EP1320670A1 - Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe - Google Patents

Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe

Info

Publication number
EP1320670A1
EP1320670A1 EP01978360A EP01978360A EP1320670A1 EP 1320670 A1 EP1320670 A1 EP 1320670A1 EP 01978360 A EP01978360 A EP 01978360A EP 01978360 A EP01978360 A EP 01978360A EP 1320670 A1 EP1320670 A1 EP 1320670A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
turbine
internal combustion
combustion engine
inflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01978360A
Other languages
German (de)
English (en)
Inventor
Werner Bender
Helmut Daudel
Helmut Finger
Peter Fledersbacher
Siegfried Sumser
Freidrich Wirbeleit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3K Warner Turbosystems GmbH
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
3K Warner Turbosystems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG, 3K Warner Turbosystems GmbH filed Critical DaimlerChrysler AG
Publication of EP1320670A1 publication Critical patent/EP1320670A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/165Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for radial flow, i.e. the vanes turning around axes which are essentially parallel to the rotor centre line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/02Gas passages between engine outlet and pump drive, e.g. reservoirs
    • F02B37/025Multiple scrolls or multiple gas passages guiding the gas to the pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • F02M26/43Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • F02D9/06Exhaust brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust gas turbocharger, a supercharged internal combustion engine and a method therefor according to the preamble of claims 1, 7 and 14 respectively.
  • a supercharged internal combustion engine is known from the publication DE 197 34 494 Cl, the exhaust gas turbocharger of which has an exhaust gas turbine with a variable turbine geometry.
  • the variable turbine geometry By adjusting the variable turbine geometry, the effective flow inlet cross-section in the turbine to the turbine wheel can be changed, whereby the exhaust gas back pressure in the line between the cylinder outlet of the internal combustion engine and the inlet of the turbine is influenced in a targeted manner, thereby adjusting the power consumption of the turbine and, accordingly, the compressor output of the compressor can.
  • an exhaust gas recirculation device is provided for returning exhaust gas from the exhaust system into the intake tract.
  • the amount of the recirculated exhaust gas mass flow is set depending on the state variables and operating parameters of the internal combustion engine. If single-flow turbines with variable turbine geometry are used in such supercharged internal combustion engines with exhaust gas recirculation, the pressure drop to the fresh air side required for returning the desired amount of exhaust gas is achieved by accumulating the entire exhaust gas mass flow. However, as the mass flow returned increases, the charge change in the cylinders is negatively influenced and fuel consumption increases.
  • the invention is based on the problem of reducing pollutant emissions and fuel consumption in supercharged internal combustion engines with exhaust gas recirculation.
  • the exhaust gas turbine of the novel exhaust gas turbocharger is designed with two passages and has two inflow ducts, each with a flow inlet cross section to the turbine wheel, the two inflow ducts being formed separately and being shielded from one another in a pressure-tight manner, in particular also being pressure-tightly shielded from the environment.
  • each inflow channel has its own inflow connection for the separate supply of exhaust gas.
  • This design of the exhaust gas turbocharger makes it possible to provide two independent exhaust gas lines between the cylinder outlets of the internal combustion engine and the exhaust gas turbine and to supply each inflow channel with exhaust gas separately.
  • a new type of internal combustion engine can be are formed such that each exhaust line only receives the exhaust gas of a part of the cylinders of the engine and exactly one of the two exhaust lines is connected to the intake tract via a return line of the exhaust gas recirculation device.
  • the exhaust gas line from which the return line of the exhaust gas recirculation branches off is supplied with the exhaust gas from a certain number of cylinders of the internal combustion engine, in particular a smaller number of cylinders and possibly only one cylinder than the parallel exhaust gas line, which is not involved in the exhaust gas recirculation.
  • the exhaust gas back pressure in that exhaust line or that inflow duct of the turbine which or which does not communicate with the exhaust gas recirculation device, can expediently be manipulated via the variable turbine geometry arranged in the flow inlet cross section of this inflow duct.
  • the variable turbine geometry By adjusting the variable turbine geometry, the turbine output and thus also the work to be given off by the compressor or the amount of air conveyed can be influenced in such a way that a pressure drop that enables the exhaust gas recirculation occurs between the exhaust gas line involved in the exhaust gas recirculation and the intake tract.
  • the desired turbine speed is coordinated via the channel, which corresponds to the variable turbine geometry.
  • the increased exhaust gas back pressure in the first exhaust gas line communicating with the exhaust gas recirculation can be supported by arranging a variable or unchangeable flow obstacle in the form of a guide vane or a similar design in the flow inlet cross section which is assigned to the inflow channel assigned to the first exhaust gas line. It may be expedient here to additionally or alternatively also provide a variable turbine geometry in this flow inlet cross section.
  • a combination turbine with a semi-axial and a radial flow inlet cross section is selected as the preferred turbine type, the variable turbine geometry being expediently arranged in the radial flow inlet cross section and the exhaust gas recirculation being assigned to the semi-axial inflow channel or flow inlet cross section.
  • Such combination turbines with a semi-axial and a radial flow inlet cross section only have to be modified compared to combination turbines known from the prior art in such a way that the inflow channels assigned to the two flow inlet cross sections are mutually pressure-tight to prevent undesired pressure compensation between these inflow channels.
  • This is achieved, for example, by connecting a flow ring, which is arranged between the semi-axial and radial flow inlet cross section, in a pressure-tight manner to a partition between the inflow channels.
  • a bypass line connecting the two exhaust gas lines outside the exhaust gas turbine is provided, which is equipped with an adjustable bypass valve.
  • pressure equalization between the two exhaust gas lines can be permitted, in order to create the same pressure conditions in both turbine inflow channels, particularly in engine operation without exhaust gas recirculation.
  • the bypass valve can advantageously also be switched to a position in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the exhaust gas turbine from the exhaust gas line.
  • FIG. 1 is a schematic representation of a supercharged internal combustion engine with a double-flow combination turbine with semi-axial and radial flow inlet cross section
  • Fig. 5 is a graph showing the course of the exhaust gas mass flow through a turbine as a function of the pressure gradient across the turbine, shown for each of the two inflow channels of the combination turbine.
  • the internal combustion engine 1 shown in FIG. 1 - an Otto engine or a diesel engine - comprises an exhaust gas turbocharger 2 with a turbine 3 in the exhaust line 4 and with a compressor 5 in the intake tract ⁇ , the movement of the turbine wheel via a shaft 7 on the compressor wheel of the Compressor 5 is transmitted.
  • the turbine 3 of the exhaust gas turbocharger 2 is equipped with a variable Bine geometry 8 equipped, via which the effective flow inlet cross-section to the turbine wheel 9 can be adjusted depending on the state of the internal combustion engine.
  • the turbine 3 is designed as a dual-flow combination turbine with two floods or inflow channels 10 and 11, of which a first inflow channel 10 has a semi-axial flow inlet cross section 12 to the turbine wheel 9 and the second inflow channel 11 has a radial flow inlet cross section 13 to the turbine wheel 9.
  • the two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing and are shielded from one another in a pressure-tight manner.
  • variable turbine geometry 8 is expediently located in the radial flow inlet cross section 13 of the inflow duct 11 and is designed in particular as a guide grille with adjustable guide vanes or as a guide grid that can be displaced axially into the radial flow inlet cross section 13, a variable adjustable flow inlet cross section to the turbine wheel 9 being released depending on the position of the guide grid becomes.
  • Each flood or inflow channel 10 or 11 is provided with an inflow connection 15 or 16.
  • Exhaust gas can be supplied separately to the associated inflow channel 10 or 11 via each inflow connection 15 or 16.
  • the exhaust gas is supplied via two independently configured exhaust pipes 17 and 18, which are part of the exhaust line 4.
  • Each exhaust pipe 17 or 18 is assigned to a defined number of cylinder outlets of the internal combustion engine.
  • the internal combustion engine is V-shaped and has two cylinder banks 19 and 20, each with the same Number of cylinders.
  • the first exhaust line 17 leads from the cylinder bank 19 assigned to it to the first inflow duct 10, the second exhaust line 18 accordingly leads from the second cylinder bank 20 to the second inflow duct 11.
  • bypass line 21 with an upstream of the turbine 3 adjustable blow-off or Blow valve 22 arranged.
  • the bypass valve 22- can be placed in a blocking position, in which the bypass line 21 is shut off and pressure exchange between the exhaust gas lines 17 and 18 is prevented, in a through position in which the bypass line is open and pressure exchange is possible, and in a blow-off position are displaced, in which exhaust gas is discharged from one of the two exhaust gas lines or from both exhaust gas lines bypassing the turbine from the exhaust gas line.
  • an exhaust gas recirculation device 23 which comprises a return line 24 between the first exhaust line 17 and the intake tract 6 directly upstream of the cylinder inlet of the internal combustion engine 1, as well as a check valve 25 or check valve or flap valve, that between a blocking position blocking the return line 24 and a releasing opening position is adjustable or adjusts itself.
  • An exhaust gas cooler 26 is also advantageously arranged in the return line 24.
  • All the control elements of the various adjustable components in particular the variable turbine geometry 8, the blow-off valve 22 and the check valve 25, are moved into their desired position via control signals which can be generated in a regulating and control device 27. poses.
  • the turbine power is transferred to the compressor 5, which draws in ambient air at the pressure pi and compresses it to an increased pressure p 2 .
  • a charge air cooler 28, through which the compressed air flows, is arranged downstream of the compressor 5 in the intake tract 6. After leaving the charge air cooler 28, the air is compressed to the charge pressure p 2s , with which it is introduced into the cylinder inlet of the internal combustion engine.
  • the exhaust gas back pressure p 3 Zylinder prevails in the first exhaust line 17, which is assigned to the first cylinder bank 19; Exhaust gas back pressure p 32 is present in second exhaust line 18, which is assigned to second cylinder bank 20.
  • the exhaust gas is expanded to the low pressure 4 and then initially subjected to a catalytic cleaning and finally blown off into the environment.
  • variable turbine geometry 8 is set in the radial flow inlet cross section 13 of second flow channel 11 into a position in which a pressure gradient that enables exhaust gas recirculation between first exhaust pipe 17 and intake tract 6.
  • a pressure drop arises taking into account the required fuel-air ratio in particular in the case of a position of the variable turbine geometry 8 which is offset in the direction of its open position.
  • first flow inlet cross section 12 in the first inflow duct 10 is designed to be relatively small and assumes a value that may advantageously be slightly larger than the second flow inlet cross section 13 in the stowed position of the variable turbine geometry, but is smaller than this cross section in the open position of the variable turbine geometry.
  • the exhaust gas back pressure p 3 ⁇ in the first exhaust gas line 17 is higher than the exhaust gas back pressure p 32 in the second exhaust gas line 18, which has no connection to the exhaust gas recirculation device 23.
  • variable turbine geometry In engine braking operation, the variable turbine geometry is transferred to its stowed position, in which the radial flow inlet cross section 13 is reduced to a minimum value, as a result of which the exhaust gas back pressure p 32 in the second exhaust gas line 18 increases to a high value, which is in particular greater than the exhaust gas back pressure p 3i in of the first exhaust pipe 17 communicating with the exhaust gas recirculation device 23.
  • This makes it possible to achieve very high engine braking powers by greatly increasing the exhaust gas back pressure p 32 without exceeding the critical speed limit of the exhaust gas turbocharger by actuating the valves 22 and 25 in an advantageous manner , 2, an exhaust gas turbocharger 2 with an exhaust gas turbine 3 with variable turbine geometry 8 is shown.
  • the turbine 3 comprises a first inflow duct 10 with a semi-axial flow entry cross section 12 and a second inflow duct 11 with a radial flow entry cross section 13. Exhaust gas from the inflow ducts 10 and 11 can be fed to the turbine wheel 9 via the flow entry cross sections 12 and 13.
  • a fixed grid 29 is located in the semi-axial flow inlet cross section 12, whereas a die 33 is arranged in the radial flow inlet cross section 13 in addition to a guide grid 30.
  • the two inflow channels 10 and 11 are separated by a partition 14 fixed to the housing.
  • a flow ring 31 Arranged in the region of the flow inlet cross sections 12 and 13 is a flow ring 31 which divides the two flow inlet cross sections and has a streamlined contour, the radial outside of which faces the radially inward end region of the partition wall 14.
  • annular sealing element 32 is arranged between the end face of the partition wall 14 and the radially outer side of the flow ring 31.
  • the axially displaceable die 33 in the radial flow inlet cross section 13 is fastened to an axial slide 34, which surrounds the turbine wheel 9 in a ring.
  • the rigid guide grid, which dips into the movable die, is attached to the flow ring 31 in the example shown.
  • the first inflow channel 10, which in the semi-axial Flow inlet cross section 12 opens out, has a considerably smaller volume than the second inflow channel 11 with a radial flow inlet cross section 13.
  • the turbine 3 of the exhaust gas turbocharger 2 according to FIG. 3 also has a first inflow duct 10 with a semi-axial flow inlet cross section 12 and a second inflow duct 11 with a radial flow inlet cross section 13, which are divided by a partition 14, the two flow inlet cross sections 12 and 13 being directly from the flow ring 31 are limited and a sealing element 32 is arranged between the flow ring 31 and the partition 14.
  • the grating element in the semi-axial flow inlet cross section 12 is designed as a fixed grille 29, while an adjustable guide grille 30 with adjustable guide blades is arranged in the radial flow entry cross section 13.
  • the volumes of inflow channels 10 and 11 are approximately the same size.
  • the sectional view according to FIG. 4 shows a radial turbine with two radial inflow channels 10 and 11.
  • the inflow ducts 10 and 11 of the turbine 3 which is also referred to as a two-segment turbine, take the form of partial spirals and open out on radially opposite sides via their flow inlet cross sections 12 and 13, respectively, into the turbine space accommodating the turbine wheel 9. It can be expedient to provide an angle of the mouth cross sections of the inflow channels to the turbine wheel 9 that is different from 180 °.
  • the guide vane 30, which surrounds the turbine wheel 9 radially, has adjustable guide vanes.
  • FIG 5 shows a graph with the course of the turbine throughput parameters ⁇ as a function of the pressure gradient p 3 / p 4 above the exhaust gas turbine, p 3 denoting the exhaust gas back pressure upstream of the turbine and p 4 the relaxed pressure downstream of the turbine.
  • the throughput parameter ⁇ i for the first flow channel is shown;
  • Throughput parameter ⁇ i is shown as a line due to the fixed geometry in the flow inlet cross section assigned to the first inflow channel.
  • the throughput parameter ⁇ 2 that can be represented in the second inflow channel is characterized by a hatched area due to the variably adjustable turbine geometry with a variable flow inlet cross-section, the lower limit ⁇ 2 , u of which corresponds to the closed position of the variable turbine geometry and the upper limit of ⁇ 2 , o to the open position of the turbine geometry.
  • a dashed line in the adjustment area of the variable turbine geometry exemplifies a current guide vane position in which, due to the comparatively small flow inlet cross-section in the first flow duct with fixed grille and the resulting high level of accumulation in this inflow duct, a high exhaust gas back pressure p 3 ⁇ occurs in the first inflow duct, which one Exhaust gas recirculation favors.
  • there is a lower exhaust gas back pressure p 32 which means that the turbine can be operated in more favorable efficiency ranges.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Moteur à combustion interne pourvu d'un système (23) de recyclage des gaz d'échappement, qui possède un turbocompresseur (2) à gaz d'échappement à géométrie (8) variable de la turbine. Pour améliorer le comportement des gaz d'échappement, la turbine (3) des gaz d'échappement est dotée de deux conduites d'admission (10, 11) séparées et étanches à la pression l'une par rapport à l'autre. L'une (10) des conduites d'admission communique avec une conduite de gaz d'échappement (17) à partir de laquelle s'embranche une conduite de recyclage (24) du système (23) de recyclage des gaz d'échappement.
EP01978360A 2000-09-29 2001-09-12 Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe Withdrawn EP1320670A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10048237A DE10048237A1 (de) 2000-09-29 2000-09-29 Abgasturbolader, aufgeladene Brennkraftmaschine und Verfahren hierzu
DE10048237 2000-09-29
PCT/EP2001/010525 WO2002027164A1 (fr) 2000-09-29 2001-09-12 Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe

Publications (1)

Publication Number Publication Date
EP1320670A1 true EP1320670A1 (fr) 2003-06-25

Family

ID=7658055

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01978360A Withdrawn EP1320670A1 (fr) 2000-09-29 2001-09-12 Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe

Country Status (5)

Country Link
US (1) US20030230085A1 (fr)
EP (1) EP1320670A1 (fr)
JP (1) JP2004510094A (fr)
DE (1) DE10048237A1 (fr)
WO (1) WO2002027164A1 (fr)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245388A1 (de) 2002-09-28 2004-04-08 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung
US7010918B2 (en) * 2003-06-17 2006-03-14 Daimlerchrysler Ag Internal combustion engine with motor brake
AT413736B (de) * 2003-06-27 2006-05-15 Avl List Gmbh Brennkraftmaschine mit zumindest zwei gruppen von zylindern
DE10335261A1 (de) * 2003-08-01 2005-02-17 Daimlerchrysler Ag Verdichterrad und/oder Turbinenrad für eine Sekundärluftfördereinrichtung
DE10335260A1 (de) * 2003-08-01 2005-02-17 Daimlerchrysler Ag Sekundärluftfördereinrichtung für eine Brennkraftmaschine
DE10357925A1 (de) * 2003-12-11 2005-07-28 Daimlerchrysler Ag Brennkraftmaschine mit Abgasturbolader und Abgasrückführung
DE102004039927A1 (de) * 2004-08-18 2006-02-23 Daimlerchrysler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführeinrichtung
AT501234B1 (de) * 2006-03-30 2008-02-15 Avl List Gmbh Abgasturbine für eine brennkraftmaschine
DE102005046507A1 (de) * 2005-09-29 2007-04-05 Daimlerchrysler Ag Brennkraftmaschine mit zwei hintereinander geschalteten Abgasturboladern
DE102005054524A1 (de) * 2005-11-14 2007-05-16 Porsche Ag Verfahren und Steuergerät zur Steuerung eines Turboladers mit steuerbarem Turbinen-Strömungsquerschnitt
JP2007192124A (ja) * 2006-01-19 2007-08-02 Toyota Motor Corp ターボチャージャ
DE102006033976A1 (de) * 2006-07-22 2008-01-31 Dr.Ing.H.C. F. Porsche Ag Abgasturbolader für eine Brennkraftmaschine
JP2010502880A (ja) * 2006-09-08 2010-01-28 ボーグワーナー・インコーポレーテッド 内燃機関を運転するための方法及び装置
WO2008157109A2 (fr) * 2007-06-12 2008-12-24 Borgwarner Inc. Système de soupape de dérivation d'un turbocompresseur
DE112008002358A5 (de) * 2007-09-13 2010-10-14 Avl List Gmbh Verfahren zur Steuerung der Kühlleistung eines Kühlsystems einer Brennkraftmaschine
DE102008020406A1 (de) * 2008-04-24 2009-10-29 Daimler Ag Abgasturbolader für eine Brennkraftmaschine eines Kraftfahrzeugs und Brennkraftmaschine
JP2009281197A (ja) * 2008-05-20 2009-12-03 Mitsubishi Heavy Ind Ltd 斜流タービン
GB2461720B (en) * 2008-07-10 2012-09-05 Cummins Turbo Tech Ltd A variable geometry turbine
DE102008035271B4 (de) 2008-07-29 2023-06-29 Genady Maslov Verfahren und Einrichtung zur Verarbeitung von Abgasen (Dieselmotor)
DE102008035270B4 (de) 2008-07-29 2023-08-03 Mykhaylo Koltun Verfahren und Einrichtung zur Verarbeitung von Abgasen (Ottomotor)
DE102008039085A1 (de) 2008-08-21 2010-02-25 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader
DE102008049782A1 (de) * 2008-09-30 2010-04-08 Daimler Ag Abgasturbolader für eine Brennkraftmaschine
US8266906B2 (en) * 2009-03-11 2012-09-18 GM Global Technology Operations LLC Asymmetric split-inlet turbine housing
DE102009018583A1 (de) * 2009-04-23 2010-10-28 Daimler Ag Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Verbrennungskraftmaschine
FR2945579B1 (fr) * 2009-05-15 2013-03-22 Inst Francais Du Petrole Procede et dispositif de controle de la quantite de gaz d'echappement recircules a l'admission d'un moteur a combustion interne suralimente
WO2011002565A1 (fr) * 2009-06-29 2011-01-06 International Engine Intellectual Property Company, Llc Frein moteur utilisant une vanne de freinage et un turbocompresseur avec turbine à débit partiel d'admission
KR101678010B1 (ko) * 2009-09-10 2016-11-21 보르그워너 인코퍼레이티드 배기가스 터보차저의 터빈 휠의 배기가스 공급 장치
US9759228B2 (en) 2009-10-16 2017-09-12 GM Global Technology Operations LLC Turbocharger and air induction system incorporating the same and method of using the same
US20120023936A1 (en) * 2010-07-30 2012-02-02 Caterpillar Inc. Nozzled turbocharger turbine
CN102069338A (zh) * 2010-11-16 2011-05-25 无锡明珠增压器制造有限公司 一种中间壳可变截面拨叉的焊接工装
DE102010051777A1 (de) 2010-11-18 2012-05-24 Daimler Ag Turbine für einen Abgasturbolader einer Verbrennungskraftmaschine
DE102010055101A1 (de) 2010-12-18 2012-06-21 Daimler Ag Verdichter, insbesondere für einen Abgasturbolader, sowie Abgasturbolader
DE102010056238A1 (de) * 2010-12-24 2012-06-28 Audi Ag Antrieb mit einer Brennkraftmaschine und einer Expansionsmaschine mit Gasrückführung
CN102080578B (zh) * 2011-01-12 2014-07-30 康跃科技股份有限公司 可变截面轴径流复合涡轮增压装置
DE102011118112A1 (de) 2011-11-09 2012-05-31 Daimler Ag Turbine für einen Abgasturbolader
JP5427900B2 (ja) * 2012-01-23 2014-02-26 三菱重工業株式会社 斜流タービン
US9677463B2 (en) 2012-08-31 2017-06-13 Mitsubishi Heavy Industries, Ltd. Axial-flow turbine for turbocharger
EP2894296B1 (fr) 2012-09-06 2020-04-22 Mitsubishi Heavy Industries, Ltd. Turbine à écoulement diagonal
US9068474B2 (en) * 2013-01-25 2015-06-30 GM Global Technology Operations LLC Turbine housing
US9631625B2 (en) * 2013-02-01 2017-04-25 Honeywell International Inc. Axial turbine with statorless inlet formed by meridionally divided turbine housing and heat shroud
DE112013006386T5 (de) * 2013-02-19 2015-09-17 Borgwarner Inc. Innenliegender Turbolader-Turbinenwärmeschild mit Axialströmungs-Umlenkflügeln
EP2778349A1 (fr) * 2013-03-15 2014-09-17 Continental Automotive GmbH Turbosoufflante de gaz d'échappement avec boîtier de turbine traité
US9157396B2 (en) * 2013-05-17 2015-10-13 Caterpillar Inc. Nozzled turbine
CN105849385B (zh) * 2013-10-25 2018-06-26 洋马株式会社 发动机
US10227889B2 (en) * 2015-02-05 2019-03-12 Garrett Transportation I Inc. Variable geometry nozzle for partitioned volute
DE102017007636A1 (de) 2017-08-12 2019-02-14 Daimler Ag Halbaxialturbine für einen Abgasturbolader
JP6908472B2 (ja) * 2017-08-31 2021-07-28 三菱重工コンプレッサ株式会社 遠心圧縮機
US10655534B2 (en) 2018-02-06 2020-05-19 Garrett Transportation I Inc. Rotary axial valve

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE755769A (fr) * 1969-09-04 1971-02-15 Cummins Engine Co Inc Corps de turbine, notamment pour turbo-compresseur a gaz d'echappement
US4179892A (en) * 1977-12-27 1979-12-25 Cummins Engine Company, Inc. Internal combustion engine with exhaust gas recirculation
US4776168A (en) * 1987-05-21 1988-10-11 Woollenweber William E Variable geometry turbocharger turbine
JPH0192531A (ja) * 1987-10-05 1989-04-11 Hitachi Ltd 可変容量排気タービン過給機
DE3734386A1 (de) * 1987-10-10 1989-04-20 Daimler Benz Ag Abgasturbolader fuer eine brennkraftmaschine
JPH01227803A (ja) * 1988-03-08 1989-09-12 Honda Motor Co Ltd 可変容量タービン
SE506125C2 (sv) * 1994-12-08 1997-11-10 Scania Cv Ab Arrangemang för återledning av avgaser i överladdade motorer med parallella turbiner
JPH0953456A (ja) * 1995-08-11 1997-02-25 Mitsubishi Motors Corp 車両用ターボ過給機付エンジン
DE19615237C2 (de) * 1996-04-18 1999-10-28 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine
DE19734494C1 (de) 1997-08-08 1998-10-08 Daimler Benz Ag Verfahren zum Betrieb einer Brennkraftmaschine
DE19744936A1 (de) * 1997-10-10 1999-04-15 Deutz Ag Abgasrückführung bei einer aufgeladenen Brennkraftmaschine
DE19857234C2 (de) * 1998-12-11 2000-09-28 Daimler Chrysler Ag Vorrichtung zur Abgasrückführung
DE10152804B4 (de) * 2001-10-25 2016-05-12 Daimler Ag Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0227164A1 *

Also Published As

Publication number Publication date
JP2004510094A (ja) 2004-04-02
WO2002027164A1 (fr) 2002-04-04
US20030230085A1 (en) 2003-12-18
DE10048237A1 (de) 2002-04-11

Similar Documents

Publication Publication Date Title
EP1320670A1 (fr) Turbocompresseur a gaz d'echappement, moteur a combustion interne suralimente et procede associe
DE10152804B4 (de) Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
EP1778966B1 (fr) Moteur a combustion interne pourvu d'un turbocompresseur a gaz d'echappement et d'un dispositif de reaspiration des gaz d'echappement
DE102006058102B4 (de) Brennkraftmaschine mit Abgasturbolader
DE10152803A1 (de) Brennkraftmaschine mit einem Abgasturbolader und einer Abgasrückführungsvorrichtung
EP1375868A1 (fr) Dispositif à frein moteur pour un moteur à combustion interne à suralimentation par turbosoufflante
DE102004009794A1 (de) Brennkraftmaschine mit zwei Abgasturboladern
DE10303777A1 (de) Brennkraftmaschine mit einem Abgasturbolader
DE10212675A1 (de) Abgasturbolader in einer Brennkraftmaschine
EP2025896A2 (fr) Compresseur radial pour turbocompresseur
DE102004035044A1 (de) Verdichter in einem Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb eines Verdichters
DE102007034235A1 (de) Strömungsgehäuse eines Turboladers
EP1570161B1 (fr) Moteur a combustion interne a turbocompresseur a gaz d'echappement
WO2006119866A1 (fr) Moteur thermique a compresseur et recyclage des gaz d'echappement
WO2005061870A1 (fr) Moteur a combustion interne avec turbocompresseur a gaz d'echappement et reaspiration des gaz d'echappement
EP1530671B1 (fr) Turbocompresseur à gaz d'échappement pour moteur à combustion
DE10132672A1 (de) Abgasturbolader für eine Brennkraftmaschine
EP2501913A1 (fr) Groupe de suralimentation à plusieurs étages, système de suralimentation et moteur à combustion interne comportant chacun ledit groupe
WO2004111406A2 (fr) Moteur a combustion interne avec dispositif de recyclage des gaz d'echappement, et procede associe
DE102007025437A1 (de) Verfahren für eine Brennkraftmaschine mit einem Abgasturbolader
WO2019072521A1 (fr) Moteur à combustion interne pour véhicule à moteur et véhicule à moteur doté dudit moteur à combustion interne
WO2007093195A1 (fr) Procede de recirculation des gaz d'echappement dans un moteur a combustion interne equipe d'un turbocompresseur de suralimentation entraine par les gaz d'echappement
WO2008125550A1 (fr) Turbocompresseur à suralimentation à étages multiples et moteur à combustion interne
DE102018005460B3 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere für einen Kraftwagen, Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine sowie Kraftfahrzeug mit einer solchen Verbrennungskraftmaschine
DE102022000150B4 (de) Turbine für einen Abgasturbolader, insbesondere eines Kraftfahrzeugs, sowie Verbrennungskraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030326

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20050413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050401