EP1324351A2 - Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X - Google Patents

Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X Download PDF

Info

Publication number
EP1324351A2
EP1324351A2 EP02027472A EP02027472A EP1324351A2 EP 1324351 A2 EP1324351 A2 EP 1324351A2 EP 02027472 A EP02027472 A EP 02027472A EP 02027472 A EP02027472 A EP 02027472A EP 1324351 A2 EP1324351 A2 EP 1324351A2
Authority
EP
European Patent Office
Prior art keywords
mirror
ray
focus
multilayer mirror
gradient multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02027472A
Other languages
German (de)
English (en)
Other versions
EP1324351A3 (fr
EP1324351B1 (fr
Inventor
Joachim Lange
Detlef Bahr
Kurt Erlacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker AXS GmbH
Original Assignee
Bruker AXS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker AXS GmbH filed Critical Bruker AXS GmbH
Publication of EP1324351A2 publication Critical patent/EP1324351A2/fr
Publication of EP1324351A3 publication Critical patent/EP1324351A3/fr
Application granted granted Critical
Publication of EP1324351B1 publication Critical patent/EP1324351B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the invention relates to an X-ray optical system with an X-ray source and a first gradient multilayer mirror (graded multilayer mirror), the extent Q x of the X-ray source in an x direction perpendicular to the connecting line between the X-ray source and the first Gradient multilayer mirror in the z direction is greater than the acceptance range of the mirror in a focus of the mirror in the x direction.
  • the concave, focusing X-ray mirror can be cylindrical, elliptical or have parabolic curvature.
  • Parabolic mirrors are in particular a parallelization of the incident X-rays possible.
  • the acceptance angle of typical multilayer mirrors is in the range of 1 mrad and the usual focal lengths are in the range of a few centimeters.
  • the electron focus of the X-ray source varies in a linear range from 10 ⁇ m to a few millimeters.
  • the acceptance range of a mirror has a smallest linear dimension in a range around a few 10 ⁇ m and is typically strip-shaped.
  • the usual X-ray samples on the other hand, have linear dimensions in the range from 100 ⁇ m to a few millimeters, typically several tenths of a millimeter.
  • the entire area of the X-ray source also emits interference radiation (with a "wrong" wavelength, in particular K ⁇ ), which can reach the entire apparatus via the X-ray mirror and ultimately the X-ray detector.
  • the object of the invention is an X-ray optical system with the features mentioned at the outset, with as much as possible small and technically simple modifications a reduction without problems the interfering radiation on the sample while maintaining the power used X-ray radiation from the source allows.
  • Another advantage of the solution according to the invention is that the Expansion of the x-ray source in the z direction is effectively eliminated because with the X-ray mirror only shows the aperture, which is practical has no depth in the z direction.
  • the depth of field of the figure is shown in essentially limited only by the thickness of the panel.
  • Graded mirrors are used in which the Layer spacing varies laterally and / or in depth. With that one can achieve particularly high intensity of the reflected radiation.
  • the mirrors can be cylindrical, spherical, elliptical, be designed parabolic or hyperbolic.
  • the invention unfolds its advantages not only in the field of X-ray optics, but can also be used in the field of neutron optics and with synchrotron radiation as the source.
  • neutron optical elements can be used as mirrors.
  • the x direction and the y direction orthogonal With such an orthogonal x and y system the radiation directions are linearly independent of each other, so that the effects of the two gradient multilayer mirrors are decoupled are.
  • This allows a particularly simple manufacture of the invention Systems and its easy adjustability.
  • Another training course In the above embodiment, the focus of the first gradient multilayer mirror is correct with the focus of the second gradient multilayer mirror match. With this arrangement one comes with a single aperture because the two screens coincide spatially.
  • the focus of the first one can also be used for other training courses
  • Gradient multilayer mirror with the focus of the second gradient multilayer mirror do not match.
  • the two gradient multilayer mirrors can then be optimized completely independently of one another, especially if the two mirrors are at a different distance from each other the x-ray source.
  • the screens are adjustable, so that a fine optimization of the arrangement is made possible.
  • the screens can be used as cross screens, slotted screens, Pinhole or iris diaphragms are executed.
  • Another particularly preferred embodiment of the arrangement according to the invention is characterized in that the extent Q x of the X-ray source in the x direction is between 2 and 50 times, preferably between 5 and 20 times, in particular 10 times larger than the acceptance range of the first gradient multilayer.
  • Mirror in the x-direction, and that the extent Q y of the x-ray source in the y-direction is between 2 and 50 times, preferably between 5 and 20 times, in particular 10 times larger than the acceptance range of the second gradient multilayer mirror in the y-direction , This allows the unwanted interference to be suppressed particularly well when using conventional X-ray sources in conjunction with common X-ray mirrors.
  • the device has an acceptance range of the first gradient multilayer mirror in the x direction and possibly the acceptance range of the second Gradient multilayer mirror in the y direction between 10 and 100 microns. Particularly effective Göbel mirrors can be found in this area produce.
  • the first and optionally the second gradient multilayer mirror parabolically or elliptically curved his are optionally the first and optionally the second gradient multilayer mirror parabolically or elliptically curved his.
  • the first and optionally the second Just be a gradient multilayer mirror.
  • An X-ray spectrometer also falls within the scope of the present invention or an X-ray diffractometer or an X-ray microscope, each with an X-ray optical system as described above Art.
  • the invention is shown in the drawing and is based on exemplary embodiments explained in more detail.
  • Fig. 1 shows the schematic spatial arrangement of an X-ray optics.
  • an X-ray mirror A is arranged in the yz plane.
  • edge rays overlap in the focus O a of the mirror A.
  • a further X-ray mirror B is arranged in the xz plane.
  • apertures are positioned at the locations O a and O b .
  • FIG. 2 shows a schematic illustration of the characteristic quantities of an X-ray mirror A. Radiation is only reflected from the range of the acceptance angle ⁇ of the X-ray mirror A. The acceptance range F is thus imaged in the focus O a of the X-ray mirror A.
  • the radiation geometry of the X-ray optics of FIG. 1 is shown schematically in the xz plane in FIG. 3a.
  • the source Q x is imaged via an aperture with an opening width F x in the focus O a of the X-ray mirror A.
  • the effective divergence angle range ⁇ x of the X-ray mirror A results from the projection of the source dimension S x and the distance between the focus O a and the X-ray mirror A.
  • 3b shows the radiation geometry of the x-ray optics of FIG. 1 in the yz plane.
  • the source Q y is imaged via an aperture with an opening width F y in the focus O b of the X-ray mirror B.
  • the effective divergence angle range ⁇ y of the X-ray mirror B results from the projection of the source dimension S y and the distance between the focus O b and the X-ray mirror B.
  • 5a shows the schematic representation of the beam geometry of a projected line focus source b 1 in focus O a of the approximately planar X-ray mirror A of length L.
  • the angular range ⁇ under which the projected line focus source b 1 appears is dependent on location l on X-ray mirror A.
  • l 0 lies on the left edge of mirror A
  • l L / 2 in the center of the mirror
  • l L on the right edge of mirror A.
  • the distance between the center of source Q and the center of mirror A along the z-axis is f.
  • FIG. 5b shows the schematic representation of the beam geometry according to the invention of the line focus source Q shown by means of an aperture bl of the opening width F x .
  • the opening width F x here corresponds to the projected line focus source, which is also referred to below as b 2 .
  • the center of the aperture bl is in focus O a of the approximately flat X-ray mirror A of length L.
  • the angular range ⁇ , under which the aperture opening b 2 appears, is in turn dependent on location 1 on the X-ray mirror A.
  • the location coordinate l along the mirror A is defined as in Fig. 5a.
  • the distance between the aperture bl and the center of the mirror A along the z axis is f.
  • the beam geometries that are shown in FIGS. 5a and 5b are intended to as the basis for the subsequent calculation of the bandwidths ⁇ (that is the widths of the wavelength ranges that are reflected or imaged) serve the radiation imaged by the X-ray mirror A.
  • 2d sin ⁇ with ⁇ : wavelength of the reflected radiation; d: plane spacing in the reflecting crystal; and ⁇ : glancing angle between the surface of the reflecting crystal and the direction of the incident or emerging radiation.
  • the size of the projected x-ray source b corresponds to the effective focus size F of the mirror A, which is to be referred to here as b 1 .
  • b corresponds to the aperture width F x or b 2 .
  • ⁇ (l) (i.e. m - gL / 2 + gl) (4 - ( ⁇ Ka / (D m - gL / 2 + gl)) 2 ) 1.2 arctan (b / (f - L / 2 + l)) ⁇ ⁇ (i.e. m - gL / 2 + gl) (4 - ( ⁇ Ka / (D m - gL / 2 + gl)) 2 ) 1.2 (b / (f - L / 2 + l)) ⁇ ⁇ b
  • the bandwidth ⁇ is therefore linear from the projected size of the x-ray source b depending on the bl significantly by introducing an aperture according to the invention can be reduced.
  • FIG. 6 shows a diagram of the calculated bandwidth ⁇ (in ⁇ ) of an X-ray mirror A as a function of the position coordinate l (in m) along the X-ray mirror A with a projected size of the X-ray source b 1 corresponding to the effective focus size F of the X-ray mirror A (cf. Fig. 5a).
  • FIG. 7 shows a diagram of the calculated bandwidth (in ⁇ ) of an X-ray mirror A as a function of the spatial coordinate l (in m) along the X-ray mirror A with a projected size of the X-ray source b 2 corresponding to the aperture width F x (see FIG. 5b) ,
  • the K ⁇ lines can be selected by the X-ray optics according to the invention.
  • the diagram shows the relative intensity of the X-rays emitted by the source Q as a function of the wavelength ⁇ .
  • the largest part of the radiation is bremsstrahlung with continuous wavelength distribution and a maximum around 0.7 ⁇ .
  • the characteristic emission lines of copper are superimposed on this; of these, the mean values of the K ⁇ and K ⁇ lines are plotted in the diagram.
  • the K ⁇ lines generally represent the useful radiation of the X-ray arrangement.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
EP02027472A 2001-12-18 2002-12-10 Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X Expired - Lifetime EP1324351B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10162093A DE10162093A1 (de) 2001-12-18 2001-12-18 Röntgen-optisches System mit Blende im Fokus einer Röntgen-Spiegels
DE10162093 2001-12-18

Publications (3)

Publication Number Publication Date
EP1324351A2 true EP1324351A2 (fr) 2003-07-02
EP1324351A3 EP1324351A3 (fr) 2007-07-18
EP1324351B1 EP1324351B1 (fr) 2010-04-21

Family

ID=7709619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02027472A Expired - Lifetime EP1324351B1 (fr) 2001-12-18 2002-12-10 Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X

Country Status (3)

Country Link
US (1) US6898270B2 (fr)
EP (1) EP1324351B1 (fr)
DE (2) DE10162093A1 (fr)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10236640B4 (de) 2002-08-09 2004-09-16 Siemens Ag Vorrichtung und Verfahren zur Erzeugung monochromatischer Röntgenstrahlung
US7280634B2 (en) * 2003-06-13 2007-10-09 Osmic, Inc. Beam conditioning system with sequential optic
US7120228B2 (en) * 2004-09-21 2006-10-10 Jordan Valley Applied Radiation Ltd. Combined X-ray reflectometer and diffractometer
JP4557939B2 (ja) * 2006-07-18 2010-10-06 株式会社ジェイテック X線ミラーの高精度姿勢制御法およびx線ミラー
US7651270B2 (en) * 2007-08-31 2010-01-26 Rigaku Innovative Technologies, Inc. Automated x-ray optic alignment with four-sector sensor
US8243878B2 (en) * 2010-01-07 2012-08-14 Jordan Valley Semiconductors Ltd. High-resolution X-ray diffraction measurement with enhanced sensitivity
US8687766B2 (en) 2010-07-13 2014-04-01 Jordan Valley Semiconductors Ltd. Enhancing accuracy of fast high-resolution X-ray diffractometry
US8437450B2 (en) 2010-12-02 2013-05-07 Jordan Valley Semiconductors Ltd. Fast measurement of X-ray diffraction from tilted layers
DE102010062472A1 (de) * 2010-12-06 2012-06-06 Bruker Axs Gmbh Punkt-Strich-Konverter
US8781070B2 (en) 2011-08-11 2014-07-15 Jordan Valley Semiconductors Ltd. Detection of wafer-edge defects
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
EP2896960B1 (fr) 2014-01-15 2017-07-26 PANalytical B.V. Appareil à rayons X pour des mesures SAXS et Bragg-Brentano
US9726624B2 (en) 2014-06-18 2017-08-08 Bruker Jv Israel Ltd. Using multiple sources/detectors for high-throughput X-ray topography measurement
RU175420U1 (ru) * 2017-08-03 2017-12-05 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Устройство для управления сходимостью рентгеновского пучка
CN112424591B (zh) 2018-06-04 2024-05-24 斯格瑞公司 波长色散x射线光谱仪
CN112470245A (zh) 2018-07-26 2021-03-09 斯格瑞公司 高亮度x射线反射源
CN112638261A (zh) 2018-09-04 2021-04-09 斯格瑞公司 利用滤波的x射线荧光的系统和方法
US11056308B2 (en) 2018-09-07 2021-07-06 Sigray, Inc. System and method for depth-selectable x-ray analysis
RU2719395C1 (ru) * 2019-09-03 2020-04-17 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского" Способ управления кривизной рабочей поверхности монокристаллической пластины дифракционного блока, обеспечивающей коллимацию рентгеновского пучка
US11217357B2 (en) 2020-02-10 2022-01-04 Sigray, Inc. X-ray mirror optics with multiple hyperboloidal/hyperbolic surface profiles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459833A2 (fr) * 1990-06-01 1991-12-04 Canon Kabushiki Kaisha Microscope à rayons X
DE4407278A1 (de) * 1994-03-04 1995-09-07 Siemens Ag Röntgen-Analysegerät
DE19833524A1 (de) * 1998-07-25 2000-02-24 Bruker Axs Analytical X Ray Sy Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
WO2002065481A1 (fr) * 2001-02-14 2002-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif pour applications d'analyse aux rayons x

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331375B1 (fr) * 1988-02-25 1995-08-23 Matsushita Electric Industrial Co., Ltd. Eléments pour rayonnement optique comprenant des couches de graphite
US5204887A (en) * 1990-06-01 1993-04-20 Canon Kabushiki Kaisha X-ray microscope
US5274435A (en) * 1992-02-26 1993-12-28 Hettrick Michael C Grating monochromators and spectrometers based on surface normal rotation
JP3499592B2 (ja) * 1994-01-31 2004-02-23 株式会社ルネサステクノロジ 投影露光装置及びパターン転写方法
US5923720A (en) * 1997-06-17 1999-07-13 Molecular Metrology, Inc. Angle dispersive x-ray spectrometer
US6041099A (en) 1998-02-19 2000-03-21 Osmic, Inc. Single corner kirkpatrick-baez beam conditioning optic assembly

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459833A2 (fr) * 1990-06-01 1991-12-04 Canon Kabushiki Kaisha Microscope à rayons X
DE4407278A1 (de) * 1994-03-04 1995-09-07 Siemens Ag Röntgen-Analysegerät
DE19833524A1 (de) * 1998-07-25 2000-02-24 Bruker Axs Analytical X Ray Sy Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
WO2002065481A1 (fr) * 2001-02-14 2002-08-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dispositif pour applications d'analyse aux rayons x

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ARNDT U W: "FOCUSING OPTICS FOR LABORATORY SOURCES IN X-RAY CRYSTALLOGRAPHY" JOURNAL OF APPLIED CRYSTALLOGRAPHY, COPENHAGEN, DK, Bd. 23, 1990, Seiten 161-168, XP009041316 ISSN: 0021-8898 *
SAUNEUF R ET AL: "LARGE-FIELD HIGH-RESOLUTION X-RAY MICROSCOPE FOR STUDYING LASER PLASMAS" REVIEW OF SCIENTIFIC INSTRUMENTS, AIP, MELVILLE, NY, US, Bd. 68, Nr. 9, September 1997 (1997-09), Seiten 3412-3420, XP000723533 ISSN: 0034-6748 *
SUZUKI Y ET AL: "X-Ray focusing with elliptical Kirkpatrick-Baez mirror system" JAPANESE JOURNAL OF APPLIED PHYSICS, PART 1 (REGULAR PAPERS & SHORT NOTES) JAPAN, Bd. 30, Nr. 5, Mai 1991 (1991-05), Seiten 1127-1130, XP002436248 ISSN: 0021-4922 *

Also Published As

Publication number Publication date
US6898270B2 (en) 2005-05-24
DE50214385D1 (de) 2010-06-02
EP1324351A3 (fr) 2007-07-18
EP1324351B1 (fr) 2010-04-21
US20030112923A1 (en) 2003-06-19
DE10162093A1 (de) 2003-07-10

Similar Documents

Publication Publication Date Title
EP1324351B1 (fr) Sytème optique à rayons X avec ouverture dans le focus d'un mirroir à rayons X
DE69909599T2 (de) Einzelecke kirkpatrick-baez optische strahlbehandlungsanordnung
DE112019004433B4 (de) System und verfahren für röntgenstrahlfluoreszenz mit filterung
DE60028412T2 (de) Vorrichtung zur gestaltung eines röntgenstrahls und methode zur lenkung eines röntgenstrahls durch eine öffnung
EP3528029B1 (fr) Microscope
DE3785763T2 (de) Instrumente zur konditionierung von röntgen- oder neutronenstrahlen.
EP1067437B1 (fr) Système d'illumination avec composants anamorphoseurs pour l'augmentation d'un rapport largeur/hauteur du champ d'image
DE60025341T2 (de) Linsensystem für röntgenstrahlen
EP3177114B1 (fr) Procédé d'ajustement de la face primaire d'un diffractomètre à rayons x
DE60302383T2 (de) Röntgendiffraktometer
DE102009021251A1 (de) Vorrichtung zur Formung von Laserstrahlung sowie Laservorrichtung mit einer derartigen Vorrichtung
EP3140628B1 (fr) Système et procédé d'analyse d'un faisceau lumineux guidé par une optique de guidage de faisceau
EP2793056A1 (fr) Dispositif et procédé de détermination de la composition énergétique d'ondes électromagnétiques
EP3100011A1 (fr) Caméra à propagation de faisceaux et procédé d'analyse de faisceaux lumineux
DE2748501C3 (de) Verfahren und Vorrichtung zur Erstellung von Texturtopogrammen
DE3045013A1 (de) Elektronenspektrometer
EP1360699B1 (fr) Dispositif pour applications d'analyse aux rayons x
DE10236640B4 (de) Vorrichtung und Verfahren zur Erzeugung monochromatischer Röntgenstrahlung
DE102017009299C5 (de) Vorrichtung zur Analyse einer Probe mittels Elektronen sowie Verwendung und Verfahren
DE10160472B4 (de) Röntgen-optisches System und Verfahren zur Abbildung einer Strahlungsquelle
DE10031636B4 (de) Spektrometer
DE102009021750B4 (de) Schwenkbar bewegliche Schlitzblendenvorrichtung
DE102012021145B3 (de) Neutronenleitersystem mit zumindest einem nichtlinearen und einem linearen Neutronenleiter.
DE102006044417B4 (de) Verfahren zur Mikro-Röntgenfluoreszenzanalyse einer Probe mit dreidimensionaler Auflösung
DE102005056404B4 (de) Röntgenmikroskop mit Kondensor-Monochromator-Anordnung hoher spektraler Auflösung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20080109

AKX Designation fees paid

Designated state(s): DE GB NL

17Q First examination report despatched

Effective date: 20080711

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50214385

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20181217

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181220

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214385

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191210