EP1328992A2 - Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage - Google Patents

Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage

Info

Publication number
EP1328992A2
EP1328992A2 EP01978349A EP01978349A EP1328992A2 EP 1328992 A2 EP1328992 A2 EP 1328992A2 EP 01978349 A EP01978349 A EP 01978349A EP 01978349 A EP01978349 A EP 01978349A EP 1328992 A2 EP1328992 A2 EP 1328992A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
hydrogen
cell system
reformer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01978349A
Other languages
English (en)
French (fr)
Inventor
Rolf BRÜCK
Meike Reizig
Marcus Beresford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies Lohmar Verwaltungs GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP1328992A2 publication Critical patent/EP1328992A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • H01M8/04022Heating by combustion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention relates to a method for operating a fuel cell system, in particular for motor vehicles, and the associated fuel cell system with a so-called reformer and a storage system for receiving and dispensing hydrogen.
  • Mobile fuel cell systems which are operated with pure hydrogen, and those which comprise a so-called reformer, to which a so-called feed fluid, for example fuels such as gasoline, is supplied and converted in a reforming reaction in such a way that a reformer gas or Fuel gas is obtained which contains free or bound hydrogen, which is preferably used to supply fuel cells arranged in a stack, for example known from EP 0 596 366 B1.
  • a so-called reformer to which a so-called feed fluid, for example fuels such as gasoline, is supplied and converted in a reforming reaction in such a way that a reformer gas or Fuel gas is obtained which contains free or bound hydrogen, which is preferably used to supply fuel cells arranged in a stack, for example known from EP 0 596 366 B1.
  • the reformer first delivers a reformer gas that is too heavily contaminated to be used as fuel gas in the stack.
  • it is known to additionally add hydrogen to the reformer gas for example from a hydrogen tank and / or store in which hydrogen is stored in gaseous, liquid or in the form of a hydride.
  • Hydrogen storage in a liquid or gaseous state is preferred to storage as a hydride because of the risk potential, which is moreover space-saving.
  • the present invention is therefore based on the object of specifying an improved fuel cell system, in particular for motor vehicles, which avoids the disadvantages mentioned. Another object is to provide a method for operating such improved fuel cell system.
  • a fuel cell system in particular for motor vehicles, comprising a reformer and at least one hydrogen store for storing hydrogen, preferably in hydride form, which reversibly stores and releases hydrogen depending on the operating conditions.
  • the invention also relates to a fuel cell system, in particular for motor vehicles, in which the amount of energy which can be stored in a hydrogen store is between 0.1-5 kW / h and / or which provides the amount of energy which is present in the first 5 to 10 minutes of operation after the cold start of the motor vehicle is consumed.
  • the subject of the invention is a method for operating a fuel cell system, in particular for motor vehicles, with a reformer, in which at least a partial flow of an exhaust gas of the system is passed through a hydrogen store.
  • a hydrogen storage is preferably used, which initiates the absorption / desorption in seconds.
  • the term “initiated in seconds” characterizes a hydrogen storage device whose absorption / desorption kinetics lie in the range of an Ovonic hydrogen storage device described at the outset, which has proven to be particularly powerful in the sense of the invention.
  • the fluid that is introduced into the hydrogen store is, in particular, the hydrogen-containing exhaust gas from an upstream reformer, which is also referred to below as reformer gas. If the hydrogen content is sufficient, this gas is used as fuel gas for operating a fuel cell stack.
  • a fuel cell system with a reformer and at least two hydrogen storage devices can be operated in an advantageous manner, for example when the storage devices are connected in series, with pure hydrogen, which has considerable advantages.
  • the reformer gas only needs to be introduced as fuel gas into the fuel cell stack at the optimum operating point of the reformer because it previously contains too little hydrogen in the mixture. For this reason, the reformer gas is led past the fuel cell stack when the system is started.
  • Other exhaust gases, such as the product gas from the fuel cell stack, from a heat exchanger and / or a humidifier can also be passed through a further hydrogen storage device and are used, for example, for heating or regeneration of unused fuel.
  • the desorption of the hydrogen in the hydrogen storage can e.g. through pressure. lowering and / or temperature change can be initiated. The absorption is started accordingly by increasing the pressure and / or changing the temperature.
  • the operating function of the hydrogen storage device can also be controlled via a current isolation.
  • a change in pressure can also be achieved, for example, by setting appropriate valves, flaps or taps, for example downstream of the hydrogen store.
  • the amount of energy which can be stored in a hydrogen store of a fuel cell system is advantageously approximately 0.1 and 5 kW / h, preferably 1 kW / h. It is also advantageous if the amount of energy that is required for the first 5 to 10 minutes driving time after the cold start is stored in the hydrogen storage.
  • At least one hydrogen store is connected to the reformer, for example in front of the fuel cell stack and / or between the gas outlet of the reformer and / or the fuel cell stack and the environment.
  • at least one hydrogen storage device can supply the stack with hydrogen or hydrogen-containing fuel gas by desorption, while the reformer is being started up and is still not supplying usable fuel gas.
  • the energy required by the hydrogen mass storage for desorption can be external, for example via an energy storage device such as a battery. be led.
  • Another hydrogen storage device can be used during the start-up phase for the catalytic conversion and / or gas purification of the reformer exhaust gas, so that the hydrogen is separated from the reformer exhaust gas, and the heat of reaction generated can even be used, for example for preheating the reformer before the cleaned reformer exhaust gas, possibly checked by a sensor unit, for example a gas sensor and another catalytic converter. is drained into the environment.
  • the hydrogen storage can also be used to preheat the reformer.
  • At least one hydrogen store is connected downstream of the fuel cell stack, so that this store can fulfill a double function when it is used both as a store and as a catalyst.
  • This can be made possible, for example, by a combination of a catalytically active area in a honeycomb body with an area of a honeycomb body that acts as a hydrogen storage.
  • two hydrogen stores are combined via a bypass system, so that in continuous operation a store that is full is decoupled from the reforming gas and the desorption conditions conditions are set while at the same time a reforming gas flows into a second hydrogen storage, for example by flipping a flap.
  • the last-mentioned store can be filled with hydrogen, while the first-mentioned store releases hydrogen to the process gas, for example in the event of a load change.
  • the use of such a combination of at least two hydrogen stores with sufficient capacity enables operation with pure hydrogen. Nevertheless, a partial stream from the reformer can also be mixed with the fuel as a carrier gas.
  • the product gas for example from the anodes of the fuel cell stack, can still contain up to 20% by volume of unused hydrogen, where% by volume relates to the amount of hydrogen introduced. It can therefore contribute to increasing the overall efficiency of the system if the hydrogen-containing anode exhaust gas is also passed through a hydrogen store and unused hydrogen is regenerated in this way.
  • the product gas can also be catalytically converted in an exhaust gas catalytic converter. Cleaned exhaust gases can then be discharged into the environment, it being possible to decouple the heat generated by the catalytic conversion in a heat exchanger through which, for example, the feed fluid for the reformer is passed.
  • the anode-side product gas from the fuel cell stack preferably flows into a hydrogen storage device, which in turn can be connected directly to the fuel gas line leaving the hydrogen storage device or can be arranged externally.
  • the fuel cell system is supplemented by a control and regulating system, in particular with sensor units, with its sensors, which are located, for example, in the lines before and after a hydrogen store, before a gas outlet to the environment, before Entry of the fuel gas into the Fuel cell stack at least determines the respective hydrogen concentration, temperature and / or composition of the gas mixture and determines and sets the optimal position of the valves or flaps of the fuel cell system for the current performance requirement of the fuel cell stack.
  • This makes the hydrogen partial pressure in the process gas, ie reformer or fuel gas, dynamically adaptable to the performance requirements of the fuel cell stack.
  • the hydrogen storage is advantageously used during cold starts and for power peaks.
  • the Ovonic alloy which forms the hydride when refueling with hydrogen, is applied as a component of a coating or as a coating to a metallic honeycomb body or to part of a honeycomb body.
  • the alloy can also be applied as a bed in the channels of the honeycomb body.
  • the coating can also e.g. a washcoat, i.e. incorporated into a mass containing aluminum oxide.
  • Suitable metallic honeycomb bodies include catalysts known from WO91 / 01807 or WO91 / 01178 with a cell density of up to 1600 cpsi. According to a preferred embodiment, these honeycomb bodies can be heated electrically.
  • the entire fuel cell system is referred to as a fuel cell system, which for example can also include two subsystems, ie can be operated separately, which either form two separate fuel cell stacks or are integrated in a housing.
  • These subsystems each have at least one stack with a fuel cell unit, the corresponding process gas supply, such as the fuel gas line, in which the hydrogen storage can be located, and discharge ducts, the cooling system with cooling medium and the entire fuel cell stack periphery, optionally or in combination : Reformers, compressors, blowers, heating for process gas preheating, among others.
  • Reformers, compressors, blowers, heating for process gas preheating among others.
  • FIG. 1 shows a block diagram of a fuel cell system according to the invention
  • FIG. 2 shows the block diagram of a fuel cell system according to FIG. 1 with two hydrogen stores
  • FIG. 3 shows a block diagram of a further embodiment of the fuel cell system according to the invention, which is operated with pure hydrogen. can be;
  • Fig. 4 is a block diagram of a fuel cell system with two hydrogen stores, which are also used for gas cleaning.
  • a so-called feed fluid for example fuels such as gasoline
  • a so-called feed fluid supply line 7 is fed to the reformer 2 via a so-called feed fluid supply line 7 and converted there to a reformer gas.
  • the reformer gas which is a hydrogen-rich fuel gas during operation, is fed to a fuel cell stack 3.
  • the fuel gas is supplied to the fuel cell stack 3 via a first 9a and second 9b line section, between which a hydrogen storage device 1 is arranged.
  • the fuel gas is supplied to the fuel cell stack 3 via a bypass line 10.
  • both supply options which are also possible cumulatively in partial flows, are ensured by means of flaps, taps and / or valves 5a to 5e, depending on the power requirement.
  • the fuel cell stack 3 can be provided with an additional partial stream of hydrogen from the hydrogen store 1 via the second line section 9b by means of desorption.
  • a run-on time can also be provided via the hydrogen storage device 1 and the second line section 9b, the duration of which can in turn be set depending on the load.
  • the valves 5 preferably have the following setting: 5a, the valve to the bypass line 10 of the reformer gas; 5c, the valve between the hydrogen store 1 and the fuel cell stack 3 and 5e, the valve from the bypass line 10 via a catalytic converter 12 and an exhaust gas line 6 into the environment are open, so that this is not used as fuel gas during the starting phase.
  • reversible reformer gas can be discharged into the environment largely cleaned by the catalyst 12.
  • the catalytic converter 12 is preferably heatable.
  • Desorbed hydrogen from the hydrogen storage 1 is guided to the fuel cell stack 3 as fuel gas during the starting phase of the motor vehicle via the second power section 9b _n ⁇ .
  • the valves 5b and 5d remain closed.
  • a first sensor device 4a arranged downstream of the reformer 2 can be used to determine when the reformer gas contains a sufficiently high concentration of hydrogen to use it as fuel gas.
  • protection against poisoning of the fuel cell stack 3 can be ensured by means of a second sensor unit 4b arranged in front of the fuel cell stack 3. In this case, valve 5d would first be opened and valve 5e closed.
  • the position of the valve 5c depends on whether the fuel cell stack 3, for example because of a load change that is currently occurring, must be supplied with 1 hydrogen by desorption from the hydrogen reservoir.
  • the hydrogen is either withdrawn or supplied to the reformer gas, if it is passed through, as required (can be regulated by adjusting the operating temperature of the hydrogen storage 1 and / or by adjusting the pressure).
  • At least one of the two sensor devices 4a or 4b arranged in the line sections 9a, 9b therefore measures the hydrogen concentration, the gas composition and / or the temperature of the gas mixture.
  • the temperature in the hydrogen store 1 is ramped up, for example, until desorption starts and the hydrogen store 1 sends hydrogen to the reformer or Emits fuel gas.
  • the hydrogen storage device 1 can also be supplied with hydrogen externally via a tank line 11.
  • Gas cleaning agents can also be integrated in the hydrogen store 1, so that in particular carbon monoxide, nitrogen oxides and / or hydrocarbons can be oxidized from the reformer or fuel gas, while hydrogen is absorbed from the reformer or fuel gas in another zone of the hydrogen store 1.
  • the sensor devices 4a and or 4b should therefore not only be limited to the measurement of the hydrogen concentration but can also be equipped with further gas, pressure and / or temperature sensors.
  • FIG. 2 shows the block diagram of a fuel cell system according to FIG. 1 with two hydrogen stores la, lb, which are optionally (ie parallel), simultaneously (ie in series) or not coupled into line 9 from reformer 2 to fuel cell stack 3. Again through valves 5a to 5e, the fuel gas can be passed either through one or through both hydrogen storage units 1a, 1b.
  • a bypass line 10 in turn enables a direct supply of reformer or fuel gas to the fuel cell stack 3.
  • the principle of the fuel cell system according to FIG. 2 corresponds to that of FIG.
  • the second hydrogen storage 1b also being able to be used for gas purification in the “absorption” mode, ie hydrogen absorption, while the other hydrogen Storage la then serves in the “desorption” mode, for example at 300 ° C., for hydrogen enrichment of the fuel gas, or vice versa.
  • product gas which can still contain up to 20% of unused hydrogen, can be returned to the feed fluid supply line 7 via a product gas line 8, for example on the anode side.
  • the valves 5a to 5e and sensor units 4a to 4d can be opened and closed dynamically in this respect.
  • FIG. 3 shows a block diagram of a further embodiment of the fuel cell system according to the invention, which can be operated with pure hydrogen which has been absorbed from the reformer gas.
  • two hydrogen storage units 1a and 1b are arranged, each of which is loaded via valves 5a to 5f. be driven.
  • valves 5a to 5f can be connected as follows: valves 5a, 5b and 5f closed and valves 5c, 5d and 5e open, so that the hydrogen store la desorbs hydrogen and thus supplies the fuel cell stack 3, while the hydrogen store 1b absorbs hydrogen.
  • valves 5a, 5b and 5f closed and valves 5c, 5d and 5e open so that the hydrogen store la desorbs hydrogen and thus supplies the fuel cell stack 3, while the hydrogen store 1b absorbs hydrogen.
  • all fuel cell stack designs that are designed for this mode of operation can be used (cf. “dead-end system” from EP 0 596 366 B1 or a closed system with flushing).
  • Reformer combustion or product gases can be discharged to the environment as exhaust gases via various exhaust gas lines 6.
  • an exhaust gas is discharged from the hydrogen storage 1 a into the environment.
  • a catalytic converter 12 can be arranged in each exhaust line 6, which catalytically converts and cleans the exhaust gas. Its waste heat can also be utilized, in particular decoupled, and fed to another module of the fuel cell system, for example via a heat exchanger 16 as shown in FIG. 2, to the feed fluid and thus to reformer 2.
  • Fig. 4 finally shows another block diagram of a Brer cell system again with two hydrogen storage units la, lb, which can also be used for gas cleaning. Each hydrogen storage unit la, lb can be operated in bypass mode.
  • Valves 5a to 5h are again provided as control means.
  • a reformer 2 and a fuel cell stack 3, which are connected to one another via a feed line 9, can also be seen.
  • fuel gas consumed from the fuel cell stack 3 is fed into the hydrogen stores 1 a and 1 b, depending on the position of the valves 5 b and 5 c.
  • the bypass line 15 corresponds to the bypass line 10 from FIG. 1 and serves to enable reformer gas to be released into the environment during the starting phase.
  • Via return lines 14a, 14b highly concentrated hydrogen can either be fed directly to the fuel cell stack 3 or via the feed fluid line 7 into the reformer 2.
  • the hydrogen stores la, lb stored hydrogen in order to bridge the operation of the fuel cell stack 3 to the optimal reformer operating point.
  • the invention relating to a method for operating a fuel cell system and associated fuel cell system is particularly suitable for mobile use in motor vehicles.
  • the hydrogen stores 1, la, lb used in the fuel cell system are also characterized by rapid absorption and desorption kinetics, so that hydrogen from the exhaust gas of an internal combustion engine is also enriched by simply passing the exhaust gas through the hydrogen stores 1, la, lb and / or can be saved.
  • Fuel cell stack a first sensor device b second sensor device a-5h valves

Abstract

Ein Verfahren zum Betreiben einer Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, sowie eine Brennstoffzellenanlage mit einem Reformer (2) und wenigstens einem Wasserstoffspeicher (1), welche Teil eines Systems zur Aufnahme und Abgabe von Wasserstoff bilden. Der Wasserstoffspeicher (1) zeichnet sich durch eine rasche Absorptions- und Desorptionskinetik aus, so dass auch Wasserstoff aus dem Abgas beispielsweise einer Verbrennungskraftmaschine durch einfaches Durchleiten des Abgases durch den Wasserstoffspeicher (1) angereichert und/oder gespeichert werden kann.

Description

Bren.nstoffzeI_.enanl.ige und
Verfahren zum Betreiben einer Brennstoffzellenanlage '
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, sowie dazugehörige Brennstoffzellenanlage mit einem sog. Reformer und einem Speichersystem zur Aufnahme und Abgabe von Wasserstoff.
Die Speicherung von Wasserstoff in flüssiger oder gasförmiger Form ist mit hohem Aufwand verbunden. So erfordert die Verflüssigung von 1 kg Wasserstoff etwa 10 kWh Strom. Demgegenüber haben die bislang bekannten Systeme zur Wasserstoffspeicherung in Form eines Hydrids den Vorteil einer erhöhten Was- serstoffdichte im Vergleich zu flüssigem und gasformigem Wasserstoff (Dichte des Wasserstoffs als Hydrid: 103g/l; als Flüssigkeit: 71g/l und als Gas: 3 lg/1). Als Hydridspeicher eignet sich beispielsweise Magnesium.
Aus der US 6,030,724 bekannt ist zudem die sog. „Ovonic Wasserstoff Technolo- gie" mit einer Ovonic-Legierung zur Bildung des Hydrids. Dabei ist es möglich, einen mit dieser Legierung beschichteten Speicher, z.B. einen aus der WO91/01807 oder der WO91/01178 bekannten metallischen, keramischen oder oxidischen Wabenkörper, in kurzer Zeit mit Hydrid zu füllen. Die gute Absorpti- ons- und Desorptionskinetik beispielsweise des Systems der Ovonic- Wasserstoff- speicherung, die innerhalb von Sekunden initiiert wird, kann dabei nicht nur zur raschen Betankung des Speichers an einer Zapfsäule, sondern auch zur Wasserstoff-Anreicherung aus einem Abgas und somit zur Gasreinigung ausgenutzt werden.
In jüngerer Zeit bemühen nun sich Forschung und Entwicklung intensiv darum, die umweltfreundliche Breπnstofϊzellentechnologie auch in mobilen Anwendungen, insbesondere in Kraftfahrzeugen, kommerziell einzusetzen. Diesbezüglich sind mobile Brennstof-zellenanlagen bekannt, die mit reinem Wasserstoff betrieben werden, und solche, die einen sog. Reformer umfassen, welchem ein sog. Feedfluid, beispielsweise Kraftstoffe wie Benzin, zugeführt und in einer Refor- mierungsreaktion so umgewandelt wird, dass ein Reformergas bzw. Brenngas gewonnen wird, welches freies oder gebundenes Wasserstoff enthält,, womit vorzugsweise zu einem sog., beispielsweise aus der EP 0 596 366 Bl bekannten, Stack angeordnete Brennstoffzellen versorgt werden.
Allerdings liefert der Reformer in der Kaltstartphase eines Kraftfahrzeuges zu- nächst ein Reformergas, das zu stark verunreinigt ist, um als Brenngas im Stack verwendet zu werden. Dazu ist bekannt, dem Reformergas ergänzend Wasserstoff beizugeben, beispielsweise aus einem Wasserstofftank und/oder -Speicher, in welchem Wasserstoff gasförmig, flüssig oder in Form eines Hydrids gespeichert ist. . Die Wasserstoffspeicherung in flüssigem oder gasformigem Zustand wird wegen des Gefahrenpotentials die Speicherung als Hydrid, die überdies platzsparender ist, vorgezogen.
Im Betrieb des Kraftfahrzeuges kommen häufig Lastwechsel vor, die über eine Vergrößerung des Feedfluidmassenstroms in der Feedfluidzuleitung zum Refor- mer nur stark verzögert dem Stack größere Wasserstoffmengen zur Verfügung stellen. Deshalb ist, will man den Stack dynamisch betreiben, was bei jedweder mobiler Anwendung gefordert wird, zusätzlich zum Reformer ein Wasserstoffspeicher nötig, der bei Bedarf rasch Wasserstoff freisetzt, das dem Reformergas _mgeführt werden kann und dessen Verwendung als wasserstoffreich.es Brenngas sicherstellt.
Ein weiteres Problem tritt schließlich beim Hochfahren des Reformers auf, nämlich, dass wasserstoffarmes Reformergas, welches sich nicht zur Einspeisung als Brenngas in den Stack eignet, unmittelbar in die Umgebung abzugeben ist, dabei jedoch nicht den Emissionsanforderungen genügt, wie sie gesetzlich vorgeschrieben sind. Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine verbesserte Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, anzugeben, welche die genannten Nachteile vermeidet. Eine weitere Aufgabe besteht in der Angabe eines Verfahrens zum Betreiben derart verbesserter Brer stoffzellenanlage .
Erfindungsgemäß wird diese Zielsetzung durch eine Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, umfassend einen Reformer und zumindest einen Wasserstoffspeicher zur Speicherung von Wasserstoff vorzugsweise in Hydrid- form, der je nach Betriebsbedingungen reversibel Wasserstoff einlagert und wie- der abgibt, gelöst. Außerdem ist Gegenstand der Erfindung eine Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, bei der die in einem Wasserstoffspeicher speicherbare Energiemenge zwischen 0,1 - 5 kW/h beträgt und/oder die Energiemenge bereitstellt, die in den ersten 5 bis 10 Betriebsminuten nach dem Kaltstart des Kraftfahrzeuges verbraucht wird. Schließlich ist Gegenstand der Erfindung ein Verfahren zum Betreiben einer Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, mit Reformer, bei der zumindest ein Teilstrom eines Abgases der Anlage durch einen Wasserstoffspeicher geleitet wird. Vorteilhafte Weiterbildungen und Ausgestaltungen, die einzeln oder in Kombination miteinander eingesetzt werden können, sind Gegenstand der jeweils abhängigen Ansprüche.
Weil die Schnelligkeit der Ab-/Desorptionskinetik ein kritischer Punkt ist, wird bevorzugt ein Wasserstoffspeicher eingesetzt, der in Sekunden die Ab- /Desorption initiiert. Dabei kennzeichnet vorliegend der Begriff „in Sekunden initiiert" einen Wasserstoffspeicher, dessen Absorptions-ZDesorptionskinetik im Bereich eines eingangs beschriebenen Ovonic- Wasserstoffspeichers liegt, welcher sich als besonders leistungsfähig im Sinne der Erfindung erwiesen hat.
Das Fluid, das in den Wasserstoffspeicher eingeleitet wird, ist insbesondere das wasserstoffhaltige Abgas aus einem vorgelagerten Reformer, das im folgenden auch Reformergas genannt wird. Dieses Gas wird bei ausreichendem Wasserstoffgehalt als Brenngas zum Betreiben eines Brennstoffzellenstacks verwendet. Eine Brennstoffzellenanlage mit Reformer und zumindest zweier Wasserstoffspeicher, kann in vorteilhafter Weise beispielsweise bei Reihenschaltung der Speicher mit reinem Wasserstoff betrieben werden, was erhebliche Vorteile bringt. So braucht das Reformergas erst beim optimalen Betriebspunkt des Re- formers als Brenngas in den Brennstoffzellenstack eingeleitet werden, weil es zuvor zuwenig Wasserstoff im Gemisch enthält. Deshalb wird während des Starts der Anlage das Reformergas am Brennstoffzellenstack vorbei geleitet. Andere Abgase, wie das Produktgas aus dem Brennstoffzellenstack, aus einem Wärmetauscher und/oder einem Befeuchter können auch durch einen weiteren Wasser- Stoffspeicher geleitet werden und dienen beispielsweise zur Erwärmung oder zur Regeneration unverbrauchten Brennstoffs.
Die Desorption des Wasserstoffs im Wasserstoffspeicher kann z.B. durch Druck- . erniedrigung und/oder Temperaturänderung initiiert werden. Die Absorption wird entsprechend durch Druckerhöhung und/oder Temperaturveränderung gestartet. Beim Einsatz eines modifizierten beheizbaren Katalysators als Wasserstoffspeicher, kann die Steuerung der Betriebsfunktion des Wasserstoffspeichers auch über eine Stromfreischaltung erfolgen.
Eine Druckveränderung kann beispielsweise auch durch Einstellung entsprechender, beispielsweise dem Wasserstoffspeicher nachgeschalteten, Ventilen, Klappen oder Hähne erreicht werden.
Vorteilhafterweise beträgt die in einem Wasserstoffspeicher einer Brennstoffzel- lenanlage speicherbare Energiemenge ungefähr 0,1 und 5 kW/h vorzugsweise 1 kW/h. Auch ist es vorteilhaft, wenn die Energiemenge, die für die ersten 5 bis 10 min Fahrtzeit nach dem Kaltstart benötigt wird, im Wasserstoffspeicher gespeichert vorliegt.
Nach einer bevorzugten Ausführungsform der Brennstoffzellenanlage mit Reformer wird zumindest ein Wasserstoffspeicher im Anschluss an den Reformer, z.B. vor dem Brennstoffzellenstack und/oder zwischen dem Gasauslass des Reformers und/oder des Brennstoffzellenstacks und der Umgebung angeordnet. So kann zumindest ein Wasserstoffspeicher den Stack mit Wasserstoff oder wasserstoffhalti- gem Brenngas durch Desorption versorgen, während der Reformer hochgefahren wird und noch kein verwertbares Brenngas liefert. Die Energie, die der Wasser- Stoffspeicher zur Desorption benötigt, kann.dabei extern, z.B. über einen Energiespeicher wie eine Batterie, . igeführt werden.
Ein weiterer Wasserstoffspeicher kann während der Startphase zur katalytischen Umsetzung und/oder Gasreinigung des Reformerabgases genutzt werden, so dass aus dem Reformerabgas der Wasserstoff abgetrennt wird, wobei die entstehende Reaktionswärme sogar genutzt werden kann, beispielsweise zum Vorheizen des Reformers, bevor das gereinigte Reformerabgas, eventuell geprüft durch eine Sensoreinheit, beispielsweise einen Gassensor und über einen weiteren Katalysa- . tor in die Umgebung abgelassen wird. Beim Anfahren der Brennstoffzellenanlage kann der Wasserstoffspeicher so auch zum Vorheizen des Reformers genutzt werden.
Nach einer vorteilhaften Ausführung ist zumindest ein Wasserstoffspeicher dem Brennstoffzellenstack nachgeschaltet, so dass dieser Speicher eine Doppelfunkti- on erfüllen kann, wenn er sowohl als Speicher als auch als Katalysator eingesetzt wird. Dies ist kann beispielsweise durch eine Kombination eines katalytisch wirksamen Bereichs in einem Wabenkörper mit einem als Wasserstoffspeicher wirksamen Bereich eines Wabenkörpers ermöglicht.
Die einzigartige Fähigkeit eines Wasserstoffspeichers, rasch Wasserstoff aufzunehmen und abzugeben, ermöglicht diese Anwendung, weil bei einem mobilen System keine lange Verweilzeit eines Abgases in einem Modul wie in einem Wasserstoffspeicher denkbar ist.
Nach einer weiteren bevorzugten Ausfuhrungsform werden zwei Wasserstoffspeicher kombiniert über ein Bypasssystem, so dass im kontinuierlichen Betrieb ein Speicher, der voll ist, vom Reformiergas abgekoppelt und die Desorptionsbedin- gungen eingestellt werden, während gleichzeitig in einen zweiten Wasserstoffspeicher, beispielsweise durch Umlegen einer Klappe, Reformiergas einströmt. Auf diese Weise kann sich der letztgenannte Speicher mit Wasserstoff füllen, während der erstgenannte Speicher Wasserstoff an das Prozessgas, beispielsweise bei einem Lastwechsel, abgibt. Die Verwendung einer derartigen Kombination von -^mindest zwei Wasserstoffspeichern mit ausreichender Kapazität ermöglicht einen Betrieb mit reinem Wasserstoff. Trotzdem kann dazu aber auch ein Teilstrom aus dem Reformer dem Brennstoff als Trägergas zugemischt sein.
Das Produktgas, beispielsweise aus der Anoden des Brennstoffzellenstack, kann noch bis zu 20 Vol% unverbrauchten Wasserstoff enthalten, wobei Vol% sich dabei auf die eingeleitete Menge an Wasserstoff bezieht. Deshalb kann es zur Steigerung des Gesamtwirkungsgrades des Systems beitragen, wenn das wasser- stoffhaltige Anodenabgas auch durch einen Wasserstoffspeicher geleitetet wird und unverbrauchter Wasserstoff auf diese Weise regeneriert wird.
Alternativ oder in Kombination damit kann das Produktgas auch in einem Abgas- Katalysator katalytisch umgesetzt werden. Gereinigte Abgase können dann in die Umgebung abgelassen werden, wobei eine Auskopplung der durch die katalyti- sehe Umsetzung erzeugten Wärme in einem Wärmetauscher, durch den beispielsweise das Feedfluid für den Reformer geleitet wird, möglich ist.
Vorzugsweise fließt in einen Wasserstoffspeicher das anodenseitige Produktgas aus dem Brennstoffzellenstack, wobei dieser wiederum direkt an die, den Wasser- Stoffspeicher verlassende Brenngasleitung angeschlossen oder extern angeordnet sein kann.
Erfindungsgemäß bevorzugt wird beispielsweise bei einer kombinierten Anordnung mehrerer Wasserstoffspeicher, die Brennstoffzellenanlage um ein Steuer- und Regelsystem, insbesondere mit Sensoreinheiten, ergänzt, mit dessen Sensorik, die beispielsweise in den Leitungen vor und nach einem Wasserstoffspeicher, vor einem Gasauslass an die Umgebung, vor dem Eintritt des Brenngases in den Brennstoffzellenstack zumindest die jeweilige Wasserstoffkonzentration, Temperatur und/oder Zusammensetzung des Gasgemisches feststellt und die für die momentane Leistungsanforderung des Brer-nstoffzellenstacks optimale Stellung der Ventile oder Klappen der Brennstoffzellenanlage ermittelt und einstellt. Damit wird der Wasserstof artialdruck im Prozessgas, d.h. Reformer- bzw. Brenngas, an die Leistungsanforderung des Brennstoffzellenstacks dynamisch anpassbar. Insbesondere wird der Wasserstoffspeicher vorteilhaft beim Kaltstart und für Leistungsspitzen eingesetzt.
Nach einer weiteren Ausgestaltung wird die Ovonic-Legierung, die bei der Betankung mit Wasserstoff das Hydrid bildet, als Bestandteil einer Beschichtung oder als Beschichtung auf einen metallischen Wabenkörper oder auf einem Teil eines Wabenkörpers aufgebracht. Die Legierung kann auch als Schüttung in die Kanäle des Wabenkörpers aufgebracht werden. Die Beschichtung kann auch z.B. ein Washcoat, d.h. in eine Aluminioumoxid enthaltende Masse eingearbeitet, sein. Als metallische Wabenkörper eignen sich unter anderem Katalysatoren die aus der WO91/01807 oder der WO91/01178 bekannt sind, mit einer Zelldichte bis zu 1600 cpsi. Diese Wabenkörper sind nach einer bevorzugten Ausgestaltung elektrisch beheizbar.
Als Brennstoffzellenanlage wird das gesamte Brennstoffzellensystem bezeichnet, das z.B. auch zwei Teilsysteme, d.h. separat betreibbar, die entweder zwei separate Brennstoffzellenstacks bilden oder in einem Gehäuse integriert sind, umfassen kann. Diese Teilsysteme haben jeweils zumindest einen Stack mit einer Brenn- stoffzelleneinheit, die entsprechenden Prozessgaszuführungs-, wie z.B. die Brenngasleirung, in der sich der Wasserstoffspeicher befinden kann, und - ableitungskanäle, das Kühlsystem mit Kühlmedium und die gesamte Brennstoffzellenstack-Peripherie, wahlweise oder in Kombination: Reformer, Verdichter, Gebläse, Heizung zur Prozessgasvorwärmung, unter anderem. Im folgenden wird die Erfindung noch anhand von Blockschaltbildern näher erläutert, welche Ausgestaltungen einer mobilen Brennstoffzellenanlage für Kraftfahrzeuge darstellen, auf welche die Erfindung jedoch nicht beschränkt ist.
Es zeigen:
Fig. 1 ein Blockschaltbild einer erfindungsgemäßen Brennstoffzellenanlage;
Fig. 2 das Blockschaltbild einer Brennstoffzellenanlage nach Fig. 1 mit zwei Wasserstoffspeichern;
Fig. 3 ein Blockschaltbild einer weiteren Ausführungsform der erfindungsgemäßen Brennstoffzellenanlage, welche mit reinem Wasserstoff betrieben . werden kann; und
Fig. 4 ein Blockschaltbild einer Brennstoffzellenanlage mit zwei Wasserstoffsspeichern, welche auch zur Gasreinigung eingesetzt werden.
Fig. 1 zeigt ein Blockschaltbild einer erfindungsgemäßen Brennstoffzellenanlage mit einem Reformer 2, in welchem eine Reformierungsreaktion stattfindet. Dem Reformer 2 wird über eine sog. Feedfluidzuleitung 7 ein sog. Feedfluid, beispielsweise Kraftstoffe wie Benzin, zugeführt und dort zu einem Reformergas umgewandelt. Das Reformergas, welches im Betrieb ein wasserstoffreiches Brenngas ist, wird einem Brennstoffzellenstack 3 zugeleitet. Bei Lastwechsel, insbesondere bei höherer Anforderung, erfolgt die Zuführung des Brenngases zum Brennstoffzellenstack 3 über einen ersten 9a und zweiten 9b Leitungsabschnitt, zwischen denen ein Wasserstoffspeicher 1 angeordnet ist. Im Normalbetrieb des Kraftfahrzeuges erfolgt die Zuleitung des Brenngases zum Brennstoffzellenstack 3 über eine Bypassleitung 10. Beide Zuleitungsmöglichkeiten, welche in Teil- strömen auch kumulativ möglich sind, werden je nach Leistungsanforderung mit Hilfe von Klappen, Hähnen und/oder Ventilen 5a bis 5e sichergestellt. Zusätzlich kann, insbesondere bei einem Lastwechsel, dem Brennstoffzellenstack 3 mittels Desorption ein zusätzlicher Teilstrom an Wasserstoff aus dem Wasserstoffspeichers 1 über den zweiten Leitungsabschnitt 9b zur Verfügung gestellt werden. Nach Lastwechsel kann auch eine Nachlaufzeit über den Wasserstoff- Speicher 1 und den zweiten Leitungsabschnitt 9b vorgesehen sein, deren Dauer wiederum z.B. lastabhängig einstellbar ist.
Während der Startphase, wenn der Reformer 2 hochgefahren wird, weisen die Ventile 5 vorzugsweise folgende Einstellung auf: 5a, das Ventil zur Bypassleitung 10 des Reformergases; 5c, das Ventil zwischen Wasserstoffspeicher 1 und Brennstoffzellenstack 3 und 5e, das Ventil von der Bypassleitung 10 über einen Katalysator 12 und einer Abgasleitung 6 in die Umgebung sind offen, so dass das während der Startphase nicht als Brenngas ver- . wendbare Reformergas durch den Katalysator 12 weitgehend gereinigt in die Um- gebung abgelassen werden kann. Um den Reinigungsprozess des Gases von Anbeginn an sicherzustellen ist der Katalysator 12 vorzugsweise beheizbar.
Desorbierter Wasserstoff aus dem Wasserstoffspeicher 1 wird dem Brennstoffzellenstack 3 auch während der Startphase des Kraftfahrzeuges als Brenngas über den zweiten Leistungsabschnitt 9b _nιgeführt. In diesem Fall bleiben die Ventile 5b und 5d geschlossen. Über eine dem Reformer 2 nachgeordnete erste Sensoreinrichtung 4a lässt sich feststellen, wann das Refor ergas eine genügend hohe Konzentration an Wasserstoff enthält, um es als Brenngas zu verwenden. Alternativ dazu oder in Kombination damit kann mittels einer vor dem Brennstoffzel- lenstacks 3 angeordneten zweiten Sensoreinheit 4b ein Schutz vor Vergiftung des Brennstoffzellenstacks 3 sichergestellt werden. In diesem Fall würde zunächst das Ventil 5d geöffnet und das Ventil 5e geschlossen. Die Stellung des Ventils 5c richtet sich danach, ob dem Brennstoffzellenstack 3, z.B. wegen eines gerade zusätzlich auftretenden Lastwechsels, durch Desorption aus dem Wasserstoffspei- eher 1 Wasserstoff zugeführt werden muss. Im Wasserstoffspeicher 1 wird dem Reformergas, wenn es durchgeleitet wird, je nach Bedarf (durch Einstellung der Betriebstemperatur des Wasserstoffspeichers 1 und/oder durch Einstellung des Drucks regelbar), entweder Wasserstoff entzogen oder zugeführt. Zumindest eine der beiden in den Leitungsabschnitten 9a, 9b an- geordneten Sensoreinrichtungen 4a oder 4b misst daher die Wasserstoffkonzentration, die Gaszusammensetzung und/oder die Temperatur des Gasgemisches. Wird dabei beispielsweise festgestellt, dass das Reformer- bzw. Brenngas zuwenig Wasserstoff für die momentane Leistungsanforderung an den Brennstoffzellenstack 3 enthält, so wird z.B. die Temperatur im Wasserstoffspeicher 1 hochge- fahren, bis die Desorption startet und der Wasserstoffspeicher 1 Wasserstoff an das Reformer- bzw. Brenngas abgibt. Alternativ oder kumulativ kann dem Wasserstoffspeicher 1 über eine Tankleitung 11 auch von extern Wasserstoff zugeführt werden.
In dem Wasserstoffspeicher 1 können auch Gasreinigungsmittel integriert sein, so dass insbesondere Kohlenmonoxid, Stickoxide und/oder Kohlenwasserstoffe aus dem Reformer- bzw. Brenngas oxidiert werden können, während in einer anderen Zone des Wasserstoffspeichers 1 Wasserstoff aus dem Reformer- bzw. Brenngas absorbiert wird. Die Sensoreinrichtungen 4a und oder 4b sollten daher nicht nur auf die Messung der Wasserstoffkonzentration beschränkt sondern kann mit weiteren Gas-, Druck- und/oder Temperatursensoren ausgestattet sein.
Fig. 2 zeigt das Blockschaltbild einer Brennstoffzellenanlage nach Fig. 1 mit zwei Wasserstoffspeichern la, lb, die wahlweise (d.h. parallel), gleichzeitig (d.h. in Reihe) oder gar nicht in die Leitung 9 vom Reformer 2 zum Brennstoffzellenstack 3 eingekoppelt werden. Wiederum über Ventile 5a bis 5e kann das Brenngas entweder durch einen oder durch beide Wasserstoffspeicher la, lb geführt werden. Eine Bypassleitung 10 ermöglicht wiederum eine direkte Zuführung von Reformer- bzw. Brenngas zum Brennstoffzellenstack 3. Das Prinzip der Brennstoffzel- lenanlage gem. Fig. 2 entspricht insoweit dem der Fig. 1, wobei beispielsweise der zweite Wasserstoffspeicher lb auch zur Gasreinigung im Modus „Absorption" d.h. Wasserstoffaufiiahme genutzt werden kann, während der andere Wasserstoff- Speicher la dann im Modus „Desorption", bei z.B. 300°C, zur Wasserstoffanreicherung des Brenngases dient, oder umgekehrt.
Über eine Produktgasleitung 8 kann zudem, beispielsweise anodenseitig, Produkt- gas, das noch bis zu 20 % unverbrauchten Wasserstoff enthalten kann, in die Feedfluidzuleitung 7 rückgeleitet wird. Die Ventile 5a bis 5e sowie Sensoreinheiten 4a bis 4d lassen sich diesbezüglich dynamisch anpassbar öffnen und schließen.
Fig. 3 zeigt ein Blockschaltbild einer weiteren Ausführungsform der erfindungs- gemäßen Brennstoffzellenanlage, welche mit reinem Wasserstoff betrieben werden kann, der aus dem Reformergas absorbiert wurde. Zwischen dem Reformer 2 und dem über Zuführleirungen 9 verbundenen Brennstoffzellenstack 3 sind zwei Wasserstoffspeicher la und lb angeordnet, die jeweils über Ventile 5a bis 5f be- . trieben werden.
Beispielsweise können die Ventile 5a bis 5f wie folgt geschaltet sein: Ventile 5a, 5b und 5f zu und Ventile 5c, 5d und 5e offen, so dass der Wasserstoffspeicher la Wasserstoff desorbiert und damit den Brennstoffzellenstack 3 versorgt, während der Wasserstoffspeicher lb Wasserstoff absorbiert. Beim Betrieb mit reinem Was- serstoff können alle Brennstoffzellenstack-Konzeptionen, die auf diese Betriebsweise ausgelegt sind (vgl. „Dead-end-System" aus der EP 0 596 366 Bl oder ein geschlossenes System mit Spülung) zum Einsatz kommen.
Über verschiedene Abgasleitungen 6 können Reformer-, Brenn- oder Produktgase als Abgase an die Umgebung abgelassen werden. Beispielsweise wird bei offener Schaltung des Ventils 5b ein Abgas aus dem Wasserstoffspeicher la in die Umgebung abgelassen. In jeder Abgasleitung 6 kann ein Katalysator 12 angeordnet sein, der das Abgas katalytisch umsetzt und reinigt. Dessen Abwärme kann zudem nutzbar gemacht, insbesondere ausgekoppelt, werden und einem anderen Modul der Brennstoffzellenanlage, beispielsweise über einen wie in Fig. 2 dargestellten Wärmetauscher 16 dem Feedfluid und damit Reformer 2 zugeführt werden. Fig. 4 schließlich zeigt ein weiteres Blockschaltbild einer Brer stoffzellenanlage wiederum mit zwei Wasserstoffspeichern la, lb, welche auch zur Gasreinigung einsetzbar sind. Dabei kann jeder Wasserstoffspeicher la, lb im Bypässbetrieb gefahren werden. Als Steuermittel sind wiederum Ventile 5a bis 5h vorgesehen. Zu erkennen ist des weiteren ein Reformer 2 und ein Brennstoffzellenstack 3, welche über eine Zuleitung 9 miteinander verbunden sind. Über einen Leitungsabschnitt 17 wird aus dem Brennstoffzellenstack 3 verbrauchtes Brenngas in die Wasserstoffspeicher la bzw. lb geleitet, je nach Stellung der Ventile 5b und 5c. Die Bypassleitung 15 entspricht der Bypassleitung 10 aus Fig. 1 und dient dazu, dass Reformergas während der Startphase in die Umgebung abgelassen werden kann. Über Rückführleitungen 14a, 14b kann hochkonzentrierter Wasserstoff entweder direkt dem Brennstoffzellenstack 3 oder über die Feedfluidleitung 7 in den Reformer 2 zugeführt werden. Beim Start des foaftfahrzeuges reicht der in . den Wasserstoffspeichern la, lb gespeicherte Wasserstoff aus, um den Betrieb des Brennstoffzellenstacks 3 bis zum optimalen Reformerbetriebspunkt zu überbrücken.
Die Erfindung betreffend ein Verfahren zum Betreiben einer Brennstofϊzellenanlage sowie dazugehörige Brennstoffzellenanlage eignet sich insbesondere für eine mobile Anwendung in Kraftfahrzeugen. Die in der Brennstoffzellenanlage eingesetzten Wasserstoffspeicher 1, la, lb zeichnen sich zudem durch eine rasche Ab- sorptions- und Desorptionskinetik aus, so dass auch Wasserstoff aus dem Abgas einer Verbrennungskraftmaschine durch einfaches Durchleiten des Abgases durch die Wasserstoffspeicher 1, la, lb angereichert und/oder gespeichert werden kann.
Bezugszeicii-enliste
, la, lb Wasserstoffspeicher
Reformer
Brennstoffzellenstack a erste Sensoreinrichtung b zweite Sensoreinrichtung a-5h Ventile
Abgasleitung
Feedfluidzuleitung
Produktgasleitung
Zuleitung a erster Leitungsabschnitt b zweiter Leiti gsabschnitt 0 Bypassleitung 1 Tankleitung 2 Katalysator 4a, 14b Rückführleitungen 5 Bypassleitung 6 Wärmetauscher 7 Leitungsabschnitt

Claims

Patentansprüche
1. Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, mit einem Re- former (2) und zumindest einem Wasserstoffspeicher (1; la, lb) zur Speicherung von Wasserstoff in Hydridform, der je nach Betriebsbedingungen reversibel Wasserstoff einlagert und wieder abgibt.
2. Brennstoffzellenanlage, insbesondere für Kraftfahrzeuge, bei der die in einem Wasserstoffspeicher (1; la, lb) speicherbare Energiemenge zwischen 0,1 - 5 kW/h beträgt und/oder die Energiemenge bereitstellt, die in den ersten 5 bis 10 Betriebsminuten nach dem Kaltstart des Kraftfahrzeuges verbraucht wird.
3. Brennstoffzellenanlage nach einem der Ansprüche 1 oder 2, gekennzeichnet durch einen katalytisch wirkenden Wasserstoffspeicher (1; la, lb), der auch zur Gasreinigung einsetzbar ist.
4. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mittels Leitungen (9, 9b, 17) Wasserstoff aus dem zumindest einen Wasserstoffspeicher (1; la, lb) einem Brennstoffzellenstacks (3) zuführbar ist.
5. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer Leitung (9, 9a) Reformergas aus dem
Reformer (2) zumindest teilweise in den Wasserstoffspeicher (1; la, lb) einleitbar ist.
6. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mittels einer Bypassleitung (10; 15) Reformergas zumindest teilweise am Wasserstoffspeicher (1; la, lb) vorbei direkt in den Brennstoffzellenstack (3) und/oder über einen Katalysator (12) in die Umgebung ableitbar ist.
7. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, das der Wasserstoffspeicher (1; la, lb) eine Absorption und/oder Desorptionsreaktion von wenigen Sekunden aufweist.
8. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, gekennzeichnet, durch zumindest zwei Wasserstoffspeicher (la, lb), die durch mittels Ventile (5a bis 5h) in Reihe oder parallel schaltbar sind.
9. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest zwei Wasserstoffspeicher (la, lb) so mittels der Ventile (5a bis 5h) schaltbar sind, so dass ein Betrieb des Brennstoffzellenstacks (3) mit reinem Wasserstoff ermöglicht ist.
10. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, bei dem zumindest eine Sensoreinrichtung (4a bis 4d) vorgesehen ist, durch die zumindest die Zusammensetzung, der Wasserstoffpartialdruck und/oder die Temperatur der jeweils in der Brennstof_-zellenanlage geführten Fluide messbar ist.
11. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass mittels der Ventile (5a bis 5h) und/oder weiterer Steuer- und Regelungsmittel die Wasserstoffmenge im Brenngas an die
Leistungsanforderung des Brennstoffzellenstacks (3) dynamisch anpassbar ist.
12. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Teil des Wasserstoffspeichers (1; la, lb) auf einem Wabenkörper als Träger angeordnet ist.
13. Brennstoffzellenanlage nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass eine Tankleitung (11) vorgesehen ist, über welche dem Wasserstoffspeicher (1; la, lb) von extern Wasserstoff zugeführt werden kann.
14. Verfahren zum Betreiben einer Brennstoffzellenanlage, insbesondere nach einem der vorherigen Ansprüche, bei dem zumindest ein Teilstrom eines in der Brennstoffzellenanlage geführten Fluides durch einen Wasserstoffspeicher (1; la, lb) geleitet wird.
15. Verfahren nach Anspruch 14, wobei die Brennstoffzellenanlage einen Reformer (2) umfasst, bei dem nach erfolgtem Hochfahren des Reformers (2) ein Reformergas zumindest teilweise durch den Wasserstoffspeicher (1; la, lb) geführt wird.
16. Verfahren nach einem der Ansprüche 14 oder 15, bei dem zumindest teilweise Wasserstoff durch Desorption aus dem Wasserstoffspeicher (1; la, lb) gewonnen und einem Brennstoffzellenstack (3) als Brenngas zugeführt wird.
17. Verfahren nach einem der Ansprüche 14 bis 16, bei dem der Brennstoffzellenstack (3) der Brennstoffzellenanlage ganz oder wenigstens zeitweise mit reinem Wasserstoff betrieben wird.
18. Verfahren nach einem der Ansprüche 14 bis 17, bei dem ein der Brennstoffzellenstack (3) ein Produktgas freisetzt, welches zumindest teilweise durch einen Wasserstoffspeicher (1; la, lb) und/oder einen Katalysator (12) geführt wird.
19. Verfahren nach einem der Ansprüche 14 bis 18, bei dem die Temperatur und/oder der Druck im Wasserstoffspeicher (1; la, lb) über wenigstens eine Sensoreinrichtung (4a bis 4d) so einstellbar ist, dass mittels Desorption oder Absorption von Wasserstoff im Wasserstoffspeicher (1; la, lb) dem Brennstoffzellenstack (3) Wasserstoffmengen dynamisch und an die momentane Leistungsanforderung anpassbar zugeführt werden können.
20. Verfahren nach einem der Ansprüche 14 bis 19, bei dem der Druck im Wasserstoffspeicher (1; la, lb) über Einstellungen nachgeschalteter Ventile (5a bis 5h) regelbar ist.
21. Verfahren nach einem der Ansprüche 14 bis 20, bei dem der Wasserstoff- Speicher (1; la, lb) insbesondere beim Kaltstart und beim Auftreten von
Leistungsspitzen zum Einsatz kommt.
22. Verfahren nach einem der Ansprüche 14 bis 21, bei dem die Abwärme aus dem Katalysator (12) genutzt wird, insbesondere während des Kaltstarts eines Kraftfahrzeuges zur Vorheizung eines dem Reformer (2) zugeführten
Feedfluides.
EP01978349A 2000-09-11 2001-09-07 Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage Withdrawn EP1328992A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10044786A DE10044786A1 (de) 2000-09-11 2000-09-11 Brennstoffzellenanlage und Verfahren zum Betreiben einer Brennstoffzellenanlage
DE10044786 2000-09-11
PCT/EP2001/010326 WO2002019789A2 (de) 2000-09-11 2001-09-07 Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage

Publications (1)

Publication Number Publication Date
EP1328992A2 true EP1328992A2 (de) 2003-07-23

Family

ID=7655742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978349A Withdrawn EP1328992A2 (de) 2000-09-11 2001-09-07 Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage

Country Status (6)

Country Link
US (1) US20030175563A1 (de)
EP (1) EP1328992A2 (de)
JP (1) JP2004508675A (de)
AU (1) AU2002210492A1 (de)
DE (1) DE10044786A1 (de)
WO (1) WO2002019789A2 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2849278B1 (fr) * 2002-12-24 2008-09-12 Renault Sa Systeme de reformage de carburant pour l'alimentation d'une pile a combustible de vehicule automobile et procede de mise en oeuvre
US7028724B2 (en) * 2003-05-30 2006-04-18 Air Products And Chemicals, Inc. Fueling nozzle with integral molecular leak sensor
FR2865855A1 (fr) * 2004-02-02 2005-08-05 Renault Sas Dispositif de demarrage d'une pile a combustible
FR2880993A1 (fr) * 2005-01-20 2006-07-21 Renault Sas Installation de production d'electricite comportant une pile a combustible dont l'anode est alimentee successivement par deux sources de carburant
DE102006039527A1 (de) * 2006-08-23 2008-02-28 Enerday Gmbh Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102006045920A1 (de) * 2006-09-28 2008-04-03 Robert Bosch Gmbh Fluidspeicher
AT502130B1 (de) * 2006-10-03 2008-02-15 Avl List Gmbh Vorrichtung und verfahren zum betrieb einer hochtemperaturbrennstoffzelle
DE102006051674A1 (de) * 2006-11-02 2008-05-08 Daimler Ag Brennstoffzellensystem und Verfahren zum Betreiben desselben
WO2008057081A1 (en) * 2006-11-07 2008-05-15 Bdf Ip Holdings Ltd. Fuel cell systems and methods of operating the same
US7574996B2 (en) * 2007-10-23 2009-08-18 Gm Global Technology Operations, Inc. Fuel supply system with a gas adsorption device
US9156870B2 (en) * 2010-02-25 2015-10-13 Universal Display Corporation Phosphorescent emitters
DE102013226305A1 (de) * 2013-12-17 2015-06-18 Robert Bosch Gmbh Brennstoffzellensystem mit einer Speichervorrichtung sowie ein Verfahren zur Bereitstellung von Wasserstoff für ein Brennstoffzellensystem
JP6568370B2 (ja) * 2015-03-23 2019-08-28 株式会社アツミテック 発電機能付き排ガス浄化システム
KR20220061595A (ko) * 2020-11-06 2022-05-13 현대자동차주식회사 연료전지 폐열을 활용한 수소공급시스템 및 제어방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US36148A (en) * 1862-08-12 Improvement in revolving ordnance
DE2949011A1 (de) * 1979-12-06 1981-06-11 Varta Batterie Ag, 3000 Hannover Verfahren und vorrichtung zur elektrochemischen energiegewinnung
US5403559A (en) * 1989-07-18 1995-04-04 Emitec Gesellschaft Fuer Emissionstechnologie Device for cleaning exhaust gases of motor vehicles
DE8909128U1 (de) * 1989-07-27 1990-11-29 Emitec Emissionstechnologie
US5527632A (en) * 1992-07-01 1996-06-18 Rolls-Royce And Associates Limited Hydrocarbon fuelled fuel cell power system
DE59306256D1 (de) * 1992-11-05 1997-05-28 Siemens Ag Verfahren und Einrichtung zur Wasser- und/oder Inertgasentsorgung eines Brennstoffzellenblocks
US6030724A (en) * 1993-12-22 2000-02-29 Kabushiki Kaisha Toshiba Hydrogen-storage alloy and alkali secondary battery using same
US5686196A (en) * 1996-10-09 1997-11-11 Westinghouse Electric Corporation System for operating solid oxide fuel cell generator on diesel fuel
US5900330A (en) * 1997-09-25 1999-05-04 Kagatani; Takeo Power device
US5928805A (en) * 1997-11-20 1999-07-27 Siemens Westinghouse Power Corporation Cover and startup gas supply system for solid oxide fuel cell generator
US6124054A (en) * 1998-12-23 2000-09-26 International Fuel Cells, Llc Purged anode low effluent fuel cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0219789A2 *

Also Published As

Publication number Publication date
WO2002019789A3 (de) 2002-12-05
US20030175563A1 (en) 2003-09-18
WO2002019789A2 (de) 2002-03-14
AU2002210492A1 (en) 2002-03-22
DE10044786A1 (de) 2002-04-04
JP2004508675A (ja) 2004-03-18

Similar Documents

Publication Publication Date Title
DE19731642C1 (de) Brennstoffzellenfahrzeug
DE10201893B4 (de) Brennstoffzellensystem zum Einbau in ein Kraftfahrzeug und Verfahren zum Steuern desselben
EP1328992A2 (de) Brennstoffzellenanlage und verfahren zum betreiben einer brennstoffzellenanlage
WO2007124946A2 (de) Wasserstoffverbrauchendes system und betriebsverfahren
DE102004029235A1 (de) Vorrichtung und Verfahren zum Betreiben eines Kraftstoffreformers zur Regenerierung einer DPNR-Vorrichtung
DE19727588C1 (de) Vorrichtung zur Erzeugung eines wasserstoffreichen und kohlenmonoxidarmen Gases
DE102004002337A1 (de) Energieumwandlungsvorrichtung und Verfahren zum Betreiben der Energieumwandlungsvorrichtung
DE112004001828T5 (de) Metallhydridheizelement
DE102013223003A1 (de) System und Verfahren zum Erwärmen des Fahrgastraumes eines brennstoffzellenbetriebenen Fahrzeugs
DE10317123B4 (de) Vorrichtung und Verfahren zum Brennstoffzellenkaltstart mit Metallhydriden und deren Verwendung
EP1947723B1 (de) Energiebereitstellungssystem
EP1403106A2 (de) Heizsystem für ein Fahrzeug
EP2028350B1 (de) Brennkraftmaschinensystem
DE102007006963A1 (de) Brennstoffzellensystem für ein Fahrzeug
DE102006043104A1 (de) Abgasreinigungsanlage für ein Kraftfahrzeug
EP1172872A2 (de) Brennstoffzellensystem mit Einrichtung zur Wasserrückgewinnung und Verfahren zum Betrieb eines solchen
DE102011107669A1 (de) Kraftstoffbehandlungsvorrichtung
WO2023247626A1 (de) Vorrichtung und verfahren zum bereitstellen elektrischer energie mittels eines wasserstoffträgermediums sowie mobile plattform mit einer derartigen vorrichtung
DE112004000518T5 (de) Hochleistungs-Brennstoffaufbereitungssystem Brennstoffzellen-Stromerzeugungsanlage
EP1678776B1 (de) Brennstoffzellensystem für den mobilen einsatz mit einem adsorptionsspeicher
DE102007033150B4 (de) Betriebsverfahren für ein Brennstoffzellensystem
EP1919018B1 (de) Brennstoffzellensystem
DE102005040052B4 (de) Kraftfahrzeug mit einem Reformersystem mit einer Abkühleinrichtung
WO2004079846A2 (de) Brennstoffzellensystem mit wenigstens einer brennstoffzelle und einem gaserzeugungssystem
DE10219429B4 (de) Kraftfahrzeug mit einer Antriebseinrichtung und mit einem Betriebsmittelspeicher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030320

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BERESFORD, MARCUS

Inventor name: REIZIG, MEIKE

Inventor name: BRUECK, ROLF

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20060725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100121