EP1366643B1 - Keramik-kochfeld - Google Patents

Keramik-kochfeld Download PDF

Info

Publication number
EP1366643B1
EP1366643B1 EP02724173A EP02724173A EP1366643B1 EP 1366643 B1 EP1366643 B1 EP 1366643B1 EP 02724173 A EP02724173 A EP 02724173A EP 02724173 A EP02724173 A EP 02724173A EP 1366643 B1 EP1366643 B1 EP 1366643B1
Authority
EP
European Patent Office
Prior art keywords
layer
ceramic
heat conductor
cooking plate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02724173A
Other languages
English (en)
French (fr)
Other versions
EP1366643A1 (de
Inventor
Karsten Wermbter
Andreas Killinger
Christian Friedrich
Chuanfei Li
Rainer Gadow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of EP1366643A1 publication Critical patent/EP1366643A1/de
Application granted granted Critical
Publication of EP1366643B1 publication Critical patent/EP1366643B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/748Resistive heating elements, i.e. heating elements exposed to the air, e.g. coil wire heater

Definitions

  • the invention relates to a ceramic hob with a cooking plate made of glass ceramic or glass, with an electrical heating conductor layer, and with a thermally sprayed insulating layer between the hotplate and the Schuleiter Anlagen.
  • Such a ceramic hob is known for example from DE 31 05 065 C2 or from US 6,037,572.
  • the known ceramic cooktop has a cooking plate of glass ceramic, the underside of which is provided with a thermally sprayed, grounded metal layer, on which a ceramic insulating layer is sprayed, on the underside of a heat conductor layer is applied with a heat conductor as by a screen printing process.
  • Such a ceramic hob has over conventional ceramic hobs, which were previously heated substantially above below the glass ceramic plate from this spaced heating conductor via radiant heating, a significantly improved cooking behavior, since the heat is now transmitted by heat conduction and generated directly on the bottom of the glass ceramic becomes.
  • a glass ceramic suitable for a cooktop such as Schott CERAN®, has an NTC characteristic, i. that at increasing temperatures, the electrical conductivity increases significantly, is located between the Schuleitertik and the hotplate of glass ceramic, a ceramic insulating layer.
  • a particular problem with such a ceramic hob is the different thermal expansion coefficients of the individual layers.
  • a glass-ceramic such as CERAN® has a coefficient of expansion ⁇ which is close to zero ( ⁇ 0.15 ⁇ 10 -6 K -1 ).
  • metals have significantly higher expansion coefficients, which are well above 10 -5 K 1 .
  • ceramics have a lower coefficient of expansion (for example about 8 ⁇ 10 -6 K -1 for Al 2 O 3 ), this also leads to considerable problems with larger layer thicknesses because of the thermal stresses occurring during operation.
  • the dielectric strength of the insulating layer must be 3,750 V during cooking operation.
  • the invention is therefore an object of the invention to provide an improved ceramic hob, which avoids the above-mentioned disadvantages and is designed as a stable layer system, on the one hand has the necessary electrical safety and on the other hand ensures high stability in long-term operation.
  • the object of the invention is completely solved in this way. Namely, according to the invention, it is possible to use other, more suitable materials for the production of the insulating layer by thermal spraying on the glass-ceramic cooking plate instead of aluminum oxide.
  • the insulating layer may now be made of cordierite, mullite or mixtures thereof or other thermally moldable ceramics having a similar low thermal expansion coefficient.
  • Cordierite and mullite have a thermal expansion coefficient that is significantly lower than the thermal expansion coefficient of aluminum oxide. While the thermal expansion coefficient of cordierite is about 2.2 to 2.4 10 -6 K 1, the thermal expansion coefficient of mullite is about 4.3 to 5.0 x 10 -6 K -1. Thus, using these materials, the problem of thermally induced stresses in operation can be significantly reduced due to the lower coefficients of thermal expansion.
  • a primer layer is particularly suitable a layer of alumina, titanium oxide or mixtures thereof.
  • the layer thickness of the adhesion promoter layer, which is applied by thermal spraying preferably between 10 .mu.m and 150 .mu.m, preferably at 30 to 100 microns, in particular in a range between 40 and 70 microns.
  • Such a thin adhesion promoter layer has practically no adverse effect by the resulting thermal stresses on the overall system, but has an exceptionally good adhesion to the glass-ceramic surface, without damaging them in the interface.
  • a ceramic layer which preferably consists of cordierite, of mullite, if appropriate also of magnesium oxide or mixtures thereof, can now be applied by thermal spraying in the necessary layer thickness to such an adhesion promoter layer.
  • a thermally sprayed electrically conductive intermediate layer is applied between the bonding agent layer and the insulating layer, which is preferably grounded.
  • This intermediate layer is preferably made of an electrically conductive ceramic or of a cermet.
  • An electrically conductive ceramic can be produced for example by the thermal spraying of TiO 2 , since during the thermal spraying such a high loss of oxygen occurs that the material is electrically conductive becomes.
  • the volume conductivity for TiO 2 at room temperature is between about 10 3 ⁇ cm to about 5 ⁇ 10 2 ⁇ cm.
  • a suitable cermet comprises, for example, a metal matrix of a nickel / chromium / cobalt alloy in which carbide particles, e.g. Tungsten carbide or chromium carbide are dispersed.
  • cermet layer has a thermal expansion coefficient in the range of about 4 ⁇ 10 -6 K -1 to 11 ⁇ 10 -6 K -1 , and thus slightly above alumina, but still below the expansion coefficient of conventional metals.
  • the heat conductor layer is produced by thermal spraying, preferably by laser spraying.
  • heat conductor layers produced by screen printing generally have a glass content of more than 5% in the metallic conductor, so that the flow temperatures during layer burn-in can be lowered.
  • the low-melting glass solders in mixed paste ensure that at a baking temperature between 500 and 850 ° C, a dense closed conductor layer is formed.
  • the proportion of glass frit reduces the metallic conductive portion.
  • Sub-segments of the track, which have an increased amount of glass locally, are areas with higher resistance, so that it may possibly lead to overheating and material failure in the current flow.
  • the laser spraying method is particularly suitable since this is particularly advantageous for producing a web-shaped application.
  • the hotplate has, on its side facing the heat conductor layer, an annularly closed depression which runs in the vicinity of the edge region of the layer sprayed onto the hotplate.
  • the individual layers have a decreasing surface towards the heating conductor layer. This measure also counteracts the risk of delaminations in the edge region of the layers.
  • a ceramic hob according to the invention is designated overall by the numeral 10. It has a flat cooking plate 12, which preferably consists of a glass ceramic, such as Schott CERAN®.
  • This hotplate 12 serves to accommodate cooking vessels. On the underside of the hotplate 12 a hotplate is generated at different locations. For domestic purposes typically four or possibly five hotplates are provided on a ceramic hob. In Figs. 1 and 2, only one hotplate is shown.
  • an adhesion promoter layer 14 is applied by thermal spraying, preferably by atmospheric plasma spraying (APS).
  • the application is preferably limited to the areas of the cooking zones in order to keep the total stresses as low as possible.
  • This adhesion promoter layer 14 is preferably made of aluminum oxide, titanium oxide or mixtures thereof.
  • aluminum oxide and mixtures of aluminum oxide and titanium oxide with a low proportion of titanium oxide for example 97 wt .-% Al 2 O 3 with 3 wt .-% TiO 2 , have a particularly good adhesion to the surface of the glass ceramic and have a very good chemical Compatibility with this.
  • the adhesion promoter layer 14 is applied with a layer thickness of between about 10 and 150 ⁇ m, preferably between about 40 and 70 ⁇ m, for example with about 50 ⁇ m.
  • a Insulation layer 16 which is preferably made of cordierite (2MgO ⁇ 2Al 2 O 3 ) or mullite (3Al 2 O 3 ⁇ 2SiO 2 ), applied by thermal spraying with the necessary layer thickness to the desired dielectric strength of 3750 V at an operating temperature of 450 ° C. to ensure.
  • the layer thickness is preferably up to about 500 ⁇ m, preferably about 200-400 ⁇ m.
  • the surface of the glass-ceramic plate 12 Prior to the thermal spraying, the surface of the glass-ceramic plate 12 is not pretreated by roughening, as would otherwise be customary, since this would lead to damage to the surface of the cooking plate 12. Instead, the surface of the cooking plate 12 is merely cleaned, e.g. degreased by acetone.
  • an electrical heating conductor layer 18 is then applied by thermal spraying, wherein the necessary structuring of the heating conductor layer 18 is achieved by a masking method in a conventional manner. In this way, for example, a meandering wound heating element 20 can be generated.
  • a laser spraying method is preferred because it can be particularly advantageous to achieve a web-shaped order.
  • FIG. 2 A variant of the ceramic hob according to the invention is shown in Fig. 2 and generally designated by numeral 10 '.
  • the adhesive layer 14 is not directly applied to the insulating layer 16, but that this is first an electrically conductive intermediate layer 22 is sprayed, then in turn the insulating layer 16 'is applied.
  • This electrically conductive intermediate layer 22 is grounded, as indicated in Fig. 2 by the connection to ground 24.
  • a known per se, not shown fuse the hot plate 12 is triggered in the electrical breakdown of the heating element 20 on the hot plate 12 as a result of their grounding.
  • the insulating layer 16 ' may be designed for a lower dielectric strength, with about 1500 V being sufficient at operating temperature according to VDE. Therefore, the thickness of the insulating layer 16 'can be reduced accordingly.
  • the heating conductor layer 18 is sprayed on as already described above.
  • the electrically conductive intermediate layer 22 preferably consists of a cermet, for example of a nickel / chromium / cobalt-based alloy, in which carbide particles, for example tungsten carbide and chromium carbide, are embedded.
  • a cermet has a lower coefficient of thermal expansion compared to conventional metals due to the carbide inclusions, resulting in reduced problems due to thermal stress.
  • an electrically conductive ceramic can be used for this intermediate layer, provided that sufficient electrical conductivity can be achieved hereby.
  • a TiO 2 thermally sprayed layer could be used since, during the thermal spray process, the TiO 2 loses oxygen such that it becomes electrically conductive.
  • the electrical conductivity (volume conductivity) of resulting TiO 2 -x between 10 3 ⁇ cm to 5 ⁇ 10 2 ⁇ cm at RT) is still significantly lower than the electrical conductivity of metals.
  • the single layers 14, 16 according to FIG. 1 or 14, 22, 16 'according to FIG. 2 have a surface which decreases towards the heating conductor layer 20. Furthermore, the individual layers run out gently in their marginal area, that is, they are continuously transferred to the underlying layer.
  • FIG. 2 also shows a possibility with which the partially considerable stresses in the edge region of the layers can be partially reduced.
  • annular recess 26 located on the underside of the cooking plate 12 is an annular recess 26 which surrounds the edge region of the bonding agent layer 14 in an annular manner. Tensions that are transmitted in the edge region between the cooking plate 12 and the adhesion promoter layer 14 can be better absorbed or reduced by this recess 26.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Cookers (AREA)
  • Electric Stoves And Ranges (AREA)
  • Laminated Bodies (AREA)
  • Inorganic Insulating Materials (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Baking, Grill, Roasting (AREA)

Description

  • Die Erfindung betrifft ein Keramik-Kochfeld mit einer Kochplatte aus Glaskeramik oder Glas, mit einer elektrischen Heizleiterschicht, und mit einer thermisch gespritzten Isolierschicht zwischen der Kochplatte und der Heizleiterschicht.
  • Ein derartiges Keramik-Kochfeld ist etwa aus der DE 31 05 065 C2 oder aus der US 6 037 572 bekannt. Das bekannte Keramik-Kochfeld weist eine Kochplatte aus Glaskeramik auf, deren Unterseite mit einer thermisch gespritzten, geerdeten Metallschicht versehen ist, auf die eine keramische Isolierschicht aufgespritzt ist, auf deren Unterseite eine Heizleiterschicht mit einem Heizleiter etwa durch ein Siebdruckverfahren aufgebracht ist.
  • Ein derartiges Keramik-Kochfeld weist gegenüber herkömmlichen Keramik-Kochfeldern, die bislang im wesentlichen über unterhalb der Glaskeramikplatte von dieser beabstandete Heizleiter über Strahlungsheizung beheizt wurden, ein erheblich verbessertes Ankochverhalten auf, da die Wärme nunmehr durch Wärmeleitung übertragen und unmittelbar an der Unterseite der Glaskeramik erzeugt wird. Da eine für ein Kochfeld geeignete Glaskeramik, wie etwa CERAN® von Schott, eine NTC-Charakteristik besitzt, d.h. daß bei ansteigenden Temperaturen die elektrische Leitfähigkeit merklich zunimmt, befindet sich zwischen der Heizleiterschicht und der Kochplatte aus Glaskeramik eine keramische Isolierschicht.
  • Ein besonderes Problem bei einem solchen Keramik-Kochfeld besteht in den unterschiedlichen thermischen Ausdehnungskoeffizienten der Einzelschichten. Bekanntlich besitzt eine Glaskeramik wie etwa CERAN® einen Ausdehnungskoeffizienten α, der nahe bei Null liegt (± 0,15 · 10-6 K-1). Dagegen besitzen Metalle deutlich höhere Ausdehnungskoeffizienten, die deutlich oberhalb von 10-5 K1 liegen. Keramiken besitzen zwar einen niedrigeren Ausdehnungskoeffizienten (z.B. etwa 8 · 10-6 K-1 für Al2O3), jedoch führt auch dies bei größeren Schichtdicken zu erheblichen Problemen wegen der im Betrieb auftretenden thermischen Spannungen.
  • Um die erforderliche Betriebssicherheit nach VDE zu gewährleisten, muß die Durchschlagsfestigkeit der Isolierschicht 3.750 V beim Kochbetrieb betragen.
  • Dies erfordert eine relativ große Schichtstärke für die keramische Isolierschicht, die für Aluminiumoxid bei etwa 300 µm oder darüber liegen muß.
  • Eine derart dicke keramische Isolierschicht läßt sich wiederum nicht problemlos durch thermisches Spritzen auf eine Glaskeramikoberfläche auftragen, da hierbei meist Rißbildungen beobachtet werden oder Delamination auftritt.
  • Verwendet man dagegen, wie aus der DE 31 05 065 C2 bekannt, eine elektrisch leitfähige, geerdete Zwischenschicht zwischen der Isolierschicht und der Kochplatte aus Glaskeramik, so ist infolge der Erdung nur noch eine Durchschlagsfestigkeit der Isolierschicht von etwa 1.500 V erforderlich, wodurch die Dicke der Isolierschicht entsprechend reduziert werden kann. Allerdings führt die Aufbringung einer Metallschicht zwischen der Isolierschicht und der Glaskeramikplatte zu weiteren Problemen durch den hohen thermischen Ausdehnungskoeffizienten der Metallschicht.
  • Der Erfindung liegt somit die Aufgabe zugrunde, ein verbessertes Keramik-Kochfeld zu schaffen, das die vorstehend aufgezeigten Nachteile vermeidet und als stabiles Schichtensystem ausgebildet ist, das einerseits die notwendige elektrische Sicherheit aufweist und andererseits eine hohe Stabilität im Langzeitbetrieb gewährleistet.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß auf einer Oberfläche der Kochplatte eine thermisch gespritzte Haftvermittlerschicht aus einem keramischen Material angeordnet ist, die von der Isolierschicht überdeckt ist, auf der die Heizleiterschicht aufgenommen ist.
  • Die Aufgabe der Erfindung wird auf diese Weise vollkommen gelöst. Erfindungsgemäß wird es nämlich ermöglicht, anstelle von Aluminiumoxid andere, besser geeignete Materialien für die Erzeugung der Isolierschicht durch thermisches Spritzen auf der Glaskeramik-Kochplatte zu verwenden. Erfindungsgemäß kann die Isolierschicht nämlich nunmehr aus Cordierit, aus Mullit oder aus Mischungen hiervon oder weiteren thermisch spritzbaren Keramiken mit ähnlich geringem thermischen Ausdehnungskoeffizienten bestehen.
  • Beim thermischen Spritzen dieser Materialien unmittelbar auf die Oberfläche einer Glaskeramik wird diese nämlich geschädigt. So entstehen beim thermischen Spritzen von Cordierit oder Mullit auf der Glaskeramik-Oberfläche Mikrorisse, durch die die Stabilität des Gesamtsystems beeinträchtigt ist.
  • Cordierit und Mullit besitzen einen thermischen Ausdehnungskoeffizienten, der deutlich niedriger als der thermische Ausdehnungskoeffizient von Aluminiumoxid ist. Während der thermische Ausdehnungskoeffizient für Cordierit bei etwa 2,2 bis 2,4 10-6 K1 liegt, beträgt der thermische Ausdehnungskoeffizient für Mullit etwa 4,3 bis 5,0 · 10-6 K-1. Somit läßt sich unter Verwendung dieser Materialien das Problem der thermisch bedingten Spannungen im Betrieb infolge der geringeren thermischen Ausdehnungskoeffizienten deutlich reduzieren.
  • Als Haftvermittlerschicht eignet sich insbesondere eine Schicht aus Aluminiumoxid, aus Titanoxid oder aus Mischungen hiervon. Dabei liegt die Schichtdicke der Haftvermittlerschicht, die durch thermisches Spritzen aufgetragen wird, vorzugsweise zwischen 10 µm und 150 µm, vorzugsweise bei 30 bis 100 µm, insbesondere in einem Bereich zwischen 40 und 70 µm.
  • Eine derart dünne Haftvermittlerschicht hat praktisch keinerlei nachteiligen Einfluß durch die hierdurch bedingten thermischen Spannungen auf das Gesamtsystem, besitzt jedoch eine außerordentlich gute Haftung auf der Glaskeramik-Oberfläche, ohne diese im Bereich des Interfaces zu schädigen.
  • Auf eine solche Haftvermittlerschicht läßt sich nun unmittelbar eine Keramikschicht, die vorzugsweise aus Cordierit, aus Mullit, ggf. auch aus Magnesiumoxid oder Mischungen hiervon besteht, durch thermisches Spritzen in der notwendigen Schichtdicke auftragen.
  • Bei einer alternativen Ausführung der Erfindung ist zwischen der Haftvermittlerschicht und der Isolierschicht eine thermisch gespritzte elektrisch leitfähige Zwischenschicht aufgebracht, die vorzugsweise geerdet ist.
  • Hierdurch wird, wie vorstehend bereits erwähnt, die Anforderung an die Durchschlagsfestigkeit der Isolierschicht reduziert, die für den Fall, daß die Zwischenschicht geerdet ist und mit einem Schutzschalter zur Abschaltung bei Überschlag gekoppelt ist, auf etwa 1.500 V reduziert wird. Diese Zwischenschicht besteht vorzugsweise aus einer elektrisch leitfähigen Keramik oder aus einem Cermet. Eine elektrisch leitfähige Keramik kann beispielsweise durch das thermische Spritzen von TiO2 erzeugt werden, da während des thermischen Spritzens ein derart hoher Sauerstoffverlust auftritt, daß das Material elektrisch leitfähig wird. So liegt die Volumenleitfähigkeit für TiO2 bei Raumtemperatur zwischen etwa 103 Ωcm bis etwa 5 · 102 Ωcm.
  • Bei Verwendung eines Cermets zur Erzeugung der elektrisch leitfähigen Zwischenschicht ergibt sich naturgemäß eine deutlich höhere elektrische Leitfähigkeit, wodurch eine sichere Erdung erreichbar ist. Durch ein Auftragen der Cermet-Schicht auf die Haftvermittlerschicht werden Haftungsprobleme auf der Glaskeramikschicht vermieden. Ein geeignetes Cermet weist etwa eine Metallmatrix aus einer Nickel/Chrom/Kobalt-Legierung auf, in der Karbidteilchen, z.B. Wolframkarbid oder Chromkarbid, dispergiert sind.
  • Eine solche Cermet-Schicht weist zwar einen thermischen Ausdehnungskoeffizienten auf, der im Bereich von etwa 4 · 10-6 K-1 bis 11 · 10-6 K-1 liegt, und damit etwas oberhalb von Aluminiumoxid, jedoch noch unterhalb des Ausdehnungskoeffizienten von üblichen Metallen.
  • Somit ergeben sich auch hierdurch Vorteile gegenüber der Verwendung einer herkömmlichen Metallschicht als elektrisch leitfähige Zwischenschicht.
  • Gemäß einer weiteren Ausführung der Erfindung ist die Heizleiterschicht durch thermisches Spritzen, vorzugsweise durch Laserspritzen, hergestellt.
  • Durch diese Maßnahme werden Probleme vermieden, die bei der herkömmlichen Herstellung einer Heizleiterschicht im Siebdruckverfahren auftreten. Im Siebdruckverfahren hergestellte Heizleiterschichten weisen nämlich einen Glasanteil von meist mehr als 5 % im metallischen Leiter auf, damit die Fließtemperaturen beim Schichteneinbrand gesenkt werden können. Die niedrig schmelzenden Glaslote in gemischter Paste sorgen dafür, daß bei Einbrenntemperaturen zwischen 500 und 850 °C eine dichte geschlossene Leiterschicht entsteht. Der Anteil der Glasfritte reduziert jedoch den metallisch leitenden Anteil. Teilsegmente der Leiterbahn, die lokal einen erhöhten Glasanteil haben, sind Bereiche mit höherem Widerstand, so daß es beim Stromdurchfluß gegebenenfalls zur Überhitzung und zum Materialversagen führen kann.
  • Diese Nachteile werden bei einem thermisch gespritzten Heizleiter vermieden. Die notwendige Strukturierung des Heizleiters wird hierbei durch ein Maskierverfahren erzeugt.
  • Besonders geeignet ist das Laserspritzverfahren, da dies besonders vorteilhaft zum Erzeugen eines bahnenförmigen Auftrags ist.
  • Gemäß einer weiteren Variante der Erfindung weist die Kochplatte an ihrer der Heizleiterschicht zugewandten Seite eine ringförmig geschlossene Vertiefung auf, die in der Nähe des Randbereiches der auf die Kochplatte aufgespritzten Schicht verläuft.
  • Auf diese Weise können die Spannungen, die insbesondere im Randbereich der auf die Kochplatte aufgespritzten Isolierschicht auftreten, merklich verringert werden. Somit wird der Gefahr der Delamination in diesem Bereich entgegengewirkt.
  • Gemäß einer weiteren vorteilhaften Ausführung der Erfindung weisen die einzelnen Schichten zur Heizleiterschicht hin eine abnehmende Fläche auf. Auch durch diese Maßnahme wird der Gefahr von Delaminationen im Randbereich der Schichten entgegengewirkt.
  • Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:
  • Fig. 1
    einen Querschnitt einer ersten Ausführung eines erfindungsgemäßen Keramik-Kochfeldes und
    Fig. 2
    einen Querschnitt einer abgewandelten Ausführung des Keramik-Kochfeldes gemäß Fig. 1.
  • In Fig. 1 ist ein erfindungsgemäßes Keramik-Kochfeld insgesamt mit der Ziffer 10 bezeichnet. Es weist eine ebene Kochplatte 12 auf, die vorzugsweise aus einer Glaskeramik, wie etwa CERAN® von Schott, besteht.
  • Es versteht sich, daß die Darstellung lediglich beispielhaft ist und daß insbesondere die Größenverhältnisse nicht maßstabsgerecht sind.
  • Diese Kochplatte 12 dient zur Aufnahme von Kochgefäßen. Auf der Unterseite der Kochplatte 12 ist an verschiedenen Stellen jeweils eine Kochstelle erzeugt. Für Haushaltszwecke sind dabei typischerweise vier oder gegebenenfalls fünf Kochstellen auf einem Keramik-Kochfeld vorgesehen. In den Fig. 1 und 2 ist nur jeweils eine Kochstelle gezeigt.
  • Auf die Unterseite der Kochplatte 12 ist zumindest an den Stellen, an denen später eine Isolierschicht und eine Heizleiterschicht aufgebracht werden soll, eine Haftvermittlerschicht 14 durch thermisches Spritzen, vorzugsweise durch atmosphärisches Plasmaspritzen (APS) aufgetragen.
  • Der Auftrag ist vorzugsweise auf die Bereiche der Kochstellen begrenzt, um die Gesamtspannungen so niedrig wie möglich zu halten.
  • Diese Haftvermittlerschicht 14 besteht vorzugsweise aus Aluminiumoxid, aus Titanoxid oder aus Mischungen hiervon. Insbesondere Aluminiumoxid und Mischungen von Aluminiumoxid und Titanoxid mit geringem Anteil von Titanoxid, z.B. 97 Gew.-% Al2O3 mit 3 Gew.-% TiO2, weisen eine besonders gute Haftung auf der Oberfläche der Glaskeramik auf und besitzen eine sehr gute chemische Verträglichkeit hiermit. Die Haftvermittlerschicht 14 wird mit einer Schichtdicke zwischen etwa 10 und 150 µm, vorzugsweise zwischen etwa 40 und 70 µm, z.B. mit etwa 50 µm aufgetragen. Auf diese Haftvermittlerschicht 14 wird nunmehr eine Isolationsschicht 16, die vorzugsweise aus Cordierit (2MgO · 2Al2O3) oder Mullit (3Al2O3 · 2SiO2) besteht, durch thermisches Spritzen mit der notwendigen Schichtdicke aufgetragen, um die gewünschte Durchschlagsfestigkeit von 3.750 V bei Betriebstemperatur von 450 °C zu gewährleisten. Für Cordierit und Mullit beträgt die Schichtdicke vorzugsweise bis zu etwa 500 µm, vorzugsweise etwa 200 - 400 µm.
  • Ein unmittelbares Auftragen der Cordierit- oder Mullit-Schicht auf die Oberfläche der Glaskeramik wäre nicht möglich, da dies zu Schäden in Form von Mikrorissen oder dergleichen auf der Glaskeramik-Oberfläche führen würde.
  • Vor dem thermischen Spritzen wird die Oberfläche der Glaskeramikplatte 12 nicht, wie sonst allgemein üblich, durch Aufrauhstrahlen vorbehandelt, da dies zu Schäden an der Oberfläche der Kochplatte 12 führen würde. Statt dessen wird die Oberfläche der Kochplatte 12 lediglich gereinigt, z.B. mittels Aceton entfettet.
  • Auf die Unterseite der Isolierschicht 16 wird anschließend eine elektrische Heizleiterschicht 18 durch thermisches Spritzen aufgebracht, wobei die notwendige Strukturierung der Heizleiterschicht 18 durch ein Maskierverfahren in an sich bekannter Weise erreicht wird. Auf diese Weise kann ein beispielsweise mäanderförmig gewundener Heizleiter 20 erzeugt werden.
  • Hierbei ist als Verfahren zum thermischen Spritzen ein Laserspritzverfahren bevorzugt, da sich hiermit besonders ein bahnförmiger Auftrag vorteilhaft erzielen läßt.
  • Eine Variante des erfindungsgemäßen Keramik-Kochfeldes ist in Fig. 2 dargestellt und insgesamt mit Ziffer 10' bezeichnet.
  • Der Unterschied zu der Ausführung gemäß Fig. 1 besteht darin, daß auf die Haftvermittlerschicht 14 nicht unmittelbar die Isolierschicht 16 aufgetragen ist, sondern daß hierauf zunächst eine elektrisch leitfähige Zwischenschicht 22 aufgespritzt ist, auf die dann wiederum die Isolierschicht 16' aufgetragen ist.
  • Diese elektrisch leitfähige Zwischenschicht 22 ist geerdet, wie in Fig. 2 durch die Verbindung mit Masse 24 angedeutet ist. Im Fehlerfall wird beim elektrischen Durchschlag vom Heizleiter 20 auf die Kochplatte 12 infolge deren Erdung eine an sich bekannte, nicht gezeigte Sicherung der Kochplatte 12 ausgelöst.
  • Aus diesem Grund kann die Isolierschicht 16' für eine geringere Durchschlagsfestigkeit ausgelegt sein, wobei nach VDE etwa 1.500 V bei Betriebstemperatur ausreichend ist. Daher kann die Dicke der Isolierschicht 16' entsprechend verringert werden.
  • Auf der Unterseite der Isolierschicht 16' ist wiederum die Heizleiterschicht 18 wie vorstehend bereits beschrieben aufgespritzt.
  • Die elektrisch leitfähige Zwischenschicht 22 besteht vorzugsweise aus einem Cermet, etwa aus einer Legierung auf Nickel/Chrom/Kobalt-Basis, in der Karbid-Partikel, z.B. Wolframkarbid und Chromkarbid, eingelagert sind. Ein derartiges Cermet weist im Vergleich zu üblichen Metallen infolge der Karbideinschlüsse einen geringeren thermischen Ausdehnungskoeffizienten auf, was zu verringerten Problemen infolge thermischer Spannungen führt.
  • Alternativ kann auch statt eines Cermets eine elektrisch leitfähige Keramik für diese Zwischenschicht verwendet werden, sofern hiermit eine ausreichende elektrische Leitfähigkeit erzielbar ist. Beispielsweise könnte eine aus TiO2 thermisch gespritzte Schicht verwendet werden, da während des thermischen Spritzvorgangs das TiO2 derart an Sauerstoff verliert, daß es elektrisch leitfähig wird. Allerdings ist die elektrische Leitfähigkeit (Volumenleitfähigkeit) von so entstehendem TiO2-x zwischen 103 Ωcm bis 5 · 102 Ωcm bei RT) immer noch deutlich niedriger als die elektrische Leitfähigkeit von Metallen.
  • Die einzenen Schichten 14, 16 gemäß Fig. 1 bzw. 14, 22, 16' gemäß Fig. 2 weisen eine zur Heizleiterschicht 20 hin abnehmende Oberfläche auf. Ferner laufen die einzelnen Schichten in ihrem Randbereich jeweils sanft aus, gehen also stetig auf die jeweils darunterliegende Schicht über.
  • Durch diese Maßnahmen wird einer Delamination der Schichten im Randbereich entgegengewirkt.
  • In Fig. 2 ist ferner noch eine Möglichkeit dargestellt, mit der sich die teilweise erheblichen Spannungen im Randbereich der Schichten teilweise abbauen lassen.
  • Hierzu befindet sich an der Unterseite der Kochplatte 12 eine ringförmig ausgebildete Vertiefung 26, die den Randbereich der Haftvermittlerschicht 14 ringförmig umschließt. Spannungen, die im Randbereich zwischen der Kochplatte 12 und der Haftvermittlerschicht 14 übertragen werden, können durch diese Vertiefung 26 besser aufgenommen bzw. abgebaut werden.

Claims (9)

  1. Keramik-Kochfeld mit einer Kochplatte (12) aus Glaskeramik oder Glas, mit einer elektrischen Heizleiterschicht (20), und mit einer thermisch gespritzten Isolierschicht (16; 16') zwischen der Kochplatte (12) und der Heizleiterschicht (20), dadurch gekennzeichnet, daß auf einer Oberfläche der Kochplatte (12) eine thermisch gespritzte Haftvermittlerschicht (14) aus einem keramischen Material angeordnet ist, die von der Isolierschicht (16; 16') überdeckt ist, auf der die Heizleiterschicht (20) aufgenommen ist.
  2. Keramik-Kochfeld nach Anspruch 1, dadurch gekennzeichnet, daß die Haftvermittlerschicht (14) aus Aluminiumoxid, aus Titanoxid oder aus Mischungen hiervon besteht.
  3. Keramik-Kochfeld nach Anspruch 1, dadurch gekennzeichnet, daß die Isolierschicht (16; 16') aus Cordierit, aus Mullit oder aus Mischungen hiervon besteht.
  4. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Haftvermittlerschicht (14) eine Schichtdicke von 10 bis 150 µm, vorzugsweise von 30 bis 100 µm, insbesondere von 40 bis 70 µm, aufweist.
  5. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen der Haftvermittlerschicht (14) und der Isolierschicht (16') eine thermisch gespritzte elektrisch leitfähige Zwischenschicht (22) aufgebracht ist, die vorzugsweise geerdet ist.
  6. Keramik-Kochfeld nach Anspruch 5, dadurch gekennzeichnet, daß die Zwischenschicht (22) aus einer elektrisch leitfähigen Keramik oder aus einem Cermet besteht.
  7. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Heizleiterschicht (20) durch thermisches Spritzen, vorzugsweise durch Laserspritzen hergestellt ist.
  8. Keramik-Kochfeld nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Schichten (14, 16; 14, 22, 16') zur Heizleiterschicht (20) hin eine abnehmende Fläche einnehmen.
  9. Keramik-Kochfeld mit einer Kochplatte (12) aus Glaskeramik oder Glas, mit einer Heizleiterschicht (20), und mit einer thermisch gespritzten Isolierschicht (16, 16') zwischen der Kochplatte (12) und der Heizleiterschicht (20), nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Kochplatte (12) an ihrer der Heizleiterschicht (20) zugewandten Seite eine ringförmig geschlossene Vertiefung (26) aufweist, die in der Nähe des Randbereiches der auf die Kochplatte (12) aufgespritzten Schicht (14) verläuft.
EP02724173A 2001-03-06 2002-02-19 Keramik-kochfeld Expired - Lifetime EP1366643B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10112236A DE10112236C1 (de) 2001-03-06 2001-03-06 Keramik-Kochfeld
DE10112236 2001-03-06
PCT/EP2002/001742 WO2002071801A1 (de) 2001-03-06 2002-02-19 Keramik-kochfeld

Publications (2)

Publication Number Publication Date
EP1366643A1 EP1366643A1 (de) 2003-12-03
EP1366643B1 true EP1366643B1 (de) 2006-07-12

Family

ID=7677417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02724173A Expired - Lifetime EP1366643B1 (de) 2001-03-06 2002-02-19 Keramik-kochfeld

Country Status (7)

Country Link
US (1) US20040108307A1 (de)
EP (1) EP1366643B1 (de)
CN (1) CN1494817A (de)
AT (1) ATE333204T1 (de)
CA (1) CA2439141A1 (de)
DE (2) DE10112236C1 (de)
WO (1) WO2002071801A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0310285D0 (en) 2003-05-03 2003-06-11 Ceramaspeed Ltd Electric heating assembly
ITMI20041363A1 (it) * 2004-07-08 2004-10-08 Cedil Sa Elettrodomestico per cucine e simili
ITMO20060336A1 (it) * 2006-10-18 2008-04-19 Maria Prudenziati Metodi innovativi per la produzione di piastre ceramiche o in vetro con riscaldatore integrato, per cucine domestiche ed autoregolato in temperatura.
CN104313529A (zh) * 2008-05-01 2015-01-28 萨莫希雷梅克斯公司 制造烹饪器具的方法
GB0811980D0 (en) * 2008-07-07 2008-07-30 Ceramaspeed Ltd Radiant electric heater
US11666170B2 (en) * 2019-02-08 2023-06-06 Lexmark International, Inc. Cooking device having a cooking vessel and a ceramic heater
US11825568B2 (en) * 2021-04-01 2023-11-21 Whirlpool Corporation Segmented thermoresistive heating system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3110571A (en) * 1958-07-01 1963-11-12 Du Pont Ceramic material bonded to metal having refractory oxide dispersed therein
US3869596A (en) * 1973-09-28 1975-03-04 Safeway Products Inc Cookware heater
US3978315A (en) * 1975-09-19 1976-08-31 Corning Glass Works Electrical heating units
US4273822A (en) * 1977-07-18 1981-06-16 Rca Corporation Glazing paste for bonding a metal layer to a ceramic substrate
DE3105065A1 (de) * 1981-02-12 1982-08-19 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Kochplatte aus glaskeramik
DE3376829D1 (en) * 1982-06-29 1988-07-07 Toshiba Kk Method for directly bonding ceramic and metal members and laminated body of the same
DE3728466A1 (de) * 1987-08-26 1989-03-09 Ego Elektro Blanc & Fischer Kochgeraet
FR2623684A1 (fr) * 1987-11-24 1989-05-26 Labo Electronique Physique Element chauffant en vitroceramique
US5725826A (en) * 1996-05-17 1998-03-10 Guan; Goh Kim Method of fabricating ceramic cooking vessel
US5728638A (en) * 1996-08-21 1998-03-17 Bfd, Inc. Metal/ceramic composites containing inert metals
US6037572A (en) * 1997-02-26 2000-03-14 White Consolidated Industries, Inc. Thin film heating assemblies
DE19855481A1 (de) * 1998-12-01 2000-06-08 Siceram Gmbh Elektrisches Kochfeld

Also Published As

Publication number Publication date
EP1366643A1 (de) 2003-12-03
CN1494817A (zh) 2004-05-05
DE10112236C1 (de) 2002-10-24
ATE333204T1 (de) 2006-08-15
WO2002071801A1 (de) 2002-09-12
DE50207493D1 (de) 2006-08-24
US20040108307A1 (en) 2004-06-10
CA2439141A1 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1366642B1 (de) Keramik-kochfeld
EP0069298B1 (de) Kochplatte
EP2614680B1 (de) Transparente scheibe mit heizbeschichtung
EP2543229B1 (de) Scheibe mit einem elektrischen anschlusselement
EP3458423B1 (de) Transparente scheibe
DE3889506T2 (de) Materialien für Dickschichtleiterbahnen.
EP0226901A2 (de) Verfahren zum Herstellen von Kontaktbahnen auf Substraten, insbesondere auf Scheiben, und durch das Verfahren hergestellte Scheiben
DE3105065C2 (de)
EP1366643B1 (de) Keramik-kochfeld
DE102013104702B4 (de) Beschichtete Glaskeramikplatte
DE10112235C2 (de) Keramik-Kochfeld
DE69830984T2 (de) Dünnschichtheizanordnung
EP1516516B1 (de) Kochsystem mit direkt beheizter glaskeramikplatte
DE19607611C1 (de) Thermisch hoch belastbares Schichtsystem für Glasscheiben und Verwendung einer mit dem Schichtsystem beschichteten Glasscheibe
DE4109569A1 (de) Elektrische heizplatte
DE102007046907B4 (de) Schichtwiderstand und Verfahren zu dessen Herstellung
DE202008008709U1 (de) Tisch sowie Tischplatte eines Tisches
EP1696705B1 (de) Großflächiges Heizelement geringer Dicke, insbesondere Garofenheizelement
DE19609118A1 (de) Dickschichtpaste und ein dieses verwendendes keramisches Schaltungssubstrat
EP0559035B1 (de) Lötverbindung zwischen einer auf einer Glasscheibe eingebrannten Leitmetallschicht und einem Stromanschlusselement
WO2001075408A1 (de) Sensorelement, insbesondere temperaturfühler
EP0719594A1 (de) Verfahren zum Aufbringen einer Beschichtung auf einem Gegenstand, insbesondere einem Küchengegenstand, sowie derart beschichteter Gegenstand
DE102005007933A1 (de) Verfahren zum Herstellen einer Heizleiterschicht auf einem Substrat und damit hergestellte Kochplatte
DE1480445C (de) Verfahren zur Herstellung einer heizbaren Autoscheibe
DE10255199A1 (de) Verfahren zum Herstellen eines Mehrschichtelements mit einer transparenten Flächenelektrode und einem Elektrolumineszenz-Leuchtelement

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040305

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SCHOTT AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060712

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50207493

Country of ref document: DE

Date of ref document: 20060824

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061012

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061212

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20060712

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: SCHOTT A.G.

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070219

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160218

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50207493

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170901