EP1322794A2 - Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvern - Google Patents
Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvernInfo
- Publication number
- EP1322794A2 EP1322794A2 EP01976101A EP01976101A EP1322794A2 EP 1322794 A2 EP1322794 A2 EP 1322794A2 EP 01976101 A EP01976101 A EP 01976101A EP 01976101 A EP01976101 A EP 01976101A EP 1322794 A2 EP1322794 A2 EP 1322794A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- wear
- resistant coating
- coating according
- metallic matrix
- powders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/922—Static electricity metal bleed-off metallic stock
- Y10S428/9335—Product by special process
- Y10S428/937—Sprayed metal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49229—Prime mover or fluid pump making
- Y10T29/49274—Piston ring or piston packing making
- Y10T29/49281—Piston ring or piston packing making including coating or plating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/12028—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
- Y10T428/12063—Nonparticulate metal component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12014—All metal or with adjacent metals having metal particles
- Y10T428/1216—Continuous interengaged phases of plural metals, or oriented fiber containing
- Y10T428/12174—Mo or W containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
Definitions
- the present invention relates to a wear-resistant coating for use for running surfaces and flanks of piston rings in internal combustion engines.
- the wear-resistant coating according to the invention is obtained by mechanical alloying of powders which form a metallic matrix with hard and lubricant dispersoids.
- the coating is then thermally applied to the workpieces, in particular by means of high-speed flame spraying (HVOF).
- HVOF high-speed flame spraying
- the workpieces are the running surfaces and flank parts of piston rings in internal combustion engines.
- the invention is therefore particularly concerned with the production and composition of coatings of mechanically alloyed powders with tribologically optimal properties as starting materials for the purpose of coating piston ring running surfaces by means of thermal processes, e.g. by means of thermal spraying and with the coatings formed from the powders mentioned on e.g. Piston rings of internal combustion engines.
- Piston rings are subject to constant sliding wear due to their constant engagement with the cylinder race. This manifests itself in abrasive abrasion of the piston ring surface or its coating as well as partial transfer of material from the cylinder running surface to the piston ring running surface and vice versa. With adapted coatings it is possible to reduce these negative influences. Paricle-reinforced hard chrome coatings show significantly better abrasion resistance than uncoated or nitrided rings (see EP 217126 B1), but also as conventional hard chrome coatings and plasma spray coatings based on molybdenum. Nevertheless, due to the increasing pressure and temperature parameters in modern internal combustion engines, these coatings also reach the limit of their performance.
- Ceramics can also be applied directly to piston rings using various coating processes. So you can e.g. can be deposited directly by vapor deposition (PVD or CVD). The disadvantage here is that the order performance for this application is far too low and therefore uneconomical.
- Plasma spraying leads to relatively high application rates, but these coatings are usually under tensile stress, which means that they are prone to cracking and breakout. This is reinforced above all by the very brittle nature of the ceramics themselves.
- Nanocrystalline hard metals 1 to 100 nm
- nano-carbide reinforced materials were processed into layers using vacuum plasma spraying technology. With a comparatively lower proportion of hard material, higher hardness can be achieved in the layers produced using this method.
- the coatings show a significantly higher ductility and thus impact resistance than conventionally reinforced materials. But only with the help of high-speed flame spraying technology is it possible to map powder morphologies in the layer.
- Nano-oxidically reinforced metals should therefore primarily be sprayed using high-speed flame spraying (HVOF).
- HVOF high-speed flame spraying
- This process is particularly interesting for thermal wettable powders because it leads to a number of special powder properties.
- the crushing and grinding process on the powder surfaces constantly increases the density of stacking defects, defects and dislocations, while the grain sizes can be reduced to nanocrystalline dimensions.
- These permanently fresh surfaces are characterized by high activity, so that oxide-metal and carbide-metal connections of high strength can also be created.
- Powdered hard metals WC-Co
- cermets NiCr-CrC
- thermal coating processes The basis for this is either a powder mixture or a composite powder.
- mechanical mixtures generally provide the lowest layer qualities, since the bond is only formed in the coating process and the hard materials have to be relatively large due to the required flow properties.
- Compound powders are usually produced by agglomeration into so-called micropellets.
- microfine starting powders become processable in a spray drying process, i.e. primarily processed free-flowing powders. In order to increase the strength of the agglomerate or to achieve certain agglomerate densities, these are usually sintered.
- composite powder production is to mix the components with subsequent sintering to form a block.
- the powder is obtained here by breaking and grinding the block.
- composite powders are made by coating, for example a hard material powder is chemically or physically coated by a metallic element, or so-called cladding - fine metal powders are glued to the hard material core in a spray drying process.
- a disadvantage of the required sintering is that on the one hand the economy of the powder is reduced, and on the other hand a sinterability of the starting components is required. This is particularly the case with the WC-Co combination, but is not available with the combination of, for example, metallic binder and oxide-ceramic hard materials, which is interesting from an economic and tribological point of view. Therefore, such powders have so far not been successfully used for the thermal coating of piston ring running surfaces.
- An approach to the thermal coating of metal parts, such as piston rings and cylinder liners, is described in DE 197 00 835 AI.
- the composite powder used in this document is a mixture of carbides, metal powder and solid lubricants that is processed into a self-lubricating composite layer using a high-speed flame spraying process.
- the composite particles made of CrC and ⁇ iCr are mixed with the solid lubricants.
- a disadvantage of this type of production of the composite powder according to DE 197 00 835 AI is that in order to obtain the necessary flowability, as a condition for processing in the high-speed flame spraying process, relatively coarse particles have to be formed.
- the grain size of the solid lubricant article must be> 20 ⁇ m so that the composite powder has the flowability required for spraying in the high-speed flame spraying process.
- These coarse particles cause a concentrated accumulation of solid lubricant phases in the coating, which in turn has a negative effect on wear, since the coarse and thus also relatively large solid lubricant areas can break out and are only available selectively due to their size as a lubricant.
- this object is achieved by the coating according to claim 1 and by the piston ring according to claim 11.
- the starting powders are therefore alloyed mechanically, in particular in attritors, hammer mills or ball mills.
- starting powders are broken down and kneaded into one another at the same time, so that a composite powder is formed even without sintering.
- combinations of materials such as metals and oxides that are not suitable for sintering can be processed to composite powders.
- This technology is used, for example, on an industrial scale to produce so-called ODS alloys for high-temperature applications, where about 2% by weight of oxides comminuted to the nanodimension are added to the metallic matrix.
- the invention therefore relates to the production of mechanically alloyed powders and the use of these powders by means of thermal coating processes for the purpose of coating the tread and flanks of piston rings and piston ring coatings produced therefrom.
- the starting powders used according to the invention have a suitable particle size. For thermal spraying, grain sizes of 5-80 ⁇ m, particularly preferably 5-60 ⁇ m, are preferably used.
- the starting powder consists of a metallic matrix and at least one ceramic phase to increase the wear resistance of the metallic matrix.
- the ceramic phases in the starting powder or in the finished coating have diameters of ⁇ 10 ⁇ m. They preferably have size ranges from a few nanometers to a few micrometers.
- the metallic matrix of the starting powder and the coating comprise in particular alloys based on iron, nickel, chromium, cobalt, molybdenum.
- the starting powder can consist of a metallic matrix and at least one solid lubricant to improve the lubricating properties of the matrix.
- the solid lubricant phase in the starting powder has grain sizes ⁇ 20 ⁇ m, preferably ⁇ 10 ⁇ m.
- solid lubricant particles for example, those made of graphite, hexagonal boron nitride or polytetrafluoroethylene can be used.
- Another advantage of the material according to the invention compared to DE 197 00 835 AI is that the dispersoids and solid lubricants grind to a composite powder, i. H. mechanically alloyed. In this way, very fine composite particles can be generated, which in turn are found in the layer as finely distributed solid lubricant phases. These finely distributed solid lubricant phases now enable optimal and even distribution of the lubricants, which reduces wear on the layer.
- hard material particles for example from the group of tungsten carbide, chromium carbide, aluminum oxide, silicon carbide, boron carbide, titanium carbide and / or diamond, into the material according to the invention.
- composite powders such as metal + oxide ceramic and Metal + diamond can be produced for subsequent coating processing using thermal processes.
- the hard material contents in the metal matrix can be well over 50% by volume, which means that the properties of the hard material phases can be used much better than the low contents achieved today, for example, with galvanic chromium dispersion layers.
- virtually arbitrarily fine and homogeneously distributed hard material phases can be generated in the metal matrix of any composition. In this way, the matrix can be specifically optimized for resistance to abrasion and burn marks, and a certain proportion of larger hard phases can perform purely tribological tasks.
- the starting materials are filled into the mill and the grinding process is started.
- the powders are broken or deformed by impact processes, which are generated either by the balls contained in the mixer or by contact with the chamber walls, depending on the deformability.
- ceramics that have no deformability are continuously broken down.
- the metallic matrix experiences significant increases in strength when the ceramic phases contained in it fall below the one-micron limit.
- metals with deformability are largely only deformed, but sometimes also broken by embrittling work hardening.
- the broken hard material phases are alloyed into the metal matrix and kneaded into processable powder fractions by the continuous grinding movement.
- the ceramic breaking process continuously produces fresh, high-energy surfaces which have a high microscopic affinity. Due to the high mechanical impulses during milling, the metallic and ceramic surfaces are pressed together so strongly that interface reactions probably occur at the atomic level. Subsequent sintering of the powders can, in individual cases, further increase the ceramic-metal cohesion.
- the hard material sizes in the powder can be set in a targeted manner.
- a hard material phase and a metal matrix can serve as starting materials, but practically any number.
- a proportion of solid lubricants useful for the application can also be added to the powder.
- the powders are then applied by thermal coating processes, in particular thermal spraying, laser coating and hardfacing and soldering can be used.
- HVOF high-speed flame spraying
- Example 1 conventional wettable powder of aluminum oxide was ground with a conventional NiCr wettable powder in a volume ratio of 1: 1. After the grinding process, a powder of finely distributed aluminum oxide phases (gray) was created in the matrix (Figure 1: mechanically alloyed powder NiCr-34Al 2 O 3 ). After processing with HVOF, a very well adhering, dense coating is created, which has the same microstructure as the powder ( Figure 2: HVOF-sprayed layer shows identical microstructures).
- Example 2 up to 20 vol.% Of a powdered solid lubricant was added to the powder from Example 1, which is demonstrably present in the layer after processing by means of HVOF and clearly improves the friction behavior of the layer on the piston ring.
- Example 3 the matrix from Example 1 was further metallic elements such as Mo alloyed to improve the tribological properties of the piston ring coating.
- the Mo powder is only slightly finely ground in the grinding process because of its high toughness, but is present in the powder and in the coating as a homogeneously distributed, excellently embedded phase.
- the fire trace behavior of the Kolbeming coating was demonstrably improved in this way.
- Example 4 50% by volume of two different ceramic phases (aluminum oxide, zirconium oxide) were added to the powder from Example 1.
- the ceramics were added to the grinding process at different times, which means that the different ceramic phases in the HVOF layer have different fractions. This procedure allows one ceramic to control the matrix hardness in a targeted manner without adversely affecting the tribologically required hard phase size of the other ceramic. This clearly improves the abrasion resistance of the Kolbeming coating.
- Example 5 the finest diamond dust was admixed and alloyed into a commercial NiCr wettable powder. After processing with HVOF, an increase in wear resistance compared to the unalloyed matrix was found, which has an advantageous effect on the tribological properties of the Kolbeming coating.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Coating By Spraying Or Casting (AREA)
- Powder Metallurgy (AREA)
- Pistons, Piston Rings, And Cylinders (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10046956 | 2000-09-21 | ||
DE10046956A DE10046956C2 (de) | 2000-09-21 | 2000-09-21 | Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern |
PCT/EP2001/009514 WO2002024970A2 (de) | 2000-09-21 | 2001-08-17 | Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvern |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1322794A2 true EP1322794A2 (de) | 2003-07-02 |
EP1322794B1 EP1322794B1 (de) | 2008-05-28 |
Family
ID=7657203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01976101A Expired - Lifetime EP1322794B1 (de) | 2000-09-21 | 2001-08-17 | Thermisch aufgetragene beschichtung für kolbenringe aus mechanisch legierten pulvern |
Country Status (6)
Country | Link |
---|---|
US (1) | US6887585B2 (de) |
EP (1) | EP1322794B1 (de) |
JP (1) | JP2004510050A (de) |
DE (1) | DE10046956C2 (de) |
PT (1) | PT1322794E (de) |
WO (1) | WO2002024970A2 (de) |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3555844B2 (ja) | 1999-04-09 | 2004-08-18 | 三宅 正二郎 | 摺動部材およびその製造方法 |
DE10061750B4 (de) * | 2000-12-12 | 2004-10-21 | Federal-Mogul Burscheid Gmbh | Wolframhaltige Verschleißschutzschicht für Kolbenringe |
US6562480B1 (en) * | 2001-01-10 | 2003-05-13 | Dana Corporation | Wear resistant coating for piston rings |
US6887530B2 (en) | 2002-06-07 | 2005-05-03 | Sulzer Metco (Canada) Inc. | Thermal spray compositions for abradable seals |
DK1564309T3 (en) * | 2002-10-15 | 2015-04-07 | Riken Kk | Piston ring and thermal spray coating for use therein, and method of making them |
US6969198B2 (en) | 2002-11-06 | 2005-11-29 | Nissan Motor Co., Ltd. | Low-friction sliding mechanism |
US6808756B2 (en) * | 2003-01-17 | 2004-10-26 | Sulzer Metco (Canada) Inc. | Thermal spray composition and method of deposition for abradable seals |
DE10308561B4 (de) * | 2003-02-27 | 2005-03-17 | Federal-Mogul Burscheid Gmbh | Verschleißschutzbeschichtung, ihre Verwendung auf einem Kolben oder Kolbenring und ihr Herstellungsverfahren |
DE10319141A1 (de) * | 2003-04-28 | 2004-11-25 | Man B&W Diesel A/S | Kolben für einen Großmotor sowie Verfahren zur Herstellung einer Verschleißschutzschicht bei einem derartigen Kolben |
US7175687B2 (en) * | 2003-05-20 | 2007-02-13 | Exxonmobil Research And Engineering Company | Advanced erosion-corrosion resistant boride cermets |
JP4863152B2 (ja) | 2003-07-31 | 2012-01-25 | 日産自動車株式会社 | 歯車 |
DE102004038572B4 (de) * | 2003-08-06 | 2005-10-27 | Steinführer, Uwe | Verschleißfester Überzug zum Schutz einer Oberfläche und Verfahren zur Herstellung desselben |
EP1666573B1 (de) | 2003-08-06 | 2019-05-15 | Nissan Motor Company Limited | Reibungsarmer gleitmechanismus und reibungsverringerungsverfahren |
JP4973971B2 (ja) | 2003-08-08 | 2012-07-11 | 日産自動車株式会社 | 摺動部材 |
US7771821B2 (en) | 2003-08-21 | 2010-08-10 | Nissan Motor Co., Ltd. | Low-friction sliding member and low-friction sliding mechanism using same |
EP1508611B1 (de) | 2003-08-22 | 2019-04-17 | Nissan Motor Co., Ltd. | Getriebe enthaltend eine getriebeölzusammensetzung |
DE102004014871A1 (de) * | 2004-03-26 | 2005-10-13 | Federal-Mogul Burscheid Gmbh | Kolbenring |
CN1309515C (zh) * | 2004-05-08 | 2007-04-11 | 吴立新 | 一种粉末冶金活塞环及其生产方法 |
JP5222553B2 (ja) * | 2004-05-28 | 2013-06-26 | プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド | 耐摩耗性合金粉末および被覆 |
DE102004038173B4 (de) * | 2004-08-06 | 2020-01-16 | Daimler Ag | Verfahren zum thermischen Spritzen von Zylinderlaufflächen bei mehrreihigen Motoren |
GB0421566D0 (en) * | 2004-09-29 | 2004-10-27 | Dana Corp | Bearing materials and method for the production thereof |
KR100590941B1 (ko) | 2004-11-20 | 2006-06-19 | 현대자동차주식회사 | 실린더 블록의 용사코팅용 분말합금 조성물 |
US7799111B2 (en) * | 2005-03-28 | 2010-09-21 | Sulzer Metco Venture Llc | Thermal spray feedstock composition |
DE102005020999A1 (de) * | 2005-05-03 | 2006-11-09 | Alfred Flamang | Verfahren zur Beschichtung von verschleißbeaufschlagten Bauteilen und beschichtetes Bauteil |
KR100655366B1 (ko) | 2005-07-04 | 2006-12-08 | 한국과학기술연구원 | 내열, 내마모, 저마찰 특성을 가지는 코팅제 및 이의코팅방법 |
US20070099014A1 (en) * | 2005-11-03 | 2007-05-03 | Sulzer Metco (Us), Inc. | Method for applying a low coefficient of friction coating |
US8034153B2 (en) * | 2005-12-22 | 2011-10-11 | Momentive Performances Materials, Inc. | Wear resistant low friction coating composition, coated components, and method for coating thereof |
WO2007108793A1 (en) | 2006-03-20 | 2007-09-27 | Sulzer Metco Venture, Llc | Method for forming a ceramic containing composite structure |
DE102006023396B4 (de) * | 2006-05-17 | 2009-04-16 | Man B&W Diesel A/S | Verschleißschutzbeschichtung sowie Verwendung und Verfahren zur Herstellung einer solchen |
US20070269151A1 (en) * | 2006-05-18 | 2007-11-22 | Hamilton Sundstrand | Lubricated metal bearing material |
WO2007139618A2 (en) * | 2006-05-26 | 2007-12-06 | Sulzer Metco Venture. Llc. | Mechanical seals and method of manufacture |
JP4185534B2 (ja) * | 2006-07-20 | 2008-11-26 | 本田技研工業株式会社 | エンジン |
DE102006038670B4 (de) * | 2006-08-17 | 2010-12-09 | Federal-Mogul Burscheid Gmbh | Hochsiliziumhaltiger Stahlwerkstoff zur Herstellung von Kolbenringen und Zylinderlaufbuchsen |
KR100849075B1 (ko) * | 2006-08-29 | 2008-07-30 | 한국과학기술연구원 | 고속 터보 기기의 무급유 베어링용 중온 코팅제 및 그 코팅방법 |
US8147980B2 (en) * | 2006-11-01 | 2012-04-03 | Aia Engineering, Ltd. | Wear-resistant metal matrix ceramic composite parts and methods of manufacturing thereof |
US20080145649A1 (en) * | 2006-12-14 | 2008-06-19 | General Electric | Protective coatings which provide wear resistance and low friction characteristics, and related articles and methods |
US20080145554A1 (en) * | 2006-12-14 | 2008-06-19 | General Electric | Thermal spray powders for wear-resistant coatings, and related methods |
US7862901B2 (en) * | 2006-12-15 | 2011-01-04 | General Electric Company | Yttria containing thermal barrier coating topcoat layer and method for applying the coating layer |
CN100419242C (zh) * | 2006-12-27 | 2008-09-17 | 吴炬平 | 内燃机用活塞环及其制备工艺 |
DE102007010698A1 (de) * | 2007-03-06 | 2008-09-11 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung einer Beschichtung |
DE102007019510B3 (de) * | 2007-04-25 | 2008-09-04 | Man Diesel A/S | Zu einer Gleitpaarung gehörendes Maschinenteil sowie Verfahren zu dessen Herstellung |
DE102007026746A1 (de) * | 2007-06-09 | 2008-12-11 | Alfred Flamang | Flammspritzpulver und Verfahren zur Herstellung einer hochtemperaturbeständigen Beschichtung |
DE102007042382B3 (de) * | 2007-09-05 | 2009-04-02 | Siemens Ag | Bauteil zur gleitenden Lagerung eines anderen Bauteils und Verfahren zu dessen Herstellung |
US7998604B2 (en) * | 2007-11-28 | 2011-08-16 | United Technologies Corporation | Article having composite layer |
US9162285B2 (en) | 2008-04-08 | 2015-10-20 | Federal-Mogul Corporation | Powder metal compositions for wear and temperature resistance applications and method of producing same |
US9624568B2 (en) | 2008-04-08 | 2017-04-18 | Federal-Mogul Corporation | Thermal spray applications using iron based alloy powder |
US9546412B2 (en) | 2008-04-08 | 2017-01-17 | Federal-Mogul Corporation | Powdered metal alloy composition for wear and temperature resistance applications and method of producing same |
US8790789B2 (en) * | 2008-05-29 | 2014-07-29 | General Electric Company | Erosion and corrosion resistant coatings, methods and articles |
US8101286B2 (en) * | 2008-06-26 | 2012-01-24 | GM Global Technology Operations LLC | Coatings for clutch plates |
BRPI0803956B1 (pt) * | 2008-09-12 | 2018-11-21 | Whirlpool S.A. | composição metalúrgica de materiais particulados e processo de obtenção de produtos sinterizados autolubrificantes |
DE102009016650B3 (de) * | 2009-04-07 | 2010-07-29 | Federal-Mogul Burscheid Gmbh | Gleitelement mit einstellbaren Eigenschaften |
DE102009026655B3 (de) * | 2009-06-03 | 2011-06-30 | Linde Aktiengesellschaft, 80331 | Verfahren zur Herstellung eines Metallmatrix-Verbundwerkstoffs, Metallmatrix-Verbundwerkstoff und seine Verwendung |
DE102009035210B3 (de) * | 2009-07-29 | 2010-11-25 | Federal-Mogul Burscheid Gmbh | Gleitelement mit thermisch gespritzter Beschichtung und Herstellungsverfahren dafür |
JP5399954B2 (ja) | 2009-09-07 | 2014-01-29 | 株式会社フジミインコーポレーテッド | 溶射用粉末 |
US8906130B2 (en) | 2010-04-19 | 2014-12-09 | Praxair S.T. Technology, Inc. | Coatings and powders, methods of making same, and uses thereof |
DE102010022039B3 (de) * | 2010-05-25 | 2011-07-14 | Siemens Aktiengesellschaft, 80333 | Bauteil mit einer Gleitfläche für die Lagerung eines anderen Bauteils sowie Verfahren zum Erzeugen einer Gleitschicht |
US20110312860A1 (en) | 2010-06-17 | 2011-12-22 | General Electric Company | Wear-resistant and low-friction coatings and articles coated therewith |
DE102010038289A1 (de) | 2010-07-22 | 2012-01-26 | Federal-Mogul Burscheid Gmbh | Kolbenring mit thermischen gespritzter Beschichtung und Herstellungsverfahren davon |
BRPI1101402A2 (pt) * | 2011-03-29 | 2013-06-04 | Mahle Metal Leve Sa | elemento deslizante |
DE102011079016B3 (de) * | 2011-07-12 | 2012-09-20 | Federal-Mogul Burscheid Gmbh | Verschleißschutzschicht für Kolbenringe, Auftragsverfahren und Kolbenring |
KR20140061422A (ko) * | 2011-07-25 | 2014-05-21 | 엑카르트 게엠베하 | 기판 코팅 방법 및 이러한 방법에서 첨가제 함유 분말 코팅 물질의 용도 |
DE102011052119A1 (de) * | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Verfahren zur Substratbeschichtung und Verwendung additivversehener, pulverförmiger Beschichtungsmaterialien in derartigen Verfahren |
DE102011052120A1 (de) * | 2011-07-25 | 2013-01-31 | Eckart Gmbh | Verwendung speziell belegter, pulverförmiger Beschichtungsmaterialien und Beschichtungsverfahren unter Einsatz derartiger Beschichtungsmaterialien |
DE102011112435B3 (de) * | 2011-09-06 | 2012-10-25 | H.C. Starck Gmbh | Cermetpulver, Verfahren zur Herstellung eines Cermetpulvers, Verwendung der Cermetpulver, Verfahren zur Herstellung eines beschichteten Bauteils, Beschichtetes Bauteil |
JP5948216B2 (ja) | 2011-10-25 | 2016-07-06 | 株式会社Ihi | ピストンリングの製造方法 |
EP2822718B1 (de) * | 2012-03-09 | 2019-08-07 | Tenneco Inc. | Wärmesprühanwendungen mit einem eisenlegierungspulver |
EP2650398B8 (de) * | 2012-04-11 | 2015-05-13 | Oerlikon Metco AG, Wohlen | Spritzpulver mit einer superferritischen Eisenbasisverbindung, sowie ein Substrat, insbesondere Bremsscheibe mit einer thermischen Spritzschicht |
DE102012211941B4 (de) * | 2012-07-09 | 2021-04-22 | Hilti Aktiengesellschaft | Werkzeugmaschine und Herstellungsverfahren |
DE102012018276A1 (de) * | 2012-09-14 | 2014-05-15 | Federal-Mogul Burscheid Gmbh | Verschleißschutzschicht für Kolbenringe |
WO2014090909A1 (de) * | 2012-12-12 | 2014-06-19 | Nova Werke Ag | Verschleissbeständige schicht und verfahren zur herstellung einer verschleissbeständigen schicht |
EP2961859B1 (de) * | 2013-02-26 | 2018-09-19 | United Technologies Corporation | Mit einer ptfe-/aluminiumoxid-wärmesprühbeschichtung beschichtete gleitkontaktverschleissflächen |
CN104831224A (zh) * | 2015-05-09 | 2015-08-12 | 芜湖鼎恒材料技术有限公司 | 一种硬质WC-Co-B-Ni涂层材料及其制备方法 |
CN104831213A (zh) * | 2015-05-09 | 2015-08-12 | 安徽鼎恒再制造产业技术研究院有限公司 | 一种Ni-Co-Mo-Mn材料及其制备方法 |
CN104878338A (zh) * | 2015-05-09 | 2015-09-02 | 安徽再制造工程设计中心有限公司 | 一种高硬度Fe-HfO2纳米涂层材料及其制备方法 |
CN104831215A (zh) * | 2015-05-09 | 2015-08-12 | 芜湖鼎恒材料技术有限公司 | 一种耐磨Co-SiC-Fe纳米涂层材料及其制备方法 |
CN104862636A (zh) * | 2015-05-09 | 2015-08-26 | 芜湖鼎瀚再制造技术有限公司 | 一种Fe-Al2O3-Mo材料及其制备方法 |
CN104831216A (zh) * | 2015-05-09 | 2015-08-12 | 芜湖鼎恒材料技术有限公司 | 一种Ni-Co-Mo-Mn纳米涂层材料及其制备方法 |
CN104831222A (zh) * | 2015-05-09 | 2015-08-12 | 芜湖鼎恒材料技术有限公司 | Co-TiO2-Mo纳米涂层材料及其制备方法 |
CN104878340A (zh) * | 2015-05-09 | 2015-09-02 | 安徽鼎恒再制造产业技术研究院有限公司 | 一种Fe-HfO2纳米涂层材料及其制备方法 |
CN104911527A (zh) * | 2015-05-09 | 2015-09-16 | 芜湖鼎恒材料技术有限公司 | 硬质Fe-SiC-TiO2纳米涂层材料及其制备方法 |
CN104831168A (zh) * | 2015-05-09 | 2015-08-12 | 安徽鼎恒再制造产业技术研究院有限公司 | 高强度Fe-SiC-TiO2涂层材料及其制备方法 |
CN104831209A (zh) * | 2015-05-09 | 2015-08-12 | 芜湖鼎恒材料技术有限公司 | Fe-Al2O3-Mo纳米涂层材料及其制备方法 |
CN104846320A (zh) * | 2015-05-09 | 2015-08-19 | 安徽鼎恒再制造产业技术研究院有限公司 | 一种硬质Co-SiC-Fe纳米涂层材料及其制备方法 |
CN104878339A (zh) * | 2015-05-09 | 2015-09-02 | 芜湖鼎恒材料技术有限公司 | 一种Co-SiC-Fe纳米涂层材料及其制备方法 |
CN104911529A (zh) * | 2015-05-09 | 2015-09-16 | 芜湖鼎恒材料技术有限公司 | 高强度WC-ZrO2-Si纳米涂层材料及其制备方法 |
US11028923B2 (en) | 2015-06-11 | 2021-06-08 | Hamilton Sundstrand Corporation | High vibration pneumatic piston assembly made from additive manufacturing |
KR101652049B1 (ko) * | 2015-06-16 | 2016-08-29 | 주식회사 아이스기술 | 텅스텐 카바이드 코팅소재를 이용한 코팅방법 |
CN104928610A (zh) * | 2015-06-24 | 2015-09-23 | 安徽再制造工程设计中心有限公司 | 一种Co-SiC-Mo涂层材料及制备方法 |
CN104947027A (zh) * | 2015-06-24 | 2015-09-30 | 安徽再制造工程设计中心有限公司 | MnO2-TiC-Co纳米材料及其制备方法 |
CN105057678A (zh) * | 2015-07-29 | 2015-11-18 | 安徽普源分离机械制造有限公司 | 一种抗高温开裂剥落能力佳的金属镍陶瓷涂层及其制作方法 |
CN105524382B (zh) * | 2015-11-03 | 2017-09-12 | 南京肯特复合材料股份有限公司 | 耐热耐磨ptfe塑材及其制备方法 |
SE539354C2 (en) | 2015-11-16 | 2017-08-01 | Scania Cv Ab | Arrangement and process for thermal spray coating vehicle components with solid lubricants |
CN106435385B (zh) * | 2016-10-17 | 2017-11-28 | 武汉春禾科技有限公司 | 一种耐高温耐磨滑轮涂层 |
CA3080622A1 (en) * | 2017-12-15 | 2019-06-20 | Oerlikon Metco (Us) Inc. | Mechanically alloyed metallic thermal spray coating material and thermal spray coating method utilizing the same |
EP3894114A4 (de) * | 2018-12-13 | 2022-08-24 | Oerlikon Metco (US) Inc. | Mechanisch legiertes metallisches material zur thermischen spritzbeschichtung und verfahren zur thermischen spritzbeschichtung unter verwendung davon |
CN110016601B (zh) * | 2019-05-22 | 2020-05-22 | 中国矿业大学 | 一种镍铬-金刚石合金复合粉末及其制备方法和用途 |
CN110842396A (zh) * | 2019-12-02 | 2020-02-28 | 江苏米孚自动化科技有限公司 | 一种抗磨损焊丝涂层及焊丝的制备方法 |
CN112281105B (zh) * | 2020-10-23 | 2022-11-15 | 中国人民解放军陆军装甲兵学院 | 一种金属陶瓷复合涂层及其制备方法和应用 |
CN112553567B (zh) * | 2020-11-23 | 2022-05-17 | 苏州大学 | 一种氮化硼纳米片增强镍基复合涂层及其制备方法 |
CN113512311B (zh) * | 2021-04-14 | 2022-04-15 | 武汉理工大学 | 一种应用于回转支承滚道的润滑耐磨涂层及其制备方法 |
SE2351518A1 (en) * | 2021-12-16 | 2023-12-27 | Nippon Piston Ring Co Ltd | Thermal spray coating, sliding member, and piston ring |
CN116426860B (zh) * | 2023-06-12 | 2023-09-26 | 四川大学 | 基于hBN的硬密封控制阀用宽温域自润滑涂层制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3556747A (en) * | 1967-11-07 | 1971-01-19 | Koppers Co Inc | Piston ring coatings for high temperature applications |
US4334927A (en) * | 1980-12-08 | 1982-06-15 | Hyde Glenn F | Piston ring coatings |
DE3545826A1 (de) * | 1984-12-24 | 1986-06-26 | Kabushiki Kaisha Riken, Tokio/Tokyo | Kolbenring |
JPS6299449A (ja) * | 1985-10-25 | 1987-05-08 | Showa Denko Kk | クロムカ−バイト系溶射用粉末 |
JPH0645863B2 (ja) * | 1990-01-30 | 1994-06-15 | 新日本製鐵株式会社 | 高温耐摩耗・耐ビルドアップ性に優れた溶射材料およびその被覆物品 |
US5372845A (en) * | 1992-03-06 | 1994-12-13 | Sulzer Plasma Technik, Inc. | Method for preparing binder-free clad powders |
US5385789A (en) * | 1993-09-15 | 1995-01-31 | Sulzer Plasma Technik, Inc. | Composite powders for thermal spray coating |
US5763106A (en) * | 1996-01-19 | 1998-06-09 | Hino Motors, Ltd. | Composite powder and method for forming a self-lubricating composite coating and self-lubricating components formed thereby |
US5713129A (en) * | 1996-05-16 | 1998-02-03 | Cummins Engine Company, Inc. | Method of manufacturing coated piston ring |
US6562480B1 (en) * | 2001-01-10 | 2003-05-13 | Dana Corporation | Wear resistant coating for piston rings |
-
2000
- 2000-09-21 DE DE10046956A patent/DE10046956C2/de not_active Expired - Fee Related
-
2001
- 2001-08-17 US US10/363,341 patent/US6887585B2/en not_active Expired - Lifetime
- 2001-08-17 EP EP01976101A patent/EP1322794B1/de not_active Expired - Lifetime
- 2001-08-17 PT PT01976101T patent/PT1322794E/pt unknown
- 2001-08-17 WO PCT/EP2001/009514 patent/WO2002024970A2/de active IP Right Grant
- 2001-08-17 JP JP2002529560A patent/JP2004510050A/ja active Pending
Non-Patent Citations (1)
Title |
---|
See references of WO0224970A2 * |
Also Published As
Publication number | Publication date |
---|---|
DE10046956A1 (de) | 2002-04-25 |
US20030180565A1 (en) | 2003-09-25 |
EP1322794B1 (de) | 2008-05-28 |
US6887585B2 (en) | 2005-05-03 |
WO2002024970A2 (de) | 2002-03-28 |
PT1322794E (pt) | 2008-07-30 |
DE10046956C2 (de) | 2002-07-25 |
JP2004510050A (ja) | 2004-04-02 |
WO2002024970A3 (de) | 2002-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10046956C2 (de) | Thermisch aufgetragene Beschichtung für Kolbenringe aus mechanisch legierten Pulvern | |
DE19700835C2 (de) | Kompositpulver und Verfahren zum Bilden einer selbstschmierenden Kompositschicht und dadurch gebildete selbstschmierende Bauteile | |
DE69110541T2 (de) | Verbundpulver aus Metallen und Nichtmetallen für thermisches Spritzen. | |
DE3785885T2 (de) | Zusammengesetzter draht fuer verschleissfeste ueberzuege. | |
EP2948261B1 (de) | Verfahren zur herstellung von chromnitrid-haltigen spritzpulvern, chromnitrid-haltige spritzpulver, verfahren zum thermischen spritzen eines bauteils mittels genannter spritzpulver, und verwendung des genannten spritzpulvers zur oberflächenbeschichtung von bauteilen | |
DE69225312T2 (de) | Werkzeugstahl mit hoher beständigkeit gegen thermische ermüdung | |
DE4413306C1 (de) | Verfahren zur Verstärkung eines Bauteils und Anwendung des Verfahrens | |
DE3689512T2 (de) | Molybdän, Kupfer und Bor enthaltende Eisenlegierung. | |
EP3052670A1 (de) | Gesinterte spritzpulver auf basis von molybdänkarbid | |
DE60201922T2 (de) | Sprühpulver und Verfahren zur seiner Herstellung | |
DE3937526C2 (de) | Verschleißfeste Titanlegierung, Verfahren zu ihrer Herstellung und ihre Verwendung | |
DE69403413T2 (de) | Pulver zum Gebrauch beim thermischen Spritzen | |
WO2014114715A1 (de) | Thermisches spritzpulver für stark beanspruchte gleitsysteme | |
EP3409801B1 (de) | Pulvermetallurgisch hergestellter, hartstoffpartikel enthaltender verbundwerkstoff, verwendung eines verbundwerkstoffs und verfahren zur herstellung eines bauteils aus einem verbundwerkstoff | |
DE102006031043A1 (de) | Mit Lagermaterial beschichtetes Gleitelement und Verfahren zu dessen Herstellung | |
DE19640788C1 (de) | Beschichtungspulver und Verfahren zu seiner Herstellung | |
EP1341946B1 (de) | Verschleisschutzschicht für kolbenringe enthaltend wolframkarbid und chromkarbid | |
WO1997030808A1 (de) | Werkstoff zur pulvermetallurgischen herstellung von formteilen, insbesondere von ventilsitzringen oder ventilführungen mit hoher verschleissfestigkeit | |
DE10002570B4 (de) | Thermisches Spritzmaterial, Struktur und Verfahren zu ihrer Herstellung | |
DE10061749C2 (de) | Kolbenring für Brennkraftmaschinen | |
DE10334703A1 (de) | Ventilsitzringe aus Co oder Co/Mo-Basislegierungen und deren Herstellung | |
DE10308561B4 (de) | Verschleißschutzbeschichtung, ihre Verwendung auf einem Kolben oder Kolbenring und ihr Herstellungsverfahren | |
DE10061751C1 (de) | Verschleißschutzschicht für Kolbenringe | |
DE69015801T2 (de) | Verfahren zur Herstellung einer verschleissfesten Oberflächenschicht. | |
DE3017100A1 (de) | Verfahren zur herstellung von bauteilen bzw. schichtwerkstoff mit durch thermisches spritzen gebildeter, im wesentlichen metallischer oberflaechenschicht hoher oberflaechenqualitaet, wie korrosionsfestigkeit, verschleissfestigkeit u.dgl. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021107 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): FR GB PT |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
17Q | First examination report despatched |
Effective date: 20070726 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FR GB PT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20080718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090303 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20090806 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090708 Year of fee payment: 9 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100817 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100817 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20170726 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190218 |