EP1392970B1 - Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine - Google Patents

Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine Download PDF

Info

Publication number
EP1392970B1
EP1392970B1 EP02737856A EP02737856A EP1392970B1 EP 1392970 B1 EP1392970 B1 EP 1392970B1 EP 02737856 A EP02737856 A EP 02737856A EP 02737856 A EP02737856 A EP 02737856A EP 1392970 B1 EP1392970 B1 EP 1392970B1
Authority
EP
European Patent Office
Prior art keywords
ignition
current
energy storage
input
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP02737856A
Other languages
English (en)
French (fr)
Other versions
EP1392970A1 (de
Inventor
Kurt Kienbaum
Ralf Förster
Stefan Haimerl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1392970A1 publication Critical patent/EP1392970A1/de
Application granted granted Critical
Publication of EP1392970B1 publication Critical patent/EP1392970B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/045Layout of circuits for control of the dwell or anti dwell time
    • F02P3/0453Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/0456Opening or closing the primary coil circuit with semiconductor devices using digital techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/05Layout of circuits for control of the magnitude of the current in the ignition coil
    • F02P3/051Opening or closing the primary coil circuit with semiconductor devices
    • F02P3/053Opening or closing the primary coil circuit with semiconductor devices using digital techniques

Definitions

  • the invention relates to an ignition device for an internal combustion engine according to the preamble of claim 1, a control device for such an ignition device according to the preamble of claim 5 and an ignition system according to claim 7.
  • the ignition of the fuel mixture in the combustion chambers of the internal combustion engine usually takes place by means of a spark plug, via which an ignition coil discharges.
  • the electrical energy stored in the ignition coil should also not be too large, since this leads to an increased thermal load of the ignition coil and ignition output and, moreover, increases the wear of the spark plug.
  • electrical energy should be within a predetermined range to allow for minimal thermal stress on ignition coil and ignition and lowest possible wear of the spark plug safe triggering of a spark.
  • the ignition output stage may be formed as a separate component separate from the electronic engine control, wherein the electronic engine control transmits the ignition signals via a control line to the ignition output stage.
  • a disadvantage of such a separate configuration of the electronic engine control unit and the ignition output stage is the fact that the electronic engine control system is not able to check the electrical energy stored in the ignition coil. Accordingly, in the energization of the ignition coil prior to the ignition significant safety reserves provided so that the stored electrical energy in the ignition coil is usually greater than necessary, resulting in increased thermal load of the ignition coil and ignition and also increases the wear of the spark plug.
  • the invention is therefore an object of the invention to provide in a separate arrangement of ignition and electronic engine control the possibility that via a single bidirectional control line feedback of several different information from the ignition power to the engine control.
  • the invention includes the general technical teaching to enable a bidirectional data transmission between the control unit and the ignition device in a separate training of Zündenda or ignition device on the one hand and electronic engine control or control unit on the other hand, so that the ignition device can report, for example, the charge state of the ignition coil to the controller ,
  • the control device instead of or in addition to the charge state of the ignition coil, it is also possible to transmit other information from the ignition device to the control device, such as the spark duration or the current threshold of the ignition coil's cut-off current.
  • the information is transmitted from the ignition device to the control unit by the ignition device impressing a current signal on the connecting line between the control device and the ignition device. This is done, for example, by the fact that the ignition device increases or decreases the electric current drawn by the control unit during normal operation by a predetermined current deviation.
  • the ignition device in this case has a controllable current sink and a controllable current source, which is connected to the control input.
  • the controllable current sink Upon activation of the controllable current sink, the electrical current drawn by the control unit is increased, whereas the electrical current drawn by the control unit is reduced upon activation of the controllable current source in the ignition device, which can be detected by the control unit.
  • control unit preferably has at least one current measuring unit, which detects the electric current drawn by the ignition device and thereby can detect the activation of the controllable current source or the controllable current sink in the ignition device.
  • a current measuring unit which measures the electric current flowing through the ignition coil and is connected on the output side to the controllable current source or the controllable current sink in order to transmit a corresponding signal to the control unit when a predetermined threshold value of the electrical current flowing through the ignition coil is reached or exceeded to give.
  • the measurement of the current flowing through the ignition coil in this case takes place by a measuring resistor connected in series with the ignition coil, which is connected to an input of a comparator, wherein the comparator measures the dropping across the measuring resistor falling voltage proportional to the current flowing through the ignition coil Electricity is.
  • the comparator compares the determined current value with a predetermined reference current value and activates the controllable Current source or the controllable current sink when the reference current value is exceeded.
  • a voltage measuring unit connected to the ignition coil which monitors the ignition voltage, the voltage measuring unit being connected on the output side to the controllable current source or the controllable current sink in order to supply the control unit with a signal dependent on the ignition voltage.
  • the voltage measuring unit is connected on the output side to a comparator, which compares the measured ignition voltage with a predetermined reference voltage value and activates the controllable current source or the controllable current sink when the predetermined reference voltage value is exceeded or undershot.
  • the evaluation of the signals transmitted by the ignition device takes place in the control device preferably by a current measuring unit which detects the electric current drawn by the ignition device via the connecting line.
  • the current measuring unit preferably has a comparator which compares the measured current value with a predetermined reference current value and accordingly generates a digital output signal.
  • the ignition system shown in Figure 1 consists of a control unit 1 and an ignition device 2 with an integrated ignition coil 3 and a likewise integrated ignition output 4, wherein the control unit 1 is connected via a bidirectional control line 5 with the ignition device 2.
  • control line 5 enables control of the charging process of the ignition coil 3 and, on the other hand, allows feedback from the ignition device 2 to the control unit 1 on the state of charge of the ignition coil 3 and the spark duration, as will be described in detail.
  • the ignition coil 3 is connected in series with the ignition output stage 4 consisting of an IGBT and a measuring resistor 6. Battery voltage U BAT and ground connected, so that the ignition coil 3 forms a RL element with the measuring resistor 6 when switching the ignition output stage 4.
  • the gate of the ignition output stage 4 is connected via a driver 7 to the control input of the ignition device 2, via which the ignition device 2 is connected by the bidirectional control line 5 to the control unit 1.
  • the control unit 1 can thus switch through the ignition output stage 4 via the bidirectional control line 5, whereupon the electrical current through the ignition coil 3 increases substantially linearly, as shown in FIG.
  • the ignition coil 3 On the output side, the ignition coil 3 is connected via a diode 8 with a spark plug 9, so that the ignition coil 3 at Lock the ignition output stage 4 can discharge via the spark plug 9, wherein a spark is generated.
  • a tap for voltage measurement is provided, which is connected to a measuring input of a comparator 10.
  • the other input of the comparator is connected to a center tap of a voltage divider, which consists of two resistors 11, 12, wherein the size of the resistor 12 defines a reference current value for the charging of the ignition coil 3.
  • the comparator 10 is connected to the base of a transistor 13, which connects the control input of the ignition device via a resistor 14 to ground and forms a controllable current sink.
  • the transistor 13 When the transistor 13 is turned on, the control input of the ignition device 2 is pulled to ground via the resistor 14, so that the ignition device 2 draws an additional current from the control unit via the bidirectional connection line, which can be detected by the latter.
  • the switching of the transistor 13 takes place when the comparator 10 detects that the electric current flowing through the ignition coil 3 exceeds the predetermined reference current value.
  • the ignition device 2 a further controllable current sink, which consists of a transistor 15 and a resistor 16 connected to ground, wherein the driving of the transistor 15 is effected by a diagnostic circuit 17 shown only schematically.
  • the ignition device 2 also allows the transmission of the spark duration.
  • the ground-side terminal of the ignition coil 3 is connected via a resistor 18 to an input of a comparator 19, wherein the other input of the comparator 19 is connected to battery voltage U BAT .
  • the comparator 19 thus compares the voltage drop across the ignition coil 3 with a predetermined reference voltage value, to be able to determine whether a spark is emitted.
  • a controllable current source which consists of a transistor 20 and a resistor 21, wherein the transistor 20 connects the control input of the ignition device 2 when switching through the resistor 21 with battery voltage U BAT , so that the current source has a current over the Bidirectional control line drives, resulting in a reduction of the drawn from the ignition device 2 via the bidirectional control line from the control unit 1 electrical current, as shown in Figure 2.
  • control unit 1 The structural design of the control unit 1 will now be described.
  • the control unit has a connection 22, which can be controlled, for example, by a microprocessor, not shown.
  • the terminal 22 is low-active and connected via a driver 23 to the base of two transistors 24, 25, wherein the driver 23 of the level adjustment between the bidirectional control line 5 and the terminal 22 is for connection to a microprocessor. With a logic low level at the terminal 22, therefore, the transistor 24 turns on, whereas the transistor 25 turns on at a logic high level.
  • the transistor 25 is in this case ground side connected via a measuring resistor 26 to ground and is used in the ignition diagnosis to determine the transmitted from the ignition device 2 via the bidirectional control line 5 spark duration.
  • the measuring resistor 26 is connected to the two inputs of a comparator 27, which thus compares the current flowing through the measuring resistor 26 with a predetermined reference value.
  • the comparator 27 On the output side, the comparator 27 is connected to the base of a transistor 28, which pulls a terminal 28 to ground when turned on.
  • the digital signal at the terminal 29 thus reflects the current through the measuring resistor and is low during the spark-burning time.
  • the transistor 24 is connected via a measuring resistor 30 with battery voltage U BAT , wherein the measuring resistor 30 is in turn connected to the two inputs of a comparator 31, which thus compares the electrical current flowing through the measuring resistor 30 with a predetermined reference value.
  • the comparator 31 is connected to the base of a transistor 32, which pulls a terminal 33 to ground when turned on, so that the terminal 33 assumes a low level when the current through the measuring resistor 30 exceeds the predetermined reference value.
  • a signal 34 which is generated by a microprocessor, not shown, wherein the signal 34 during the low phase, the transistor 24 and during the high-phase transistor 25 turns on, so that the bidirectional control line 5 assumes a predetermined waveform 35 with a certain electrical potential.
  • Turning on the transistor 24 in turn means that the ignition output stage 4 in the ignition device 2 turns on, so that by the series circuit of the ignition coil 3, the ignition output stage 4 and the measuring resistor 6, an approximately linearly increasing current with a predetermined Waveform 36 flows.
  • the linearity of the current curve 36 follows from the fact that the inductance of the ignition coil 3 is not constant.
  • the switching of the transistor 3 then causes the bidirectional control line 5 is pulled in the ignition device 2 via the resistor 14 to ground, so that a larger current flows through the bidirectional control line 5, as can be seen from the waveform 37.
  • the greater current flow through the resistor 30 and the bidirectional control line 5 causes the comparator 31, the transistor 32 turns on, so that the terminal 33 is pulled to ground, as shown by the waveform 38 is shown.
  • the low phase of the waveform 38 is evaluated by a counter in the microprocessor, not shown. After a predetermined time, the micro-processor sets the terminal 22 back to logic high, so that the transistor 24 blocks and the transistor 25 turns on, wherein the electrical potential on the bidirectional control line is pulled to logic low, as can be seen on the waveform 35. In addition, the blocking of the transistor 24 also leads to a blocking of the ignition output stage 4, whereupon the current through the ignition coil 3 abruptly breaks, as can be seen from the waveform 36.
  • the ignition coil 3 Since the current through the ignition coil 3 due to the inductance of the ignition coil 3 can not change abruptly, the ignition coil 3 discharges through the spark plug 9, so that a spark is emitted.
  • a voltage is induced in the ignition coil 3 on the primary side, as in the signal waveform 39 is recognizable.
  • the primary-side induction of the voltage in the ignition coil during the ignition process causes the comparator 19 turns on the transistor 20 of the controllable current source, so that the ignition device 2 drives a current via the bidirectional control line 5 in the direction of the control unit 1, as shown by the signal waveform 37th is recognizable.
  • the polarity of the current flowing via the bidirectional control line 5 changes.
  • the not shown microprocessor connected to the terminal 29 can detect whether the stored in the ignition coil 3 before the actual ignition electrical energy has been sufficient to trigger a spark.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

  • Die Erfindung betrifft eine Zündvorrichtung für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1, ein Steuergerät für eine derartige Zündvorrichtung gemäß dem Oberbegriff des Anspruchs 5 sowie eine Zündanlage gemäß Anspruch 7.
  • Bei nicht-selbstzündenden Brennkraftmaschinen erfolgt die Zündung des Kraftstoffgemischs in den Brennräumen der Brennkraftmaschine üblicherweise durch eine Zündkerze, über die sich eine Zündspule entlädt.
  • Wichtig ist hierbei, dass vor dem Zündvorgang eine hinreichend große Energiemenge in der Zündspule gespeichert ist, um einen Zündfunken auslösen zu können, was einen entsprechend großen elektrischen Strom durch die Zündspule voraussetzt.
  • Andererseits sollte die in der Zündspule gespeicherte elektrische Energie auch nicht zu groß sein, da dies zu einer erhöhten thermischen Belastung von Zündspule und Zündendstufe führt und darüber hinaus den Verschleiß der Zündkerze erhöht.
  • Vor jedem Zündvorgang sollte also die in der Zündspule gespeicherte elektrische Energie innerhalb einer vorgegebenen Bandbreite liegen, um bei minimaler thermischer Belastung von Zündspule und Zündendstufe und möglichst geringem Verschleiß der Zündkerze eine sichere Auslösung eines Zündfunkens zu ermöglichen.
  • Zur Ansteuerung der Zündkerze sind Zündendstufen bekannt, die in die elektronische Motorsteuerung (ECU - Electronic Control Unit) integriert sind. Dies bietet den Vorteil, dass die elektronische Motorsteuerung den Strom durch die Zündspule erfassen kann, um beim Erreichen der gewünschten Energiemenge in der Zündspule einen weiteren Stromanstieg zu verhindern.
  • Es kann jedoch wünschenswert sein, die Zündendstufe als separates Bauteil getrennt von der elektronischen Motorsteuerung auszubilden, wobei die elektronische Motorsteuerung die Zündsignale über eine Steuerleitung an die Zündendstufe überträgt.
  • Nachteilig an einer derartigen getrennten Ausbildung von elektronischer Motorsteuerung und Zündendstufe ist die Tatsache, dass die elektronische Motorsteuerung nicht in der Lage ist, die in der Zündspule gespeicherte elektrische Energie zu überprüfen. Demzufolge sind bei der Bestromung der Zündspule vor den Zündvorgängen erhebliche Sicherheitsreserven vorzusehen, so dass die in der Zündspule gespeicherte elektrische Energie meist größer als notwendig ist, was zu einer erhöhten thermischen Belastung von Zündspule und Zündendstufe führt und darüber hinaus den Verschleiß der Zündkerze erhöht.
  • Aus RODENHEBER, R.: Neue Treibergeneration für Kfz-Zündsysteme, Elektronik 19/1991 ist es bekannt, den aktuellen Zündspulenstrom von der Zündendstufe über eine bidirektionale Steuerleitung zu dem Steuergerät zu übertragen, wobei digitale Pegel auf der Steuerleitung verwendet werden.
  • Weiterhin ist es aus DE 38 00 932 A1 bekannt, zur Rückmeldung des Zündspulenstroms von der Zündendstufe zu dem Steuergerät eine steuerbare Stromquelle einzusetzen, die in Abhängigkeit von dem Zündspulenstrom einen vorgegebenen Strom auf der Steuerleitung einprägt.
  • Eine ähnliche bidirektionale Datenübertragung für einen KFZ-Datenbus ist auch aus US 4 736 367 bekannt.
  • Nachteilig an den bekannten Anordnungen ist jedoch, dass nur der Zündspulenstrom übertragen wird.
  • Der Erfindung liegt somit die Aufgabe zugrunde, bei einer getrennten Anordnung von Zündendstufe und elektronischer Motorsteuerung die Möglichkeit zu schaffen, dass über eine einzige bidirektionale Steuerleitung eine Rückmeldung mehrerer verschiedener Informationen von der Zündendstufe zu der Motorsteuerung erfolgt.
  • Die Aufgabe wird durch eine Zündvorrichtung gemäß Anspruch 1, ein Steuergerät für eine derartige Zündvorrichtung gemäß Anspruch 5 sowie eine Zündanlage gemäß Anspruch 7 gelöst.
  • Die Erfindung umfasst die allgemeine technische Lehre, bei einer getrennten Ausbildung von Zündendstufe bzw. Zündvorrichtung einerseits und elektronischer Motorsteuerung bzw. Steuergerät andererseits eine bidirektionale Datenübertragung zwischen dem Steuergerät und der Zündvorrichtung zu ermöglichen, damit die Zündvorrichtung beispielsweise den Ladezustand der Zündspule an das Steuergerät zurückmelden kann.
  • Anstelle oder zusätzlich zu dem Ladezustand der Zündspule besteht jedoch auch die Möglichkeit, andere Informationen von der Zündvorrichtung zu dem Steuergerät zu übertragen, wie beispielsweise die Funkenbrenndauer oder den aktuellen Schwellenwert des Abschaltstroms der Zündspule.
  • Erfindungsgemäß erfolgt die Informationsübertragung von der Zündvorrichtung zu dem Steuergerät, indem die Zündvorrichtung auf der Verbindungsleitung zwischen dem Steuergerät und der Zündvorrichtung ein Stromsignal einprägt. Dies erfolgt beispielsweise dadurch, dass die Zündvorrichtung den im Normalbetrieb über die Verbindungsleitung von dem Steuergerät gezogenen elektrischen Strom um einen vorgegebenen Stromhub herauf- oder herabsetzt.
  • Erfindungsgemäß weist die Zündvorrichtung hierbei eine steuerbare Stromsenke und eine steuerbare Stromquelle auf, die mit dem Steuereingang verbunden ist. Bei einer Aktivierung der steuerbaren Stromsenke wird der von dem Steuergerät gezogene elektrische Strom heraufgesetzt, wohingegen der von dem Steuergerät gezogene elektrische Strom bei einer Aktivierung der steuerbaren Stromquelle in der Zündvorrichtung herabgesetzt wird, was jeweils von dem Steuergerät erkannt werden kann.
  • Hierzu weist das Steuergerät vorzugsweise mindestens eine Strommesseinheit auf, die den von der Zündvorrichtung gezogenen elektrischen Strom erfasst und dadurch die Aktivierung der steuerbaren Stromquelle bzw. der steuerbaren Stromsenke in der Zündvorrichtung erkennen kann.
  • Es wurde bereits vorstehend ausgeführt, dass es wünschenswert ist, dass die Zündvorrichtung dem separaten Steuergerät den Ladezustand der Zündspule mitteilt, damit der Ladevorgang der Zündspule bzw. das Hochfahren des elektrischen Stroms durch die Zündspule rechtzeitig begonnen wird. Erfindungsgemäß ist deshalb eine Strommesseinheit vorgesehen, die den durch die Zündspule fließenden elektrischen Strom misst und ausgangsseitig mit der steuerbaren Stromquelle oder der steuerbaren Stromsenke verbunden ist, um beim Erreichen oder Überschreiten eines vorgegebenen Schwellenwertes des durch die Zündspule fließenden elektrischen Stroms ein entsprechendes Signal an das Steuergerät zu geben. Vorzugsweise erfolgt die Messung des durch die Zündspule fließenden Stroms hierbei durch einen mit der Zündspule in Reihe geschalteten Messwiderstand, der mit einem Eingang eines Komparators verbunden ist, wobei der Komparator die über dem Messwiderstand abfallende abfallende Spannung misst, die proportional dem durch die Zündspule fließenden elektrischen Strom ist. Hierbei vergleicht der Komparator den ermittelten Stromwert mit einem vorgegebenen Referenzstromwert und aktiviert die steuerbare Stromquelle bzw. die steuerbare Stromsenke bei einem Überschreiten des Referenzstromwerts.
  • Darüber hinaus besteht im Rahmen der Erfindung auch die Möglichkeit, dass die Zündvorrichtung dem Steuergerät die Funkenbrenndauer mitteilt. Erfindungsgemäß ist deshalb eine mit der Zündspule verbundene Spannungsmesseinheit vorgesehen, welche die Zündspannung überwacht, wobei die Spannungsmesseinheit ausgangsseitig mit der steuerbaren Stromquelle oder der steuerbaren Stromsenke verbunden ist, um dem Steuergerät ein von der Zündspannung abhängiges Signal zu liefern. In der bevorzugten Ausführungsform ist die Spannungsmesseinheit ausgangsseitig mit einem Komparator verbunden, der die gemessene Zündspannung mit einem vorgegebenen Referenzspannungswert vergleicht und die steuerbare Stromquelle bzw. die steuerbare Stromsenke beim Über- oder Unterschreiten des vorgegebenen Referenzspannungswerts aktiviert.
  • Die Auswertung der von der Zündvorrichtung übertragenen Signale erfolgt in dem Steuergerät vorzugsweise durch eine Strommesseinheit, die den von der Zündvorrichtung über die Verbindungsleitung gezogenen elektrischen Strom erfasst. Die Strommesseinheit weist hierbei vorzugsweise einen Komparator auf, die den gemessenen Stromwert mit einem vorgegebenen Referenzstromwert vergleicht und dementsprechend ein digitales Ausgangssignal erzeugt.
  • Andere vorteilhafte Weiterbildungen sind in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung des bevorzugten Ausführungsbeispiels anhand der Figuren erläutert. Es zeigen:
  • Figur 1
    eine erfindungsgemäße Zündanlage sowie
    Figur 2
    Impulsdiagramme zur Verdeutlichung der Datenübertragung zwischen dem Steuergerät und der Zündvorrichtung.
  • Die in Figur 1 dargestellte Zündanlage besteht aus einem Steuergerät 1 und einer Zündvorrichtung 2 mit einer integrierten Zündspule 3 und einer ebenfalls integrierten Zündendstufe 4, wobei das Steuergerät 1 über eine bidirektionale Steuerleitung 5 mit der Zündvorrichtung 2 verbunden ist.
  • Die Steuerleitung 5 ermöglicht zum einen die Steuerung des Ladevorgangs der Zündspule 3 und erlaubt zum anderen eine Rückmeldung von der Zündvorrichtung 2 zu dem Steuergerät 1 über den Ladezustand der Zündspule 3 und die Funkenbrenndauer, wie noch detailliert beschrieben wird.
  • Im folgenden wird zunächst der strukturelle Aufbau der Zündvorrichtung 2 und des Steuergeräts 1 beschrieben, um anschließend auf deren Funktionsweise eingehen zu können.
  • Die Zündspule 3 ist mit der aus einem IGBT bestehenden Zündendstufe 4 und einem Messwiderstand 6 in Reihe zwischen. Batteriespannung UBAT und Masse geschaltet, so dass die Zündspule 3 mit dem Messwiderstand 6 beim Durchschalten der Zündendstufe 4 ein RL-Glied bildet.
  • Das Gate der Zündendstufe 4 ist über einen Treiber 7 mit dem Steuereingang der Zündvorrichtung 2 verbunden, über den die Zündvorrichtung 2 durch die bidirektionale Steuerleitung 5 mit dem Steuergerät 1 verbunden ist. Das Steuergerät 1 kann also über die bidirektionale Steuerleitung 5 die Zündendstufe 4 durchschalten, woraufhin der elektrische Strom durch die Zündspule 3 weitgehend linear ansteigt, wie in Figur 2 dargestellt ist.
  • Ausgangsseitig ist die Zündspule 3 über eine Diode 8 mit einer Zündkerze 9 verbunden, so dass sich die Zündspule 3 beim Sperren der Zündendstufe 4 über die Zündkerze 9 entladen kann, wobei ein Zündfunken erzeugt wird.
  • Zwischen der Zündendstufe 4 und dem Messwiderstand 6 ist ein Abgriff zur Spannungsmessung vorgesehen, der mit einem Messeingang eines Komparators 10 verbunden ist. Der andere Eingang des Komparators ist mit einem Mittenabgriff eines Spannungsteilers verbunden, der aus zwei Widerständen 11, 12 besteht, wobei die Größe des Widerstands 12 einen Referenzstromwert für die Aufladung der Zündspule 3 definiert.
  • Ausgangsseitig ist der Komparator 10 mit der Basis eines Transistors 13 verbunden, der den Steuereingang der Zündvorrichtung über einen Widerstand 14 mit Masse verbindet und eine steuerbare Stromsenke bildet. Beim Durchschalten des Transistors 13 wird der Steuereingang der Zündvorrichtung 2 nämlich über den Widerstand 14 auf Masse gezogen, so dass die Zündvorrichtung 2 über die bidirektionale Verbindungsleitung einen zusätzlichen Strom von dem Steuergerät zieht, was von diesem erkannt werden kann. Das Durchschalten des Transistors 13 erfolgt dann, wenn der Komparator 10 erkennt, dass der durch die Zündspule 3 fließende elektrische Strom den vorgegebenen Referenzstromwert überschreitet.
  • Darüber hinaus weist die Zündvorrichtung 2 eine weitere steuerbare Stromsenke auf, die aus einem Transistor 15 und einem mit Masse verbundenen Widerstand 16 besteht, wobei die Ansteuerung des Transistors 15 durch eine nur schematisch dargestellte Diagnoseschaltung 17 erfolgt.
  • Schließlich ermöglicht die Zündvorrichtung 2 auch noch die Übertragung der Funkenbrenndauer. Hierzu ist der masseseitige Anschluss der Zündspule 3 über einen Widerstand 18 mit einem Eingang eines Komparators 19 verbunden, wobei der andere Eingang des Komparators 19 mit Batteriespannung UBAT verbunden ist. Der Komparator 19 vergleicht also die über der Zündspule 3 abfallende elektrische Spannung mit einem vorgegebenen Referenzspannungswert, um ermitteln zu können, ob ein Zündfunke abgegeben wird.
  • Ausgangsseitig ist der Komparator mit einer steuerbaren Stromquelle verbunden, die aus einem Transistor 20 und einem Widerstand 21 besteht, wobei der Transistor 20 den Steuereingang der Zündvorrichtung 2 beim Durchschalten über den Widerstand 21 mit Batteriespannung UBAT verbindet, so dass die Stromquelle einen Strom über die bidirektionale Steuerleitung treibt, was zu einer Herabsetzung des von der Zündvorrichtung 2 über die bidirektionale Steuerleitung von dem Steuergerät 1 gezogenen elektrischen Stroms führt, wie in Figur 2 dargestellt ist.
  • Im folgenden wird nun der strukturelle Aufbau des Steuergeräts 1 beschrieben.
  • Zur Einleitung des Ladevorgangs für die Zündspule 3 weist das Steuergerät einen Anschluss 22 auf, der beispielsweise von einem nicht dargestellten Mikroprozessor angesteuert werden kann. Der Anschluss 22 ist low-aktiv und über einen Treiber 23 mit der Basis von zwei Transistoren 24, 25 verbunden, wobei der Treiber 23 der Pegelanpassung zwischen der bidirektionalen Steuerleitung 5 und dem Anschluss 22 zur Verbindung mit einem Mikroprozessor dient. Bei einem logischen Low-Pegel an dem Anschluss 22 schaltet also der Transistor 24 durch, wohingegen der Transistor 25 bei einem logisch High-Pegel durchschaltet.
  • Der Transistor 25 ist hierbei masseseitig über einen Messwiderstand 26 mit Masse verbunden und dient im Rahmen der Zünddiagnose zur Bestimmung der von der Zündvorrichtung 2 über die bidirektionale Steuerleitung 5 übertragenen Funkenbrenndauer. Hierzu ist der Messwiderstand 26 mit den beiden Eingängen eines Komparators 27 verbunden, der somit den durch den Messwiderstand 26 fließenden Strom mit einem vorgegebenen Referenzwert vergleicht.
  • Ausgangsseitig ist der Komparator 27 mit der Basis eines Transistors 28 verbunden, der beim Durchschalten einen Anschluss 28 auf Masse zieht. Das digitale Signal an dem Anschluss 29 gibt also den Strom durch den Messwiderstand wieder und ist während der Funkenbrenndauer auf Low.
  • Der Transistor 24 ist über einen Messwiderstand 30 mit Batteriespannung UBAT verbunden, wobei der Messwiderstand 30 wiederum mit den beiden Eingängen eines Komparators 31 verbunden ist, der somit den durch den Messwiderstand 30 fließenden elektrischen Strom mit einem vorgegebenen Referenzwert vergleicht.
  • Ausgangsseitig ist der Komparator 31 mit der Basis eines Transistors 32 verbunden, der beim Durchschalten einen Anschluss 33 auf Masse zieht, so dass der Anschluss 33 einen Low-Pegel annimmt, wenn der Strom durch den Messwiderstand 30 den vorgegebenen Referenzwert übersteigt.
  • Im folgenden wird nun unter Bezugnahme auf die in Figur 2 dargestellten Signalverläufe die Funktionsweise der vorstehend beschriebenen Anordnung erläutert.
  • An dem Anschluss 22 des Steuergeräts 1 liegt ein Signal 34 an, das von einem nicht dargestellten Mikroprozessor erzeugt wird, wobei das Signal 34 während der Low-Phase den Transistor 24 und während der High-Phase den Transistor 25 durchschaltet, so dass die bidirektionale Steuerleitung 5 einen vorgegebenen Signalverlauf 35 mit einem bestimmten elektrischen Potential annimmt.
  • Das Durchschalten des Transistors 24 führt wiederum dazu, dass auch die Zündendstufe 4 in der Zündvorrichtung 2 durchschaltet, so dass durch die Reihenschaltung aus der Zündspule 3, der Zündendstufe 4 und dem Messwiderstand 6 ein annähernd linear zunehmender Strom mit einem vorgegebenen Signalverlauf 36 fließt. Die Linearität des Stromverlaufs 36 folgt aus der Tatsache, dass die Induktivität der Zündspule 3 nicht konstant ist.
  • Die Zunahme des elektrischen Stroms durch die Zündspule 3 und den Messwiderstand 6 führt zu einer zunehmenden Spannungsdifferenz an den Eingängen des Komparators, so dass der Komparator 10 den Transistor 13 durchschaltet, wenn der Strom durch die Zündspule 3 einen vorgegebenen Schwellenwert Ith erreicht. Das Durchschalten des Transistors 3 führt dann dazu, dass die bidirektionale Steuerleitung 5 in der Zündvorrichtung 2 über den Widerstand 14 auf Masse gezogen wird, so dass ein größerer Strom über die bidirektionale Steuerleitung 5 fließt, wie aus dem Signalverlauf 37 ersichtlich ist. Der größere Stromfluss über den Widerstand 30 und die bidirektionale Steuerleitung 5 führt dazu, dass der Komparator 31 den Transistor 32 durchschaltet, so dass der Anschluss 33 auf Masse gezogen wird, wie anhand des Signalverlaufs 38 dargestellt ist.
  • Die Low-Phase des Signalverlaufs 38 wird von einem Zähler in dem nicht dargestellten Mikroprozessor ausgewertet. Nach Ablauf einer vorgegebenen Zeit setzt der Mikropropzessor den Anschluss 22 wieder auf logisch High, so dass der Transistor 24 sperrt und der Transistor 25 durchschaltet, wobei das elektrische Potential auf der bidirektionalen Steuerleitung auf logisch Low gezogen wird, wie an dem Signalverlauf 35 erkennbar ist. Darüber hinaus führt das Sperren des Transistors 24 auch zu einem Sperren der Zündendstufe 4, woraufhin der Strom durch die Zündspule 3 schlagartig einbricht, wie aus dem Signalverlauf 36 entnehmbar ist.
  • Da sich der Strom durch die Zündspule 3 aufgrund der Induktivität der Zündspule 3 nicht schlagartig ändern kann entlädt sich die Zündspule 3 über die Zündkerze 9, so dass ein Zündfunken abgegeben wird. Hierbei wird in der Zündspule 3 primärseitig eine Spannung induziert, wie an dem Signalverlauf 39 erkennbar ist. Die primärseitige Induktion der Spannung in der Zündspule während des Zündvorgangs führt dazu, dass der Komparator 19 den Transistor 20 der steuerbaren Stromquelle durchschaltet, so dass die Zündvorrichtung 2 einen Strom über die bidirektionale Steuerleitung 5 in Richtung des Steuergeräts 1 treibt, wie anhand des Signalverlaufs 37 erkennbar ist. Während des Zündvorgangs ändert sich also die Polarität des über die bidirektionale Steuerleitung 5 fließenden Stroms. Der auf diese Weise von der Zündvorrichtung getriebene Strom fließt über den Transistor 25 und den Messwiderstand 26 gegen Masse, so dass der Komparator 27 den Transistor 28 durchschaltet, woraufhin der Anschluss 29 auf Masse gezogen wird, wie an dem Signalverlauf 40 erkennbar ist. Der Low-Pegel an dem Anschluss 29 signalisiert also die Dauer des Zündfunkens. Auf diese Weise kann der an dem Anschluss 29 angeschlossene nicht dargestellte Mikroprozessor erkennen, ob die in der Zündspule 3 vor dem eigentlichen Zündvorgang gespeicherte elektrische Energie ausgereicht hat, um einen Zündfunken auszulösen.

Claims (7)

  1. Zündvorrichtung (2) für eine Brennkraftmaschine, mit
    einem Ausgang zur elektrischen Aktivierung eines Zündelements (9) für einen Brennraum der Brennkraftmaschine,
    einem elektrischen Energiespeicher (3) zur Speicherung der zur Aktivierung des Zündelements (9) erforderlichen elektrischen Energie,
    einem Steuereingang (5) zur Aufnahme eines den Ladevorgang des Energiespeichers (3) und/oder den Zündvorgang steuernden Steuersignals (35) von einem Steuergerät (1),
    wobei der Steuereingang (5) eine bidirektionale Datenübertragung mit dem Steuergerät (1) ermöglicht, um dem Steuergerät (1) eine Rückmeldung über den Ladevorgang des Energiespeichers (3) und/oder den Zündvorgang des Zündelements (9) zu geben,
    während der Steuereingang (5) mit einer steuerbaren Stromquelle (20, 21) verbunden ist, um an dem Steuereingang (5) ein Stromsignal (37) zur Rückmeldung an das Steuergerät (1) einzuprägen,
    wobei der Energiespeicher (3) mit einer Strommesseinheit (6, 10-12) verbunden ist, die den Ladestrom des Energiespeichers (3) erfasst,
    dadurch gekennzeichnet,
    dass der Steuereingang (5) zusätzlich mit einer steuerbaren Stromsenke (13, 14) verbunden ist, um an dem Steuereingang (5) ein Stromsignal (37) zur Rückmeldung an das Steuergerät (1) einzuprägen, wobei die Strommeßeinheit (6, 10-12) mit der steuerbaren Stromsenke (13, 14) oder mit der steuerbaren Stromquelle (20, 21) verbunden ist,
    und
    dass der Energiespeicher (3) mit einer Spannungsmesseinheit (18, 19) verbunden ist, welche die Zündspannung überwacht, wobei die Spannungsmesseinheit (18, 19) ausgangsseitig mit der steuerbaren Stromquelle (20, 21) oder der steuerbaren Stromsenke verbunden ist, um das Stromsignal (37) an dem Steuereingang in Abhängigkeit von der Zündspannung einzuprägen.
  2. Zündvorrichtung (2) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Strommesseinheit(10 - 12, 6) einen Messwiderstand (6) aufweist, der mit dem Energiespeicher (3) in Reihe geschaltet ist, wobei der Messwiderstand (6) mit einem Eingang eines Komparators (10) verbunden ist, der die über dem Messwiderstand (6) abfallende Spannung mit einem Referenzstromwert vergleicht und die steuerbare Stromquelle bzw. die steuerbare Stromsenke (13, 14) bei einem Überschreiten des Referenzstromwerts aktiviert.
  3. Zündvorrichtung (2) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Spannungsmesseinheit (18, 19) einen Komparator (19) mit zwei Eingängen aufweist, zwischen denen der Energiespeicher (3) geschaltet ist, wobei der Komparator (19) die steuerbare Stromquelle (20, 21) bzw. die steuerbare Stromsenke beim Überschreiten eines vorgegebenen Referenzspannungswerts aktiviert.
  4. Zündvorrichtung (2) nach Anspruch 3,
    dadurch gekennzeichnet,
    dass der Energiespeicher (3) über einen Schutzwiderstand (18) mit dem Komparator verbunden ist.
  5. Steuergerät (1) für eine Zündvorrichtung einer Brennkraftmaschine, mit
    einem Steuerausgang (5) zur Abgabe eines den Ladevorgang des in der Zündvorrichtung (2) angeordneten Energiespeichers und/oder den Zündvorgang eines Zündelements (9) steuernden Steuersignals,
    einer ausgangsseitig mit dem Steuerausgang (5) verbundenen Treiberschaltung zur Erzeugung des Steuersignals (37),
    wobei der Steuerausgang (5) eine bidirektionale Datenübertragung ermöglicht, um eine Rückmeldung von der Zündvorrichtung (2) über den Ladevorgang des Energiespeichers (3) und/oder den Zündvorgang aufnehmen zu können,
    während der Steuerausgang (5) mit einer ersten Strommesseinheit (30, 31, 26, 27) verbunden ist, um ein von der Zündvorrichtung (2) eingeprägtes Stromsignal (37) zu erfassen,
    dadurch gekennzeichnet,
    dass der Steuerausgang (5) zusätzlich mit einer zweiten Strommesseinheit (30, 31) verbunden ist, wobei die erste Strommesseinheit (26, 27) ein von einer steuerbaren Stromsenke (13, 14) in der Zündvorrichtung (2) eingeprägtes Stromsignal erfasst, während die zweite Strommesseinheit (30, 31) ein von einer steuerbaren Stromquelle (20, 21) in der Zündvorrichtung (2) eingeprägtes Stromsignal erfasst.
    und
    dass die beiden Strommesseinheiten (26, 27, 30, 31) über jeweils ein steuerbares Schaltelement (24, 25) mit dem Steuerausgang verbunden sind.
  6. Steuergerät (1) nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der Steuerausgang (5) mit einem Spannungstreiber (23, 24) verbunden ist, um ein Spannungssignal zu der Zündvorrichtung zu übertragen.
  7. Zündanlage mit einer Zündvorrichtung (2) nach einem der Ansprüche 1 bis 4 und einem Steuergerät (1) nach einem der Ansprüche 5 bis 6, wobei das Steuergerät (1) mit der Zündvorrichtung (2) über eine bidirektionale Steuer- und Diagnoseleitung (5) verbunden ist.
EP02737856A 2001-06-06 2002-05-27 Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine Expired - Fee Related EP1392970B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10127363 2001-06-06
DE10127363A DE10127363C1 (de) 2001-06-06 2001-06-06 Zündvorrichtung, Steuergerät und Zündanlage für eine Brennkraftmaschine
PCT/DE2002/001949 WO2002099272A1 (de) 2001-06-06 2002-05-27 Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1392970A1 EP1392970A1 (de) 2004-03-03
EP1392970B1 true EP1392970B1 (de) 2006-11-22

Family

ID=7687324

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02737856A Expired - Fee Related EP1392970B1 (de) 2001-06-06 2002-05-27 Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine

Country Status (6)

Country Link
US (1) US6799564B2 (de)
EP (1) EP1392970B1 (de)
KR (1) KR100869186B1 (de)
DE (2) DE10127363C1 (de)
MX (1) MXPA03011165A (de)
WO (1) WO2002099272A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100179897A1 (en) * 2009-01-09 2010-07-15 Gafford Thomas E Asset tracking system
US8490598B2 (en) * 2009-08-20 2013-07-23 Ford Global Technologies, Llc Ignition coil with ionization and digital feedback for an internal combustion engine
WO2013119178A1 (en) * 2012-02-09 2013-08-15 Sem Ab Engine with misfire detection for vehicles using alternative fuels
DE112014003026B4 (de) 2013-06-26 2024-01-04 Schaeffler Technologies AG & Co. KG Steuergerät
DE112018003202T5 (de) * 2017-06-21 2020-03-05 Walbro Llc Magnetzündsystem und zündsteuerungssystem

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736367A (en) * 1986-12-22 1988-04-05 Chrysler Motors Corporation Smart control and sensor devices single wire bus multiplex system
DE3800932A1 (de) * 1988-01-15 1989-07-27 Telefunken Electronic Gmbh Schliesszeitregelung fuer brennkraftmaschinen mit ausgelagerter zuendendstufe
IT1240136B (it) * 1990-03-19 1993-11-27 Marelli Autronica Sistema di accensione per un motore a combustione interna
DE4020986C2 (de) * 1990-07-02 1998-09-03 Telefunken Microelectron Elektronisches Zündsystem für eine Brennkraftmaschine
IT1260135B (it) * 1992-02-13 1996-03-28 Weber Srl Dispositivo di controllo dell'accensione per un sistema di accensione elettronica di un motore endotermico
EP0566335A3 (de) * 1992-04-14 1994-11-02 Motorola Inc Geschalteter Zündspulentreiber und Methode.
DE4231954C2 (de) * 1992-09-24 1994-10-20 Telefunken Microelectron Zündenergiesteuerung für Brennkraftmaschinen
JP3508258B2 (ja) * 1994-09-09 2004-03-22 株式会社デンソー 内燃機関用点火装置
DE19524539C1 (de) * 1995-07-05 1996-11-28 Telefunken Microelectron Schaltungsanordnung zur Ionenstrommessung im Verbrennungsraum einer Brennkraftmaschine
JPH1026069A (ja) 1996-07-05 1998-01-27 Diamond Electric Mfg Co Ltd 点火装置
JPH10122109A (ja) * 1996-10-17 1998-05-12 Toyota Motor Corp 内燃機関の点火時期制御装置
DE19849258A1 (de) * 1998-10-26 2000-04-27 Bosch Gmbh Robert Verfahren und Vorrichtung zur Energieregelung an Zündsystemen mit primärseitigem Kurzschlußschalter

Also Published As

Publication number Publication date
MXPA03011165A (es) 2004-02-26
US20040123854A1 (en) 2004-07-01
EP1392970A1 (de) 2004-03-03
US6799564B2 (en) 2004-10-05
DE10127363C1 (de) 2002-10-10
WO2002099272A1 (de) 2002-12-12
KR20040008214A (ko) 2004-01-28
DE50208788D1 (de) 2007-01-04
KR100869186B1 (ko) 2008-11-18

Similar Documents

Publication Publication Date Title
EP0303059B1 (de) Diagnosesystem für Steuergeräte eines Kraftfahrzeugs
EP1567759B1 (de) Überwachungsverfahren für einen aktor und zugehörige treiberschaltung
DE2635175A1 (de) Verfahren und vorrichtung zur unterbrechnung der kraftstoffzufuhr bei einer brennkraftmaschine
DE2551610A1 (de) Motorsteuerungssystem
DE3322242A1 (de) Einrichtung zur funktionsueberwachung elektronischer geraete, insbesondere mikroprozessoren
EP1825123B1 (de) Elektrische schaltung zur ansteuerung eines piezoelektrischen elements insbesondere einer kraftstoffeinspritzanlage eines kraftfahrzeugs
DE10143454A1 (de) Fahrzeugsteuereinrichtung
DE102008033965B4 (de) Verbrennungsmotor-Zündvorrichtung
EP1392970B1 (de) Zündvorrichtung, steuergerät und zündanlage für eine brennkraftmaschine
DE112018000220T5 (de) Elektronische Steuervorrichtung und Anomalie/Normalzustands-Bestimmungsverfahren einer elektronischen Steuervorrichtung
DE10335905A1 (de) Verfahren und Vorrichtung zur bidirektionalen Eindraht-Datenübertragung
EP1825529B1 (de) Elektrische schaltung zur ansteuerung eines piezoelektrischen elements insbesondere einer kraftstoffeinspritzanlage eines kraftfahrzeugs
EP0411062B1 (de) Überwachungseinrichtung für ein kraftstoffilter
EP1392971B1 (de) Zündanlage für eine brennkraftmaschine
DE10291613T5 (de) Verfahren und System zum Schutz der in einem Fahrzeug eingebauten Elektronik
DE3805031A1 (de) Schaltungsanordnung zur getakteten versorgung
WO2005040582A2 (de) Diagnoseverfahren für einen elektromechanischen aktor
DE3735234C2 (de) Zündüberwachungseinrichtung zur Erkennung von Zündaussetzern in einer Zündanlage für einen Verbrennungsmotor für ein Kraftfahrzeug
DE3423767C2 (de)
DE4039356C1 (de)
WO1999024293A1 (de) Verfahren und zündschaltung zur auslösung eines insassenschutzsystems
EP0155273B1 (de) Einrichtung zur kraftstoffzummessung bei einer brennkraftmaschine
EP1329731B1 (de) Treiberschaltung
DE2825830A1 (de) Zuendeinrichtung fuer brennkraftmaschinen
DE4342586A1 (de) Anzeigeeinrichtung für elektrische Steuergeräte

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 50208788

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150531

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150521

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50208788

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201