EP1382379B1 - Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators - Google Patents
Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators Download PDFInfo
- Publication number
- EP1382379B1 EP1382379B1 EP03405505A EP03405505A EP1382379B1 EP 1382379 B1 EP1382379 B1 EP 1382379B1 EP 03405505 A EP03405505 A EP 03405505A EP 03405505 A EP03405505 A EP 03405505A EP 1382379 B1 EP1382379 B1 EP 1382379B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- vortex
- vortex generator
- wake
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15D—FLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
- F15D1/00—Influencing flow of fluids
- F15D1/02—Influencing flow of fluids in pipes or conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/313—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
- B01F25/3131—Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/4317—Profiled elements, e.g. profiled blades, bars, pillars, columns or chevrons
- B01F25/43171—Profiled blades, wings, wedges, i.e. plate-like element having one side or part thicker than the other
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/40—Static mixers
- B01F25/42—Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
- B01F25/43—Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
- B01F25/431—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
- B01F25/43197—Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
- B01F25/431971—Mounted on the wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/02—Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
- F23R3/04—Air inlet arrangements
- F23R3/10—Air inlet arrangements for primary air
- F23R3/12—Air inlet arrangements for primary air inducing a vortex
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F2215/00—Auxiliary or complementary information in relation with mixing
- B01F2215/04—Technical information in relation with mixing
- B01F2215/0413—Numerical information
- B01F2215/0436—Operational information
- B01F2215/044—Numerical composition values of components or mixtures, e.g. percentage of components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/20—Heat transfer, e.g. cooling
- F05B2260/221—Improvement of heat transfer
- F05B2260/222—Improvement of heat transfer by creating turbulence
Definitions
- the invention relates to a vortex generator in a fluid channel acted upon by a fluid medium and to a method for controlling the wake flow of such a vortex generator.
- a particular field of application of the invention is the turbulence and mixing of fuel / air mixtures in premix burners.
- Static mixers for shortening the mixing section of flowing fluid media are known in a variety of designs.
- a design of such mixers, which permits intensive mixing of flowing fluid media with comparatively low pressure loss, is the subject of EP 0 623 786 or of CH-A-688 868.
- the static mixers discussed in these documents, hereinafter called vortex generators represent tetrahedron-like bodies which on at least one lateral surface of one of the fluid medium acted upon flow channel are arranged. They comprise three freely flowing, in the flow direction extending active surfaces, a pointing into the flow channel roof surface and two side surfaces. The side surfaces connected to the wall of the flow channel enclose with one another a sweep angle ⁇ , whereas the roof surface extends at an angle of incidence ⁇ to the channel wall.
- Size and strength of the trailing vortices are functions of the element height h, the element length l, the angle of attack ⁇ and the arrow angle ⁇ . By varying these parameters, this provides a simple means of aerodynamically stabilizing a flow at hand. At relatively large angles of incidence ⁇ and / or arrow angles ⁇ , the vorticity of the trailing vortices increases to such an extent that an area of low flow velocity is formed in the core of which, under varying flow conditions, entails the risk of a collapse of the vortex to form a backflow ,
- the design of the vortex generators is therefore always a compromise, on the one hand to form the vortex so that in the shortest possible maximum mixing of the components involved, but on the other hand turn the vortex not so strong form that in the core area of low flow velocity or even a return flow. Since the incorporation of these vortex generators into the flow path is an instrumental measure, once installed, these are invariable. This means that an active influence on permanently or temporarily changed flow conditions is not readily possible. Especially when using these vortex generators in modern gas turbine plants for mixing and turbulence of a fuel / air mixture, this behavior can have negative effects on the flame stability and lead to an undesirable shift in the flame position.
- the invention has for its object to avoid the disadvantages mentioned and safely exclude the formation of a sudströmzone in the core of the wake, even under changing flow conditions in the flow channel and expand the scope and variability of these vortex generators. Furthermore, the invention has for its object to provide a method for controlling the wake flow of such vortex generators.
- the basic idea of the invention is to increase the axial velocity in the vortex core by deliberately introducing an axial impulse into the core flow of the wake vortex.
- this axial pulse is introduced by introducing an at least approximately aligned in the flow direction secondary flow in the immediate region of the core flow.
- one of the components to be mixed is introduced as secondary flow into the flow channel. It has proved to be advantageous in this case to introduce the secondary flow via outlet openings on the vortex generator into the core flow of the wake vortex.
- the outlet openings of the secondary medium in the region of the side surfaces of the vortex generator or at the downstream edge are arranged.
- the outlet opening is arranged in half chord length of the side surface below the trailing edge.
- the secondary flow can be introduced from a single opening on the vortex generator in the core flow or from a number of outlet openings, which are aligned with the vortex core.
- the cooling bores arranged at or near the vortex generators in a targeted manner for introducing an additional axial momentum. This can be achieved be such that a part of the cooling holes is modified so that an increased axial momentum is introduced into the core flow of the trailing vortices.
- the outlet openings are configured according to their geometry, for example with regard to their orientation and / or their throughput.
- the inventive measures are readily suitable as a retrofit measure for retrofitting already installed vortex generators according to the prior art by introducing appropriate outlet openings and means are provided for supplying a secondary fluid in the hollow interior of the vortex generators.
- Vortex generators which are already equipped for cooling or admixing purposes with means for supplying a secondary fluid and with outlet openings, can be retrofitted by a modified design of the geometry of the outlet openings (Fig.4b, 5b).
- the invention allows to react actively to temporarily or permanently changed flow conditions.
- the mass flow of the secondary flow is very low. It is in the range between 0.1% and 5%, in particular between 0.5% and 1.5%, based on the total mass flow.
- FIGS. 1 and 2 show in principle the mode of operation of a vortex generator (2) acted upon by a flow (1) according to the prior art.
- a vortex generator (2) has three freely flowing, in the flow direction surfaces, two side surfaces (3) and (4) and perpendicular to a roof surface (5), wherein the side surfaces (3) and (4) has a right triangle and the roof surface (5) form an isosceles triangle.
- the side surfaces (3) and (4) are substantially perpendicular to the channel wall (6), without this being a mandatory requirement, and are preferably fixed gas-tight with one of its sides Kathetencount to the channel wall (6).
- the symmetry axis of the vortex generators (2) is aligned parallel to the flow direction.
- the vortex generator (2) may also be provided with a bottom surface by means of which it is fixed in a suitable manner to the channel wall (6).
- a floor surface is not related to the operation of the vortex generator.
- the operation of the vortex generator (2) is substantially as set forth below.
- a channel flow (1) flows to the vortex generator (2) and is deflected by the roof surface (5). Due to the sudden cross-sectional widening when overflowing the trailing edges (9) and (10) forms a pair of counter-rotating trailing vortices (11) whose axes are in the axis of the main flow.
- Vorticity and swirl number are significantly determined by the angle of attack ⁇ and the arrow angle ⁇ . With increasing angles, the vorticity and swirl number are increased and in the core of the trailing vortices an area of lower axial velocity forms immediately behind the vortex generator (2) (dark areas in Figure 2), which can lead to a "vortex breakdown".
- FIG. 3 illustrates in a highly schematic way the basic principle of the solution described.
- an axial pulse for influencing the core flow is introduced into the trailing vortex (11).
- an additional pulse is generated by a secondary flow (13) in the vicinity of the vortex core, which is drawn by the inductive effect of the swirl flow in the region of the vortex core.
- the vortex (11) stabilizes and the wake flow is accelerated.
- the vortex breakdown slows down and shifts downstream.
- the vortex generator (2) is equipped with at least one outlet opening (12) for a fluid medium in the area of the side face (3).
- the outlet opening (12) is arranged and aligned, for example at half chord length below the outflow edge (9), so that the exiting fluid jet (13) penetrates into the core flow of the wake vortex (11) and reinforces the axial velocity in this area.
- the location of vortex breakdown is shifted downstream.
- FIG 5 an alternative possibility for introducing a secondary flow is shown schematically. Thereafter, the at least one outlet opening (12) for introducing the secondary flow in the region of the downstream butt edge (7) of the vortex generator (2) is arranged. This may be a circular outlet opening (12) at half the height of the vortex generator (2), a number of such Openings in this area or a slot-shaped outlet opening (12).
- FIG. 7 shows that, despite acceleration of the vortex core, the vortex strength is not weakened.
- the mass-average vorticity strength downstream of the vortex generator actually increases by up to 50%.
- the Varinate A represents the reference case of a vortex generator, which is set so strong that forms an area of low flow velocity in the wake.
- Variations B and C represent the conditions in a vortex generator according to the invention, in which a secondary current in half chord length of a side surface (variant B) or at the downstream butt edge (variant C) is applied.
- the vortex generators (2) shown here symmetrically and parallel to the flow direction.
- This spin-like vortex (11) are generated.
- the vortex generator (2) instead of a pair of opposing vortices (11), only one trailing vortex is used (11) generated on the swept side. As a result, the main flow (1) is forced to spin.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Gas Burners (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Percussion Or Vibration Massage (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10233111 | 2002-07-20 | ||
DE10233111 | 2002-07-20 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1382379A2 EP1382379A2 (de) | 2004-01-21 |
EP1382379A3 EP1382379A3 (de) | 2004-05-12 |
EP1382379B1 true EP1382379B1 (de) | 2007-05-30 |
Family
ID=29762099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03405505A Expired - Lifetime EP1382379B1 (de) | 2002-07-20 | 2003-07-07 | Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators |
Country Status (4)
Country | Link |
---|---|
US (1) | US20040037162A1 (enrdf_load_stackoverflow) |
EP (1) | EP1382379B1 (enrdf_load_stackoverflow) |
JP (1) | JP2004069061A (enrdf_load_stackoverflow) |
DE (2) | DE10330023A1 (enrdf_load_stackoverflow) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8186942B2 (en) | 2007-12-14 | 2012-05-29 | United Technologies Corporation | Nacelle assembly with turbulators |
US8192147B2 (en) | 2007-12-14 | 2012-06-05 | United Technologies Corporation | Nacelle assembly having inlet bleed |
US8282037B2 (en) | 2007-11-13 | 2012-10-09 | United Technologies Corporation | Nacelle flow assembly |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7383850B2 (en) * | 2005-01-18 | 2008-06-10 | Peerless Mfg. Co. | Reagent injection grid |
US7350963B2 (en) * | 2005-02-04 | 2008-04-01 | Hamilton Beach Brands, Inc. | Blender jar |
US7797944B2 (en) | 2006-10-20 | 2010-09-21 | United Technologies Corporation | Gas turbine engine having slim-line nacelle |
US7870721B2 (en) * | 2006-11-10 | 2011-01-18 | United Technologies Corporation | Gas turbine engine providing simulated boundary layer thickness increase |
US8727267B2 (en) * | 2007-05-18 | 2014-05-20 | United Technologies Corporation | Variable contraction ratio nacelle assembly for a gas turbine engine |
US8402739B2 (en) * | 2007-06-28 | 2013-03-26 | United Technologies Corporation | Variable shape inlet section for a nacelle assembly of a gas turbine engine |
US9228534B2 (en) | 2007-07-02 | 2016-01-05 | United Technologies Corporation | Variable contour nacelle assembly for a gas turbine engine |
US7900871B2 (en) * | 2007-07-20 | 2011-03-08 | Textron Innovations, Inc. | Wing leading edge having vortex generators |
EP2230455B1 (en) * | 2009-03-16 | 2012-04-18 | Alstom Technology Ltd | Burner for a gas turbine and method for locally cooling a hot gases flow passing through a burner |
US8528601B2 (en) * | 2009-03-30 | 2013-09-10 | The Regents Of The University Of Michigan | Passive boundary layer control elements |
US20110006165A1 (en) * | 2009-07-10 | 2011-01-13 | Peter Ireland | Application of conformal sub boundary layer vortex generators to a foil or aero/ hydrodynamic surface |
KR101005661B1 (ko) * | 2009-09-08 | 2011-01-05 | 김낙회 | 유체 흐름을 이용한 추진기구 |
US8434723B2 (en) * | 2010-06-01 | 2013-05-07 | Applied University Research, Inc. | Low drag asymmetric tetrahedral vortex generators |
US8881500B2 (en) * | 2010-08-31 | 2014-11-11 | General Electric Company | Duplex tab obstacles for enhancement of deflagration-to-detonation transition |
WO2012082324A1 (en) | 2010-12-16 | 2012-06-21 | Inventus Holdings, Llc | A method for determining optimum vortex generator placement for maximum efficiency on a retrofitted wind turbine generator of unknown aerodynamic design |
RU2561956C2 (ru) | 2012-07-09 | 2015-09-10 | Альстом Текнолоджи Лтд | Газотурбинная система сгорания |
KR20140018036A (ko) * | 2012-08-03 | 2014-02-12 | 김낙회 | 유체흐름을 이용한 추진기구 |
CN105431632A (zh) * | 2012-11-30 | 2016-03-23 | 伦斯勒理工学院 | 改变建筑物结构处的气流的方法及系统 |
RU2596077C2 (ru) * | 2014-12-15 | 2016-08-27 | Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) | Щелевой инжектор-генератор вихрей и способ его работы |
EP3081862B1 (en) | 2015-04-13 | 2020-08-19 | Ansaldo Energia Switzerland AG | Vortex generating arrangement for a pre-mixing burner of a gas turbine and gas turbine with such vortex generating arrangement |
JP6377569B2 (ja) * | 2015-04-28 | 2018-08-22 | 住友金属鉱山株式会社 | 流体吹込装置及びこれを用いた化学反応装置 |
US9982915B2 (en) | 2016-02-23 | 2018-05-29 | Gilles Savard | Air heating unit using solar energy |
CN108121864B (zh) * | 2017-12-15 | 2021-05-25 | 北京理工大学 | 一种基于涡流发生器的端壁横向二次流控制方法 |
CN108536907B (zh) * | 2018-03-01 | 2021-11-30 | 华北电力大学 | 一种基于简化动量定理的风电机组远场尾流解析建模方法 |
CN108629461B (zh) * | 2018-05-14 | 2021-11-12 | 华北电力大学 | 一种基于简化动量定理的近场尾流预测模型 |
US12050012B2 (en) | 2020-03-31 | 2024-07-30 | Siemens Energy Global GmbH & Co. KG | Burner component of a burner, and burner of a gas turbine having a burner component of this type |
JP7063973B1 (ja) * | 2020-11-27 | 2022-05-09 | 三菱重工業株式会社 | 風車翼用のボルテックスジェネレータ、風車翼及び風力発電装置並びに風車翼の製造方法 |
CN115493445A (zh) * | 2022-09-13 | 2022-12-20 | 西北工业大学深圳研究院 | 一种增强整体换热性能的开缝三角小翼对涡流发生器 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1454196A (en) * | 1921-07-16 | 1923-05-08 | Trood Samuel | Device for producing and utilizing combustible mixture |
US1466006A (en) * | 1922-09-14 | 1923-08-28 | Trood Samuel | Apparatus for producing and utilizing combustible mixture |
SE320225B (enrdf_load_stackoverflow) * | 1968-06-17 | 1970-02-02 | Svenska Flygmotorer Ab | |
US3671208A (en) * | 1970-10-09 | 1972-06-20 | Wayne G Medsker | Fluid mixing apparatus |
US4026527A (en) * | 1976-05-03 | 1977-05-31 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Vortex generator for controlling the dispersion of effluents in a flowing liquid |
US4164375A (en) * | 1976-05-21 | 1979-08-14 | E. T. Oakes Limited | In-line mixer |
DE3043239C2 (de) * | 1980-11-15 | 1985-11-28 | Balcke-Dürr AG, 4030 Ratingen | Verfahren und Vorrichtung zum Vermischen mindestens zweier fluider Teilströme |
US4899772A (en) * | 1988-10-20 | 1990-02-13 | Rockwell International Corporation | Mixing aids for supersonic flows |
US5422443A (en) * | 1991-10-18 | 1995-06-06 | Hughes Missile Systems Company | Rocket exhaust disrupter shapes |
US5361828A (en) * | 1993-02-17 | 1994-11-08 | General Electric Company | Scaled heat transfer surface with protruding ramp surface turbulators |
EP0619133B1 (de) * | 1993-04-08 | 1996-11-13 | ABB Management AG | Mischkammer |
EP0623786B1 (de) * | 1993-04-08 | 1997-05-21 | Asea Brown Boveri Ag | Brennkammer |
DE59401295D1 (de) * | 1993-04-08 | 1997-01-30 | Abb Management Ag | Mischkammer |
CH687832A5 (de) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Brennstoffzufuehreinrichtung fuer Brennkammer. |
CH687831A5 (de) * | 1993-04-08 | 1997-02-28 | Asea Brown Boveri | Vormischbrenner. |
CH688868A5 (de) * | 1993-04-08 | 1998-04-30 | Asea Brown Boveri | Durchstroemter Kanal mit einem Wirbelgenerator |
DE59401177D1 (de) * | 1993-04-08 | 1997-01-16 | Abb Management Ag | Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung |
DE4411622A1 (de) * | 1994-04-02 | 1995-10-05 | Abb Management Ag | Vormischbrenner |
DE4417538A1 (de) * | 1994-05-19 | 1995-11-23 | Abb Management Ag | Brennkammer mit Selbstzündung |
DE4426351B4 (de) * | 1994-07-25 | 2006-04-06 | Alstom | Brennkammer für eine Gasturbine |
DE19510744A1 (de) * | 1995-03-24 | 1996-09-26 | Abb Management Ag | Brennkammer mit Zweistufenverbrennung |
DE19520291A1 (de) * | 1995-06-02 | 1996-12-05 | Abb Management Ag | Brennkammer |
DE19544816A1 (de) * | 1995-12-01 | 1997-06-05 | Abb Research Ltd | Mischvorrichtung |
DE19820992C2 (de) * | 1998-05-11 | 2003-01-09 | Bbp Environment Gmbh | Vorrichtung zur Durchmischung eines einen Kanal durchströmenden Gasstromes und Verfahren unter Verwendung der Vorrichtung |
DE19905996A1 (de) * | 1999-02-15 | 2000-08-17 | Abb Alstom Power Ch Ag | Brennstofflanze zum Eindüsen von flüssigen und/oder gasförmigen Brennstoffen in eine Brennkammer |
WO2000062915A1 (en) * | 1999-04-19 | 2000-10-26 | Koch-Glitsch, Inc. | Vortex static mixer and method employing same |
US6886973B2 (en) * | 2001-01-03 | 2005-05-03 | Basic Resources, Inc. | Gas stream vortex mixing system |
FI116147B (fi) * | 2001-02-21 | 2005-09-30 | Metso Paper Inc | Järjestely paperinvalmistusprosessin virtausten sekoittamiseksi |
EP1439349A1 (de) * | 2003-01-14 | 2004-07-21 | Alstom Technology Ltd | Verbrennungsverfahren sowie Brenner zur Durchführung des Verfahrens |
US6907919B2 (en) * | 2003-07-11 | 2005-06-21 | Visteon Global Technologies, Inc. | Heat exchanger louver fin |
PL1568410T3 (pl) * | 2004-02-27 | 2010-09-30 | Haldor Topsoe As | Urządzenie do mieszania strumieni płynu |
ATE363335T1 (de) * | 2005-01-17 | 2007-06-15 | Balcke Duerr Gmbh | Vorrichtung und verfahren zum mischen eines fluidstroms in einem strömungskanal |
-
2003
- 2003-07-03 DE DE10330023A patent/DE10330023A1/de not_active Withdrawn
- 2003-07-07 DE DE50307355T patent/DE50307355D1/de not_active Expired - Lifetime
- 2003-07-07 EP EP03405505A patent/EP1382379B1/de not_active Expired - Lifetime
- 2003-07-18 JP JP2003276883A patent/JP2004069061A/ja active Pending
- 2003-07-18 US US10/621,379 patent/US20040037162A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8282037B2 (en) | 2007-11-13 | 2012-10-09 | United Technologies Corporation | Nacelle flow assembly |
US8596573B2 (en) | 2007-11-13 | 2013-12-03 | United Technologies Corporation | Nacelle flow assembly |
US9004399B2 (en) | 2007-11-13 | 2015-04-14 | United Technologies Corporation | Nacelle flow assembly |
US8186942B2 (en) | 2007-12-14 | 2012-05-29 | United Technologies Corporation | Nacelle assembly with turbulators |
US8192147B2 (en) | 2007-12-14 | 2012-06-05 | United Technologies Corporation | Nacelle assembly having inlet bleed |
Also Published As
Publication number | Publication date |
---|---|
DE50307355D1 (de) | 2007-07-12 |
DE10330023A1 (de) | 2004-02-05 |
JP2004069061A (ja) | 2004-03-04 |
EP1382379A2 (de) | 2004-01-21 |
EP1382379A3 (de) | 2004-05-12 |
US20040037162A1 (en) | 2004-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1382379B1 (de) | Verfahren zur Kontrolle der Nachlaufströmung eines Wirbelgenerators | |
EP0619457B1 (de) | Vormischbrenner | |
EP0620403B1 (de) | Misch- und Flammenstabilisierungseinrichtung in einer Brennkammer mit Vormischverbrennung | |
EP0794383B1 (de) | Verfahren zum Betreiben einer Druckzerstäuberdüse | |
EP0619133B1 (de) | Mischkammer | |
EP0623786B1 (de) | Brennkammer | |
EP0604741B1 (de) | Dralldüse zum Zerstäuben einer Flüssigkeit | |
DE4214088C2 (de) | Treibstoffeinspritzvorrichtung zum Einspritzen von Treibstoff in einen Überschall-Luftstrom | |
DE10303858A1 (de) | Kraftstoff-Einspritzdüsenbaugruppe mit induzierten Turbulenzen | |
DE2946606C2 (enrdf_load_stackoverflow) | ||
CH687832A5 (de) | Brennstoffzufuehreinrichtung fuer Brennkammer. | |
DE19730617A1 (de) | Druckzerstäuberdüse | |
EP1986788A1 (de) | Zweistoffdüse mit kreisförmig angeordneten sekundärluftdüsen | |
EP0775869B1 (de) | Vormischbrenner | |
EP0924460B1 (de) | Zweistufige Druckzerstäuberdüse | |
EP0807213B1 (de) | Strömungsleitkörper für eine gasturbinen-brennkammer | |
EP0924461B1 (de) | Zweistufige Druckzerstäuberdüse | |
EP0742411B1 (de) | Luftzuströmung zu einer Vormischbrennkammer | |
CH702598A1 (de) | Einspritzdüse sowie Verfahren zum Betrieb einer solchen Einspritzdüse. | |
DE19708218C2 (de) | Gasbrenner | |
EP2478211B1 (de) | Düsenbaugruppe für ein einspritzventil und einspritzventil | |
DE19639301A1 (de) | Brenner zum Betrieb einer Brennkammer | |
DE1451351B2 (de) | Zerstaeubungsdrallduese mit nur einem brennstoffzufuhrkanal | |
CH687827A5 (de) | Gasturbinenanlage mit einer Druckwellenmaschine. | |
CH688868A5 (de) | Durchstroemter Kanal mit einem Wirbelgenerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ALSTOM TECHNOLOGY LTD |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
17P | Request for examination filed |
Effective date: 20041030 |
|
AKX | Designation fees paid |
Designated state(s): DE GB |
|
17Q | First examination report despatched |
Effective date: 20050503 |
|
RTI1 | Title (correction) |
Free format text: PROCESS FOR CONTROLLING THE DOWNSTREAM FLOWPATTERN OF A VORTEX GENERATOR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50307355 Country of ref document: DE Date of ref document: 20070712 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070716 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080303 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50307355 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50307355 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH Ref country code: DE Ref legal event code: R081 Ref document number: 50307355 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170727 AND 20170802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50307355 Country of ref document: DE Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE Ref country code: DE Ref legal event code: R081 Ref document number: 50307355 Country of ref document: DE Owner name: ANSALDO ENERGIA SWITZERLAND AG, CH Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170719 Year of fee payment: 15 Ref country code: DE Payment date: 20170724 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50307355 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180707 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190201 |