at a rate of 3 to 30, better still from 5 to 15 parts by weight.
  • Component (c) consisting of at least one crosslinker soluble in the silicone phase comprises at least two functions capable of reacting with the resin (s) (b) so as to cause crosslinking of the resin (s) (s).
  • said reactive functions of the crosslinker react with the resin under the conditions for preparing the emulsion.
  • a represents 0 or 1, so that the crosslinker has the formula: Si (Zi) 4 or YSi (Zi) 3 .
  • the groups Zi are identical to each other.
  • a more preferred group of crosslinkers is formed in particular by all of the organotrialcoxysilanes, organotriacyloxysilanes, organotrioximosilanes and tetraaikylsilicates.
  • the radicals are chosen more particularly: (C CeJalkyle; (C 2 -C 8 ) alkenyl; (C 3 -C 8 ) cycloalkyle; (C 6 -C ⁇ 0 ) aryl; (C 6 -C 15 ) alkylarylene; or (C 6 -C 15 ) arylalkylene.
  • groups Y By way of example of groups Y, mention may be made of methyl, ethyl, vinyl or phenyl radicals.
  • Zi represents methoxy, ethoxy, propoxy, methoxyethoxy, acetoxy or an oxime group.
  • methyltrimethoxysilane methyltriethoxysilane, ethyltriethoxysilane and / or vinyltrimethoxysilane.
  • Each prior emulsion (A) and (B) comprises from 0.1 to 20 parts by weight, per hundred parts by weight of the sum of the constituents (a) + (b) + (c) + (d) or (a 1 ) + (b) + (c) + (d), of the constituent (c), preferably from 0.2 to 10 parts by weight, better still from 0.5 to 5.
  • the condensation catalyst (d) is chosen from those conventionally used in the art for catalyzing the crosslinking of resins of type (b) using crosslinking agents of type (c) defined above.
  • organometallic salt there may be mentioned zirconium naphthenate and zirconium octylate.
  • Said catalyst is preferably a tin catalytic compound, generally an organotin salt.
  • organotin salts which can be used are described in particular in the work by
  • catalytic compound with tin either distannoxanes, or polyorganostannoxanes, or the reaction product of a tin salt, in particular of a tin dicarboxylate on ethyl polysilicate, as described in US-A-3,862,919.
  • reaction product of an alkyl silicate or an alkyltrialkoxysilane on (dibutyltin diacetate as described in Belgian patent BE-A-842,305 may also be suitable.
  • tin II salt such as SnCI 2 or stannous octoate, is used.
  • the catalyst is the tin salt of an organic acid, such as dibutyltin diacetate, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, zinc naphthenate, cobalt naphthenate, zinc octylate, cobalt octylate and dioctyltin di (isomercaptoacetate).
  • the preferred tin salts are the tin bischelates (EP-A-147 323 and
  • EP-A-235 049 diorgano-tin dicarboxylates and, in particular, dibutyl- or dioctyltin diversatates (British patent GB-A-1 289 900, dibutyl- or dioctyltin diacetate, dibutyl dilaurate) or dioctyltin or the hydrolysis products of the precipitated species (for example diorgano and polystannoxanes).
  • the catalyst (d) is generally introduced into each of the prior emulsions (A) and (B) in an amount of 0.05 to 10 parts by weight, per hundred parts by weight of the sum of the constituents (a) + (b) + (c) + (d) or (a ') + (b) + (c) + (d), preferably correctly from 0.08 to 5 parts by weight, and better still from 0.1 to 2 parts by weight.
  • Dioctyltin dilaurate is most particularly preferred.
  • the nature of the surfactant (e) will be easily determined by a person skilled in the art, the objective being to prepare a stable emulsion.
  • the anionic, cationic, nonionic and zwitterionic surfactants can be used alone or as a mixture.
  • anionic surfactant there may be mentioned the alkali metal salts of aromatic sulfonic hydrocarbon acids or the alkali metal salts of alkylsulfuric acids.
  • Non-ionic surfactants are more particularly preferred in the context of the invention.
  • alkyl or aryl ethers of poly (alkylene oxide) polyoxyethylenated sorbitan hexastearate, polyoxyethylenated sorbitan oleate having a saponification number from 102 to 108 and a hydroxyl number from 25 to 35 and the ethers of cetylstearyl and poly (ethylene oxide).
  • poly (alkylene oxide) aryl ether polyoxyethylenated alkylphenols may be mentioned.
  • alkyl ether of poly (alkylene oxide) there may be mentioned isodecyl ether of polyethylene glycol and trimethylnonyl ether of polyethylene glycol containing 3 to 15 units of ethylene oxide per molecule.
  • the amount of surfactant (e) depends on the type of each of the constituents present as well as on the very nature of the surfactant used. As a general rule, each prior emulsion comprises from 0.5 to 10% by weight of surfactant (better still from 0.5 to 5% by weight) and from 40 to 95% by weight of water (better still from 45 to 90 % in weight).
  • each prior emulsion (A) and (B) or only one of the two prior emulsions (A) or (B) may further comprise a constituent (g) consisting of at least one water-soluble crosslinking agent chosen from silanes and / or hydroxylated polydiorganosiloxanes, said crosslinking agent carrying, per molecule, in addition to at least one OH group, at least one organic group with function Fr, Fr representing a.
  • a constituent (g) consisting of at least one water-soluble crosslinking agent chosen from silanes and / or hydroxylated polydiorganosiloxanes, said crosslinking agent carrying, per molecule, in addition to at least one OH group, at least one organic group with function Fr, Fr representing a.
  • water-solubility should be understood to mean the ability of a product to dissolve in water at a temperature of 25 ° C, at least 5% by weight.
  • the optional organic substituents of the crosslinking agent other than the OH group (s) and the Fr function organic group (s) are: alkyl radicals, linear or branched, having from 1 to 6 carbon atoms; cycloalkyl radicals having from 3 to 8 carbon atoms; alkenyl radicals, linear or branched, having from 2 to 8 carbon atoms; aryl radicals having 6 to 10 carbon atoms; alkylarylene radicals having 6 to 15 carbon atoms; or arylalkylene radicals having 6 to 15 carbon atoms.
  • Fr is an optionally substituted amino function.
  • an organic group with a preferred Fr function is a group of formula: -R a -NR 7 R 8
  • R a , R b , R G , R 7 , R 8 , R 9 , R 10 and R 11 are as defined above with regard to the definition of constituent (b).
  • the water-soluble crosslinking agent has the formula:
  • R 8 R 7 NR a -Si (OH) 3 in which R a , R 7 and R 8 are as defined above. Even more preferably, R a represents (CrC 10 ) alkylene, and R 7 and R 8 independently represent a hydrogen atom or a (CC 6 ) alkyl group.
  • the water-soluble crosslinking agent can also be a linear and / or cyclic hydroxylated polydiorganosiloxane, with MD (if linear) and / or D (if cyclic) siloxy units, and / or a hydroxylated polydiorganosiloxane resin having, in its structure, units siloxyls T optionally associated with units M and or D and / or T, or alternatively siloxyl units Q associated with units M and / or D.
  • This linear, cyclic or network polydiorganosiloxane is not substituted by organic hydrolyzable functions such as alkoxy functions.
  • G being an organic substituent which meets the definition given above for the “optional organic substituents” either represents a hydroxyl group or else is a function Fr, it being understood that in each molecular structure, at least one of the symbols G represents a group hydroxyl and at least one other of the symbols G represents a function Fr.
  • G is: (Ci-CeJalkyle (for example methyl, ethyl, isopropyl, tert-butyl and n-hexyl); hydroxyl; (C 2 -C 8 ) alkenyl (for example vinyl or allyl); or even a function Fr, the preferred functions Fr being as defined above.
  • linear hydroxyl polydiorganosiloxanes which can be used as crosslinking agent (g)
  • This constituent (g) when it is present in the prior emulsion (A) or (B) or in the two emulsions, is used in an amount of 0.5 to 15 parts by weight per hundred parts by weight of the sum of constituents (a) + (b) + (c) + (d) + (g) or (a ') + (b) + (c)
  • component (g) notably improves the durability of the lubricating composition.
  • Each prior emulsion (A) and (B) or only one of the two prior emulsions (A) or (B) may also contain one or more additional ingredients such as, for example, film-forming polymers, complementary lubricants, anti-friction agents, coalescing agents, wetting or dispersing agents, mineral fillers, air release agents, anti-foaming agents, thickeners, stabilizers, preservatives such as biocides and antifungals, in amounts which can vary considerably, for example, between 0.2 and 50% by weight of the prior emulsion.
  • additional ingredients such as, for example, film-forming polymers, complementary lubricants, anti-friction agents, coalescing agents, wetting or dispersing agents, mineral fillers, air release agents, anti-foaming agents, thickeners, stabilizers, preservatives such as biocides and antifungals, in amounts which can vary considerably, for example, between 0.2 and 50% by weight of the prior emulsion.
  • thickeners are cellulosic (carboxymethylcellulose), acrylic, polyurethane thickeners, hydrocolloid gums (xanthan gum) and mixtures thereof.
  • coalescing agent glycols and / or aliphatic petroleum fractions (petroleum distillation fractions) may be used.
  • Wetting or dispersible agents which can be used in the context of the invention are, for example, phosphates and / or polyacrylics, such as for example sodium hexametaphosphate and sodium polyacrylates.
  • the prior emulsions (A) and (B) can be prepared in a conventional manner by using conventional methods of the prior art.
  • a first method consists in emulsifying, in an aqueous phase comprising all of the water-soluble constituents, a mixture of the lipophilic constituents (a) or (a '), (b), (c), (d), in the presence of the surfactant (e).
  • An oil-in-water preemulsion can first be prepared from only a few of the constituents forming the final emulsion. Then the missing constituents can be added, either directly to the emulsion (case of water-soluble constituents), or subsequently in the form of emulsion (case of constituents soluble in the silicone phase).
  • the catalyst (d) and the film-forming polymer can be added, either directly to the silicone phase before emulsification, or after formation of the emulsion, in the form of an additional emulsion.
  • the emulsification can be direct or proceed by inversion.
  • a preferred variant consists in particular in preparing an oil-in-water preemulsion comprising all of the constituents (a) or (a '), (b) and (c) and optionally (g), in the presence of the surfactant (e) before add the missing constituents to this preemulsion in the form of additional emulsion (s).
  • the invention relates to a process for the preparation of a lubricating composition in the form of an oil-in-water emulsion, characterized in that it comprises the steps (1) and ( 2) following: - step (1) where the prior emulsions (A) and (B) are prepared, at room temperature (23 ° C) using the same operating mode comprising the sequences ⁇ , ⁇ and ⁇ consisting:
  • a water-soluble crosslinking agent (g) When incorporated into the prior emulsion (s), it is preferably incorporated, in the form of an aqueous solution, at the same time as the catalyst ( d), to an oil-in-water emulsion containing all of the constituents (a) or (a), (b), (c) and (e).
  • the additional catalyst emulsion (d) as well as any emulsion added to the emulsion resulting from the sequence ⁇ is preferably prepared in the presence of the same surfactant as with the sequence ⁇ .
  • any other type of surfactant such as for example a poly (vinyl alcohol).
  • the latter surfactant is particularly useful in the case where it is desired to prepare an additional emulsion of a tin catalyst.
  • the additional ingredient (s) mentioned above, when one or more is used, can advantageously be incorporated, in whole or in part, in the prior emulsion (s) ( s) at the level of the sequence ⁇ and / or at the level of the sequence ⁇ and / or at the level of the possible sequence ⁇ .
  • the method of the invention may further comprise an additional step of heating the resulting lubricating composition, for example at a temperature ranging from 30 to 40 ° C. This step accelerates the crosslinking processes. It can be replaced by a step of storing the lubricating composition at room temperature (23 ° C.) until complete crosslinking.
  • the oils and resins (a), (a 1 ) and (b) as well as the crosslinkers (c) and (g) are commercially available or easily accessible to those skilled in the art by implementing the conventional methods described in the prior art.
  • the functionalization is easily carried out by substitution or appropriate addition reaction.
  • hydrolysable organofunctional substituents (Sofh) capable of generating volatile organic compounds (VOCs) in situ during crosslinking by condensation are, for example, alkoxy, acetoxy, ketiminoxy, enoxy.
  • the heterocondensation mechanisms involved are of the OH / OH and OH / OR d type , these OH or OR d being carried by the hydroiysates derived from silanes Si and S 2 .
  • Hydroiysates derived from Sofh are alcohols, in this case.
  • the silane Si is advantageously a trialcoxysilane, preferably a trimethoxysilane, a triethoxysilane, a methyldimethoxysilane or a methyidiethoxysilane, carrying an amino function Fr of the type:
  • the Sofhs which it comprises are preferably C 1 -C 6 alkoxy radicals, for example: methoxy, ethoxy or propoxy.
  • This silane S 2 preferably an alkoxysilane, can also contain at least one CC 6 alkyl substituent, for example: methyl, ethyl, propyl.
  • the optional crosslinker (g) is a resin obtained:
  • the silane S 3 is preferably a substituted alkoxysilane Fr. It may be, for example, a trialcoxysilane making it possible to obtain a hydroxylated resin with T units, also called T (OH) resin.
  • This silane S 3 can be of the same type as the silane S T as defined above.
  • the functions Fr substituting S 3 correspond to the same definition as that given above.
  • a crosslinking agent (g) of the polydiorganosiloxane resin type mention may be made of that obtained from ⁇ -aminopropyltriethoxysilane hydrolyzed and subjected to a "stripping" of the ethanol formed by the hydrolysis.
  • the lubricant compositions which can be obtained by implementing the process which has just been described, comprising the direct mixing of the two emulsions (A) and (B) made beforehand.
  • Another subject of the invention is the use of the lubricant composition thus obtained for the lubrication of various articles. More particularly, the invention relates to the use of the lubricating composition for the lubrication of the vulcanization bladder, made of rubber and expandable, during the shaping and vulcanization of pneumatic or semi-pneumatic tires.
  • the lubricant composition of the invention can be applied in any way, and for example by spraying, brushing or even using a sponge or a brush. I! it is preferable to operate so as to cover the article to be coated with an even layer of coating.
  • the lubrication of the vulcanization bladder used during the shaping and vulcanization of pneumatic or semi-pneumatic tires can be carried out in two different ways.
  • a raw tire is placed in a tire mold, an expandable bladder is placed in the mold, the mold is closed and the bladder is expanded by applying internal fluid pressure. hot, so that the bandage is pressed against the mold, shaped and vulcanized.
  • the mold is then opened, the bladder is deflated and the bandage is recovered, shaped and vulcanized.
  • the same bladder is used for the manufacture of approximately a few hundred bandages.
  • the expandable rubber bladder used during the manufacture of the tires is initially coated with a lubricating composition according to the invention. Initially, the lubrication of the bladder is direct. Then there is a phenomenon of exhaustion of the lubricating effect of this bladder.
  • bladder lubrication takes place in this case by transfer.
  • the present invention therefore also relates to the use of the lubricating composition for the lubrication of raw pneumatic or semi-pneumatic tires, comprising or not comprising on their external surface elements which will constitute the external tread intended to come into contact with the ground.
  • the lubricant composition of the invention does not comprise any Si-H bonding component so that the risk of evolution of hydrogen during storage or transport is zero.
  • the lubricant composition of the invention also exhibits excellent sliding properties, durability and elasticity.
  • the expandable rubber bladder before being coated on its external surface (that which comes into contact with the tire) with a lubricating composition prepared according to the process of the present invention, can undergo a pretreatment consisting in applying in any way (for example by spraying, brushing, or using a sponge or a brush) a regular layer of a primary composition in the form of an oil-in-water emulsion, said emulsion being obtained by the process comprising the direct mixing of the two oil-in-water emulsions (A) and (B) made in the prelims, which are defined above, but this time using proportions of the two previous emulsions (A) and ( B) which are such that the weight ratio emulsion (A) / emulsion (B), at the time of direct mixing, is now in the range from 0.1 to 0.7, preferably from 0.3 to 0 , 5, and more preferably from 0.35 to 0.45.
  • the present invention also relates to articles lubricated using the lubricant composition capable of
  • the invention relates to: - an expandable rubber bladder coated on its external surface with a composition according to the invention, for the shaping and vulcanization of pneumatic or semi-pneumatic tires;
  • an expandable rubber bladder obtainable by heating the expandable bladder defined above, in particular at 80-180 ° C (preferably 130-170 ° C), so as to ensure total crosslinking of the crosslinkable constituents of the emulsion;
  • lubricating composition 1 prepared according to the process of the present invention comprising a water-soluble crosslinking agent (component (g)
  • Step 1)
  • Ph C 6 H 5 (2) MDT resin having a hydroxylation rate of 0.5% by weight, an average number per molecule of organic radicals for a silicon atom of 1.5, a dynamic viscosity at 25 ° C of 0.1 Pa. s and the following proportions of siloxy units:
  • dioctyltin dilaurate emulsion in water prepared using polyvinyl alcohol as a surfactant.
  • MDT resin having a hydroxylation rate of 0.5% by weight, an average number per molecule of organic radicals for a silicon atom of 1.5, a dynamic viscosity at 25 ° C of 0.1 Pa. s and the following proportions of siloxy units: M: 17% by mole
  • the preliminary emulsons (A) and (B) are prepared using the same procedure, comprising the following sequences ⁇ and ⁇ :
  • a mixture of non-reactive phenylated siloxane oil (case of emulsion (A)) or reactive hydroxylated polydimethylsiloxane oil (case of emulsion (B)), MDT-OH resin, methyltriethoxysilane, surfactant and a part of distilled water (according to a water / surfactant ratio of 1, 2, or 2.35% by weight of water) is homogenized beforehand with moderate stirring (50 revolutions / minute) for 15 minutes at temperature ambient (23 ° C).
  • the mixture thus obtained is treated by grinding until phase inversion using a Moritz ® mill, to pass a fluid phase water / oil to a thick oil phase / water.
  • the dilution of the thick phase obtained is carried out with average stirring in 40 minutes, using a quantity of distilled water determined to obtain an emulsion whose dry matter is 50% (i.e. 45.59% by weight d 'water).
  • the bactericidal agent and the antioxidant agent are added during dilution.
  • the silane (g) and the catalyst (d) are added to the previously produced emulsion, then homogenization with moderate stirring is carried out for 10 minutes, followed by filtration.
  • the biocide and the antifoam are then added to the emulsion, and the mixture is stirred for another 10 minutes.
  • the emulsion thus obtained is characterized by an average particle size of 0.4 ⁇ m.
  • the xanthan gum and the wetting agent are loaded into another container, mixed for 10 minutes with vigorous stirring, then added to the emulsion previously produced. Stirred further, at moderate speed, for 30 minutes.
  • the final emulsion is characterized by a proportion of dry matter (60 min, 120 ° C) of 48.8% by weight.
  • the prior emulsions (A) and (B), prepared as indicated above, are mixed at ambient temperature (23 ° C.), operating with moderate stirring (50 revolutions / minute) for 15 minutes, the prior emulsions (A ) and (B) being entered in the following respective proportions:
  • the lubricating composition 1 obtained is characterized by an average particle size (measured before the addition of xanthan gum and the wetting agent) of 0.4 ⁇ m and a proportion of dry matter (60 min, 120 ° C.) of 48, 8% by weight.
  • Example 2 this is a comparative example which illustrates a lubricating composition (lubricating composition 2) prepared, not by direct mixing of two prior emulsions (A) and (B), but by directly producing a single emulsion from of the mixture of constituents (a) and (a ') with the other constituents and additional ingredients.
  • a single emulsion is therefore prepared, the nature and proportions of the constituents of which are given in Table 4 below:
  • the process used to prepare the lubricating composition 2 is identical to the process, comprising the sequences ⁇ and ⁇ , described in step (1) of Example 1.
  • the emulsion obtained is characterized by an average particle size (measured before the addition of xanthan gum and the wetting agent) of 0.402 ⁇ m and a proportion of dry matter (60 min, 120 ° C.) of 48.5% in weight.
  • Example 3 this is another comparative example which illustrates a lubricating composition (lubricating composition 3) prepared by directly producing, there too, a single emulsion from the constituents and additional ingredients, the nature and proportions of which are given in the following table 5:
  • the process used to prepare the lubricating composition 3 is identical to the process, comprising the sequences ⁇ and ⁇ , described in step (1) of Example 1.
  • the emulsion obtained is characterized by an average particle size (measured before the addition of xanthan gum and the wetting agent) of 0.402 ⁇ m and a proportion of dry matter (60 min, 120 ° C.) of 48.5% in weight.
  • a low coefficient of friction reflects good sliding properties.
  • the tests for measuring the coefficients of friction and of the durability were adapted to the application of the lubricating composition on an expandable rubber bladder.
  • the objective of this test is to assess the sliding power of a lubricating composition placed at the interface between the inflatable bladder and the internal surface of the tire envelope.
  • This test is carried out by sliding on a rubber surface, the composition of which is that of the inflatable bladder, a metal pad of determined weight, under which is fixed a tire casing film (50 ⁇ 70 mm).
  • the surface of the inflatable bladder is previously treated with the lubricating composition according to a procedure close to that used in production.
  • the coefficient of friction is measured using a dynamometer (at the speed of 100 mm / min). Five successive passages are carried out on the same inflatable bladder sample, each time changing the tire envelope sample.
  • the five passages give information on the exhaustion of the lubricating composition during successive moldings.
  • This slip test is representative of the performance to be achieved on the industrial tool, it is a first selection criterion.
  • the durability of a lubricating composition corresponds to the number of tires produced without degrading the surface of the inflatable bladder.
  • An inflatable bladder film previously treated with the lubricating composition to be evaluated, is pressed in contact with an unvulcanized tire casing film, according to a series of pressure and temperature cycles simulating the stages of manufacturing a pneumatic on the industrial tool.
  • the tire cover film is replaced with each mold.
  • the test is finished when the two surfaces in contact remain bonded.
  • the lubricating composition on the surface of the inflatable bladder film is exhausted and no longer plays the role of lubricating interface.
  • Table 6 below reports the coefficients of friction obtained on each pass for each of the lubricant compositions 1, 2 and 3 of Examples 1, 2 and 3. The results were obtained after one week of storage of the lubricant compositions 1, 2 and 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Lubricants (AREA)
  • Silicon Polymers (AREA)

Abstract

La présente invention concerne procédé de préparation d'une composition lubrifiante, caractérisé en ce qu'il comprend le mélange direct de deux émulsions huile-dans-eau (A) et (B) faites au préalable : ¨l'émulsion préalable (A) comprend : (a) au moins une huile polyorganosiloxane linéaire non réactive comprenant par molécule au moins 2 % en nombre des substituants organiques liés aux atomes de silicium qui sont des radicaux aryles, alkylarylènes et/ou arylènealkyles ; (b) au moins une résine polyorganosiloxane porteuse de groupes hydroxyles et comportant au moins deux motifs siloxyles différents choisis parmi ceux de formule (R1)3SiO1/2(M) ; (R1)2SiO2/2(D) ; R1SiO3/2(T) et SiO4/2 (Q), l'un au moins de ces motifs étant un motif T ou Q, R1 représentant un substituant organique ; (c) au moins un réticulant soluble dans la phase silicone comprenant au moins deux fonctions capables de réagir avec la (ou les) résine(s) polyorganosiloxane(s) (b) ; (d) un catalyseur de condensation capable de catalyser la réaction du constituant (b) avec le constituant (c) ; (e) un tensioactif ; et (f) de l'eau ;¨l'émulsion préalable (B) comprend : (a') au moins une huile polyorganosiloxane linéaire réactive comportant au moins deux groupements OH par molécule ; et les constituants (b), (c), (d), (e) et (f) mentionnés supra ;¨chacune des émulsions préalables (A) et (B) comprend : 5à 95 parties en poids du constituant (a) ou (a') ; 0,5 à 50 parties du constituant (b) ; 0,1 à 20 parties du constituant (c) ; 0,05 à 10 parties du constituant (d) ; pour 100 parties de la somme (a) + (b) + (c) + (d) ou (a') + (b) + (c) + (d) ; les quantités de tensioactifs et d'eau étant suffisantes pour l'obtention d'une émulsion huile-dans-eau ; et ¨le rapport pondéral émulsion (A)/émulsion (B) se situe dans l'intervalle allant de 1,5 à 4.

Description

PROCEDE DE PREPARATION D'UNE COMPOSITION LUBRIFIANTE A BASE DE POLYSILOXANES NE DEGAGEANT PAS D'HYDROGENE
l'invention concerne un procédé perfectionné de préparation d'une composition lubrifiante, appropriée notamment à la lubrification des vessies de vulcanisation utilisées lors du façonnage et de la vulcanisation de bandages pneumatiques ou semi- pneumatiques. L'invention concerne encore les compositions lubrifiantes ainsi obtenues. Elle concerne encore leur utilisation pour la lubrification d'articles divers, notamment les vessies de vulcanisation ainsi que les bandages pneumatiques ou semi-pneumatiques. Elle concerne également les articles divers, notamment les vessies de vulcanisation ainsi que les bandages pneumatiques ou semi-pneumatiques, revêtus de ladite composition lubrifiante.
Les pneumatiques en caoutchouc pour véhicules sont habituellement fabriqués en moulant et en vulcanisant une enveloppe crue (ou non vulcanisée) et non façonnée, dans une presse de moulage dans laquelle l'enveloppe crue est pressée vers l'extérieur contre la surface d'un moule au moyen d'une vessie dilatable par un fluide interne. Par ce procédé, l'enveloppe crue est façonnée contre la surface externe du moule qui définit le dessin de la bande de roulement de l'enveloppe et la configuration des flancs. Par chauffage, l'enveloppe est vulcanisée. En général, la vessie est dilatée par la pression interne fournie par un fluide tel qu'un gaz chaud, de l'eau chaude et/ou de la vapeur, qui participe lui aussi au transfert de chaleur pour la vulcanisation. On laisse alors l'enveloppe refroidir un peu dans le moule, ce refroidissement étant parfois favorisé par l'introduction d'eau froide ou plus fraîche dans la vessie. Puis on ouvre le moule, on dégonfle la vessie en relâchant la pression du fluide interne et on retire l'enveloppe du moule à enveloppes. Cette utilisation des vessies de vulcanisation des enveloppes est bien connue dans la technique.
Il est admis qu'il se produit un mouvement relatif notable entre la surface de contact externe de la vessie et la surface interne de l'enveloppe au cours de la phase de dilatation de la vessie avant la vulcanisation complète de l'enveloppe. De même, il se produit également un mouvement relatif considérable entre la surface de contact externe de la vessie et la surface interne vulcanisée de l'enveloppe, après que l'enveloppe a été moulée et vulcanisée, au cours du dégonflement et de l'extraction de la vessie du pneumatique.
Si une lubrification adéquate n'est pas prévue entre la vessie et la surface interne de l'enveloppe, la vessie a généralement tendance à se gondoler, ce qui entraîne une déformation de l'enveloppe dans le moule et aussi une usure et un dépolissage excessifs de la surface de la vessie elle-même. La surface de la vessie tend également à coller sur la surface interne de l'enveloppe après la vulcanisation de l'enveloppe et au cours de la partie du cycle de vulcanisation de l'enveloppe au cours de laquelle la vessie est dégonflée. En outre, des bulles d'air peuvent être emprisonnées entre les surfaces de la vessie et de l'enveloppe, et favoriser l'apparition de défauts de vulcanisation des enveloppes résultant d'un transfert de chaleur inadéquat.
Pour cette raison, la surface externe de la vessie ou la surface interne de l'enveloppe crue ou non vulcanisée est revêtue d'un lubrifiant approprié, parfois désigné sous le nom de "ciment de chemisage", de manière à faciliter le glissement, et de minimiser ainsi les risques de collage, entre la surface externe de la vessie et la surface interne de l'enveloppe crue. Outre d'excellentes propriétés de glissement, les différentes qualités que l'on doit attendre d'une bonne composition lubrifiante sont d'avoir d'excellentes propriétés de durabilité (la durabilité d'une composition lubrifiante correspond au nombre de pneumatiques réalisés sans dégradation de la surface externe de la vessie) et d'excellentes propriétés d'élasticité (marquées par un allongement à la rupture en traction du film de composition lubrifiante réticulée, au moins égal à 200 %, mesuré selon la norme AFNOR-T 46002).
De nombreuses compositions de lubrifiant ont été proposées à cet effet dans la technique.
On connaît notamment les compositions lubrifiantes décrites dans FR-A-2 494 294, lesquelles contiennent, à titre de constituants principaux, un polydiméthylsiloxane réactif présentant de préférence des groupes terminaux hydroxyle, un agent réticulant comprenant de préférence des fonctions Si-H et éventuellement un catalyseur de polycondensation.
Des exemples d'agent réticulant à fonction(s) Si-H sont le méthyltrihydrogénosiiane et le diméthyldihydrogénosilane. L'inconvénient des compositions lubrifiantes de ce type est leur instabilité au stockage. On constate en effet un crémage de l'émulsion suite au dégagement d'hydrogène pendant le transport et la conservation de la composition lubrifiante. Le dégagement d'hydrogène responsable de l'instabilité des compositions de l'art antérieur résulte essentiellement de la décomposition des constituants à fonction(s) Si-H.
La préparation de compositions lubrifiantes à partir de constituants ne comprenant pas la fonction Si-H, et présentant au demeurant d'excellentes propriétés de glissement, de durabilité et d'élasticité est donc fortement souhaitable.
Les compositions faisant l'objet de EP^A-0 635 559 sont des compositions lubrifiantes à base de polysiloxanes répondant en partie à ces exigences. Ces compositions sont notamment plus stables en ce qu'elles ne dégagent pas d'hydrogène en cours de stockage. Ces compositions, qui se présentent sous la forme d'émulsions, comprennent à titre de constituants essentiels, un polydiméthylsiloxane non réactif, un polydiméthylsiloxane réactif, de préférence à terminaison hydroxy ou alcoxy et un agent réticulant à base d'un organosilane hydrolysable. Leur durabilité est cependant insuffisante pour une utilisation pratique dans la production de bandages pneumatiques ou semi-pneumatiques.
La présente invention fournit un procédé perfectionné de préparation d'une composition lubrifiante améliorée ne dégageant pas d'hydrogène et présentant par surcroît d'excellentes propriétés de glissement, de durabilité et d'élasticité, ce qui les rend parfaitement appropriées notamment à la lubrification des vessies de vulcanisation utilisées lors du façonnage et de la vulcanisation des bandages pneumatiques et semi- pneumatiques.
Plus précisément, la présente inention a trait à un procédé de préparation d'une composition lubrifiante se présentant sous forme d'une emulsion huile-dans-eau, caractérisé en ce qu'il comprend le mélange direct de deux emulsions huile-dans-eau (A) et (B) faites au préalable, lesdites emulsions préalables (A) et (B) répondant aux caractéristiques de constitution (i) à (4i) suivantes : (i) l'émulsion préalable (A) comprend :
(a) au moins une huile polyorganosiloxane linéaire non réactive aux propriétés lubrifiantes, présentant une viscosité dynamique de l'ordre de 5.10"2 à 30.102
Pa.s à 25°C et consistant dans un homopoiymère ou copolymère linéaire :
- dont, par molécule, les substituants organiques monovalents, identiques ou différents entre eux, liés aux atomes de silicium sont choisis parmi les radicaux alkyles, cycoalkyles, alcényles, aryles, alkylarylènes et arylalkylènes,
- et, de préférence, dont, par molécule, au moins 2 % en nombre desdits substituants organiques monovalents liés aux atomes de silicium sont des radicaux aryles, alkylarylènes et/ou arylalkylènes ;
(b) au moins une résine polyorganosiloxane porteuse, avant émulsification, de substituants hydroxyles condensables et comportant avant émulsification au moins deux motifs siloxyles différents choisis parmi ceux de formule (R1)3SiOι/2(M) ; (R1)2Siθ2/2(D) ; R Si032(T) et Si04/2 (Q), l'un au moins de ces motifs étant un motif T ou Q, formules dans lesquelles R1 représente un substituant organique monovalent, le nombre moyen par molécule de radicaux organiques R1 pour un atome de silicium étant compris entre 1 et 2 ; et ladite résine présentant une teneur pondérale en substituants hydroxyles allant de 0,1 à 10% en poids, et, de préférence de 0,2 à 5% en poids ; (c) au moins un réticulant soluble dans la phase silicone comprenant au moins deux fonctions capables de réagir avec la (ou les) résine(s) polyorganosiloxane(s) (b) ;
(d) un catalyseur de condensation capable de catalyser la réaction du constituant (b) avec le constituant (c) ;
(e) un tensioactif ; et
(f) de l'eau,
(2i) l'émulsion préalable (B) comprend :
(a') au moins une huile polyorganosiloxane linéaire réactive comportant au moins deux groupements OH par molécule et présentant une viscosité dynamique allant de 5.10'2 à 30.102 Pa.s à 25°C ; et les constituants (b), (c), (d), (e) et (f) mentionnés supra à propos de la constitution de l'émulsion préalable (A) ; (3i) chacune des emulsions préalables (A) et (B) présente la composition pondérale suivante, la composition pondérale de (A) pouvant être identique ou différente de celle de (B) :
- de 5 à 95 parties en poids du constituant (a) pour l'émulsion (A) ou du constituant (a1) pour l'émulsion (B) ;
- de 0,5 à 50 parties en poids du constituant (b) ; - de 0,1 à 20 parties en poids du constituant (c) ;
- de 0,05 à 10 parties en poids du constituant (d) ; pour 100 parties en poids de la somme des constituants (a) + (b) + (c) + (d) ou (a1) + (b) + (c) + (d) ; les quantités de tensioactifs et d'eau étant suffisantes pour l'obtention d'une emulsion huile-dans-eau ; et
(4i) le rapport pondéral emulsion (A)/émulsion (B), au moment du mélange des emulsions prélables, se situe dans l'intervalle allant de 1 ,5 à 4, de préférence de 1 ,8 à 3, et de manière plus préférée de 2,1 à 2,6.
Les constituants (a), (a1), (b), (c), (d) et (e) des emulsions sont définis en référence à leur structure chimique initiale, c'est-à-dire celle qui les caractérise avant émulsification.
Dès lors qu'ils sont en milieu aqueux, la structure des constituants est susceptible d'être grandement modifiée suite aux réactions d'hydrolyse et de condensation.
Par viscosité dynamique, on entend dans le cadre de l'invention la viscosité de type Newtonienne, c'est-à-dire la viscosité dynamique, mesurée de manière connue en soi à une température donnée, à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse. Chacune des huiles polydiorganosiloxanes non réactives du constituant (a) présente une viscosité dynamique généralement comprise entre 5.10"2 et 30.102 Pa.s à 25° C. De préférence, la viscosité dynamique varie entre 5.10"2 et 30 Pa.s, mieux encore entre 0,1 et 5 Pa.s. Dans le cadre de l'invention, on entend par "non réactive" une huile qui dans les conditions d'émulsification, de préparation de la composition lubrifiante et d'utilisation, ne réagit chimiquement avec aucun des constituants de la composition.
A titre de constituant (a) préféré, on peut citer les polyorganosiloxanes linéaires :
- constitués le long de chaque chaîne : • des motifs de formule R2R3Si022, éventuellement associés à des motifs de formule (R2)2Si02/2,
• des motifs de formule (R^SiO^, éventuellement associés à des motifs de formule (R2)2Siθ2/2 , et
• des motifs de formule R2R3Si022 et des motifs de formule (R3)2Si02/2, éventuellement associés à des motifs de formule (R2)2Siθ2/2 ,
- et bloqués à chaque extrémité de chaîne par un motif de formule (R )3SiOι/2 dont les radicaux R4, identiques ou différents, sont des radicaux R2 et R3 ;
- où les radicaux R2 et R3, substituants organiques monovalents des divers motifs siloxyles mentionnés supra, ont les définitions suivantes : • les radicaux R2, identiques ou différents entre eux, sont choisis parmi : les radicaux alkyles linéaires ou ramifiés en CτC6 (tels que par exemple méthyle, éthyle, propyle, isopropyle, butyie, isobutyle, t-butyle, n-pentyle, n-hexyle), les radicaux cycloalkyles en C3-C8 (tels que par exemple cyclopentyle, cyclohexyle), et les radicaux alcényles linéaires ou ramifiés en C2-C8 (tels que par exemple vinyle, allyle),
• les radicaux R3, identiques ou différents entre eux, sont choisis parmi : les radicaux aryles en C6-C10 (tels que par exemple phényle, naphtyle), les radicaux alkylarylènes en C6-Cι5 (tels que par exemple tolyles, xylyle), les radicaux arylalkylènes en C6-C 5 (tels que par exemple benzyle) ; et - où 5 à 50 %, et mieux 8 à 35 %, en nombre des substituants R2, R3 et R4 sont des radicaux aromatiques R3.
La présence dans le (ou les) polyorganosiloxane(s) formant le constituant (a), en mélange avec les motifs siloxyles conformes mentionnés supra, de motifs de structure différente, par exemple de formule R Si03 2 et/ou Si0 2 n'est pas exclue dans la proportion d'au plus 2 % (ce % exprimant le nombre de motifs R4Si03/2 et/ou Si04/2 pour
100 atomes de silicium). De manière plus préférée, le constituant (a) consiste dans au moins un polyorganosiloxane linéaire :
- constitués le long de chaque chaîne :
• des motifs de formule R2R3Siθ22 associés à des motifs de formule (R^SiO^, • des motifs de formule (R^SiO^ associés à des motifs de formule (R2)2Si022 ;
- et bloqués à chaque extrémité de chaîne par un motif de formule (R2)3Si01 2 ;
- où les radicaux R2 et R3 ont les définitions suivantes :
• les radicaux R2, identiques ou différents entre eux, sont choisis parmi les radicaux méthyle, éthyle, propyle et isopropyle, « les radicaux R3, identiques ou différents entre eux, sont choisis parmi les radicaux phényle, tolyles et benzyle ; et
- où 5 à 50 %, et mieux 8 à 35 %, en nombre des substituants R2 et R3 sont des radicaux phényle, tolyles et/ou benzyle.
De manière avantageuse, on met en œuvre comme constituant (a) au moins un polyorganosiloxane linéaire ayant, par molécule, un rapport (en nombre) substituants aromatiques R3/Si au moins égal à 0,04, de préférence allant de 0,09 à 1 et mieux allant de 0,16 à 0,7.
Le constituant (a) est généralement introduit dans l'émulsion préalable (A) à raison de 5 à 95 parties en poids pour 100 parties en poids du mélange des constituants (a) + (b) + (c) + (d), de préférence à raison de 50 à 95, mieux encore à raison de 75 à 95.
Chacune des huiles polydiorganosiloxanes linéaires réactives du constituant (a1) présentant au moins deux groupements OH par molécule, possède une viscosité dynamique à 25° C généralement comprise entre 5.10"2 et 30.102 Pa.s. De préférence, la viscosité varie entre 5.102 et 30 Pa.s, mieux encore entr 0,1 et 5 Pa.s. Dans le cadre de l'invention, le terme "réactive" désigne la réactivité du constituant
(a1) vis-à-vis des agents de réticulation (c) et/ou (g) présents dans les emulsions préalables (A) et (B) ; le constituant (g) optionnel sera défini plus loin dans ce mémoire.
De préférence, le constituant (a1) réagit avec l'agent de réticulation dans les conditions de préparation de l'émulsion. Les substituants organiques monovalents de l'huile (a') sont : des radicaux alkyles linéaires ou ramifiés ; des radicaux alcényles linéaires ou ramifiés ; des radicaux cycloalkyles ou cycloalcényles ; des radicaux cycloalkylalkylènes ou cycloalcénylalkylènes ; ces radicaux sont éventuellement substitués par des groupements -OH et/ou amino (éventuellement substitué) et/ou halogène et/ou cyano. Le substituant du groupement amino peut être un radical alkyle, un radical cycloaikyle ou un radical cycloalkyialkylène. A titre d'halogène on peut mentionner le chlore, le fluor, le brome ou l'iode, le fluor étant plus spécifiquement approprié.
De façon avantageuse, les substituants organiques de (ou des) huile(s) (a') sont : des radicaux alkyles en C C6 ; cycloalkyles en C3-C8 ; alcényles en C2-C8 ; ou cycloalcényle en C5-C8 ; lesdits radicaux éventuellement substitués par hydroxyle et/ou amino (éventuellement substitué), et/ou halogéno, et/ou cyano.
Les substituants du groupe amino sont par exemple : (d-CeJalkyle ; (C2-C8)alcényle ; (C3-C8)cycloalkyle.
A titre de constituant (a1) préféré, on peut citer les polyorganosiloxanes linéaires de formule :
dans laquelle n est un entier supérieur ou égal à 10, R5 et R6, identiques ou différents, représentent : (C C6)alkyle ; (C3-C8)cycloalkyle ; (C2-C8)alcényle ; (C5-C8)cycloalcényle ; chacun des radicaux précités étant éventuellement substitué par un atome d'halogène (et de préférence le fluor) ou un reste cyano.
Les huiles du constituant (a1) les plus utilisées, du fait de leur disponibilité dans les produits industriels, sont celles pour lesquelles R5 et R6 sont indépendamment choisis parmi méthyle, éthyle, propyle, isopropyle, cyclohexyle, vinyle et 3,3,3-trifluoropropyie. De manière très préférée, 80% en nombre de ces radicaux sont des radicaux méthyle.
En pratique, on privilégiera, en tant qu'huile(s) (a'), les α,ω-dihydroxypolydiméthylsiloxanes, et en particulier les huiles de ce type préparés par le procédé de polymérisation anionique décrit dans les brevets américains précités : US 2 891 920 et surtout US 3 294 725 (cités comme référence). Le constituant (a') est introduit dans l'émulsion préalable (B) à raison de 5 à
95 parties en poids pour 100 parties en poids du mélange des constituants
(a1) + (b) + (c) + (d), de préférence à raison de 50 à 95, mieux encore à raison de 75 à 95.
Le constituant (b) est formé d'au moins une résine polyorganosiloxane, porteuse avant émulsification de groupes hydroxyles condensabies. Dans les motifs constitutifs de ces résines, chaque substituant R1 représente un groupe organique monovalent. De façon générale, R1 est un radical hydrocarboné en Cι-C20 portant éventuellement un ou plusieurs substituants.
Des exemples de radicaux hydrocarbonés sont : un radical alkyle, linéaire ou ramifié, ayant de 1 à 6 atomes de carbone ; un radical alcenyle, linéaire ou ramifié, ayant de 2 à 8 atomes de carbone ; un radical cycloaikyle ayant de 3 à 8 atomes de carbone ; ou un radical cycloalcényle ayant de 5 à 8 atomes de carbone.
Les substituants du radical hydrocarboné peuvent être des groupes -OR' ou -O-CO-R' dans lesquels R' est un radical hydrocarboné tel que défini ci-dessus pour R1, non substitué. D'autres substituants du radical hydrocarboné peuvent être des fonctions aminées, amidées, époxydées ou uréido.
A titre d'exemple de substituants du radical hydrocarboné, on compte les fonctions aminées de formule :
• -Ra-NR7R8 dans laquelle : Ra représente un lien valentiel ou représente un radical divalent alkylène, linéaire ou ramifié, en C C-io ; et R7 et R8 représentent indépendamment : H ; un radical (C-,-C6) alkyle ; un radical (C3-C8)cycloaIkyle ; ou un radical (C6-Cι0)aryle ;
• -Rb-NH-Rc-NR7R8 dans laquelle Rb et Rc, identiques ou différents, sont tels que définis pour Ra ci-dessus ; et R7 et R8 sont tels que définis ci-dessus ;
• la fonction de formule :
dans laquelle R9 et R11, identiques ou différents représentent :
(C C3)aikyle et par exemple méthyle ; ou (C6-C10)aryle et par exemple phényle ;
R10 représente : un atome d'hydrogène ; (Cι-C6)alkyle, par exemple méthyle ; (C2-C7)alkylcarbonyle ; (C6-Cι0)aryle et par exemple phényle ; (C6-C10)aryl- (C CeJalkylène et par exemple benzyle ; ou bien encore R10 représente O ; et • la fonction de formule :
dans laquelle R9 et R10 sont tels que définis ci-dessus. Il est cependant préférable que la concentration en fonctions -OR', -O-CO-R', aminées, amidées, epoxydées ou uréido, lorsqu'elles sont présentes dans la résine soit limitée, de façon à ne pas dépasser le seuil de tolérance au-delà duquel la stabilité de l'émulsion serait compromise.
Les résines silicones (b) sont des polymères organopolysiloxanes ramifiés bien connus dont les procédés de préparation sont décrits dans de nombreux brevets. Comme exemples concrets de résines utilisables, on peut citer les résines MQ, MDQ,
DQ, DT et MDT hydroxylées et des mélanges de celles-ci. Dans ces résines, chaque groupement OH est porté par un atome de silicium appartenant à un motif M, D ou T.
De préférence, comme exemples de résines utilisables, on peut citer les résines organopolysiloxanes hydroxylées ne comprenant pas, dans leur structure, de motif Q. De manière plus préférentielle, on peut citer les résines DT et MDT hydroxylées comprenant - au moins 20% en poids de motifs T et ayant une teneur pondérale en groupement hydroxyle allant de 0,1 à 10% et, mieux, de 0,2 à 5%. Dans ce groupe de résines plus préférentielles, celles où le nombre moyen de substituants R1 pour un atome de silicium est compris, par molécule, entre 1,2 et 1,8, conviennent plus particulièrement. De manière encore plus avantageuse, on utilise des résines de ce type, dans la structure desquelles au moins 80% en nombre des substituants R1 sont des radicaux méthyle.
La résine (b) est liquide à température ambiante. De manière préférée, la résine présente une viscosité dynamique à 25° C comprise entre 0,2 et 200 Pa.s.
La résine est incorporée dans les emulsions préalables (A) et (B) à raison de 0,5 à 50 parties en poids pour cent parties en poids de la somme des constituants (a), (b), (c) et (d) ou (a1), (b), (c) et (d), de préférence à raison de 3 à 30, mieux de 5 à 15 parties en poids.
Le constituant (c) consistant dans au moins un réticulant soluble dans la phase silicone comprend au moins deux fonctions capables de réagir avec la (ou les) résine(s) (b) de façon à provoquer une réticulation de la (ou des) résine(s). De manière avantageuse, lesdites fonctions réactives du réticulant réagissent avec la résine dans les conditions de préparation de l'émulsion. A titre de constituant (c) préféré, on peut citer les réticulants de formule :
YaSi(Zi)4-a dans laquelle : a est 0, 1 ou 2 ; - Y est un groupe monovalent organique ; et les groupes Zi, identiques ou différents, sont choisis parmi : -OXa , — o— ç— Xb o et -0-N=CX1X2, dans lesquels Xa, Xb, Xi et X2 sont indépendamment des radicaux alkyles, linéaires ou ramifiés, en C1-C10 ; étant entendu que X^ et X2 peuvent en outre représenter l'hydrogène et que Xa est un radical éventuellement substitué par (C C3)aicoxy.
Selon un mode de réalisation plus préféré de l'invention, a représente 0 ou 1 , de telle sorte que le réticulant a pour formule : Si(Zi)4 ou YSi(Zi)3.
De préférence encore, les groupes Zi sont identiques entre eux. Un groupe plus préféré de réticulant est formé en particulier par l'ensemble des organotrialcoxysilanes, des organotriacyloxysilanes, des organotrioximosilanes et des tétraaikylsilicates.
S'agissant des groupes Y, ont choisit plus particulièrement les radicaux : (C CeJalkyle ; (C2-C8)alcényle ; (C3-C8)cycloalkyle ; (C6-Cι0)aryle ; (C6-C15)alkylarylène ; ou (C6-C15)arylalkylène.
A titre d'exemple de groupes Y, on citera les radicaux méthyle, éthyle, vinyle ou phényle.
Les groupes Zi sont avantageusement choisis parmi (CτC10)alcoxy ; ; (C-ι-C10)alkylcarbonyloxy ; ou un groupe oxime -0-N=CX1X2 dans lequel X1 et X2 sont indépendamment H ou (CrC-^alkyle.
Préférablement, Zi représente méthoxy, éthoxy, propoxy, méthoxyéthoxy, acétoxy ou un groupe oxime.
A titre de constituant (c) spécialement préféré, on peut citer le (ou les) alkyltrialcoxysilane(s) de formule YSi(Zi)3 dans laquelle Y est (C^CeJalkyle ou (C2-C8)alcényle et Zi est (C-i-C-io) alcoxy.
Parmi ceux-ci, on peut citer le méthyltriméthoxysilane, le méthyltriéthoxysilane, l'éthyltriéthoxysilane et/ou le vinyltriméthoxysilane.
Chaque emulsion préalable (A) et (B) comprend de 0,1 à 20 parties en poids, pour cent parties en poids de la somme des constituants (a) + (b) + (c) + (d) ou (a1) + (b) + (c) + (d), du constituant (c), de préférence de 0,2 à 10 parties en poids, mieux de 0,5 à 5. Le catalyseur de condensation (d) est choisi parmi ceux conventionnellement utilisés dans la technique pour catalyser la réticulation de résines du type (b) à l'aide d'agents de réticulation du type (c) définis ci-dessus.
Des exemples de catalyseurs utilisables dans le cadre de l'invention sont les sels organométailiques, et les titanates tels que l'orthotitanate de tétrabutyle. A titre de sel organométallique, on peut mentionner le naphténate de zirconium et l'octylate de zirconium.
Ledit catalyseur est de préférence un composé catalytique à l'étain, généralement un sel d'organoétain. Les sels d'organoétain utilisables sont décrits en particulier dans l'ouvrage de
NOLL, Chemistry and Technology of Silicones Académie Press (1968), page 337. On peut également définir comme composé catalytique à l'étain, soit des distannoxanes, soit des polyorganostannoxanes, soit le produit de réaction d'un sel d'étain, en particulier d'un dicarboxylate d'étain sur du polysilicate d'éthyle, comme décrit dans le brevet US-A-3 862 919.
Le produit de réaction d'un silicate d'alkyle ou d'un alkyltrialcoxysilane sur (e diacétate de dibutyletain comme décrit dans le brevet belge BE-A-842 305, peut convenir aussi.
Selon une autre possibilité, on a recours à un sel d'étain II, tel que SnCI2 ou l'octoate stanneux.
De façon avantageuse, le catalyseur est le sel d'étain d'un acide organique, tels que le diacétate de dibutyletain, le dilaurate de dibutyletain, le dilaurate de dioctylétain, le dioctate de dibutyletain, le naphténate de zinc, le naphténate de cobalt, l'octylate de zinc, l'octylate de cobalt et le di(isomercaptoacétate) de dioctylétain. Les sels d'étain préférés sont les bischélates d'étain (EP-A-147 323 et
EP-A-235 049), les dicarboxylates de diorganoétain et, en particulier, les diversatates de dibutyl- ou de dioctylétain (brevet britannique GB-A-1 289 900, le diacétate de dibutyl- ou de dioctylétain, le dilaurate de dibutyl- ou de dioctylétain ou les produits d'hydrolyse des espèces précipitées (par exemple les diorgano et polystannoxanes). Le catalyseur (d) est généralement introduit dans chacune des emulsions préalables (A) et (B) à raison de 0,05 à 10 parties en poids, pour cent parties en poids de la somme des constituants (a) + (b) + (c) + (d) ou (a') + (b) + (c) + (d), de préférence à raison de 0,08 à 5 parties en poids, et mieux encore de 0,1 à 2 parties en poids.
Le dilaurate de dioctylétain est tout particulièrement préféré. La nature de tensioactif (e) sera facilement déterminée par l'homme du métier, l'objectif étant de préparer une emulsion stable. Les tensioactifs anioniques, cationiques, non-ioniques et zwitterioniques peuvent être employés seuls ou en mélange.
A titre de tensioactif anionique, on peut mentionner les sels de métaux alcalins des acides hydrocarbonés aromatiques sulfoniques ou les sels de métaux alcalins d'acides alkylsulfuriques.
Les tensioactifs non-ioniques sont plus particulièrement préférés dans le cadre de l'invention. Parmi ceux-ci, on peut citer les éthers alkyliques ou aryiiques de poly(oxyde d'alkyiène), l'hexastéarate de sorbitan polyoxyéthyléné, l'oléate de sorbitan polyoxyéthyléné ayant un indice de saponification de 102 à 108 et un indice d'hydroxyle de 25 à 35 et les éthers de cétylstéaryle et de poly(oxyde d'éthylène).
A titre d'éther arylique de poly(oxyde d'alkyiène), on peut mentionner les alkylphénols polyoxyéthylénés. A titre d'éther alkylique de poly(oxyde d'alkyiène), on peut mentionner l'éther isodécylique de polyéthylèneglycol et l'éther triméthylnonylique de polyéthylèneglycol contenant de 3 à 15 unités d'oxyde d'éthylène par molécule. La quantité de tensioactif (e) est fonction du type de chacun des constituants en présence ainsi que de la nature même du tensioactif utilisé. En règle générale, chaque emulsion préalable comprend de 0,5 à 10% en poids de tensioactif (mieux encore de 0,5 à 5% en poids) et de 40 à 95% en poids d'eau (mieux encore de 45 à 90% en poids).
De façon avantageuse, chaque emulsion préalable (A) et (B) ou seulement une des deux emulsions préalables (A) ou (B) peut comprendre en outre un constituant (g) consistant dans au moins un agent réticulant hydrosoluble choisi parmi les silanes et/ou les polydiorganosiloxanes hydroxyles, ledit réticulant étant porteur, par molécule, en plus d'au moins un groupe OH, d'au moins un groupe organique à fonction Fr, Fr représentant une. fonction amino éventuellement substituée, époxy, acryloyle (-CH2=CH- CO-) éventuellement substituée, méthacryloyle (-CH2=C(CH3)-CO-) éventuellement substituée, uréido (NH2-CO-NH-) éventuellement substituée, thiol éventuellement substituée ou halogène.
Au sens de la présente invention, on doit entendre par hydrosolubilité, l'aptitude d'un produit à se dissoudre dans l'eau à une température de 25° C, à hauteur d'au moins 5% en poids.
Les substituants organiques éventuels du réticulant autres que le (ou les) groupe(s) OH et le (ou les) groupe(s) organique(s) à fonction Fr, sont : des radicaux alkyles, linéaires ou ramifiés, ayant de 1 à 6 atomes de carbone ; des radicaux cycloalkyles ayant de de 3 à 8 atomes de carbone ; des radicaux alcényles, linéaires ou ramifiés, ayant de 2 à 8 atomes de carbone ; des radicaux aryles ayant de 6 à 10 atomes de carbone ; des radicaux alkylarylènes ayant de 6 à 15 atomes de carbone ; ou des radicaux arylalkylènes ayant de 6 à 15 atomes de carbone. Selon un mode de réalisation préféré de l'invention, Fr est une fonction amino éventuellement substituée.
Ainsi, un groupement organique à fonction Fr préféré est un groupement de formule: -Ra-NR7R8
-Rb-NH-R0-NR7R8
où Ra, Rb, RG, R7, R8, R9, R10 et R11 sont tels que définis ci-dessus à propos de la définition du constituant (b).
Selon un mode de réalisation plus préféré de l'invention, l'agent réticulant hydrosoluble a pour formule :
R8R7N-Ra-Si(OH)3 dans laquelle Ra, R7 et R8 sont tels que définis ci-dessus. Encore plus préférablement, Ra représente (CrC10)alkylène, et R7 et R8 représentent indépendamment un atome d'hydrogène ou un groupe (C C6)alkyle.
A titre d'exemple, on peut citer le 3-aminopropyltrihydroxysilane.
L'agent de réticulation hydrosoluble peut être aussi un polydiorganosiloxane hydroxyle linéaire et/ou cyclique, à motifs siloxyles MD (si linéaire) et/ou D (si cyclique), et/ou une résine polydiorganosiloxane hydroxylée présentant, dans sa structure, des motifs siloxyles T éventuellement associés à des motifs M et ou D et/ou T, ou bien encore des motifs siloxyles Q associés à des motifs M et/ou D.
Ce polydiorganosiloxane linéaire, cyclique ou en réseau n'est pas substitué par des fonctions organiques hydrolysabies teiles que dés fonctions alcoxy.
Dans ces polydiorganosiloxanes, les motifs siloxyles M, D, T et Q sont définis comme suit : motif M = G3SiOι,2 motif D = G2Siθ2/2 motif T = GSi03/2 motif Q = Si0 2,
G étant un substituant organique qui répond à la définition donnée supra pour les "substituants organiques éventuels" ou bien représente un groupe hydroxyle ou bien encore est une fonction Fr, étant entendu que dans chaque structure moléculaire, au moins un des symboles G représente un groupe hydroxyle et au moins un autre des symboles G représente une fonction Fr.
De manière préférée, G est : (C-i-CeJalkyle (par exemple méthyle, éthyle, isopropyle, tertiobutyle et n-hexyle) ; hydroxyle ; (C2-C8)alcényle (par exemple vinyle ou allyle) ; ou bien encore une fonction Fr, les fonctions Fr préférées étant telles que définies ci-dessus.
A titre de polydiorganosiloxanes hydroxyles linéaires, utilisables comme agent de réticulation (g), on peut citer le polyméthylsiloxane dont les deux extrémités comportent un hydroxyle et donc chaque atome de silicium de la chaîne est porteur d'une fonction Fr.
Ce constituant (g), quand il est présent dans l'émulsion préalable (A) ou (B) ou dans les deux emulsions, est utilisé à raison de 0,5 à 15 parties en poids pour cent parties en poids de la somme des constituants (a) + (b) + (c) + (d) + (g) ou (a') + (b) + (c)
+ (d) + (g), de préférence à raison de 0,6 à 5 parties en poids, et mieux à raison de 0,8 à 3 parties en poids.
La présence du constituant (g) améliore notamment la durabilité de la composition lubrifiante.
Chaque emulsion préalable (A) et (B) ou seulement une des deux emulsions préalables (A) ou (B) peut contenir aussi un ou plusieurs ingrédients additionnels tels que par exemple des polymères filmogenes, des lubrifiants complémentaires, des agents anti-friction, des agents de coalescence, des agents mouillants ou dispersants, des charges minérales, des agents d'évacuation de l'air, des agents anti-mousse, des épaississants, des stabilisants, des conservateurs tels que des biocides et des antifongiques, en quantités pouvant varier considérablement, par exemple, entre 0,2 et 50% en poids de l'émulsion préalable.
A titre de polymère filmogène, on peut citer par exemple les copolymères styrène- acrylique.
Des exemples d'épaississants sont les épaississants cellulosiques (carboxyméthylcellulose), acryliques, polyuréthane, les gommes hydrocolloïdales (gomme xanthane) et leurs mélanges.
En tant qu'agent de coalescence, on pourra utiliser les glycols et/ou les coupes pétrolières aliphatiques (fractions de distillation du pétrole). Des agents mouillants ou dispersables utilisables dans le cadre de l'invention sont par exemple les phosphates et/ou les polyacryliques, tels que par exemple Phexamétaphosphate de sodium et les polyacrylates de sodium.
Les emulsions préalables (A) et (B) peuvent être préparées de façon conventionnelle par mise en oeuvre des méthodes classiques de l'état de la technique.
Un premier procédé consiste à mettre en emulsion dans une phase aqueuse comprenant l'ensemble des constituants hydrosolubles, un mélange des constituants lipophiles (a) ou (a') , (b), (c), (d), en présence du tensioactif (e).
Des modifications de ce procédé sont naturellement envisageables. Une préémulsion huile dans eau peut être d'abord préparée à partir de quelques-uns seulement des constituants formant l'émulsion finale. Puis les constituants manquants peuvent être ajoutés, soit directement à l'émulsion (cas des constituants hydrosolubles), soit ultérieurement sous la forme d'émulsion (cas des constituants solubles dans la phase silicone). Ainsi, le catalyseur (d) et le polymère filmogène peuvent être ajoutés, soit directement à la phase silicone avant émulsification, soit après formation de l'émulsion, sous la forme d'une emulsion additionnelle.
L'émulsification peut être directe ou procéder par inversion. Dans le cas où on procède par inversion, il peut être avantageux de préparer une préémulsion ne contenant qu'une faible proportion d'eau, de procéder à son inversion (par exemple par broyage), puis diluer l'émulsion résultante avec l'eau restante, éventuellement additionnée d'un ou plusieurs constituants hydrosolubles.
Une variante préférée consiste notamment à préparer une préémulsion huile dans eau comprenant l'ensemble des constituants (a) ou (a') , (b) et (c) et éventuellement (g), en présence du tensioactif (e) avant d'ajouter à cette préémulsion les constituants manquants sous la forme d'émulsion(s) additionnelle(s).
Ainsi, selon un autre de ses aspects, l'invention concerne un procédé de préparation d'une composition lubrifiante se présentant sous forme d'une emulsion huile- dans-eau, caractérisé en ce qu'il comprend les étapes (1) et (2) suivantes : - étape (1) où l'on prépare, à température ambiante (23°C), les emulsions préalables (A) et (B) en utilisant le même mode opératoire comprenant les séquences α, β et γ consistant :
• séquence α : mettre en emulsion dans l'eau (f), un mélange d'huile(s) polydiorganosiloxane(s) non réactive(s) (a) (cas de l'émulsion (A)) ou réactive(s) (a') (cas de l'émulsion (B)), de résine(s) polyorganosiloxane(s) (b), et de réticulant(s) solubie(s) dans la phase silicone (c), en présence du tensioactif (e), de façon à préparer une emulsion de type huile-dans-eau, éventuellement en préparant dans un premier temps une phase épaisse huile-dans-eau, puis en opérant dans un second temps une dilution avec de l'eau de la phase épaisse obtenue, • séquence β : ajouter à l'émulsion précédente, contenant l'ensemble des constituants (a) ou (a'), (b), (c) et (e), une emulsion du catalyseur (d) dans l'eau, • séquence γ : puis à diluer éventuellement le milieu avec de l'eau en fonction du taux d'extrait sec désiré ; - étape (2) où l'on mélange, à température ambiante (23°C), l'émulsion préalable (A) et l'émulsion préalable (B), en opérant sous agitation modérée, selon les proportions qui ont été définies supra au paragraphe (4i) des caractéristiques de constitution des emulsions préalables (A) et (B). L'émulsification, à la séquence α, peut être directe ou procéder par inversion. On opère de préférence par inversion.
Lorsqu'un agent réticulant hydrosoluble (g) est incorporé dans la (ou les) émulsion(s) préalable(s), celui-ci est de préférence incorporé, sous la forme d'une solution aqueuse, au même moment que le catalyseur (d), à une emulsion huile-dans- eau contenant l'ensemble des constituants (a) ou (a ), (b), (c) et (e). L'émulsion additionnelle du catalyseur (d) ainsi que toute emulsion ajoutée à l'émulsion résultant de la séquence α est préparée préférablement en présence du même tensioactif qu'à la séquence α. Cependant, on peut envisager l'utilisation de tout autre type de tensioactif, tel que par exemple un poly(alcool vinylique). Ce dernier tensioactif est tout particulièrement utile dans le cas où l'on souhaite préparer une emulsion additionnelle d'un catalyseur à l'étain.
Le (ou les) ingrédient(s) additionnel(s) mentionné(s) supra, lorsqu'on en utilise un ou plusieurs, peuvent avantageusement être incorporés, en tout ou partie, dans le (ou les) émulsion(s) préalable(s) au niveau de la séquence α et/ou au niveau de la séquence β et/ou au niveau de la séquence éventuelle γ. Le procédé de l'invention peut comprendre en outre une étape supplémentaire de chauffage de la composition lubrifiante résultante, par exemple à une température allant de 30 à 40°C. Cette étape permet d'accélérer les processus de réticulation. Elle peut être remplacée par une étape de stockage de la, composition lubrifiante à température ambiante (23°C) jusqu'à réticulation complète. Les huiles et résines (a), (a1) et (b) ainsi que les réticulants (c) et (g) sont disponibles dans le commerce ou facilement accessibles à l'homme du métier par mise en oeuvre de procédés classiques décrits dans la technique antérieure.
Lorsque la résine (b) ou le réticulant (c) sont fonctionnalisés, la fonctionnalisation est facilement réalisée par réaction de substitution ou d'addition appropriée.
Lorsque le constituant facultatif (g) représente une résine silicone hydrosoluble hydroxylée, celle-ci peut être obtenue : → par cohydrolyse :
- d'au moins un silane (S^ substitué par des fonctions Fr et par des Substituants Organiques Fonctionnels Hydrolysables (Sofh) identiques ou différents entre eux, de préférence des -ORd avec Rd = radical alkyle ;
- avec au moins un silane (S2) substitué par des Sofh identiques ou différents entre eux et par rapport à ceux de (S-,), à l'exclusion de substituants Fr ;
-» par hétérocondensation des hydroiysats dérivant des silanes Si et S2 ; → puis par "stripping" ou entraînement à la vapeur des hydroiysats dérivant des Sofh. Au sens de l'invention, les substituants organofonctionnels hydrolysables (Sofh), susceptibles de générer in situ des composés organiques volatils (COV) lors de la réticulation par condensation sont, par exemple, des alcoxy, des acétoxy, des cétiminoxy, des énoxy. Dans la mesure où les Sofh les plus courants sont des alcoxyles -ORd, les mécanismes d'hétérocondensation intervenant sont du type OH/OH et OH/ORd, ces OH ou ORd étant portés par les hydroiysats dérivant des silanes S-i et S2. Les hydroiysats dérivant des Sofh sont quant à eux des alcools, dans ce cas de figure.
Ainsi en pratique, le silane Si est avantageusement un trialcoxysilane, de préférence un triméthoxysilane, un triéthoxysilane, un méthyldiméthoxysilane ou un méthyidiéthoxysilane, porteur d'une fonction Fr aminée du type :
• 3-aminopropyle ;
• N-méthyl-3-aminopropyle :
• N-aminoéthyi-3-aminopropyle ; • C6H5CH2NH(CH2)2NH-(CH2)3- ;
• 3-uréidopropyle ;
• 3-méthacryloxypropyl : CH2=C(CH3)-COO-(CH2)3- ;
• 3-glycidyioxypropyl : H2C— CH— CHzOfCH B- (ies autres substituants de Si dans l'agent de réticulation (g) étant en ce cas exempts de
Sofh) • 3-mercaptopropyl ;
• 3-chloropropyle.
S'agissant de S2, les Sofh qu'il comprend sont de préférence des radicaux alcoxy en C|-C6, par exemple : méthoxy, éthoxy ou propoxy. Ce silane S2, de préférence un alcoxysilane, peut également comporter au moins un substituant alkyle en C C6, par exemple : méthyle, éthyle, propyle.
Ces résines produites par hétérocondensation de Si et S2 sont décrites, notamment, dans la demande de brevet européen EP-A-0 675 128, dont le contenu est intégré par référence dans le présent exposé. Selon un deuxième mode de réalisation, le réticulant facultatif (g) est une résine obtenue :
→ par hydrolyse d'un silane S3 substitué par des Fr et des Sofh, → par homocondensation des silanes S3 hydrolyses,
-» et par "stripping" entraînement à la vapeur des hydroiysats dérivant des Sofh. Le silane S3 est, de préférence, un alcoxysilane Fr substitué. Il peut s'agir, par exemple, d'un trialcoxysilane permettant d'obtenir une résine hydroxylée à motifs T, dénommée également résine T(OH).
Ce silane S3 peut être du même type que le silane ST tel que défini supra. Les fonctions Fr substituant S3 répondent à la même définition que celle donnée ci- dessus.
Comme illustration de ce deuxième mode de mise en oeuvre d'un réticulant (g) de type résine polydiorganosiloxane, on peut citer celui obtenu à partir de γ-aminopropyltriéthoxysilane hydrolyse et soumis à un "stripping" de l'éthanol formé par l'hydrolyse. La résine polyhomocondensée obtenue, est un mélange d'oligomères contenant de 4 à 10 silicium et comprenant des motifs : T(OH) = R"Si(OH)θ2/2 T = R"Si03/2
T(OH)2 = R"Si(OH)2Oι 2 T(OH)3 = R"Si(OH)3, ces motifs étant respectivement présents en quantité décroissante, avec R" = NH2-(CH2)-3. Ils 'agit par exemple d'une résine T(OH) aminée.
Entrent aussi dans le cadre de la présente invention, les compositions lubrifiantes susceptibles d'être obtenues par la mise en œuvre du procédé qui vient d'être décrit comprenant le mélange direct des deux emulsions (A) et (B) faites au préalable. L'invention a encore pour objet l'utilisation de la composition lubrifiante ainsi obtenue pour la lubrification d'articles divers. Plus particulièrement, l'invention concerne l'utilisation de la composition lubrifiante pour la lubrification de la vessie de vulcanisation, en caoutchouc et dilatable, lors du façonnage et de la vulcanisation de bandages pneumatiques ou semi-pneumatiques.
La composition lubrifiante de l'invention peut être appliquée de façon quelconque, et par exemple par pulvérisation, par brossage ou encore à l'aide d'une éponge ou d'un pinceau. I! est préférable d'opérer de façon à recouvrir l'article à revêtir d'une couche régulière de revêtement.
La lubrification de la vessie de vulcanisation utilisée lors du façonnage et de la vulcanisation de bandages pneumatiques ou semi-pneumatiques peut être réalisée de deux façons différentes.
Lors de la fabrication des bandages pneumatiques ou semi-pneumatiques, un bandage cru est placé dans un moule à bandages, une vessie dilatable est disposée dans le moule, le moule est fermé et la vessie est dilatée par application d'une pression interne de fluide chaud, de telle sorte que le bandage se trouve plaqué contre le moule, façonné et vulcanisé. Le moule est alors ouvert, la vessie est dégonflée et le bandage est récupéré, façonné et vulcanisé. Une même vessie est utilisée pour la fabrication d'environ quelques centaines de bandages.
La vessie en caoutchouc dilatable utilisée lors de la fabrication des bandages est initialement revêtue d'une composition lubrifiante selon l'invention. Au départ, la lubrification de la vessie est directe. Ensuite, il intervient un phénomène d'épuisement de l'effet lubrifiant de cette vessie.
Dans cette phase ultérieure, c'est la surface interne du bandage (celle qui vient au contact de la vessie) qui est revêtue de la composition lubrifiante. Il y a régénération de la lubrification de la vessie en caoutchouc par transfert à partir du bandage. De façon générale, les cycles de pressage du moule/dégagement de la vessie, mis en oeuvre lors de la fabrication des bandages se succèdent de la façon suivante :
- la vessie initialement revêtue de la composition lubrifiante (lubrification directe) et chauffée à 80-180°C, et de préférence à 130-170°C, est utilisée (sans revêtement ultérieur de la vessie, mais en réalisant un revêtement sur le premier bandage ou les deux premiers bandages) pendant 5 à 10 cycles (chaque cycle aboutissant à la fabrication d'un bandage différent), puis
- les cycles suivants sont mis en oeuvre par utilisation de cette même vessie (pour laquelle le revêtement de lubrification est épuisé) à partir de bandages pneumatiques ou semi-pneumatiques qui sont alors à chaque fois revêtus de la composition lubrifiante de l'invention : la lubrification de la vessie a lieu en ce cas par transfert.
La présente invention concerne donc également l'utilisation de la composition lubrifiante pour la lubrification des bandages pneumatiques ou semi-pneumatiques crus, comportant ou non sur leur surface externe des éléments qui constitueront la bande de roulement externe destinée à venir au contact du sol.
La composition lubrifiante de l'invention ne comprend aucun constituant à liaison Si-H de telle sorte que le risque de dégagement d'hydrogène en cours de stockage ou de transport est nul.
La composition lubrifiante de l'invention présente en outre d'excellentes propriétés de glissement, de durabilité et d'élasticité.
Avantageusement, la vessie dilatable, en caoutchouc, avant d'être revêtue sur sa surface externe (celle qui vient au contact du bandage) d'une composition lubrifiante préparée selon le procédé de la présente invention, peut subir un pré-traitement consistant à appliquer de façon quelconque (par exemple par pulvérisaiton, par brossage, ou à l'aide d'une éponge ou d'un pinceau) une couche régulière d'une composition primaire se présentant sous forme d'une emulsion huile-dans-eau, ladite emulsion étant obtenue par le procédé comprenant le mélange direct des deux emulsions huile-dans-eau (A) et (B) faites au prélables, qui sont définies supra, mais en utilisant cette fois des proportions des deux emulsions préalables (A) et (B) qui sont telles que le rapport pondéral emulsion (A) / emulsion (B), au moment du mélange direct, se situe maintenant dans l'intervalle allant de 0,1 à 0,7, de préférence de 0,3 à 0,5, et de manière plus préférée de 0,35 à 0,45. La présente invention concerne encore les articles lubrifiés à l'aide de la composition lubrifiante susceptible d'être obtenue par la mise en œuvre du procédé qui vient d'être décrit comprenant le mélange direct des deux emulsions (A) et (B) faites au préalable.
Plus particulièrement, l'invention concerne : - une vessie dilatable en caoutchouc revêtue sur sa surface externe d'une composition selon l'invention, pour le façonnage et la vulcanisation de bandages pneumatiques ou semi-pneumatiques ;
- une vessie en caoutchouc dilatable pouvant être obtenue par chauffage de la vessie dilatable définie ci-dessus, notamment à 80-180° C (de préférence 130-170° C), de façon à assurer la réticulation totale des constituants réticulables de l'émulsion ;
- un bandage pneumatique ou semi-pneumatique cru comportant ou non des éléments qui constitueront sa bande de roulement externe destinée à venir au contact du sol, revêtu sur sa surface interne d'une composition lubrifiante selon l'invention.
Les exemples suivants qui illustrent l'invention témoignent des excellentes propriétés lubrifiantes des compositions de l'invention. EXEMPLE 1
Cet exemple illustre une composition lubrifiante (composition lubrifiante 1) préparée selon le procédé de la présente invention comprenant un agent réticulant hydrosoluble (constituant (g)
Etape (1) :
On prépare les emulsions préalables (A) et (B) dont la nature et les proportions de leurs constituants sont données respectivement dans les tableaux 1 et 2 suivants.
TABLEAU 1 : emulsion (A)
(1)Huile siloxane phénylée : M = motif (CH3)3Si01 2 D = motif (CH3)2Siθ2/2 D P /Me = motjf (c6H5)(CH3)SiO2/2
Ph = C6H5 (2)Résine MDT présentant un taux d'hydroxylation de 0,5% en poids, un nombre moyen par molécule de radicaux organiques pour un atome de silicium de 1 ,5, une viscosité dynamique à 25° C de 0,1 Pa.s et les proportions suivantes de motifs siloxyles :
M : 17% en mole
D : 26%> en mole
T : 57%o en mole.
(3,Emulsion de dilaurate de dioctylétain à 37,5% en poids dans l'eau préparée en utilisant de l'alcool polyvinylique en tant que tensioactif.
( ) Mélange de 15% d'eau et de 85% d'alcool isotridécylique éthoxylé par 8 à 9 moles d'oxyde d'éthylène par mole d'alcool isotridécylique.
(5) Solution aqueuse contenant 23%) en poids de silane.
(1)Résine MDT présentant un taux d'hydroxylation de 0,5% en poids, un nombre moyen par molécule de radicaux organiques pour un atome de silicium de 1 ,5, une viscosité dynamique à 25° C de 0,1 Pa.s et les proportions suivantes de motifs siloxyles : M : 17% en mole
D : 26% en mole
T : 57% en mole.
(2)Emulsion de dilaurate de dioctylétain à 37,5%) en poids dans l'eau préparée en utilisant de l'alcool polyvinylique en tant que tensioactif. (3> Mélange de 15% d'eau et de 85% d'alcool isotridécylique éthoxylé par 8 à
9 moles d'oxyde d'éthylène par mole d'alcool isotridécylique.
(4) Solution aqueuse contenant 23% en poids de silane.
Les émulsons préalables (A) et (B) sont préparées en utilisant le même mode opératoire, comportant les séquences α et β suivantes :
Séquence :
Un mélange composé d'huile siloxane phénylée non réactive (cas de l'émulsion (A)) ou d'huile polydiméthylsiloxane hydroxylée réactive (cas de l'émulsion (B)), de la résine MDT-OH, du methyltriethoxysilane, du tensioactif et d'une partie d'eau distillée (selon un rapport eau/tensioactif de 1 ,2, soit 2,35% en poids d'eau) est homogénéisé au préalable sous agitation modérée (50 tours/minute) pendant 15 minutes à température ambiante (23°C).
Le mélange ainsi obtenu est traité par broyage jusqu'à inversion de phase, à l'aide d'un broyeur Moritz®, pour passer d'une phase fluide eau/huile à une phase épaisse huile/eau.
La dilution de la phase épaisse obtenue est réalisée sous agitation moyenne en 40 minutes, à l'aide d'une quantité d'eau distillée déterminée pour obtenir une emulsion dont la matière sèche est de 50% (soit 45,59% en poids d'eau). L'agent bactéricide et l'agent antioxydant sont ajoutés pendant la dilution.
Séquence B :
On ajoute à l'émulsion précédemment réalisée le silane (g) et le catalyseur (d), puis une homogénéisation sous agitation modérée est opérée pendant 10 minutes, suivie d'une filtration. On ajoute ensuite à l'émulsion le biocide et l'antimousse, et on agite pendant 10 autres minutes. L'émulsion ainsi obtenue est caractérisée par une granulométrie moyenne de 0,4 μm.
La gomme xanthane et l'agent mouillant sont chargés dans un autre récipient, mélangés pendant 10 minutes sous agitation vive, puis ajoutés à l'émulsion précédemment réalisée. On agite encore, à vitesse modérée, pendant 30 minutes.
L'émulsion finale est caractérisée par une une proportion de matière sèche (60 min, 120° C) de 48,8% en poids.
Etape (2) :
On mélange, à température ambiante (23 °C), les emulsions préalables (A) et (B), préparées comme indiqué ci-avant, en opérant sous agitation modérée (50 tours/minute) pendant 15 minutes, les emulsions préalables (A) et (B) étant engagées dans les proportions respectives suivantes :
TABLEAU 3 : composition lubrifiante 1
La composition lubrifiante 1 obtenue est caractérisée par une granulométrie moyenne (mesurée avant l'ajout de la gomme xanthane et de l'agent mouillant) de 0,4 μm et une proportion de matière sèche (60 min, 120 °C) de 48,8% en poids.
EXEMPLES 2 ET 3
Exemple 2 : il sagit d'un exemple comparatif qui illustre une composition lubrifiante (composition lubrifiante 2) préparée, non pas en réalisant le mélange direct de deux emulsions préalables (A) et (B), mais en réalisant directement une emulsion unique à partir du mélange des constituants (a) et (a') avec les autres constituants et ingrédients additionnels. On prépare donc une emulsion unique dont la nature et les proportions des constituants sont données dans le tableau 4 suivant :
TABLEAU 4: composition lubrifiante 2
Légendes (1) à (5) : cf. au bas du tableau 1.
Le procédé utilisé pour préparer la composition lubrifiante 2 est identique au procédé, comportant les séquences α et β, décrit dans l'étape (1) de l'exemple 1. L'émulsion obtenue est caractérisée par une granulométrie moyenne (mesurée avant l'ajout de la gomme xanthane et de l'agent mouillant) de 0,402 μm et une proportion de matière sèche (60 min, 120° C) de 48,5% en poids.
Exemple 3 : il sagit d'un autre exemple comparatif qui illustre une composition lubrifiante (composition lubrifiante 3) préparée en réalisant directement, là aussi, une emulsion unique à partir des constituants et des ingrédients additionnels, dont la nature et les proportions sont données dans le tableau 5 suivant :
TABLEAU 5 : composition lubrifiante 3
Légendes (1) à ( ) : cf. au bas du tableau 2.
Le procédé utilisé pour préparer la composition lubrifiante 3 est identique au procédé, comportant les séquences α et β, décrit dans l'étape (1) de l'exemple 1. L'émulsion obtenue est caractérisée par une granulométrie moyenne (mesurée avant l'ajout de la gomme xanthane et de l'agent mouillant) de 0,402 μm et une proportion de matière sèche (60 min, 120° C) de 48,5% en poids.
Les propriétés des compositions lubrifiantes 1 , 2 et 3 des exemples 1 (tableau 3), 2
(tableau 4) et 3 (tableau 5) ont été mesurées par évaluation des coefficients de friction et de la durabilité.
Un coefficient de friction faible reflète de bonnes propriétés de glissement. Les tests de mesure des coefficients de friction et de la durabilité ont été adaptés à l'application de la composition lubrifiante sur vessie dilatable en caoutchouc.
Test de glissement
L'objectif de ce test est d'apprécier le pouvoir glissant d'une composition lubrifiante placée à l'interface entre la vessie gonflable et la surface interne de l'enveloppe d'un pneumatique.
Ce test est réalisé en faisant glisser sur une surface de caoutchouc, dont la composition est celle de la vessie gonflable, un patin métallique de poids déterminé, sous lequel est fixé un film d'enveloppe de pneumatique (50 x 70 mm).
La surface de la vessie gonflable est préalablement traitée par la composition lubrifiante selon une procédure proche de celle utilisée en production.
Le coefficient de friction est mesuré à l'aide d'un dynamomètre (à la vitesse de 100 mm/min). Cinq passages successifs sont réalisés sur le même échantillon de vessie gonflable en changeant à chaque fois l'échantillon d'enveloppe de pneumatique.
Plus les valeurs du coefficient de friction sont faibles et meilleures seront les propriétés de glissement de la composition lubrifiante.
Les cinq passages donnent des informations sur l'épuisement de la composition lubrifiante au cours de moulées successives.
Ce test de glissement est représentatif des performances à atteindre sur l'outil industriel, c'est un premier critère de sélection.
Test de durabilité
La durabilité d'une composition lubrifiante correspond au nombre de pneumatiques réalisés sans dégradation de la surface de la vessie gonflable. Un film de vessie gonflable, préalablement traité par la composition lubrifiante à évaluer, est pressé au contact d'un film d'enveloppe de pneumatique, non vulcanisé, selon une série de cycles de pressions et de températures simulant les étapes de fabrication d'un pneumatique sur l'outil industriel. Le film d'enveloppe de pneumatique est remplacé à chaque moulée. Le test est terminé lorsque les deux surfaces en contact restent collées. La composition lubrifiante à la surface du film de la vessie gonflable est épuisé et ne joue plus le rôle d'interface lubrifiante.
Le tableau 6 suivant rapporte les coefficients de friction obtenus à chaque passage pour chacune des compositions lubrifiantes 1 , 2 et 3 des exemples 1 , 2 et 3. Les résultats ont été obtenus après une semaine de stockage des compositions lubrifiantes 1 , 2 et 3.
TABLEAU 6
Il résulte clairement du tableau 6, que les coefficients de friction mesurés dans le cas des compositions 2 et 3 des exemples comparatifs 2 et 3 sont supérieurs à ceux mesurés dans le cas de la composition 1 selon l'invention. Le tableau 7, donné ci-après, rapporte la durabilité de la composition 1 selon l'invention, et des compositions 2 et 3 des exemples comparatifs 2 et 3.
TABLEAU 7

Claims

REVENDICATIONS 1. Procédé de préparation d'une composition lubrifiante se présentant sous forme d'une emulsion huile-dans-eau, caractérisé en ce qu'il comprend le mélange direct de deux emulsions huile-dans-eau (A) et (B) faites au préalable, lesdites emulsions préalables (A) et (B) répondant aux caractéristiques de constitution (i) à (4i) suivantes : (i) l'émulsion préalable (A) comprend :
(a) au moins une huile polyorganosiloxane linéaire non réactive aux propriétés lubrifiantes, présentant une viscosité dynamique de l'ordre de 5.10"2 à 30.102 Pa.s à 25°C et consistant dans un homopolymère ou copolymère linéaire dont, par molécule, les substituants organiques monovalents, identiques ou différents entre eux, liés aux atomes de silicium sont choisis parmi les radicaux alkyles, cycoalkyles, alcényles, aryles, alkylarylènes et arylalkylènes ;
(b) au moins une résine polyorganosiloxane porteuse, avant émulsification, de substituants hydroxyles condensables et comportant avant émulsification au moins deux motifs siloxyles différents choisis parmi ceux de formule
(R1)3Si01/2(M) ; (R1)2Siθ2β(D) ; R1Si032(T) et Si04/2 (Q), l'un au moins de ces motifs étant un motif T ou Q, formules dans lesquelles R1 représente un substituant organique monovalent, le nombre moyen par molécule de radicaux organiques R1 pour un atome de silicium étant compris entre 1 et 2 ; et ladite résine présentant une teneur pondérale en substituants hydroxyles allant de 0,1 à 10% en poids ;
(c) au moins un réticulant soluble dans la phase silicone comprenant au moins deux fonctions capables de réagir avec la (ou les) résine(s) polyorganosiloxane(s) (b) ; (d) un catalyseur de condensation capable de catalyser la réaction du constituant
(b) avec le constituant (c) ;
(e) un tensioactif ; et
(f) de l'eau,
(2i) l'émulsion préalable (B) comprend : (a1) au moins une huile polyorganosiloxane linéaire réactive comportant au moins deux groupements OH par molécule et présentant une viscosité dynamique allant de 5.10"2 à 30.102 Pa.s à 25°C ; et les constituants (b), (c), (d), (e) et (f) mentionnés supra à propos de la constitution de l'émulsion préalable (A) ; (3i) chacune des emulsions préalables (A) et (B) présente la composition pondérale suivante, la composition pondérale de (A) pouvant être identique ou différente de celle de (B) : - de 5 à 95 parties en poids du constituant (a) pour l'émulsion (A) ou du constituant (a1) pour l'émulsion (B) ;
- de 0,5 à 50 parties en poids du constituant (b) ;
- de 0,1 à 20 parties en poids du constituant (c) ; - de 0,05 à 10 parties en poids du constituant (d) ; pour 100 parties en poids de la somme des constituants (a) + (b) + (c) + (d) ou (a') + (b) + (c) + (d) ; les quantités de tensioactifs et d'eau étant suffisantes pour l'obtention d'une emulsion huile-dans-eau ; et (4i) ie rapport pondéral emulsion (A)/émulsion (B), au moment du mélange des emulsions prélables, se situe dans l'intervalle allant de 1,5 à 4.
2. Procédé selon la revendication 1 , caractérisé en ce que le catalyseur (d) est un catalyseur à l'étain, par exemple le sel d'étain d'un acide organique.
3. Procédé selon la revendication 2, caractérisé en ce que le catalyseur (d) est un dicarboxylate de dialkylétain.
4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le constituant (c) est choisi parmi les organotrialcoxysilanes, les organotriacyloxysilanes, les organotrioximosiianes et les tétraalkylsilicates.
5. Procédé selon la revendication 4, caractérisé en ce que le constituant (c) consiste dans au moins un alkyltriaicoxysilane de formule YSiZ3 dans laquelle Y est (C C6)alkyle ou (C2-C8)alcényle, et Z est (C C10)alcoxy.
6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le constituant (a) consiste dans au moins une huile polyorganosiloxane linéaire non réactive qui est un homopolymère ou copolymère linéaire dont, par molécule, au moins 2 % en nombre des substituants organiques monovalents liés aux atomes de silicium sont des radicaux aryles, alkylarylènes et/ou arylalkylènes.
7. Procédé selon la revendication 6, caractérisé en ce que le constituant (a) est choisi parmi les polyorganosiloxanes linéaires : - constitués le long de chaque chaîne :
• des motifs de formule R2R3Si022, éventuellement associés à des motifs de formule (R^iO^, • des motifs de formule (R^SiO^, éventuellement associés à des motifs de formule (R^SiO^ , et
• des motifs de formule R2R3Si022 et des motifs de formule (R3)2Si022, éventuellement associés à des motifs de formule (R2)2Si022 , - et bloqués à chaque extrémité de chaîne par un motif de formule (R4)3Si0-ι/2 dont les radicaux R4, identiques ou différents, sont des radicaux R2 et R3 ; où les radicaux R2 et R3, substituants organiques monovalents des divers motifs siloxyles mentionnés supra, ont les définitions suivantes :
• les radicaux R2, identiques ou différents entre eux, sont choisis parmi : les radicaux alkyles linéaires ou ramifiés en Cι-C6 (tels que par exemple méthyle, éthyle, propyle, isopropyle, butyle, isobutyle, t-butyle, n-pentyle, n-hexyle), les radicaux cycloalkyles en C3-C8 (tels que par exemple cyclopentyle, cyclohexyle), et les radicaux alcényles linéaires ou ramifiés en C2-C8 (tels que par exemple vinyle, allyle), « les radicaux R3, identiques ou différents entre eux, sont choisis parmi : les radicaux aryles en C6-C10 (tels que par exemple phényle, naphtyle), les radicaux alkylarylènes en C6-C15 (tels que par exemple tolyles, xylyle), les radicaux arylalkylènes en C6-C15 (tels que par exemple benzyle) ; et
- où 5 à 50 % en nombre des substituants R2, R3 et R4 sont des radicaux aromatiques R3.
8. Procédé selon la revendication 7, caractérisé en ce que le constituant (a) consiste dans au moins un polyorganosiloxane linéaire :
- constitués le long de chaque chaîne :
• des motifs de formule R2R3Siθ2/2 associés à des motifs de formule (R2)2SiO;>/2, • des motifs de formule (R3)2SiO;>/2 associés à des motifs de formule (R^SiO^ ;
- et bloqués à chaque extrémité de chaîne par un motif de formule (R2)3SiO-|/2 ;
- où les radicaux R2 et R3 ont les définitions suivantes :
• les radicaux R2, identiques ou différents entre eux, sont choisis parmi les radicaux méthyle, éthyle, propyle et isopropyle, • les radicaux R3, identiques ou différents entre eux, sont choisis parmi les radicaux phényle, tolyles et benzyle ; et où 5 à 50 % en nombre des substituants R2 et R3 sont des radicaux phényle, tolyles et/ou benzyle
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le constituant (a') consiste dans au moins un polyorganosiloxane de formule :
dans laquelle n est un entier supérieur ou égal à 10, R5 et R6, identiques ou différents, représentent (d-CeJalkyle ; (C3-C8)cycloalkyle ; (C2-C8)alcényle ;
(C5-C8)cycloalcényle ; chacun des radicaux précités étant éventuellement substitué par un atome d'halogène ou un reste cyano.
10. Pocédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque résine du constituant (b) est une résine DT ou MDT hydroxylée comprenant au moins 20% en poids de motifs T et ayant une teneur pondérale en groupements hydroxyle allant de 0,1 à 10%.
11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque résine du constituant (b) présente une viscosité dynamique à 25° C comprise entre 0,2 et 200 Pa.s.
12. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque emulsion préalable (A) et (B) ou seulement une des deux emulsions préalables (A) ou (B) comprend en outre de 0,5 à 15 parties en poids, pour cent parties en poids de la somme des constituants (a) + (b) + (c) + (d) + (g) ou (a') + (b) + (c) + (d) + (g), d'un constituant (g) consistant dans au moins un agent réticulant hydrosoluble choisi parmi les silanes et ou les polydiorganosiloxanes (POS) hydroxyles, ledit réticulant étant porteur, par molécule, en plus d'au moins un groupe OH, d'au moins un groupement organique à fonction Fr, Fr étant choisi parmi les fonctions amino éventuellement substituées, époxy, acryloyle (CH2=CH-CO) éventuellement substituées, méthacryloyle (CH2=C(CH3)-CO-) éventuellement substituées, uréido (NH2-CO-NH-) éventuellement substituées, thiol éventuellement substituées et halogène.
13. Procédé selon la revendication 12, caractérisé en ce que l'agent réticulant a pour formule R8R7N-Ra-Si(OH)3 dans laquelle Ra représente (d-C^alkylène et R7 et R8 représentent un atome d'hydrogène ou un groupe (CrC6)aikyle.
14. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque emulsion préalable (A) et (B) ou seulement une des deux emulsions préalables (A) ou (B) comprend en outre un ou plusieurs ingrédients additionnels choisis parmi des polymères filmogenes, des lubrifiants complémentaires, des agents antifriction, des agents de coalescence, des agents mouillants ou dispersants, des charges minérales, des agents d'évacuation de l'air, des agents anti-mousse, des épaississants, des stabilisants, et des conservateurs tels que des biocides et des antifongiques.
15. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce chaque emulsion préalable (A) et (B) comprend, en quantité identique ou différente, de 0,5 à 10% en poids de tensioactif et de 40 à 95% en poids d'eau.
16. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes (1) et (2) suivantes :
- étape (1) où l'on prépare, à température ambiante (23°C), les emulsions préalables (A) et (B) en utilisant le même mode opératoire comprenant les séquences α, β et γ consistant :
• séquence α : mettre en emulsion dans l'eau (f), un mélange d'huile(s) polydiorganosiloxane(s) non réactive(s) (a) (cas de l'émulsion (A)) ou réactive(s) (a') (cas de l'émulsion (B)), de résine(s) polyorganosiloxane(s) (b), et de réticulant(s) soluble(s) dans la phase silicone (c), en présence du tensioactif (e), de façon à préparer une emulsion de type huile-dans-eau, éventuellement en préparant dans un premier temps une phase épaisse huile-dans-eau, puis en opérant dans un second temps une dilution avec de l'eau de la phase épaisse obtenue,
• séquence β : ajouter à l'émulsion précédente, contenant l'ensemble des constituants (a) ou (a'), (b), (c) et (e), une emulsion du catalyseur (d) dans l'eau, • séquence γ : puis à diluer éventuellement le milieu avec de l'eau en fonction du taux d'extrait sec désiré ; étape (2) où l'on mélange, à température ambiante (23°C), l'émulsion préalable (A) et l'émulsion préalable (B), en opérant sous agitation modérée, selon les proportions qui ont été définies supra au paragraphe (4i) des caractéristiques de constitution des emulsions préalables (A) et (B).
17. Procédé selon la revendication 16, caractérisé en ce que, lorsqu'un agent réticulant hydrosoluble (g) est incorporé dans la (ou les) émulsion(s) préalable(s), celui-ci est incorporé sous la forme d'une solution aqueuse, au même moment que le catalyseur (d), à une emulsion huile-dans-eau contenant l'ensemble des constituants (a) ou (a1), (b), (c) et (e).
18. Compositions lubrifiantes susceptibles d'être obtenues par la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 17, comprenant le mélange direct des deux emulsions (A) et (B) faites au préalable.
19. Utilisation d'une composition lubrifiante selon la revendication 18 pour la lubrification d'un article.
20. Utilisation selon la revendication 19, caractérisée en ce que l'on réalise : - la lubrification de la vessie de vulcanisation dilatable en caoutchouc, lors du façonnage et de la vulcanisation de bandages pneumatiques ou semi-pneumatiques, et/ou
- la lubrification des bandages pneumatiques ou semi-pneumatiques crus, comportant ou non sur leur surface externe des éléments qui constitueront la bande de roulement externe destinée à venir au contact du sol.
21. Utilisation selon l'une quelconque des revendications 19 et 20, caractérisée en ce que la vessie dilatable, en caoutchouc, avant d'être revêtue sur sa surface externe (celle qui vient au contact du bandage) d'une composition lubrifiante préparée selon le procédé selon l'une quelconque des revendications 1 à 17, subit un pré-traitement consistant à appliquer de façon quelconque une couche régulière d'une composition primaire se présentant sous forme d'une emulsion huile-dans-eau, ladite emulsion étant obtenue par le procédé comprenant le mélange direct des deux emulsions huile-dans- eau (A) et (B) faites au prélables, qui sont définies supra, mais en utilisant cette fois des proportions des deux emulsions préalables (A) et (B) qui sont telles que le rapport pondéral emulsion (A) / emulsion (B), au moment du mélange direct, se situe maintenant dans l'intervalle allant de 0,1 à 0,7.
22. Article revêtu d'une composition selon la revendication 18.
23. Article pouvant être obtenu par chauffage d'un article selon la revendication 22.
24. Article selon la revendication 22, caractérisé en ce qu'il consiste dans une vessie dilatable en caoutchouc revêtue sur sa surface externe d'une composition selon la revendications 18, pour le façonnage et la vulcanisation de bandages pneumatiques ou semi-pneumatiques.
25. Article selon les revendications 23 et 24, caractérisé en ce que la vessie dilatable en caoutchouc est obtenue par chauffage d'une vessie revêtue à une température de 80 à 180° C.
26. Article selon la revendication 22, caractérisé en ce qu'il consiste dans un bandage pneumatique ou semi-pneumatique cru comportant ou non des éléments qui constitueront sa bande de roulement externe destinée à venir au contact du sol, revêtu sur sa surface interne d'une composition selon la revendications 18.
27. Compositions primaires se présentant sous forme d'une emulsion huile-dans- eau, ladite emulsion étant susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 17, comprenant le mélange direct des deux emulsions huile-dans-eau (A) et (B) faites au prélables, qui sont définies supra, mais en utilisant cette fois des proportions des deux emulsions préalables (A) et (B) qui sont telles que le rapport pondéral emulsion (A) / emulsion (B), au moment du mélange direct, se situe maintenant dans l'intervalle allant de 0,1 à 0,7.
EP02745465A 2001-05-23 2002-05-22 Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene Withdrawn EP1401992A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0106816 2001-05-23
FR0106816A FR2825099B1 (fr) 2001-05-23 2001-05-23 Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene
PCT/FR2002/001723 WO2002094971A1 (fr) 2001-05-23 2002-05-22 Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene

Publications (1)

Publication Number Publication Date
EP1401992A1 true EP1401992A1 (fr) 2004-03-31

Family

ID=8863598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02745465A Withdrawn EP1401992A1 (fr) 2001-05-23 2002-05-22 Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene

Country Status (6)

Country Link
US (1) US7439211B2 (fr)
EP (1) EP1401992A1 (fr)
JP (1) JP4313047B2 (fr)
CA (1) CA2446627A1 (fr)
FR (1) FR2825099B1 (fr)
WO (1) WO2002094971A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2838447B1 (fr) 2002-04-12 2005-09-30 Rhodia Chimie Sa Composition a base de siloxane, ne degageant pas d'hydrogene, destinee au moulage-demoulage de pneumatiques
FR2858777B1 (fr) * 2003-08-12 2007-02-09 B Rossow Et Cie Ets Procede de formulation d'emulsions huile-dans-eau complexes et stables, formulations ainsi obtenues et procede de formulation de produits contenant les dites emulsions
FR2884170B1 (fr) * 2005-04-08 2007-10-12 Rhodia Chimie Sa Utilisation d'une composition a base de siloxane destinee au moulage-demoulage de pneumatiques
FR2902438A1 (fr) * 2006-06-20 2007-12-21 Rhodia Recherches & Tech Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
EP2925838A1 (fr) * 2012-11-28 2015-10-07 Dow Corning Corporation Procédé de réduction de la friction et de l'usure entre des surfaces en condition de charge élevée
US10113084B2 (en) * 2014-05-22 2018-10-30 Illinois Tool Works, Inc. Mold release agent
JP6476980B2 (ja) * 2015-02-20 2019-03-06 信越化学工業株式会社 タイヤブラダー用離型剤、タイヤブラダー及び空気タイヤ
CN105199109B (zh) * 2015-09-29 2017-10-10 广州有色金属研究院 一种化妆品用mdt型苯甲基硅油的制备方法
CN114728555A (zh) * 2019-11-27 2022-07-08 横滨橡胶株式会社 充气轮胎

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554122A (en) * 1980-03-25 1985-11-19 Releasomers, Inc. Method for air bladder release during tire production
USRE32318E (en) * 1980-11-20 1986-12-30 The Goodyear Tire & Rubber Company Tire curing bladder lubricant
US4840742A (en) * 1987-02-13 1989-06-20 Wacker Silicones Corporation Silicone containing emulsions as bladder lubricants
JPH02311564A (ja) * 1989-05-25 1990-12-27 Toray Dow Corning Silicone Co Ltd タイヤ成形用ブラダー潤滑剤組成物
US5431832A (en) * 1993-07-23 1995-07-11 Crowe; Angela M. Non-hydrogen evolving siloxane-based lubricant composition
FR2781491B1 (fr) * 1998-07-21 2002-12-20 Rhodia Chimie Sa Utilisation d'une composition silicone fonctionnalisee pour la realisation de revetement et/ou d'impregnation hydrophobe et/ou oleophobe, a faible energie de surface
DE19851945A1 (de) * 1998-11-11 2000-05-18 Rhein Chemie Rheinau Gmbh Formtrennmittel
JP5086502B2 (ja) * 1999-03-10 2012-11-28 ロールス−ロイス・コーポレーション シリコーン樹脂接着乾燥フィルム潤滑剤
FR2801896B1 (fr) * 1999-12-03 2002-03-01 Rhodia Chimie Sa Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
FR2802546B1 (fr) * 1999-12-17 2002-03-29 Rhodia Chimie Sa Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
US6933263B2 (en) * 2002-05-23 2005-08-23 The Lubrizol Corporation Emulsified based lubricants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02094971A1 *

Also Published As

Publication number Publication date
WO2002094971A1 (fr) 2002-11-28
US7439211B2 (en) 2008-10-21
US20040209785A1 (en) 2004-10-21
CA2446627A1 (fr) 2002-11-28
FR2825099B1 (fr) 2003-07-18
JP2004531413A (ja) 2004-10-14
JP4313047B2 (ja) 2009-08-12
FR2825099A1 (fr) 2002-11-29

Similar Documents

Publication Publication Date Title
EP1495076B1 (fr) Composition a base de siloxane, ne degageant pas d hydrogene, destinee au moulage-demoulage de pneumatiques
EP1899447B1 (fr) Composition à base de siloxane destinée au moulage-démoulage de pneumatiques
FR2884170A1 (fr) Utilisation d'une composition a base de siloxane destinee au moulage-demoulage de pneumatiques
WO2007147787A1 (fr) Composition lubrifiante à base de siloxane, ne dégageant pas d'hydrogène, son procédé de préparation et son utilisation
EP2176367B1 (fr) Procédé de lutte contre l'apparition de brouillard lors de l'enduction de supports flexibles avec une composition silicone liquide réticulable, dans un dispositif a cylindres
EP1240283B1 (fr) Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
EP0635559A2 (fr) Composition lubrifiante à base siloxane ne dégageant pas d'hydrogène
EP0206314A2 (fr) Emulsions aqueuses de silicones comme lubrifiant pour vessies de vulcanisation
EP1401992A1 (fr) Procede de preparation d'une composition lubrifiante a base de polysiloxanes ne degageant pas d'hydrogene
CA2394135C (fr) Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
FR2838449A1 (fr) Composition lubrifiante a base de siloxane, ne degageant pas d'hydrogene, son procede de preparation et son utilisation
WO2019146518A1 (fr) Composition antiadhésive à base de silicone, exempte de solvant et procédé de production de feuille antiadhésive
BE561167A (fr)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031027

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: OIL -IN-WATER EMULSION AND METHOD FOR PREPARING A LUBRICATING OIL IN WATER EMULSION BASED ON POLYSILOXANES

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101201