EP1328987A2 - Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication - Google Patents

Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication

Info

Publication number
EP1328987A2
EP1328987A2 EP01982119A EP01982119A EP1328987A2 EP 1328987 A2 EP1328987 A2 EP 1328987A2 EP 01982119 A EP01982119 A EP 01982119A EP 01982119 A EP01982119 A EP 01982119A EP 1328987 A2 EP1328987 A2 EP 1328987A2
Authority
EP
European Patent Office
Prior art keywords
fuel cell
bipolar plate
intermediate layer
carbon
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01982119A
Other languages
German (de)
English (en)
Inventor
Armin Datz
Harald Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1328987A2 publication Critical patent/EP1328987A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2459Comprising electrode layers with interposed electrolyte compartment with possible electrolyte supply or circulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to an operating method for a fuel cell and to a polymer electrolyte membrane fuel cell working therewith, in particular a high temperature polymer electrolyte membrane fuel cell.
  • the invention also relates to a method for producing such a polymer electrolyte membrane (PEM) fuel cell, in particular for use in the high temperature range, as a result of which such a fuel cell can be operated with reduced corrosion.
  • PEM polymer electrolyte membrane
  • a polymer electrolyte membrane fuel cell which is generally referred to as a PEM fuel cell (Polymer Electrolyte Membrane or Protone Exchange Membrane)
  • the operating temperature may increase from 65 ° C to 80 ° C at present Temperatures above 100 ° C, in particular 150 ° C to 200 ° C, considerable advantages can be achieved.
  • HT-PEM high-temperature polymer electrolyte membrane
  • Units made of membrane and associated electrode are generally referred to as MEA (Membrane Electrode Assembly).
  • Corrosion tests in variously concentrated phosphoric acid (20 - 85%) up to temperatures of 150 ° C in a potential range from 0 to 1.1 volts show that no metallic material has sufficiently low corrosion current densities of less than 10 ⁇ 6 A / cm 2 to achieve the required service life to ensure the PEM of approx. 4000 h for mobile applications in vehicles or approx. 50,000 h for stationary applications.
  • the iron and nickel-based alloys commonly used in the chemical industry when using phosphoric acid without electrochemical potential show current densities of 10 "4 A / cm 2. Only glassy carbon is suitable for this to a limited extent, although here too the corrosion current densities increase at potentials of about 1 volt are high.
  • the object of the invention is to prevent corrosion as far as possible when operating a polymer electrolyte membra (PEM) fuel cell and to propose a related structure of the PE-M fuel cell and a method for its production.
  • PEM polymer electrolyte membra
  • the object is achieved according to the invention with an operating method for a fuel cell according to claim 1, an associated fuel cell being specified in claim 4.
  • the operating method according to the invention ensures that no corrosive liquid comes into direct contact with the bipolar plate when the fuel cell is operated at higher temperatures. This applies in particular to the use of phosphoric acid in the HT-PEM fuel cell.
  • a sufficiently electrically conductive intermediate layer is introduced between the membrane electrode assembly (MEA) and the bipolar plate, which prevents any phosphoric acid or a phosphoric acid / water mixture escaping from the MEA from reaching the bipolar plate.
  • MEA membrane electrode assembly
  • An at least two-layer structure is preferably selected, which becomes more hydrophobic and, at the same time, more porous with increasing proximity to the bipolar plate.
  • an intermediate layer is introduced between the membrane electrode assembly (MEA) and the bipolar plate.
  • the intermediate layer must have sufficient electrical conductivity and be designed such that no phosphoric acid or phosphoric acid / water mixtures can reach the bipolar plate.
  • a multilayered layer of hydrophobic carbon paper can be inserted as an intermediate layer.
  • a carbon paper can also be coated with a carbon / Teflon mixture, for example using a screen printing technique known per se.
  • FIG. 1 shows an arrangement in which a multi-layer structure made of differently hydrophobized carbon paper is present
  • FIG. 2 shows an arrangement in which a carbon layer is applied to the hydrophobized film in front of the bipolar plate of a fuel cell
  • FIG. 3 shows a detail from FIG. 2 for clarification of so-called spikes.
  • 1 denotes a membrane electrode assembly (MEA) of a known polymer electrolyte membra (PEM) fuel cell and 3 denotes its bipolar plate.
  • MEA membrane electrode assembly
  • PEM polymer electrolyte membra
  • An arrangement according to FIG. 1 with the membrane electrode unit 1 and the bipolar plate 3 forms a single fuel cell unit with the other units.
  • a large number of fuel cell units form a fuel cell stack, which is also referred to in the technical field as a fuel cell stack or “stack *” for short.
  • the corrosion current densities for the bipolar plate it is necessary to keep the corrosion current densities for the bipolar plate at least below 10 "5 A / cm 2 , in particular below 10 " 6 A / cm 2 .
  • an electrically conductive intermediate layer with sufficient conductivity is introduced between the membrane-electrode unit 1 and the bipolar plate 3, which prevents phosphoric acid or phosphoric acid / water Mixtures reach the bipolar plate.
  • a multi-layer layer structure 10 is present as an intermediate layer, which in FIG. 1 consists of five layers of separate carbon papers 11 to 15.
  • the individual layers of carbon paper become more hydrophobic and, at the same time, more porous with increasing proximity to the bipolar plate 3.
  • the phosphoric acid or the phosphoric acid / water mixture is thus kept away from the bipolar plate 3.
  • the intermediate layer is implemented as an at least two-layer structure.
  • a layer structure 20 is shown specifically in FIG. 2, which consists of a carbon layer 22 of predetermined porosity and a hydrophobic film 23.
  • a carbon layer 22 and hydrophobic film 23 according to FIG. 2 an equivalent effect can be achieved by coating a carbon paper with a carbon / Teflon mixture.
  • Such a layer structure can be produced, for example, by known screen printing techniques.
  • the coating described can thus ensure that hydrophilic phosphoric acid or phosphoric acid / water mixtures emerging from the MEA only penetrate into the layers close to the MEA and are retained by the layer structure which becomes increasingly hydrophobic towards the bipolar plate before the acid becomes the bipolar Plate can attack.
  • the water of reaction formed at the operating temperature of the HT-PEM of approx. 160 ° C can escape in vapor form through existing pores.
  • Due to the hydrophobized film 23, the electrical contact between the MEA and the bipolar plate 3 can deteriorate in FIG. This can be counteracted by providing the bipolar plate 3 with knobs or so-called spikes, which are pressed into the hydrophobized film 23 and thus selectively improve the electrical contact. This is illustrated in FIG. 3 using the tips 35 on the bipolar plate 3.
  • a thin, electrically conductive, hydrophobic and acid-repellent layer can also be applied directly to the bipolar plate. This can be done by spraying on a mixture consisting of soluble amorphous Teflon or a Teflon dispersion and conductive carbon powder (eg Vulcan XC 72). The sprayed-on layer may need to be tempered after drying.
  • Carbon papers usually have porosities between 50 and 100 ⁇ m. In the case of a layer structure according to FIG. 1, however, porosities ⁇ 10 ⁇ m towards the bipolar plate would be required, in particular also in the nanometer range. If carbon paper with such porosities is not available, screen printing technology appears more suitable.
  • conductivities of at least 0.5 S x cm can be achieved with the layer structure. Higher conductivities are better, so that with the dimensions sought for the layer structure according to FIG. 1 or FIG. 2, surface resistances R F ⁇ 20 m ⁇ ⁇ cm -2 result. Corrosion is effectively prevented under these electrical boundary conditions, whereby the water can escape in vapor form and the phosphoric acid is held against it.
  • HT-PEM can use bipolar plates made of graphite as well as bipolar ones Plates made of inexpensive, easily machinable metallic materials can be used. Normally, these materials would be attacked by the operating conditions of the HT-PEM, ie when there is an electrochemical potential and an operating temperature of approximately 160 ° C., by phosphoric acid which can escape from the membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

Lors du fonctionnement d'une pile à combustible à membrane électrolytique polymère (polymer electrolyte membrane fuel cell : PEMFC) connue, on doit s'attacher à éviter que de l'acide phosphorique, notamment, vienne en contact direct avec la plaque bipolaire métallique de la pile à combustible à hautes températures. La présente invention permet d'éviter ceci en ce qu'une couche intermédiaire (10, 20) suffisamment électro-conductrice est appliquée entre l'ensemble membrane-électrode (1) et la plaque bipolaire (3) de la pile à combustible. Ceci permet d'éviter qu'éventuellement de l'acide phosphorique issu de l'ensemble membrane-électrode (1) ou qu'un mélange acide phosphorique/eau n'arrive sur la plaque bipolaire (3). A cette fin, une structure stratifiée (10, 20) qui présente au moins deux couches et qui est de plus en plus hydrophobe et à pores de plus en plus fins à l'approche de la plaque bipolaire (3) est appliquée lors de la production de la pile à combustible.
EP01982119A 2000-09-29 2001-09-17 Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication Withdrawn EP1328987A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10048423A DE10048423A1 (de) 2000-09-29 2000-09-29 Betriebsverfahren für eine Brennstoffzelle, damit arbeitende Polymer-Elektrolyt-Membran-Brennstoffzelle und Verfahren zu deren Herstellung
DE10048423 2000-09-29
PCT/DE2001/003574 WO2002027837A2 (fr) 2000-09-29 2001-09-17 Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication

Publications (1)

Publication Number Publication Date
EP1328987A2 true EP1328987A2 (fr) 2003-07-23

Family

ID=7658174

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01982119A Withdrawn EP1328987A2 (fr) 2000-09-29 2001-09-17 Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication

Country Status (7)

Country Link
US (1) US20030170509A1 (fr)
EP (1) EP1328987A2 (fr)
JP (1) JP2004510317A (fr)
CN (1) CN1511353A (fr)
CA (1) CA2423864A1 (fr)
DE (1) DE10048423A1 (fr)
WO (1) WO2002027837A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6890680B2 (en) * 2002-02-19 2005-05-10 Mti Microfuel Cells Inc. Modified diffusion layer for use in a fuel cell system
CA2483015A1 (fr) * 2002-04-25 2003-11-06 Pemeas Gmbh Membrane electrolyte multicouche
DE10314483B4 (de) 2003-03-31 2010-02-25 Forschungszentrum Jülich GmbH Niedertemperatur-Brennstoffzelle sowie Verfahren zum Betreiben derselben
JP5153159B2 (ja) * 2007-02-15 2013-02-27 株式会社日本自動車部品総合研究所 燃料電池
JP5274035B2 (ja) * 2007-03-27 2013-08-28 三洋電機株式会社 燃料電池
KR20080109504A (ko) * 2007-06-13 2008-12-17 삼성에스디아이 주식회사 연료전지 시스템용 다중층 캐소드 전극을 갖는 전극막조립체
JP2012238398A (ja) * 2011-05-09 2012-12-06 Daido Gakuen 中温型プロトン交換膜形燃料電池
DE102014104310A1 (de) * 2014-03-27 2015-10-01 Siqens Gmbh Vorrichtung und Verfahren zur Lebensdauerverlängerung von HT-PEM Brennstoffzellen
KR101664382B1 (ko) * 2016-02-16 2016-10-10 한국에너지기술연구원 스택 온도 균일화를 위한 고온 고분자 전해질 막 연료 전지 스택, 그 온도 제어 방법 및 기록 매체

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899354A (en) * 1973-09-10 1975-08-12 Union Carbide Corp Gas electrodes and a process for producing them
JPS57105974A (en) * 1980-12-24 1982-07-01 Toshiba Corp Fuel cell
US4826741A (en) * 1987-06-02 1989-05-02 Ergenics Power Systems, Inc. Ion exchange fuel cell assembly with improved water and thermal management
DE4237602A1 (de) * 1992-11-06 1994-05-11 Siemens Ag Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
DE19548422A1 (de) * 1995-12-22 1997-09-11 Hoechst Ag Materialverbunde und ihre kontinuierliche Herstellung
DE19721952A1 (de) * 1997-05-26 1998-12-03 Volker Rosenmayer Gasdiffusionselektrode mit thermoplastischem Binder
JP3564975B2 (ja) * 1997-10-23 2004-09-15 トヨタ自動車株式会社 燃料電池用電極および燃料電池用電極の製造方法
US6030718A (en) * 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
FR2781606B1 (fr) * 1998-07-21 2000-10-13 Sorapec Nouveau collecteur bipolaire pour pile a combustible
DE19835253A1 (de) * 1998-08-04 2000-01-13 Siemens Ag Verfahren zur Herstellung einer Hochtemperatur-Brennstoffzelle
EP1009051A2 (fr) * 1998-12-08 2000-06-14 General Motors Corporation Plaque bipolaire à refroidissement liquide composée de plaques encollées pour piles à combustible de type PEM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0227837A2 *

Also Published As

Publication number Publication date
DE10048423A1 (de) 2002-04-18
WO2002027837A3 (fr) 2002-11-21
CA2423864A1 (fr) 2003-03-27
US20030170509A1 (en) 2003-09-11
JP2004510317A (ja) 2004-04-02
WO2002027837A2 (fr) 2002-04-04
CN1511353A (zh) 2004-07-07

Similar Documents

Publication Publication Date Title
DE19812592B4 (de) Membran-Elektroden-Einheit für Polymer-Elektrolyt-Brennstoffzellen, Verfahren zu ihrer Herstellung sowie Tinte
EP1150369B1 (fr) Structures de distributeurs de gaz et électrodes à diffusion gazeuze pour des piles à combustible
EP1184925A2 (fr) Empilement de piles à combustible de type PEM
DE102013207900A1 (de) Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen
DE102008009724A1 (de) Gasdiffusionsschicht mit gesteuertem Diffusionsvermögen über eine aktive Fläche
DE10037072A1 (de) Membran-Elektrodeneinheit für Polymerelektrolyt-Brennstoffzellen und Verfahren zu ihrer Herstellung
DE102007055222B4 (de) Metall-Bipolarplatte für PEM-Brennstoffzellen und Brennstoffzelle
DE102008029628A1 (de) Bipolarplatten-Diffusionsmedienanordnung mit niedrigem elektrischen Widerstand
DE102011076629A1 (de) Lokale hydrophile Gasdiffusionsschicht und Brennstoffzellenstapel mit derselben
DE112020001053T5 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle, und Brennstoffzelle
EP1261057A1 (fr) Procédé de fabrication d'une unité membrane-électrode et unité membrane-élecrote obtenue par ce procédé
EP1328987A2 (fr) Procede d'exploitation d'une pile a combustible, pile a combustible a membrane electrolytique polymere mise en oeuvre et son procede de fabrication
DE102021204371A1 (de) Reversible shunts zum schutz vor überladung in polymerelektrolytmembran-brennstoffzellen
WO2020182433A1 (fr) Couche de diffusion gazeuse pour une pile à combustible et pile à combustible
DE102009043208B4 (de) Materialauslegung, um eine Leistungsfähigkeit einer Brennstoffzelle bei hoher Mittentemperatur mit ultradünnen Elektroden zu ermöglichen
DE102014118309A1 (de) Schichtauslegung, um eine Korrosion von Brennstoffzellenelektroden aus einem nicht idealen Betrieb zu mindern
WO2018130388A1 (fr) Procédé de fabrication d'une plaque bipolaire, plaque bipolaire pour une pile à combustible et pile à combustible
EP1150370A2 (fr) Structures de distribuition de gaz et électrodes à diffusion gazeuse pour piles à combustible avec un électrolyte polymérique
EP1627440B1 (fr) Plaque bipolaire et pile a combustible comprenant une telle plaque bipolaire
DE102009009246B3 (de) Gasdifffusionselektrode für den Einsatz in einer Brennstoffzelle sowie Verfahren zu deren Herstellung
DE112006001838B4 (de) Elektrisch leitende Fluidverteilungsplatte sowie damit ausgestaltete Brennstoffzelle
WO2018166733A1 (fr) Plaque bipolaire pour cellule de combustible et cellule de combustible ainsi que procédé de fabrication d'une plaque bipolaire
DE102022204611A1 (de) Kathodenkatalysatorschicht für eine Brennstoffzelle und deren Herstellung
WO2020212128A1 (fr) Plaque bipolaire pour une pile à combustible, procédé de fabrication d'une plaque bipolaire et pile à combustible
DE102020102709A1 (de) Verfahren zur Herstellung einer Membranelektrodenanordnung, Membranelektrodenanordnung sowie Brennstoffzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030217

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

18D Application deemed to be withdrawn

Effective date: 20050331

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

R18D Application deemed to be withdrawn (corrected)

Effective date: 20050401