EP1356208B1 - Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem - Google Patents

Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem Download PDF

Info

Publication number
EP1356208B1
EP1356208B1 EP02716707A EP02716707A EP1356208B1 EP 1356208 B1 EP1356208 B1 EP 1356208B1 EP 02716707 A EP02716707 A EP 02716707A EP 02716707 A EP02716707 A EP 02716707A EP 1356208 B1 EP1356208 B1 EP 1356208B1
Authority
EP
European Patent Office
Prior art keywords
pump
cam ring
actuator
rotor
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02716707A
Other languages
English (en)
French (fr)
Other versions
EP1356208A1 (de
Inventor
Ulrich Aldinger
Rolf Herkommer
Sven-Uwe Begerow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch Automotive Steering GmbH
Original Assignee
ZF Lenksysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Lenksysteme GmbH filed Critical ZF Lenksysteme GmbH
Publication of EP1356208A1 publication Critical patent/EP1356208A1/de
Application granted granted Critical
Publication of EP1356208B1 publication Critical patent/EP1356208B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • F04C14/223Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam
    • F04C14/226Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members using a movable cam by pivoting the cam around an eccentric axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control
    • F04B1/07Control by varying the relative eccentricity between two members, e.g. a cam and a drive shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3441Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation

Definitions

  • the invention relates to a pump system with a hydraulic pump, in particular for a steering system, according to the preamble of claim 1.
  • Such a pump system is known from the document DE 34 20 519 A1, in which describes a radial piston pump that has a drivable rotor Includes radial bores in which pump pistons are arranged, which are located on the Inside of an encompassing cam ring, which is mounted eccentrically to the rotor support.
  • a plurality of the circumference evenly distributed pump pistons more depending on the current position of the pump pistons or less radially pressed into their receiving radial bore in the rotor.
  • the Pump pistons act on a fluid receiving space, depending on the position the pump piston sucks the fluid into or out of the receiving space is pushed out. In this way, an approximately constant fluid flow be promoted.
  • a electrohydraulic pressure regulator is provided, the one the position of the outside Includes adjusting piston adjusting cam ring, which in dependence on a Control voltage to be fed to a proportional magnet must be adjusted.
  • the invention is based on the problem of specifying a pump system that is precisely adjustable and is characterized by a good one Responsiveness with a simple construction distinguished.
  • the pump system should be variably hand-held have and during operation to different external load requirements to be set.
  • the pump system comprises a hydraulic one Pump for delivering hydraulic fluid to a consumer and on the other hand a control and / or regulating unit in which depending on measurement signals or other input signals Control signals can be generated, the actuator of the pump can be fed to adjust the pump output.
  • the rules and regulations Control unit advantageously forms a separate from the pump executed unit, in which condition and operating variables of the consumer to whom the hydraulic fluid is supplied as the working medium will be supplied as input signals. additionally or as an alternative to the status and operating parameters of the Consumers can also use appropriate sizes of a dynamic Systems are considered in which the consumer is embedded and within which the consumer forms a subsystem.
  • This pump system is particularly suitable for use in a steering system for steering the wheels in a motor vehicle, the steering system being the consumer who is supplied with hydraulic fluid by the hydraulic pump, and the motor vehicle represents the superordinate dynamic system, its condition is taken into account when setting the pump can be.
  • This pump system offers the advantage of high variability, since the pump power via the signals of the regulating and control unit immediately adjusted to the requirements of the consumer can be what especially when used in Steering systems in motor vehicles leads to parameterizable Pumps can be realized in the steering system, their performance of state and system variables such as vehicle speed, the steering angular velocity and / or the yaw rate can be adjusted. Another advantage is that in the event that the system is in a stationary or quasi stationary state, a comparatively small Energy consumption can be realized.
  • variable displacement pump is advantageously used as the pump as a vane pump, as a roller cell pump or as a radial piston pump is executed.
  • the variable displacement pump has one inside a cam ring rotatably mounted and motor driven Rotor with radial bores with radially movable ones and towards the inside of the cam ring supportable pump elements, which have a fluid receiving space apply, the relative position between the cam ring and rotor via the actuator between a concentric position and an eccentric position is to be adjusted.
  • the variation of the pump performance is carried out via the Control signals of the regulating and control unit through a Actuator caused adjustment of the relative position between Cam ring and rotor.
  • the position of the outer, encompassing the rotor is expedient Curve ring via an actuator designed as an electric motor to adjust.
  • the electromotive adjustment of the outer Curve ring has the advantage that very short response times can be realized to the power output to the current To set the request. Response times up to about 10 ms can be realized.
  • the electric motor is very is precisely controllable and also small travel ranges, but with high forces go hand in hand, can be implemented. Possibly it can be useful here between the electric motor and to provide a reduction gear to the cam ring to the short travel distances and high positioning forces required to be able to realize relatively small electric motors.
  • the pump and the electric motor acting on the cam ring basically form functionally independent units, a higher degree of flexibility is achieved, which in particular it comes about that only the motion transmission from the rotor of the electric motor to the cam ring must be guaranteed; additional support elements on the cam ring however, are not absolutely necessary.
  • the power supply to the electric motor is also easier to accomplish as the hydraulic supply in known from the prior art hydraulic or electro-hydraulic control systems.
  • the rotor of the electric motor is used to adjust the position of the cam ring advantageously connected to an eccentric disc, which either immediately the required actuating movement from The rotor of the electric motor is transferred to the cam ring or indirectly via an intermediate transmission lever.
  • an indirect transmission is provided, is the intermediate Transmission lever is expediently translatory too move, the move being generated by one end of the transfer lever from a cam track on the eccentric disc is applied.
  • the indirect transmission under Interposition of the transmission lever offers the advantage that due to the spatial separation of pump and electric motor a variety of arrangement options of the electric motor are given relative to the pump.
  • the pump is useful via a closed control loop regulated, which is a sensor for measuring an actual size, the corresponds to the flow rate or pressure of the pump, and in addition, a control unit for comparing the Actual size with a stored or determined target value and the generation of one derived from the target-actual comparison Value for the electric current for the electric motor includes.
  • the sensor is advantageous as a position sensor designed to determine the position of the cam ring, which are used as a measure of the delivery pressure or flow can be because of the amount of deflection of the cam ring compared to a symmetry or center position in relation to the rotor the pump determines the pump output.
  • a magnetoresistive sensor can be used which measures the magnetic field of a permanent magnet, which on Rotor of the electric motor or one of these Component is arranged.
  • a vane pump 1 which a first delivery line 2 hydraulic fluid from a hydraulic reservoir 3 sucks in and via a second delivery line 4 pumps increased pressure to a consumer 5.
  • the consumer 5 is in particular a hydraulically actuated Steering system in a motor vehicle.
  • a return line 6 leading to the hydraulic reservoir 3 returns and in which a safety valve 7 is integrated which is in the open position when a maximum pressure is exceeded is displaced so that hydraulic fluid from the delivery line 4 via the return line 6 into the hydraulic reservoir 3 can flow back.
  • the safety valve 7 usually opens only at a maximum pressure, which is usually significantly higher is than the delivery pressure to be supplied to the consumer 5.
  • the vane pump 1 includes one in a not shown Housing rotatably mounted rotor 8 by a Curved ring 9 is encompassed.
  • the rotor 8 is driven by a drive unit driven, for example by an internal combustion engine.
  • the rotor 8 has evenly distributed over its circumference Radial guides 10 in which are formed as displacers 11 Pump elements are radially slidably received.
  • the displacers 11 are supported on the inside of the cam ring 9 from.
  • the radial guides 10 communicate with a fluid receiving space for the hydraulic fluid to be pumped, one Relative movement of the radial pistons 11 in the radial bores 10 generates a suction or delivery pressure, which the hydraulic fluid from the hydraulic reservoir 3 and in the direction of Consumer 5 promotes.
  • Pump 1 is a variable displacement pump with variable pump geometry educated. For this purpose, the position of the cam ring 9 relative to the rotor 8 continuously between a concentric Position and a maximum eccentric position in which the rotor 8 rests directly on an inside of the cam ring 9, be adjusted. The measure of the eccentric deflection of the cam ring 9 relative to the rotor 8 determines the delivery rate the radial piston pump 1.
  • the cam ring 9 is rotatably supported about a bearing point 12. On the side radially opposite the bearing point 12 engages an actuator 13 on the cam ring 9; that as an electric motor 14 is executed and its to be transferred to the cam ring 9 Adjustment movement in a swivel movement in the direction of the arrow 15 of the cam ring is implemented around its bearing point 12, whereby the curve ring is stepless between its concentric and the maximum eccentric position is adjusted.
  • the transfer the actuating movement of electric motor 14 on cam ring 9 expediently takes place via a transmission lever to be moved in translation 16, which is acted upon by the rotor of the electric motor is and tangentially engages the cam ring 9.
  • Control signals S Stell which are generated in a regulating and control unit 18, are fed to the electric motor 14 for adjustment via signal lines 17.
  • the control signals S Stell are generated according to a relationship stored in the regulating and control unit 18 as a map or as a calculation formula as a function of input signals S Ein , the status and operating variables of the pump 1, the consumer 5 and, if appropriate, other structural units, in particular an internal combustion engine, represent.
  • the power P to be supplied to the consumer can also be achieved by Change in the pressure p to be supplied to the consumer changes be, for example, by a variably adjustable Aperture in the delivery line 4 to the consumer.
  • FIG. 2 shows the radial piston pump 1 in an enlarged, schematic representation.
  • the rotor 19 of the electric motor 14 is connected to an eccentric disc 20 by the electric motor is driven in rotation.
  • On the peripheral surface of the eccentric disc 20 is the translationally displaceable transmission lever 16 on.
  • the peripheral surface of the eccentric disc 20 forms a curved path for the transmission lever 16 so that the current position of the transmission lever from the current one Rotational position of the eccentric disc 20 is determined. That of the eccentric disc 20 opposite end of the transmission lever 16 engages tangentially on the radially opposite bearing point 12 Side of the cam ring 9 and twists it in Arrow direction 15 around its bearing point 12.
  • FIG. 2 there are an intake opening 21 via which Supply hydraulic fluid from the hydraulic reservoir of the pump 1 and a pressure outlet opening 22, via which under pressure standing hydraulic fluid is to be supplied to the consumer.
  • an in Fig. 4 shown position sensor 24 is provided, which is advantageously magnetoresistive and with a permanent magnet 25 interacts, which is useful on the front the eccentric disc 20 is arranged.
  • the magnetoresistive Position sensor 24 is capable of that from the permanent magnet 25 generated magnetic field to measure. Because of the eccentric Arrangement of the eccentric disc 20 is from the position sensor 24 one from the current rotational position of the eccentric disc 20 dependent magnetic field senses from which to the rotating position can be closed. Since the eccentric disc 20 and Cam ring 9 are kinematically coupled, can be out of position the eccentric disc 20 also to the position of the cam ring 9 be inferred.
  • the position sensor 24 is advantageously stationary on a circuit board 26 held on which additional evaluation components 27 arranged to evaluate the measurement signals of the position sensor 24 are.
  • Fig. 4 can also be seen that on the electric motor 14 Reduction gear can be provided to the motor rotation of the electric motor in a smaller rotation, but with a higher one Torque to translate.
  • FIG. 5 shows a closed control loop, which is implemented in particular in a regulating and control unit 18, for adjusting the electric motor 14 and thus the cam ring of the pump and the delivery rate of the pump.
  • the current actual value of the eccentric disc or the cam ring or a value correlating with the position of the cam ring, such as flow rate or delivery pressure, is determined via the position sensor 24.
  • the measured value is fed as an input signal S A to a sensor preamplifier 29 in which signal amplification is carried out.
  • the amplified signal is fed to a controller 30, which comprises an analog-digital converter 31 for converting the amplified measurement signal into a digital value, a controller 32 and a pulse width modulator 33.
  • the controller 30 is also assigned a CAN bus 34 for transmitting the vehicle signals to the controller 30 and a calibration memory 35 for calibrating the sensor 24.
  • the function of the various subunits of the controller 30 is controlled and coordinated via a software control 36.
  • the pulse width modulated signal generated in the controller 30 is amplified in an output stage 37 and fed to the electric motor 14 as an actuating signal S Stell for setting the same.
  • the pump system described above is also suitable for use in gear systems, for example for lubricating-cooling switching pumps, or also in other applications in motor vehicles such as valve controls in internal combustion engines, Servo brakes etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Computer Hardware Design (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

Die Erfindung bezieht sich auf ein Pumpsystem mit einer hydraulischen Pumpe, insbesondere für ein Lenksystem, nach dem Oberbegriff des Anspruches 1.
Ein solches Pumpensystem ist aus der Druckschrift DE 34 20 519 A1 bekannt, in welcher eine Radialkolbenpumpe beschrieben wird, die einen antreibbaren Rotor mit Radialbohrungen umfasst, in denen Pumpkolben angeordnet sind, welche sich an der Innenseite eines umgreifenden Kurvenringes, der exzentrisch zum Rotor gelagert ist, abstützen. Beim Umlaufen des Rotors werden von einer Mehrzahl über den Umfang gleichmässig verteilter Pumpkolben je nach aktueller Position der Pumpkolben diese mehr oder weniger weit radial in ihre aufnehmende Radialbohrung im Rotor eingedrückt. Die Pumpkolben beaufschlagen einen Fluidaufnahmeraum, wobei in Abhängigkeit der Position der Pumpkolben das Fluid in den Aufnahmeraum eingesaugt oder aus diesem herausgedrückt wird. Auf diese Weise kann ein näherungsweise konstanter Fluidstrom gefördert werden.
Zur Einstellung der Höhe des Förderstromes und/oder des Förderdrucks ist ein elektrohydraulischer Druckregler vorgesehen, der einen die Position des äusseren Kurvenringes verstellenden Stellkolben umfasst, welcher in Abhängigkeit einer Steuerspannung, die einem Proportionalmagneten zuzuführen ist, zu verstellen ist.
Diese bekannte, regelbare Hydraulikpumpe zeichnet sich durch einen komplizierten Aufbau und einen hohen Energieverbrauch aus. Darüber hinaus besitzen diese Pumpen ein schlechtes Ansprechverhalten, wobei die verzögerten Ansprechzeiten zu ungenauen Einstellungen des Fluidförderstromes und Fluiddruckes führen.
Der Erfindung liegt das Problem zu Grunde, ein Pumpsystem anzugeben, das präzise einstellbar ist und sich durch ein gutes Ansprechverhalten bei zugleich einfachem konstruktivem Aufbau auszeichnet. Das Pumpsystem soll zweckmäßig variabel Hand zu haben und im laufenden Betrieb an unterschiedliche äußere Lastanforderungen einzustellen sein.
Diese Problem wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind den Unteransprüchen zu entnehmen.
Das erfindungsgemäße Pumpsystem umfasst zum einen eine hydraulische Pumpe zur Förderung von Hydraulikfluid zu einem Verbraucher und zum anderen eine Steuer- und/oder Regeleinheit, in der in Abhängigkeit von Messsignalen bzw. sonstigen Eingangssignalen Stellsignale erzeugbar sind, die einem Stellglied der Pumpe zur Einstellung der Pumpenleistung zuführbar sind. Die Regelund Steuereinheit bildet vorteilhaft eine von der Pumpe separat ausgeführte Einheit, in welcher Zustands- und Betriebsgrößen des Verbrauchers, dem das Hydraulikfluid als Arbeitsmedium zugeführt wird, als Eingangssignale zugeführt werden. Zusätzlich oder alternativ zu den Zustands- und Betriebsgrößen des Verbrauchers können auch entsprechende Größen eines dynamischen Systems berücksichtigt werden, in das der Verbraucher eingebettet ist und innerhalb dem der Verbraucher ein Subsystem bildet. In der Regel- und Steuereinheit werden aus den zugeführten Eingangssignalen gemäß einer als Kennfeld abgelegten oder als mathematischer Zusammenhang abgespeicherten Berechnungsvorschrift Stellsignale erzeugt, die dem Stellglied der hydraulischen Pumpe zur aktuellen Einstellung der Pumpenleistung zugeführt werden.
Dieses Pumpsystem eignet sich in besonderer Weise für den Einsatz in einem Lenksystem zur Lenkung der Räder in einem Kraftfahrzeug, wobei das Lenksystem den Verbraucher darstellt, der von der hydraulischen Pumpe mit Hydraulikfluid versorgt wird, und das Kraftfahrzeug das übergeordnete dynamische System darstellt, dessen Zustand bei der Einstellung der Pumpe berücksichtigt werden kann.
Dieses Pumpsystem bietet den Vorteil einer hohen Variabilität, da die Pumpenleistung über die Signale der Regel- und Steuereinheit unmittelbar auf die Anforderungen des Verbrauchers eingestellt werden kann, was insbesondere bei einem Einsatz in Lenksystemen in Kraftfahrzeugen dazu führt, dass parametrierbare Pumpen im Lenksystem realisiert werden können, deren Leistung von Zustands- und Systemgrößen wie die Fahrzeuggeschwindigkeit, die Lenkwinkelgeschwindigkeit und/oder die Gierrate eingestellt werden kann. Ein weiterer Vorteil liegt darin, dass für den Fall, dass das System sich in einem stationären bzw. quasi stationären Zustand befindet, ein vergleichsweise geringer Energieverbrauch realisiert werden kann.
Vorteilhaft wird als Pumpe eine Verstellpumpe eingesetzt, die als Flügelzellenpumpe, als Rollenzellenpumpe oder als Radialkolbenpumpe ausgeführt ist. Die Verstellpumpe weist einen innerhalb eines Kurvenrings drehbar gelagerten und motorisch angetriebenen Rotor mit Radialbohrungen mit darin radial verschieblichen und gegenüber der Innenseite des Kurvenrings abstützbaren Pumpelementen auf, welche einen Fluidaufnahmeraum beaufschlagen, wobei die Relativposition zwischen Kurvenring und Rotor über das Stellglied zwischen einer konzentrischen Lage und einer exzentrischen Lage zu verstellen ist. In dieser Ausführung erfolgt die Variierung der Pumpenleistung über die Stellsignale der Regel- und Steuereinheit durch eine über das Stellglied verursachte Einstellung der Relativposition zwischen Kurvenring und Rotor. Zustands- und Betriebsgrößen des Verbrauchers, insbesondere des Lenksystems, und/oder des übergeordneten dynamischen Systems, insbesondere des Kraftfahrzeugs, werden unmittelbar in eine Veränderung der Relativposition vom Kurvenring zum Rotor umgesetzt, so dass der von der hydraulischen Pumpe geförderte Volumenstrom prinzipiell ausschließlich durch Veränderung der Pumpengeometrie an den aktuellen Bedarf des Verbrauchers angepasst werden kann. Blenden- oder Bypasssysteme zur Regulierung des Volumenstroms können zwar in vorteilhafter Weise mit der Einstellung der Pumpengeometrie kombiniert werden, sind jedoch nicht zwingend erforderlich.
Zweckmäßig ist die Position des äußeren, den Rotor umgreifenden Kurvenringes über ein als Elektromotor ausgebildetes Stellglied zu verstellen. Die elektromotorische Verstellung des äußeren Kurvenringes bietet den Vorteil, dass sehr kurze Ansprechzeiten realisiert werden können, um die Leistungsabgabe auf die aktuelle Anforderung einzustellen. Es können Reaktionszeiten bis etwa 10 ms realisiert werden.
Ein weiterer Vorteil besteht darin, dass der Elektromotor sehr präzise steuerbar ist und auch kleine Stellwege, die jedoch mit hohen Kräften einhergehen, umgesetzt werden können. Gegebenenfalls kann es hierbei zweckmäßig sein, zwischen dem Elektromotor und dem Kurvenring ein Untersetzungsgetriebe vorzusehen, um die geforderten kurzen Stellwege und hohen Stellkräfte auch bei verhältnismäßig kleinen Elektromotoren realisieren zu können.
Da die Pumpe und der den Kurvenring beaufschlagende Elektromotor grundsätzlich funktional eigenständige Baueinheiten bilden, wird ein höheres Maß an Flexibilität erreicht, welches insbesondere dadurch zustande kommt, dass lediglich die Bewegungsübertragung vom Läufer des Elektromotores auf den Kurvenring gewährleistet sein muss; zusätzliche Abstützelemente am Kurvenring sind dagegen nicht zwingend erforderlich. Die Stromzufuhr zum Elektromotor ist darüber hinaus leichter zu bewerkstelligen als die Hydraulikzufuhr bei aus dem Stand der Technik bekannten hydraulischen oder elektrohydraulischen Stellsystemen.
Zur Positionseinstellung des Kurvenringes ist der Läufer des Elektromotors vorteilhaft mit einer Exzenterscheibe verbunden, die entweder unmittelbar die erforderliche Stellbewegung vom Läufer des Elektromotors auf den Kurvenring überträgt oder mittelbar über einen zwischengeschalteten Übertragungshebel. Sofern eine mittelbare Übertragung vorgesehen ist, ist der zwischengeschaltete Übertragungshebel zweckmäßig translatorisch zu verschieben, wobei die Verschiebebewegung erzeugt wird, indem ein Ende des Übertragungshebels von einer Kurvenbahn an der Exzenterscheibe beaufschlagt wird. Die mittelbare Übertragung unter Zwischenschaltung des Übertragungshebels bietet den Vorteil, dass auf Grund der räumlichen Trennung von Pumpe und Elektromotor eine Vielzahl von Möglichkeiten für die Anordnung des Elektromotors relativ zur Pumpe gegeben sind.
Andererseits ist es auch möglich, dass die Exzenterscheibe unmittelbar am Kurvenring angreift, wobei sich diese Ausführung durch ein besonders kompaktes Baumaß auszeichnet, da auf ein zwischenliegendes Übertragungsgestänge verzichtet werden kann. Reibungsverluste können dadurch minimiert werden.
Zweckmäßig wird die Pumpe über einen geschlossenen Regelkreis geregelt, welcher einen Sensor zur Messung einer Ist-Größe, die dem Förderstrom bzw. dem Förderdruck der Pumpe entspricht, und darüber hinaus eine Steuer- und Regeleinheit zum Vergleich der Ist-Größe mit einem abgespeicherten oder zu ermittelnden SollWert sowie der Erzeugung eines aus dem Soll-Ist-Vergleich abgeleiteten Wert für den elektrischen Strom für den Elektromotor umfasst. Der Sensor ist hierbei vorteilhaft als ein Positionssensor zur Bestimmung der Position des Kurvenringes ausgeführt, die als Maß für den Förderdruck bzw. den Förderstrom herangezogen werden kann, da die Höhe der Auslenkung des Kurvenringes gegenüber einer Symmetrie- oder Mittenlage in Bezug auf den Rotor der Pumpe die Pumpenleistung bestimmt.
Als Positionssensor zur Bestimmung der Kurvenringposition kann beispielsweise ein magnetoresistiver Sensor verwendet werden, der das Magnetfeld eines Permanentmagneten misst, welcher am Läufer des Elektromotors oder einem von diesem beaufschlagten Bauteil angeordnet ist. Dadurch wird bei einer Betätigung des Elektromotors das Magnetfeld des Permanentmagneten in Bezug auf den Positionssensor verändert, wobei diese Magnetfeldänderung gemessen und als Maß für die Positionsänderung herangezogen wird.
Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der Zeichnungen näher beschrieben. Es zeigen:
Fig. 1
eine schematische Darstellung einer Flügelzellenpumpe zur Förderung eines Hydraulikfluids aus einem Hydraulikreservoir zu einem Verbraucher, wobei ein die Pumpenleistung beeinflussender Kurvenring der Radialkolbenpumpe über einen Elektromotor zu verstellen ist,
Fig. 2
eine schematische Darstellung einer Flügelzellenpumpe mit einem Elektromotor mit Exzenterscheibe, deren Drehbewegung in eine lineare, translatorische Übertragungsbewegung eines Übertragungshebels umgesetzt wird,
Fig. 3
eine Fig. 2 entsprechende Darstellung, jedoch mit in den Kurvenring integrierter Exzenterscheibe, welche vom Läufer des Elektromotors angetrieben wird,
Fig. 4
ein magnetoresistiver Positionssensor, der mit einem auf der Exzenterscheibe angeordneten Permanentmagneten zusammenwirkt,
Fig. 5
ein Prinzipbild eines Regelkreises zur Einstellung des Elektromotors.
In den folgenden Figuren sind gleiche Bauteile mit gleichen Bezugszeichen versehen.
In Fig. 1 ist eine Flügelzellenpumpe 1 dargestellt, die über eine erste Förderleitung 2 Hydraulikfluid aus einem Hydraulikreservoir 3 ansaugt und über eine zweite Förderleitung 4 mit erhöhtem Druck zu einem Verbraucher 5 pumpt. Bei dem Verbraucher 5 handelt es sich insbesondere um ein hydraulisch betätigbares Lenksystem in einem Kraftfahrzeug. Von der Förderleitung 4 zweigt eine Rücklaufleitung 6 ab, die zum Hydraulikreservoir 3 zurückführt und in die ein Sicherheitsventil 7 integriert ist, welches bei Übersteigung eines Maximaldrucks in Offenstellung versetzt wird, so dass Hydraulikfluid aus der Förderleitung 4 über die Rücklaufleitung 6 in das Hydraulikreservoir 3 zurückströmen kann. Das Sicherheitsventil 7 öffnet üblicherweise erst bei einem Maximaldruck, der in der Regel deutlich höher ist als der dem Verbraucher 5 zuzuführende Förderdruck.
Die Flügelzellenpumpe 1 umfasst einen in einem nicht näher dargestellten Gehäuse drehbar gelagerten Rotor 8, der von einem Kurvenring 9 umgriffen ist. Der Rotor 8 wird von einer Antriebseinheit angetrieben, beispielsweise von einer Brennkraftmaschine. Der Rotor 8 weist gleichmäßig über seinen Umfang verteilte Radialführungen 10 auf, in denen als Verdränger 11 ausgebildete Pumpelemente radial verschieblich aufgenommen sind. Die Verdränger 11 stützen sich an der Innenseite des Kurvenringes 9 ab. Die Radialführungen 10 kommunizieren mit einem Fluidaufnahmeraum für das zu fördernde Hydraulikfluid, wobei eine Relativbewegung der Radialkolben 11 in den Radialbohrungen 10 einen Saug- bzw. Förderdruck erzeugt, welcher das Hydraulikfluid aus dem Hydraulikreservoir 3 ansaugt und in Richtung des Verbrauchers 5 fördert.
Die Pumpe 1 ist als Verstellpumpe mit veränderbarer Pumpengeometrie ausgebildet. Hierzu kann die Position des Kurvenringes 9 gegenüber dem Rotor 8 stufenlos zwischen einer konzentrischen Lage und einer maximalen exzentrischen Lage, in der der Rotor 8 unmittelbar an einer Innenseite des Kurvenringes 9 anliegt, verstellt werden. Das Maß der exzentrischen Auslenkung des Kurvenringes 9 gegenüber dem Rotor 8 bestimmt die Förderleistung der Radialkolbenpumpe 1.
Der Kurvenring 9 ist um einen Lagerpunkt 12 drehbar gelagert. Auf der dem Lagerpunkt 12 radial gegenüberliegenden Seite greift am Kurvenring 9 ein Stellglied 13 an; das als Elektromotor 14 ausgeführt ist und dessen auf den Kurvenring 9 zu übertragende Stellbewegung in eine Schwenkbewegung in Pfeilrichtung 15 des Kurvenringes um seinen Lagerpunkt 12 umgesetzt wird, wodurch der Kurvenring stufenlos zwischen seiner konzentrischen und der maximalen exzentrischen Lage verstellt wird. Die Übertragung der Stellbewegung von Elektromotor 14 auf Kurvenring 9 erfolgt zweckmäßig über einen translatorisch zu bewegenden Übertragungshebel 16, welcher vom Läufer des Elektromotors beaufschlagt wird und tangential am Kurvenring 9 angreift.
Es kann gegebenenfalls zweckmäßig sein, anstelle eines Elektromotors als Stellglied zur Veränderung der Relativposition zwischen Kurvenring und Rotor einen Hubmagneten einzusetzen. Weiterhin kann es zweckmäßig sein, die Verstellung hydraulisch zu bewirken.
Dem Elektromotor 14 werden zur Einstellung über Signalleitungen 17 Stellsignale SStell zugeführt, die in einer Regel- und Steuereinheit 18 erzeugt werden. Die Stellsignale SStell werden gemäß einem in der Regel- und Steuereinheit 18 als Kennfeld oder als Berechnungsformel hinterlegten Zusammenhang in Abhängigkeit von Eingangssignalen SEin generiert, die Zustands- und Betriebsgrößen der Pumpe 1, des Verbrauchers 5 sowie gegebenenfalls sonstiger Baueinheiten, insbesondere einer Brennkraftmaschine, repräsentieren.
Durch die Veränderung der Relativposition zwischen Kurvenring und Rotor wird die Pumpengeometrie beeinflusst, was sich auf die dem Verbraucher zuzuführende Leistung P auswirkt, die sich gemäß dem Zusammenhang P = VGeom * n * p berechnet, wobei VGeom eine Geometrie-Kenngröße für die Pumpengeometrie ist, die von der Relativposition von Kurvenring zu Rotor abhängt. n bezeichnet die Drehzahl des Rotors und p den Druck des zum Verbraucher geführten Hydraulikfluids. Da die Rotordrehzahl und somit auch die Pumpenleistung bei. einem Antrieb über die Brennkraftmaschine von der Brennkraftmaschinendrehzahl abhängt, ist zur Erzielung einer konstanten Pumpenleistung eine drehzahlabhängige Pumpenregelung erforderlich, bei der zweckmäßig die Pumpengeometrie manipuliert wird. Die Pumpengeometrie wird auch zur Anpassung an den aktuellen Bedarf des Verbrauchers durch eine Beaufschlagung des Kurvenrings über den Elektromotor eingestellt.
Zusätzlich oder alternativ zur Manipulation der Pumpengeometrie kann die dem Verbraucher zuzuführende Leistung P auch durch Veränderung des dem Verbraucher zuzuführenden Drucks p verändert werden, beispielsweise durch eine variabel einstellbare Blende in der Förderleitung 4 zum Verbraucher.
Die Fig. 2 zeigt die Radialkolbenpumpe 1 in einer vergrößerten, schematischen Darstellung. Der Läufer 19 des Elektromotors 14 ist mit einer Exzenterscheibe 20 verbunden, die vom Elektromotor rotierend angetrieben wird. An der Umfangsfläche der Exzenterscheibe 20 liegt der translatorisch verschiebbare Übertragungshebel 16 an. Die Umfangsfläche der Exzenterscheibe 20 bildet eine Kurvenbahn für den Übertragungshebel 16, so dass die aktuelle Position des Übertragungshebels von der aktuellen Drehlage der Exzenterscheibe 20 bestimmt wird. Das der Exzenterscheibe 20 gegenüberliegende Ende des Übertragungshebels 16 greift tangential auf der dem Lagerpunkt 12 radial gegenüberliegenden Seite am Kurvenring 9 an und verdreht diesen in Pfeilrichtung 15 um seinen Lagerpunkt 12.
Des Weiteren sind in Fig. 2 eine Ansaugöffnung 21, über die Hydraulikfluid aus dem Hydraulikreservoir der Pumpe 1 zuzuführen ist, und eine Druckabgangsöffnung 22, über die unter Druck stehendes Hydraulikfluid dem Verbraucher zuzuführen ist, eingezeichnet.
Die Darstellung der Fig. 3 entspricht derjenigen aus Fig. 2, jedoch mit dem Unterscheid, dass die Übertragung der Stellbewegung des Elektromotores 14 ohne zwischengeschaltetes Übertragungsglied, sondern vielmehr unmittelbar auf den Kurvenring 9 erfolgt. Hierzu ist die am Läufer 19 des Elektromotors angeordnete Exzenterscheibe 20 in einer korrespondierenden Exzenteraufnahme 23 auf der Außenseite des Kurvenringes 9 aufgenommen. Bei einer Verdrehung des Läufers 19 und der Exzenterscheibe 20 beaufschlagt die Außenseite der Exzenterscheibe 20 zugeordnete Wandabschnitte der Exzenteraufnahme 23 und bewirkt dadurch eine in Pfeilrichtung 15 wirkende Verstellkraft auf den Kurvenring 9, die den Kurvenring 9 um seinen Lagerpunkt 12 verdreht.
Um die Pumpe 1 in einem geschlossenen Regelkreis betreiben und die Pumpenleistung auf einem gewünschten Niveau einstellen zu können, muss die aktuelle Position des Kurvenringes in Bezug auf den Rotor sensorisch ermittelt werden. Hierzu ist ein in Fig. 4 dargestellter Positionssensor 24 vorgesehen, welcher vorteilhaft magnetoresistiv ausgebildet ist und mit einem Permanentmagneten 25 zusammenwirkt, der zweckmäßig auf der Stirnseite der Exzenterscheibe 20 angeordnet ist. Der magnetoresistive Positionssensor 24 ist in der Lage, das vom Permanentmagneten 25 erzeugte Magnetfeld zu messen. Auf Grund der exzentrischen Anordnung der Exzenterscheibe 20 wird vom Positionssensor 24 ein von der aktuellen Drehlage der Exzenterscheibe 20 abhängendes Magnetfeld sensiert, aus dem auf die Drehposition geschlossen werden kann. Da die Exzenterscheibe 20 und der Kurvenring 9 kinematisch gekoppelt sind, kann aus der Position der Exzenterscheibe 20 auch auf die Position des Kurvenringes 9 rückgeschlossen werden.
Gegebenenfalls kann es aber auch zweckmäßig sein, die aktuelle Position des Kurvenringes 9 unmittelbar zu messen, beispielsweise durch Befestigen eines Permanentmagneten auf der Außenseite des Kurvenringes 9 und Sensieren über einen magnetoresistiven Positionssensor.
Der Positionssensor 24 ist vorteilhaft ortsfest auf einer Platine 26 gehalten, auf der zusätzliche Auswertekomponenten 27 zur Auswertung der Messsignale des Positionssensors 24 angeordnet sind.
Fig. 4 ist außerdem zu entnehmen, dass am Elektromotor 14 ein Untersetzungsgetriebe vorgesehen sein kann, um die Motordrehung des Elektromotors in eine kleinere Drehung, jedoch mit höherem Drehmoment, zu übersetzen.
Fig. 5 zeigt einen geschlossenen Regelkreis, der insbesondere in einer Regel- und Steuereinheit 18 verwirklicht ist, zur Einstellung des Elektromotors 14 und damit des Kurvenringes der Pumpe und der Förderleistung der Pumpe. Über den Positionssensor 24 wird der aktuelle Ist-Wert der Exzenterscheibe bzw. des Kurvenringes bzw. ein mit der Position des Kurvenringes korrelierender Wert wie Förderstrom oder Förderdruck ermittelt. Der Messwert wird als Eingangssignal SEin einem Sensorvorverstärker 29 zugeführt, in dem eine Signalverstärkung durchgeführt wird. Das verstärkte Signal wird einem Controller 30 zugeführt, der einen Analog-Digital-Wandler 31 zur Umwandlung des verstärkten Messsignales in einen Digitalwert, einen Regler 32 und einen Pulsweitenmodulierer 33 umfasst. Dem Controller 30 sind darüber hinaus ein CAN-Bus 34 zur Übertragung der Fahrzeugsignale zum Controller 30 sowie ein Kalibrierspeicher 35 zur Kalibrierung des Sensors 24 zugeordnet. Über eine Softwaresteuerung 36 wird die Funktion der verschiedenen Untereinheiten des Controllers 30 gesteuert und koordiniert.
Das im Controller 30 erzeugte, pulsweitenmodulierte Signal wird in einer Endstufe 37 verstärkt und dem Elektromotor 14 als Stellsignal SStell zur Einstellung desselben zugeführt.
Das vorbeschriebene Pumpsystem eignet sich auch zur Anwendung in Getriebesystemen, beispielsweise für Schmier-Kühl-Schaltpumpen, oder auch in sonstigen Anwendungen in Kraftfahrzeugen wie zum Beispiel Ventilsteuerungen in Verbrennungsmotoren, Servobremsen etc.
Bezugszeichenliste
1
Flügelzellenpumpe
2
Förderleitung
3
Hydraulikreservoir
4
Förderleitung
5
Verbraucher
6
Rücklaufleitung
7
Sicherheitsventil
8
Rotor
9
Kurvenring
10
Radialführung
11
Verdränger
12
Lagerpunkt
13
Stellglied
14
Elektromotor
15
Pfeilrichtung
16
Übertragungshebel
17
Signalleitungen
18
Regel- und Steuereinheit
19
Läufer
20
Exzenterscheibe
21
Ansaugöffnung
22
Druckabgangsöffnung
23
Exzenteraufnahme
24
Positionssensor
25
Permanentmagnet
26
Platine
27
Auswertekomponente
28
Untersetzungsgetriebe
29
Sensorvorverstärker
30
Controller
31
AD-Wandler
32
Regler
33
Pulsweitenmodulierer
34
CAN-Bus
35
Kalibrierspeicher
36
Softwaresteuerung
37
Endstufe

Claims (7)

  1. Pumpsystem mit einer hydraulischen Rotationspumpe für ein Lenksystem zur Lenkung der Räder in einem Kraftfahrzeug, mit folgenden Merkmalen:
    es ist ein die Pumpenleistung beeinflussendes Stellglied (13) vorgesehen, dem zur Einstellung Stellsignale (SStell) einer Regel- und Steuereinheit (18) zuführbar sind,
    der Regel- und Steuereinheit (18) sind Eingangssignale (SEin) zuführbar, die Zustands- und Betriebsgrössen eines Verbrauchers (5) und/oder eines dynamischen Systems darstellen, in welches der Verbraucher (5) integriert ist,
    die Stellsignale (SStell) sind gemäss einem in der Regel- und Steuereinheit abgespeicherten, funktionalen Zusammenhang in Abhängigkeit der Eingangssignale (SEin) erzeugbar und dem Stellglied (13) zuführbar und
    das Stellglied (13) ist ein Elektromotor (14),
    die Rotationspumpe ist als Verstellpumpe ausgebildet und weist einen innerhalb eines Kurvenrings (9) drehbar gelagerten und motorisch angetriebenen Rotor (8) mit Radialbohrungen (10) mit darin radial verschieblichen und gegenüber der Innenseite des Kurvenrings abstützbaren Pumpelementen auf,
    gekennzeichnet durch folgende Merkmale:
    das Stellglied (13) treibt eine Exzenterscheibe (20) an, deren Bewegung auf den Kurvenring (9) übertragbar ist, wodurch der Kurvenring (9) relativ zum Rotor (8) verstellbar ist,
    ein Positionssensor (24) zur Bestimmung der Position des Kurvenrings (9) oder einer damit korrelierenden Grösse ist vorgesehen und der das Stellglied (13) beaufschlagende elektrische Strom ist in Abhängigkeit von Messsignalen des Positionssensors (24) einzustellen,
    der Positionssensor (24) ist magnetoresistiv ausgebildet, wobei über die Messung des Magnetfelds eines Permanentmagneten (25), der am Stellglied (13) oder einem von diesem beaufschlagten Bauteil angeordnet ist, die aktuelle Position des Läufers des Elektromotors (19) bzw. des von diesem beaufschlagten Bauteils zu bestimmen ist.
  2. Pumpsystem nach Anspruch 1, dadurch gekennzeichnet, dass ein geschlossener Regelkreis zur Einstellung eines das Stellglied (13) beaufschlagenden elektrischen Stroms vorgesehen ist, wobei der Regelkreis den Positionssensor (24) zur Messung einer mit dem Förderstrom und/oder dem Förderdruck korrelierenden Istgrösse und einen Regler (32) zum Vergleich der Istgrösse mit einem Sollwert und einem daraus zu erzeugenden Wert für den elektrischen Strom umfasst.
  3. Pumpsystem nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass als Pumpe eine Flügelzellenpumpe bzw. Rollenzellenpumpe bzw. Radialkolbenpumpe verwendet wird, die einen innerhalb eines Kurvenrings (9) drehbar gelagerten und motorisch angetriebenen Rotor (8) mit Radialbohrungen (10) mit darin radial verschieblichen und gegenüber der Innenseite des Kurvenrings abstützbaren Pumpelementen aufweist, welche einen Fluidaufnahmeraum beaufschlagen, wobei die Relativposition zwischen Kurvenring (9) und Rotor (8) über das Stellglied (13) zwischen einer konzentrischen Lage und einer exzentrischen Lage zu verstellen ist.
  4. Pumpsystem nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen Exzenterscheibe (20) und Kurvenring (9) ein translatorisch bewegbarer Übertragungshebel (16) vorgesehen ist.
  5. Pumpsystem einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Exzenterscheibe (20) unmittelbar am Kurvenring (9) angreift.
  6. Pumpsystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Kurvenring (9) um einen Lagerpunkt (12) drehbar gelagert ist und das Stellglied (13) mit Abstand zum Lagerpunkt (12) am Kurvenring (9) angreift.
  7. Pumpsystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass zwischen dem Stellglied (13) und dem verstellbaren Kurvenring (9) ein Untersetzungsgetriebe (28) vorgesehen ist.
EP02716707A 2001-02-03 2002-02-01 Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem Expired - Lifetime EP1356208B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10104851A DE10104851A1 (de) 2001-02-03 2001-02-03 Pumpsystem mit einer hydraulischen Pumpe, insbesondere für ein Lenksystem
DE10104851 2001-02-03
PCT/EP2002/001023 WO2002063170A1 (de) 2001-02-03 2002-02-01 Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem

Publications (2)

Publication Number Publication Date
EP1356208A1 EP1356208A1 (de) 2003-10-29
EP1356208B1 true EP1356208B1 (de) 2004-09-15

Family

ID=7672712

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02716707A Expired - Lifetime EP1356208B1 (de) 2001-02-03 2002-02-01 Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem

Country Status (6)

Country Link
US (1) US20040096334A1 (de)
EP (1) EP1356208B1 (de)
JP (1) JP2004522909A (de)
DE (2) DE10104851A1 (de)
ES (1) ES2229111T3 (de)
WO (1) WO2002063170A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10157527A1 (de) * 2001-11-23 2003-06-05 Zf Lenksysteme Gmbh Hydraulische Hilfskraftlenkung für Kraftfahrzeuge
DE50203640D1 (de) 2001-11-23 2005-08-18 Zf Lenksysteme Gmbh Hydraulische hilfskraftlenkung und ein einstellverfahren für eine solche lenkung
DE10157520A1 (de) * 2001-11-23 2003-06-05 Zf Lenksysteme Gmbh Hydraulische Hilfskraftlenkung für Kraftfahrzeuge
DE10157548A1 (de) * 2001-11-23 2003-06-05 Zf Lenksysteme Gmbh Einstellverfahren für hydraulisch arbeitende Fahrzeug-Servolenkungen
DE10256307A1 (de) * 2002-12-03 2004-06-24 O&K Orenstein & Koppel Ag Hydraulische Lenkung für Fahrzeuge
GB0322122D0 (en) 2003-09-22 2003-10-22 Dana Automotive Ltd Pumping system
US7249458B2 (en) * 2005-07-22 2007-07-31 Ashradn Holdings Ltd. Self-contained hydraulic actuator system
DE102006041437A1 (de) * 2006-09-04 2008-03-06 Trw Automotive Gmbh Vorrichtung zur Steuerung eines Aktors
DE102006052996A1 (de) * 2006-11-10 2008-05-15 Zf Lenksysteme Gmbh Flügelzellenpumpe
US8839920B2 (en) 2008-04-17 2014-09-23 Levant Power Corporation Hydraulic energy transfer
CA2679776A1 (en) * 2008-10-08 2010-04-08 Magna Powertrain Inc. Direct control variable displacement vane pump
US9035477B2 (en) 2010-06-16 2015-05-19 Levant Power Corporation Integrated energy generating damper
WO2014152482A2 (en) 2013-03-15 2014-09-25 Levant Power Corporation Multi-path fluid diverter valve
EP4450845A2 (de) * 2013-03-15 2024-10-23 ClearMotion, Inc. Verbesserungen an einer aktiven fahrzeugaufhängung
US9702349B2 (en) 2013-03-15 2017-07-11 ClearMotion, Inc. Active vehicle suspension system
US9174508B2 (en) 2013-03-15 2015-11-03 Levant Power Corporation Active vehicle suspension
EP3825156A1 (de) 2013-04-23 2021-05-26 ClearMotion, Inc. Aktive aufhängung mit strukturellem aktuator
DE102013220642B4 (de) * 2013-10-14 2016-10-27 Continental Automotive Gmbh Vorrichtung und Verfahren zur Steuerung einer Dieselpumpe bei Nullförderung
DE102014108945A1 (de) 2014-06-26 2015-12-31 Robert Bosch Automotive Steering Gmbh Hydraulische Verstellpumpe, insbesondere für ein Lenksystem eines Kraftfahrzeuges
US9702424B2 (en) 2014-10-06 2017-07-11 ClearMotion, Inc. Hydraulic damper, hydraulic bump-stop and diverter valve
DE102014221447A1 (de) 2014-10-22 2016-04-28 Zf Friedrichshafen Ag Verstellpumpe

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB820648A (en) * 1955-11-29 1959-09-23 Desire Joseph Deschamps Improvements in or relating to rotary pumps of the outwardly-sliding vane type
DE1801137A1 (de) * 1968-10-04 1970-04-16 Bosch Gmbh Robert Hydraulikanlage mit einer verstellbaren Pumpe
US4537029A (en) * 1982-09-23 1985-08-27 Vickers, Incorporated Power transmission
JPS6035192A (ja) * 1983-08-04 1985-02-22 Nissan Motor Co Ltd 可変容量型ベ−ンポンプ
DE3420519A1 (de) * 1984-06-01 1985-12-05 Robert Bosch Gmbh, 7000 Stuttgart Hydrostatischer antrieb
JPS60259569A (ja) * 1984-06-06 1985-12-21 Nippon Soken Inc 可変容量制御装置
DE3422089A1 (de) * 1984-06-14 1985-12-19 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung zum regeln des druckes und der foerdermenge einer verstellbaren pumpe
US4578948A (en) * 1984-11-01 1986-04-01 Sundstrand Corporation Reversible flow vane pump with improved porting
JP2540126B2 (ja) * 1985-03-19 1996-10-02 アイシン・エィ・ダブリュ 株式会社 可変容量ポンプの制御装置
JPS62218670A (ja) * 1986-03-19 1987-09-26 Diesel Kiki Co Ltd 可変容量型揺動板式圧縮機
JP2503227B2 (ja) * 1987-04-06 1996-06-05 日産自動車株式会社 車両用油圧供給装置
DE3826359A1 (de) * 1987-08-11 1989-02-23 Volkswagen Ag Elektrisch angetriebener stellantrieb
DE3834201A1 (de) * 1988-04-22 1989-11-02 Rexroth Mannesmann Gmbh Anordnung zum zufuehren von druckmittel zu hydraulischen verbrauchern
JP2915626B2 (ja) * 1990-07-25 1999-07-05 株式会社ユニシアジェックス 可変容量型ベーンポンプ
US5335979A (en) * 1992-10-09 1994-08-09 Mitsubishi Denki Kabushiki Kaisha Control device for vehicle including anti-skid braking system and power steering control system
DE19513987C2 (de) * 1995-04-13 1998-10-08 Bosch Gmbh Robert Verstellbare, hydrostatische Radialkolbenmaschine
US5865087A (en) * 1996-10-18 1999-02-02 Olson; Howard A. Rotary variable displacement fluid power device
DE19915739A1 (de) * 1999-04-08 2000-10-12 Bayerische Motoren Werke Ag Mengenregelbare Flügelzellenpumpe
JP3933843B2 (ja) * 2000-04-27 2007-06-20 ユニシア ジェーケーシー ステアリングシステム株式会社 可変容量形ポンプ

Also Published As

Publication number Publication date
DE10104851A1 (de) 2002-08-22
JP2004522909A (ja) 2004-07-29
DE50201013D1 (de) 2004-10-21
US20040096334A1 (en) 2004-05-20
WO2002063170A1 (de) 2002-08-15
EP1356208A1 (de) 2003-10-29
ES2229111T3 (es) 2005-04-16

Similar Documents

Publication Publication Date Title
EP1356208B1 (de) Pumpsystem mit einer hydraulischen pumpe, insbesondere für ein lenksystem
EP2014919B1 (de) Verstellventil für die Verstellung des Fördervolumens einer Verdrängerpumpe
EP1595077B1 (de) Verfahren zur steuerung eines hydrauliksystems einer mobilen arbeitsmaschine
DE19828816C2 (de) Servolenkung für Kraftfahrzeuge
DE2328112A1 (de) Verfahren zur regelung des uebersetzungsverhaeltnisses eines ein stufenloses getriebe enthaltenden antriebsaggregates
EP1065379B1 (de) Elektrohydraulische Druckversorgung mit verstellbarer Pumpe und regelbarem elektrischem Antrieb
JPS61256003A (ja) 流体動力駆動装置
EP0785118A2 (de) Betätigungsvorrichtung für Bremsen eines Fahrzeuges, vorzugsweise eines Kraftfahrzeuges
EP1567403B1 (de) Hydraulische lenkung für fahrzeuge
DE102018101026A1 (de) Motorölpumpe mit elektronischer öldrucksteuerung
WO2012149929A2 (de) Verstellpumpe
EP1796948A1 (de) Lenkhilfesystem
DE19601749B4 (de) Pumpe, vorzugsweise für Fahrzeuge, insbesondere für Kraftfahrzeuge
EP0797727A1 (de) Hydraulikanlage fur ein kraftfahrzeug
EP3569775B1 (de) Hydraulische anordnung mit retarderfunktion und fahrantrieb damit
EP1656274B1 (de) Hydraulisches antriebssystem fü r abdeckungen von fahrzeugöffnungen
EP0832360A1 (de) Elektrohydraulisch verstellbare pumpe
DE3041856C2 (de) Steuereinrichtung für ein hydrostatisches Getriebe
WO2012113488A1 (de) Kraftstofffördereinrichtung und verfahren zum betätigen einer kraftstofffördereinrichtung
WO1996018809A1 (de) Hydraulikanlage fur ein kraftfahrzeug
EP1447307A2 (de) Verfahren zur Bemessung eines Lenkölstromes und hydraulische Lenkeinrichtung mit Stromverstärkung
EP4118334B1 (de) Vorrichtung zum regeln einer hydraulikpumpe oder eines hydraulikmotors
CN102713313A (zh) 具有伺服泵和旁通阀的液压系统
DE69520261T2 (de) Steuerung für hydraulische Pumpen mit variabler Fördermenge in hydrostatischen Antrieben mit geschlossenem Kreislauf für Fahrzeuge
EP0790145B1 (de) Betätigungseinrichtung für eine Kupplung eines automatisierten Getriebes eines Fahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030716

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20031203

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50201013

Country of ref document: DE

Date of ref document: 20041021

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050203

Year of fee payment: 4

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050217

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2229111

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50201013

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04C0015040000

Ipc: F04C0015000000

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201013

Country of ref document: DE

Owner name: ROBERT BOSCH AUTOMOTIVE STEERING GMBH, DE

Free format text: FORMER OWNER: ZF LENKSYSTEME GMBH, 73527 SCHWAEBISCH GMUEND, DE

Effective date: 20150423

Ref country code: DE

Ref legal event code: R079

Ref document number: 50201013

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F04C0015040000

Ipc: F04C0015000000

Effective date: 20150423

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50201013

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201013

Country of ref document: DE

Owner name: PUMP TECHNOLOGY SOLUTIONS PS GMBH, DE

Free format text: FORMER OWNER: ROBERT BOSCH AUTOMOTIVE STEERING GMBH, 73527 SCHWAEBISCH GMUEND, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201013

Country of ref document: DE

Owner name: ROBERT BOSCH GMBH, DE

Free format text: FORMER OWNER: ROBERT BOSCH AUTOMOTIVE STEERING GMBH, 73527 SCHWAEBISCH GMUEND, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210420

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50201013

Country of ref document: DE

Owner name: PUMP TECHNOLOGY SOLUTIONS PS GMBH, DE

Free format text: FORMER OWNER: ROBERT BOSCH GMBH, 70469 STUTTGART, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50201013

Country of ref document: DE