EP1366641B1 - Keramik-kochfeld - Google Patents

Keramik-kochfeld Download PDF

Info

Publication number
EP1366641B1
EP1366641B1 EP02702359A EP02702359A EP1366641B1 EP 1366641 B1 EP1366641 B1 EP 1366641B1 EP 02702359 A EP02702359 A EP 02702359A EP 02702359 A EP02702359 A EP 02702359A EP 1366641 B1 EP1366641 B1 EP 1366641B1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
intermediate layer
tio
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02702359A
Other languages
English (en)
French (fr)
Other versions
EP1366641A1 (de
Inventor
Karsten Wermbter
Andreas Killinger
Christian Friedrich
Chuanfei Li
Rainer Gadow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Priority to DK02702359T priority Critical patent/DK1366641T3/da
Publication of EP1366641A1 publication Critical patent/EP1366641A1/de
Application granted granted Critical
Publication of EP1366641B1 publication Critical patent/EP1366641B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/141Conductive ceramics, e.g. metal oxides, metal carbides, barium titanate, ferrites, zirconia, vitrous compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater

Definitions

  • the invention relates to a ceramic hob with a hotplate made of glass ceramic or glass, with an electrical heating conductor layer, with an insulating layer between the hotplate and the heating conductor layer, and with an electrically conductive Intermediate layer between the hotplate and the insulating layer.
  • Such a ceramic hob is known from DE 31 05 065 C2 and known from US 6 037 572.
  • the hotplate according to DE 31 05 065 C2 consists of glass ceramic, a metallic layer on the underside, for example is applied by a spray process on which again a ceramic insulating layer by a Spraying process is applied, finally on a heating element evaporated or applied in a spraying process is.
  • thermal expansion coefficients of the materials used While such ceramic hobs must be designed for operating temperatures of up to about 600 ° C, considerable problems can arise due to the differences in the thermal expansion coefficients of the materials used. While the thermal expansion coefficient for a glass ceramic, for example for a Ceran® glass ceramic from Schott, is in the order of magnitude of ⁇ 0.15 x 10 -6 K -1 , the thermal expansion coefficient of ceramic materials is significantly higher. For example, the thermal expansion coefficient "for Al 2 O 3 is approximately 8 x 10 -6 K -1 . In contrast, the thermal expansion coefficients of metals are significantly higher.
  • the application procedure for the individual shifts includes the thermal spraying has become known because of this on relative applied a variety of materials in a cost-effective manner can be. Because of the high speed and the high temperature is usually a sufficiently good one Liability reached.
  • layers should be thicker than about 100 microns are applied because of the differences the coefficient of thermal expansion between the Glass ceramic and the other layers mostly substantial Adhesion problems.
  • aluminum oxide layers which have the necessary dielectric strength and thus a thickness of the order of a few hundred have ⁇ m, although easily produced by thermal spraying, however, there are usually cracks or the layers tend to flake off during use, because of the rapid changes in temperature during the Operating significant thermal stresses arise.
  • the dielectric strength requirements can be reduced be when according to DE 31 05 065 C2 or according to US 6 037 572 between the insulating layer and the hotplate an electrically conductive layer is applied that is grounded becomes. In such a case, enough for the ceramic Insulation layer has a dielectric strength of approximately 1500 volts to ensure the necessary operational safety in accordance with VDE guarantee.
  • the layer thickness of the ceramic insulating layer be significantly reduced, causing the problems due to of the different thermal expansions is reduced become.
  • the invention is therefore based on the object of a ceramic hob to improve in accordance with the type mentioned at the beginning, that the operational safety of the ceramic hob improves and a good long-term resistance in rough everyday use is guaranteed.
  • This task is performed on a ceramic hob according to the above mentioned type according to the invention solved in that the Intermediate layer a thermally sprayed layer from a is electrically conductive ceramic or from a cermet.
  • the intermediate layer in the form of a electrically conductive ceramics will be a much better match of the coefficient of expansion of the intermediate layer to the Coefficient of expansion of the hotplate almost reached is zero because the coefficient of expansion of suitable ceramic materials is significantly lower than the coefficient of expansion of metals. Even when using a The cermet layer results from a metallic Matrix embedded ceramic particles a reduced thermal expansion, reducing the thermal stresses be reduced.
  • the intermediate layer is an oxide layer, which is lost due to oxygen loss thermal spraying is electrically conductive.
  • the intermediate layer can be made, in particular, of TiO 2 , of a mixture of Al 2 O 3 with a TiO 2 content of at least 50% by weight, preferably of at least 90% by weight, of ZrO 2 , of a mixture of Al 2 O 3 with ZrO 2 with a proportion of ZrO 2 of at least 50 wt .-%, preferably of at least 90 wt .-%, of a mixture of TiO 2 and ZrO 2, or of a mixture of Al 2 O 3 with TiO 2 and ZrO 2 with a proportion of at least 50% by weight, preferably at least 90% by weight, of TiO 2 and ZrO 2 .
  • These intermediate layers made of TiO 2-x , ZrO 2-x or from mixtures of Al 2 O 3 with TiO 2-x and / or ZrO 2-x have particularly good adhesion to a glass ceramic surface. Thermal spraying reduces the oxygen content to such an extent that this material becomes electrically conductive.
  • TiO 2-x with x 0.1 a volume conductivity of about 10 3 ohm x cm to about 5 x 10 2 ohm x cm (at room temperature).
  • TiO 2-x appears to be particularly suitable for use as a conductive intermediate layer.
  • the intermediate layer can also consist of one Cermet can be made with a metal matrix. It points the metal matrix preferably at least one of the components Nickel, cobalt and chrome.
  • the Intermediate layer made of a cermet with a metal matrix, which is an alloy of the main components nickel, Is cobalt and chrome.
  • Particles of carbide such as from tungsten carbide, chromium carbide or the like, be stored.
  • This adhesion promoter layer preferably consists of Aluminum oxide, titanium oxide or mixtures thereof and is preferably applied by thermal spraying.
  • the insulating layer applied to the intermediate layer is preferably made of cordierite or mullite and is preferably applied by thermal spraying.
  • the use of these ceramics to produce the insulating layer has the advantage of a relatively low coefficient of thermal expansion which is between approximately 4.3 and 5.0 x 10 -6 K -1 for mullite and between approximately 2.2 and 2.4 x 10 -6 K -1 for cordierite. As a result of the low coefficient of thermal expansion, there are lower stresses in connection with the hotplate made of glass ceramic.
  • Fig. 1 is an inventive ceramic hob in cross section shown and designated overall by the number 10.
  • the ceramic hob has a hotplate 12 made of glass ceramic, such as Ceran®. This hotplate 12 is used to hold cooking vessels. On the underside of the hotplate 12, a hotplate is generated at different locations. For household purposes, typically four or possibly five hotplates are provided on a ceramic hob. Only one hotplate is shown in FIGS. 1 and 2.
  • An intermediate layer of TiO 2 was applied to the underside of the hotplate 12 by thermal spraying. This can be done, for example, by means of atmospheric plasma spraying (APS) with a layer thickness of approximately 50-250 ⁇ m.
  • APS atmospheric plasma spraying
  • the respective layers are preferably applied only in the area of the respective hotplates in order to keep the total voltages as low as possible.
  • the glass ceramic is cleaned, e.g. degreased with acetone. On thermal spraying otherwise usual pretreatment by sandblasting is omitted, as this would damage the glass ceramic.
  • an insulating layer 16 is on in turn by atmospheric plasma spraying sprayed, which preferably consists of cordierite (2MgO ⁇ 2Al 2 O 3 ⁇ 5SiO 2) or consists of mullite (3Al 2 O 3 ⁇ 2SiO 2).
  • the layer thickness of the insulating layer 16 depends on the desired one Dielectric strength and the material used from time to time is between about 100 and 500 microns, preferably between about 150 and 300 ⁇ m.
  • a heating conductor layer is then placed on the insulating layer 18, approximately in the form of a meander-shaped heating conductor 20 generated.
  • the heating conductor 20 can be in a known manner a screen printing process are applied, whereby by a glassy content of mostly more than 5% the flow temperatures can be reduced in such a way in the layer penetration that Baking temperatures between about 500 and 850 ° C, where a dense, closed conductor layer is created.
  • the heating conductor layer 18 can also be passed through thermal spraying are generated. To do this, start with a part that is not to be coated in a conventional masking process masked and then the exposed parts by thermal Syringes coated with the heating conductor material.
  • the previously covered part can then be removed, see above that a winding heating conductor 20 is formed, the individual Heating conductor tracks are insulated from each other.
  • FIG. 2 A modification of the ceramic hob is shown in Fig. 2 and designated overall by the number 10 '.
  • the adhesion promoter layer 24 preferably consists of Al 2 O 3 or a mixture of Al 2 O 3 and TiO 2 , for example 97% by weight Al 2 O 3 and 3% by weight TiO 2 .
  • the adhesion promoter layer 24 is thermally sprayed with a layer thickness of approximately 10 to 150 ⁇ m, preferably by APS.
  • the preferred layer thickness is of the order of about 30 to 100 ⁇ m.
  • a cermet layer consisting of a nickel / cobalt / chromium alloy with embedded carbide particles (tungsten carbide, chromium carbide etc.) is then sprayed onto the adhesion promoter layer 24.
  • the intermediate layer 14 ' is produced with a layer thickness of approximately 50 to 250 ⁇ m, preferably approximately 50 to 100 ⁇ m. Then the insulating layer 16 and the heat conductor layer 18 are then applied in the manner already described with reference to FIG. 1.
  • Fig. 1 there is also an annular recess 26 shown, the intermediate layer 14 at its edge region encloses in a ring.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cookers (AREA)
  • Baking, Grill, Roasting (AREA)
  • Inorganic Insulating Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

Die Erfindung betrifft ein Keramik-Kochfeld mit einer Kochplatte aus Glaskeramik oder Glas, mit einer elektrischen Heizleiterschicht, mit einer Isolierschicht zwischen der Kochplatte und der Heizleiterschicht, und mit einer elektrisch leitfähigen Zwischenschicht zwischen der Kochplatte und der Isolierschicht.
Ein derartiges Keramik-Kochfeld ist aus der DE 31 05 065 C2 und aus der US 6 037 572 bekannt.
Die Kochplatte gemäß der DE 31 05 065 C2 besteht aus Glaskeramik, auf deren Unterseite eine metallische Schicht zum Beispiel durch ein Spritzverfahren aufgebracht ist, auf der wiederum eine keramische Isolierschicht gleichfalls durch ein Spritzverfahren aufgebracht ist, auf der schließlich ein Heizleiterelement aufgedampft oder in einem Spritzverfahren aufgebracht ist.
Bekanntlich besitzen Glaskeramiken, die für Kochfelder verwendet werden, eine NTC-Charakteristik, d.h. bei ansteigenden Temperaturen nimmt die elektrische Leitfähigkeit merklich zu. Um einen Stromfluß zwischen einem metallischen Topf bzw. der Oberfläche der Kochplatte und dem Heizleiter zu unterbinden, ist deshalb eine elektrische Isolationsschicht zum Betrieb eines solchen Kochsystems Voraussetzung. Um die notwendigen Sicherheitsanforderungen zu erfüllen, muß das System bei Betriebstemperaturen eine Durchschlagsfestigkeit von 3 750 Volt aufweisen.
Da solche keramischen Kochfelder für Betriebstemperaturen von bis zu etwa 600° C ausgelegt sein müssen, können sich erhebliche Probleme aufgrund der Unterschiede der thermischen Ausdehnungskoeffizienten der verwendeten Materialien ergeben. Während der thermische Ausdehnungskoeffizient für eine Glaskeramik, etwa für eine Glaskeramik der Marke Ceran® von Schott in der Größenordnung von ± 0,15 x 10-6K-1 liegt, sind die thermischen Ausdehnungskoeffizienten von keramischen Materialien deutlich höher. So beträgt der thermische Ausdehnungskoeffizient " für Al2O3 beispielsweise etwa 8 x 10-6K-1. Dagegen liegen die thermischen Ausdehnungskoeffizienten von Metallen noch deutlich höher.
Als Auftragsverfahren für die einzelnen Schichten ist u.a. das thermische Spritzen bekannt geworden, da hiermit auf relativ kostengünstige Weise die unterschiedlichste Materialien aufgetragen werden können. Durch die hohe Geschwindigkeit und die hohe Temperatur wird dabei auch meist eine ausreichend gute Haftung erreicht.
Sollen jedoch Schichten einer Dicke von mehr als etwa 100 µm aufgetragen werden, so ergeben sich gerade aufgrund der Unterschiede der thermischen Ausdehnungskoeffizienten zwischen der Glaskeramik und den anderen Schichten meist erhebliche Haftungsprobleme. So lassen sich beispielsweise Aluminiumoxid-Schichten, die die notwendige Durchschlagsfestigkeit aufweisen und somit eine Dicke in der Größenordnung von einigen hundert µm besitzen, zwar ohne weiteres durch thermisches Spritzen erzeugen, jedoch ergeben sich hierbei in der Regel Rißbildungen oder die Schichten neigen zum Abplatzen während des Gebrauchs, da infolge der schnellen Temperaturveränderungen während des Betriebs erhebliche thermische Spannungen entstehen.
Die Anforderungen an die Durchschlagsfestigkeit können reduziert werden, wenn gemäß der DE 31 05 065 C2 oder gemäß der US 6 037 572 zwischen der Isolierschicht und der Kochplatte eine elektrische leitfähige Schicht aufgebracht wird, die geerdet wird. In einem solchen Fall reicht für die keramische Isolierschicht eine Durchschlagsfestigkeit von etwa 1500 Volt aus, um die notwendige Betriebssicherheit nach VDE zu gewährleisten.
Auf diese Weise kann die Schichtdicke der keramischen Isolierschicht deutlich reduziert werden, wodurch die Probleme aufgrund der unterschiedlichen thermischen Ausdehnungen vermindert werden.
Andererseits hat die Verwendung einer metallischen Zwischenschicht gemäß der DE 31 05 065 C2 oder gemäß der US 6 037 572 den Nachteil, daß eine weitere Schicht in den Verbund eingeführt wird, die nochmals einen erheblich höheren thermischen Ausdehnungskoeffizienten als die Kochplatte besitzt, wodurch die Stabilität des Gesamtsystems nachteilig beeinflußt wird.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Keramik-Kochfeld gemäß der eingangs genannten Art derart zu verbessern, daß die Betriebssicherheit des Keramik-Kochfeldes verbessert wird und eine gute Langzeitbeständigkeit im rauhen Alltagsbetrieb gewährleistet ist.
Diese Aufgabe wird bei einem Keramik-Kochfeld gemäß der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß die Zwischenschicht eine thermisch gespritzte Schicht aus einer elektrisch leitfähigen Keramik oder aus einem Cermet ist.
Die Aufgabe der Erfindung wird auf diese Weise vollkommen gelöst.
Durch die Ausbildung der Zwischenschicht in Form einer elektrisch leitfähigen Keramik wird eine erheblich bessere Anpassung des Ausdehnungskoeffizienten der Zwischenschicht an den Ausdehnungskoeffizienten der Kochplatte erreicht, der nahezu null beträgt, da der Ausdehnungskoeffizient von geeigneten keramischen Materialien deutlich niedriger ist als der Ausdehnungskoeffizient von Metallen. Auch bei der Verwendung einer Cermet-Schicht ergibt sich hierbei infolge der in eine metallische Matrix eingelagerten Keramik-Teilchen eine verringerte thermische Ausdehnung, wodurch die thermischen Spannungen reduziert werden.
Während bei der Verwendung einer Cermet-Schicht eine besonders gute elektrische Leitfähigkeit erreicht werden kann, muß gegebenenfalls bei der Verwendung einer elektrisch leitfähigen Keramik eine etwas reduzierte Leitfähigkeit in Kauf genommen werden. Jedoch hat die Verwendung einer elektrisch leitfähigen Keramik als Zwischenschicht den weiteren Vorteil, daß die Keramik von der Materialauswahl her besser an die Glaskeramik der Kochplatte angepaßt werden kann, wobei durch eine gezielte Materialauswahl eine besonders gute Haftung und geringe thermische Spannungen im Gebrauch erzielt werden können.
In vorteilhafter Weiterbildung der Erfindung ist die Zwischenschicht eine Oxidschicht, die durch Sauerstoffverlust beim thermischen Spritzen elektrisch leitfähig ist.
Hierbei kann die Zwischenschicht insbesondere aus TiO2, aus einer Mischung von Al2O3 mit einem Anteil an TiO2 von mindestens 50 Gew.-%, vorzugsweise von mindestens 90 Gew.-%, aus ZrO2, aus einer Mischung von Al2O3 mit ZrO2 mit einem Anteil an ZrO2 von mindestens 50 Gew.-%, vorzugsweise von mindestens 90 Gew.-%, aus einer Mischung von TiO2 und ZrO2, oder aus einer Mischung von Al2O3 mit TiO2 und ZrO2 mit einem Anteil von mindestens 50 Gew.-, vorzugsweise von mindestens 90 Gew.-% an TiO2 und ZrO2, hergestellt sein.
Diese Zwischenschichten aus TiO2-x, ZrO2-x oder aus Mischungen von Al2O3 mit TiO2-x und/oder ZrO2-x weisen eine besonders gute Haftung an einer Glaskeramik-Oberfläche auf. Durch das thermische Spritzen wird der Sauerstoffanteil soweit verringert, daß dieses Material elektrisch leitfähig wird.
So ergibt sich beispielsweise für TiO2-x mit x
Figure 00060001
0,1 eine Volumenleitfähigkeit von etwa 103 Ohm x cm bis etwa 5 x 102 Ohm x cm (bei Raumtemperatur). Infolge der relativ geringen thermischen Ausdehnung von TiO2-x und der besonders guten Affinität von TiO2-x zur Glaskeramik erscheint besonders TiO2-x zur Verwendung als leitfähige Zwischenschicht geeignet.
Darüber hinaus sind jedoch auch die anderen genannten Materialien ohne weiteres verwendbar, wobei auch andere, chemisch ähnliche Oxide geeignet erscheinen, die während des thermischen Spritzens einen ausreichend hohen Sauerstoffverlust erleiden, um eine ausreichende elektrische Leitfähigkeit zu erhalten.
Wie bereits erwähnt, kann die Zwischenschicht auch aus einem Cermet mit einer Metall-Matrix hergestellt sein. Dabei weist die Metall-Matrix vorzugsweise wenigstens einen der Bestandteile Nickel, Kobalt und Chrom auf.
In vorteilhafter Weiterbildung dieser Ausführung ist die Zwischenschicht aus einem Cermet mit einer Metall-Matrix hergestellt, die eine Legierung aus den Hauptbestandteilen Nickel, Kobalt und Chrom ist.
Hierbei können ferner in die Metall-Matrix Partikel aus Carbid, wie etwa aus Wolfram-Carbid, Chrom-Carbid oder dergleichen, eingelagert sein.
Mit einem derartigen Cermet ergibt sich eine gute elektrische Leitfähigkeit der Zwischenschicht, wobei gleichzeitig durch die keramischen Einlagerungen der thermische Ausdehnungskoeffizient gegenüber einer reinen Metall-Matrix erheblich erniedrigt ist. Die betreffende Metall-Matrix weist ferner eine gute Haftung auf einer Glaskeramik-Oberfläche auf und ist infolge der erhöhten Duktilität geeignet, gewisse thermische Spannungen, die im Betrieb auftreten, aufzufangen bzw. abzubauen.
In zusätzlicher Weiterbildung der Erfindung ist zwischen der elektrisch leitfähigen Zwischenschicht und der Kochplatte eine keramische Haftvermittlerschicht vorgesehen.
Diese Haftvermittlerschicht besteht vorzugsweise aus Aluminiumoxid, aus Titanoxid oder aus Mischungen hiervon und ist vorzugsweise durch thermisches Spritzen aufgetragen.
Insbesondere bei Verwendung eines Cermet-Materials als Zwischenschicht führt eine Haftvermittlerschicht zu einer nochmals verbesserten Haftung auf der Glaskeramikoberfläche, wodurch sich insgesamt ein äußerst stabiler Schichtenverbund ergibt, der eine sehr gute Temperaturbeständigkeit und Temperaturwechselfestigkeit aufweist.
Die Isolierschicht, die auf die Zwischenschicht aufgetragen ist, besteht vorzugsweise aus Cordierit oder aus Mullit und ist vorzugsweise durch thermisches Spritzen aufgetragen.
Die Verwendung dieser Keramiken zur Erzeugung der Isolierschicht hat den Vorteil eines relativ geringen thermischen Ausdehnungskoeffizienten der zwischen etwa 4,3 und 5,0 x 10-6K-1 für Mullit liegt und zwischen etwa 2,2 und 2,4 x 10-6K-1 für Cordierit. Infolge des geringen thermischen Ausdehnungskoeffizienten ergeben sich geringere Spannungen in Verbund mit der Kochplatte aus Glaskeramik.
Grundsätzlich lassen sich natürlich auch andere keramische Materialien zur Erzeugung der keramischen Isolierschicht verwenden, etwa Al2O3, jedoch ergeben sich bei den vorgenannten Materialien besondere Vorteile wegen des geringen thermischen Ausdehnungskoeffizienten und der gleichzeitig ausreichend hohen Durchschlagfeldstärke.
Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:
Fig. 1
einen Querschnitt durch ein erfindungsgemäßes Keramik-Kochfeld in einer ersten Ausführung und
Fig. 2
einen Querschnitt durch ein erfindungsgemäßes Keramik-Kochfeld in einer gegenüber Fig. 1 abgewandelten Ausführung.
In Fig. 1 ist ein erfindungsgemäßes Keramik-Kochfeld im Querschnitt dargestellt und insgesamt mit der Ziffer 10 bezeichnet.
Es versteht sich, daß die Darstellung lediglich beispielhafter Natur ist und daß insbesondere die Größenverhältnisse nicht maßstabsgerecht sind.
Das Keramik-Kochfeld weist eine Kochplatte 12 aus Glaskeramik, etwa aus Ceran® auf. Diese Kochplatte 12 dient zur Aufnahme von Kochgefäßen. Auf der Unterseite der Kochplatte 12 ist an verschiedenen Stellen jeweils eine Kochstelle erzeugt. Für Haushaltszwecke sind dabei typischerweise vier oder gegebenenfalls fünf Kochstellen auf einem Keramik-Kochfeld vorgesehen. In den Figuren 1 und 2 ist nur jeweils eine Kochstelle gezeigt. Auf die Unterseite der Kochplatte 12 wurde durch thermisches Spritzen eine Zwischenschicht aus TiO2 aufgetragen. Dies kann beispielsweise durch atmosphärisches Plasmaspritzen (APS) mit einer Schichtdicke von etwa 50 - 250 µm erfolgen. Der Auftrag der jeweiligen Schichten erfolgt vorzugsweise nur im Bereich der jeweiligen Kochstellen, um die Gesamtspannungen möglichst gering zu halten.
Vor dem thermischen Spritzen wird die Glaskeramik gesäubert, z.B. mit Aceton entfettet. Auf die beim thermischen Spritzen sonst übliche Vorbehandlung durch Sandstrahlen wird verzichtet, da dies zu einer Schädigung der Glaskeramik führen würde.
Nach der Erzeugung der Zwischenschicht 14 wird auf diese wiederum durch atmosphärisches Plasmaspritzen eine Isolierschicht 16 aufgespritzt, die vorzugsweise aus Cordierit (2MgO·2Al2O3·5SiO2) oder aus Mullit (3Al2O3·2SiO2) besteht.
Die Schichtdicke der Isolierschicht 16 hängt von der gewünschten Durchschlagsfestigkeit und dem verwendeten Material ab und liegt zwischen etwa 100 und 500 µm, vorzugsweise zwischen etwa 150 und 300 µm.
Auf der Isolierschicht wird anschließend eine Heizleiterschicht 18, etwa in Form eines mäanderförmig gewundenen Heizleiters 20 erzeugt. Der Heizleiter 20 kann etwa in bekannter Weise durch ein Siebdruckverfahren aufgebracht werden, wobei durch einen glasigen Anteil von meist mehr als 5 % die Fließtemperaturen beim Schichteneinbrand derart gesenkt werden können, daß sich Einbrenntemperaturen zwischen etwa 500 und 850° C ergeben, wobei eine dichte, geschlossene Leiterschicht entsteht.
Alternativ hierzu kann auch die Heizleiterschicht 18 durch thermisches Spritzen erzeugt werden. Hierzu wird zunächst mit einem üblichen Maskierverfahren der nicht zu beschichtende Teil maskiert und sodann die freiliegenden Teile durch thermisches Spritzen mit dem Heizleitermaterial beschichtet.
Der zuvor abgedeckte Teil kann anschließend entfernt werden, so daß ein gewundener Heizleiter 20 entsteht, dessen einzelne Heizleiterbahnen voneinander isoliert sind.
Die Zwischenschicht 14, die aus TiO2 durch thermisches Spritzen aufgetragen wird, wird infolge des hohen Sauerstoffverlustes des Titanoxids während des Spritzvorgangs elektrisch leitfähig. Dabei stellt sich eine Volumenleitfähigkeit von etwa 103 Ohm x cm bis etwa 5 x 102 Ohm x cm (bei RT) ein. Dies reicht aus, um die Zwischenschicht 14 wirksam erden zu können, wie durch die Verbindung mit Masse 22 in Fig. 1 angedeutet ist. Dadurch wird die für die Isolierschicht 16 erforderliche Durchschlagsfestigkeit auf etwa 1500 Volt reduziert. Im Fehlerfall wird bei einem Durchschlag vom Heizleiter 20 auf die Kochplatte 12 ein an sich bekannter, hier nicht dargestellter Sicherheitsschalter ausgelöst.
Eine Abwandlung des Keramik-Kochfeldes ist in Fig. 2 dargestellt und insgesamt mit der Ziffer 10' bezeichnet.
Wiederum ist auf die aus Glaskeramik, etwa Ceran®, bestehende Kochplatte 12 an der Unterseite eine elektrisch leitfähige Zwischenschicht 14' aufgebracht. Diese Zwischenschicht 14', bei der es sich um eine Cermet-Schicht handelt, ist jedoch durch eine auf die Kochplatte 12 aufgespritzte Haftvermittlerschicht 24 getrennt.
Die Haftvermittlerschicht 24 besteht vorzugsweise aus Al2O3 oder aus einer Mischung von Al2O3 und TiO2, z.B. 97 Gew.-% Al2O3 und 3 Gew.-% TiO2. Die Haftvermittlerschicht 24 wird mit einer Schichtdicke von etwa 10 bis 150 µm thermisch gespritzt, vorzugsweise durch APS. Die bevorzugte Schichtdicke liegt in der Größenordnung von etwa 30 bis 100 µm. Auf die Haftvermittlerschicht 24 wird anschließend eine Cermet-Schicht bestehend aus einer Nickel/Kobalt/Chrom-Legierung mit eingelagerten Carbid-Partikeln (Wolframcarbid, Chromcarbid etc.) aufgespritzt. Die Zwischenschicht 14' wird mit einer Schichtdicke von ca. 50 bis 250 µm, vorzugsweise etwa 50 bis 100 µm erzeugt. Hierauf werden dann anschließend die Isolierschicht 16 und die Heizleiterschicht 18 in der zuvor anhand von Fig. 1 bereits beschriebenen Weise aufgebracht.
Wie aus den Figuren gemäß Fig. 1 und Fig. 2 erkennbar, laufen die einzelnen übereinander liegenden Schichten jeweils am Randbereich allmählich aus und gehen so stetig zur jeweils darunter liegenden Schicht über. Außerdem nimmt die Gesamtfläche der einzelnen Schichten zur Heizleiterschicht hin jeweils ab. Auf diese Weise ergeben sich günstige Spannungsverhältnisse in den Randbereichen der jeweiligen Schichten, um so einer Delamination der Schichten entgegenzuwirken.
In Fig. 1 ist zusätzlich noch eine ringförmige Vertiefung 26 dargestellt, die die Zwischenschicht 14 an deren Randbereich ringförmig umschließt.
Durch diese geringe Vertiefung können Spannungen, die zwischen der Kochplatte 12 und der Zwischenschicht 14 entstehen, aufgenommen und teilweise abgebaut werden.

Claims (9)

  1. Keramik-Kochfeld mit einer Kochplatte (12) aus Glaskeramik oder Glas, mit einer elektrischen Heizleiterschicht (18), mit einer Isolierschicht (16) zwischen der Kochplatte (12) und der Heizleiterschicht (18), und mit einer elektrisch leitfähigen geerdeten Zwischenschicht (14) zwischen der Kochplatte (12) und der Isolierschicht (16), dadurch gekennzeichnet, daß die Zwischenschicht (14) eine thermisch gespritzte Schicht aus einer elektrisch leitfähigen Keramik oder aus einem Cermet ist.
  2. Keramik-Kochfeld nach Anspruch 1, dadurch gekennzeichnet, daß die Zwischenschicht (14) eine Oxidschicht ist, die durch Sauerstoffverlust beim thermischen Spritzen elektrisch leitfähig ist.
  3. Keramik-Kochfeld nach Anspruch 2, dadurch gekennzeichnet, daß die Zwischenschicht (14) aus TiO2, aus einer Mischung von Al2O3 mit einem Anteil an TiO2 von mindestens 50 Gew.-%, vorzugsweise von mindestens 90 Gew.-%, aus ZrO2, aus einer Mischung von Al2O3 mit ZrO2 mit einem Anteil an ZrO2 von mindestens 50 Gew.-%, vorzugsweise von mindestens 90 Gew.-%, aus einer Mischung von TiO2 und ZrO2, oder aus einer Mischung von Al2O3 mit TiO2 und ZrO2 mit einem Anteil von mindestens 50 Gew.-%, vorzugsweise von mindestens 90 Gew.-% an TiO2 und ZrO2 hergestellt ist.
  4. Keramik-Kochfeld nach Anspruch 1, dadurch gekennzeichnet, daß die Zwischenschicht (14) aus einem Cermet mit einer Metall-Matrix hergestellt ist, die wenigstens einen der Bestandteile Nickel, Cobalt und Chrom enthält.
  5. Keramik-Kochfeld nach Anspruch 4, dadurch gekennzeichnet, daß die Zwischenschicht (14) aus einem Cermet mit einer Metall-Matrix hergestellt ist, die eine Legierung aus den Hauptbestandteilen Nickel, Cobalt und Chrom ist.
  6. Keramik-Kochfeld nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß in die Metallmatrix Partikel aus Carbid, wie etwa aus Wolframcarbid, Chromcarbid oder dergleichen, eingelagert sind.
  7. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen der elektrisch leitfähigen Zwischenschicht (14) und der Kochplatte eine keramische Haftvermittlerschicht (24) vorgesehen ist.
  8. Keramik-Kochfeld nach Anspruch 7, dadurch gekennzeichnet, daß die Haftvermittlerschicht (24) aus Aluminiumoxid, aus Titanoxid oder aus Mischungen hiervon thermisch gespritzt ist.
  9. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Isolierschicht (16) aus Cordierit oder aus Mullit besteht und vorzugsweise durch thermisches Spritzen aufgetragen ist.
EP02702359A 2001-03-06 2002-02-20 Keramik-kochfeld Expired - Lifetime EP1366641B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK02702359T DK1366641T3 (da) 2002-02-20 2002-02-20 Keramikkogefelt

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10112235 2001-03-06
DE10112235A DE10112235C2 (de) 2001-03-06 2001-03-06 Keramik-Kochfeld
PCT/EP2002/001751 WO2002078397A1 (de) 2001-03-06 2002-02-20 Keramik-kochfeld

Publications (2)

Publication Number Publication Date
EP1366641A1 EP1366641A1 (de) 2003-12-03
EP1366641B1 true EP1366641B1 (de) 2004-12-01

Family

ID=7677416

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02702359A Expired - Lifetime EP1366641B1 (de) 2001-03-06 2002-02-20 Keramik-kochfeld

Country Status (8)

Country Link
US (1) US20040104212A1 (de)
EP (1) EP1366641B1 (de)
CN (1) CN1494816A (de)
AT (1) ATE284123T1 (de)
CA (1) CA2439177A1 (de)
DE (2) DE10112235C2 (de)
ES (1) ES2232733T3 (de)
WO (1) WO2002078397A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20041363A1 (it) * 2004-07-08 2004-10-08 Cedil Sa Elettrodomestico per cucine e simili
US20100015354A1 (en) * 2008-07-16 2010-01-21 Lee Tai-Cheung Method of making rollers with a fine pattern
CN101979998B (zh) * 2010-09-17 2012-07-25 九江学院 一种对热喷涂制备碳化铬金属陶瓷涂层中碳化物损失的定量表征方法
ES2401890B1 (es) * 2011-06-29 2014-04-10 BSH Electrodomésticos España S.A. Dispositivo de aparato doméstico
CN104254151A (zh) * 2014-08-25 2014-12-31 常熟市董浜镇华进电器厂 安全可靠的电热管
DE102016224069A1 (de) 2016-12-02 2018-06-07 E.G.O. Elektro-Gerätebau GmbH Kochgerät mit einer Kochplatte und einer Heizeinrichtung darunter
KR102111109B1 (ko) * 2017-02-21 2020-05-14 엘지전자 주식회사 면상 발열장치, 이를 포함하는 전기 레인지 및 그 제조방법
CN207869432U (zh) * 2018-03-07 2018-09-14 东莞市国研电热材料有限公司 一种多温区陶瓷发热体
EP3627671A1 (de) * 2018-09-21 2020-03-25 Siemens Aktiengesellschaft Verfahren zur herstellung einer wickelkopfanordnung für eine elektrische rotierende maschine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110571A (en) * 1958-07-01 1963-11-12 Du Pont Ceramic material bonded to metal having refractory oxide dispersed therein
US3610888A (en) * 1970-01-30 1971-10-05 Westinghouse Electric Corp Oxide resistor heating element
US3978315A (en) * 1975-09-19 1976-08-31 Corning Glass Works Electrical heating units
DE3105065A1 (de) * 1981-02-12 1982-08-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kochplatte aus glaskeramik
US4764341A (en) * 1987-04-27 1988-08-16 International Business Machines Corporation Bonding of pure metal films to ceramics
US5227345A (en) * 1990-05-03 1993-07-13 The Dow Chemical Company Powder mixtures including ceramics and metal compounds
FR2665184B1 (fr) * 1990-07-24 1993-10-15 Centre Nal Recherc Scientifique Poudres composites alumine/metal, cermets realises a partir desdites poudres et procedes de fabrication.
US5728638A (en) * 1996-08-21 1998-03-17 Bfd, Inc. Metal/ceramic composites containing inert metals
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
DE29824031U1 (de) * 1998-04-17 2000-02-24 Bsh Bosch Siemens Hausgeraete Kochplatte mit elektrisch leitfähiger Keramikplatte
US5973298A (en) * 1998-04-27 1999-10-26 White Consolidated Industries, Inc. Circular film heater and porcelain enamel cooktop
DE19855481A1 (de) * 1998-12-01 2000-06-08 Siceram Gmbh Elektrisches Kochfeld

Also Published As

Publication number Publication date
ATE284123T1 (de) 2004-12-15
EP1366641A1 (de) 2003-12-03
US20040104212A1 (en) 2004-06-03
CN1494816A (zh) 2004-05-05
CA2439177A1 (en) 2002-10-03
WO2002078397A1 (de) 2002-10-03
DE10112235C2 (de) 2003-04-03
DE50201676D1 (de) 2005-01-05
DE10112235A1 (de) 2002-10-10
ES2232733T3 (es) 2005-06-01

Similar Documents

Publication Publication Date Title
DE10112234C1 (de) Keramik-Kochfeld
EP1366641B1 (de) Keramik-kochfeld
EP2553687B1 (de) Hochtemperaturbeständige, elektrisch leitfähige dünnschichten
EP2457412B1 (de) Heizung, insbesondere hochtemperaturheizung, sowie verfahren zu deren herstellung
DE3126989A1 (de) Kochplatte
EP1144968B1 (de) Platintemperatursensor und herstellungsverfahren für denselben
EP0337230B1 (de) Hochtemperaturheizsysteme und Verfahren zu deren Herstellung
DE3105065A1 (de) Kochplatte aus glaskeramik
EP2120508A2 (de) Induktionsheizeinrichtung und Verfahren zur Herstellung einer Induktionsheizeinrichtung
EP0817756B1 (de) Ozonisator und verfahren zur herstellung eines solchen
EP1366643B1 (de) Keramik-kochfeld
DE102013104702B4 (de) Beschichtete Glaskeramikplatte
WO2018069415A1 (de) Verfahren zur herstellung eines sensors, sensor und verwendung eines sensors
DE2011215C3 (de) Elektrische Heizvorrichtung
CH693851A5 (de) Ozonisator und Verfahren zur Herstellung eines solchen.
DE102005056501A1 (de) Flaches Induktionskochsystem
AT394643B (de) Roentgenroehrenanode mit oxidbeschichtung
DE4109569A1 (de) Elektrische heizplatte
EP0719594A1 (de) Verfahren zum Aufbringen einer Beschichtung auf einem Gegenstand, insbesondere einem Küchengegenstand, sowie derart beschichteter Gegenstand
EP1269130A1 (de) Sensorelement, insbesondere temperaturfühler
EP1734331B1 (de) Hochtemperatur-IR-Tarnbeschichtung
DE10356211A1 (de) Heizvorrichtung, insbesondere keramisches Kochfeld, und Verfahren zur Herstellung eines solchen
EP0487144A1 (de) Röntgenröhrenanode mit Oxidbeschichtung
EP3961170A1 (de) Temperatursensor und verfahren zur herstellung eines derartigen temperatursensors
JPH05117875A (ja) 炭素系複合材料及びその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL-ZEISS-STIFTUNGTRADING AS SCHOTT GLAS

Owner name: SCHOTT GLAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTT AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041201

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041201

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041201

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20041201

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201676

Country of ref document: DE

Date of ref document: 20050105

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050208

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20050210

Year of fee payment: 4

Ref country code: FR

Payment date: 20050210

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20050211

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20050215

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050218

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050220

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050301

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20050309

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2232733

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050902

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060221

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060220

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20060901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060221

BERE Be: lapsed

Owner name: *SCHOTT A.G.

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070220