EP1317609B1 - Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques - Google Patents

Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques Download PDF

Info

Publication number
EP1317609B1
EP1317609B1 EP01971660A EP01971660A EP1317609B1 EP 1317609 B1 EP1317609 B1 EP 1317609B1 EP 01971660 A EP01971660 A EP 01971660A EP 01971660 A EP01971660 A EP 01971660A EP 1317609 B1 EP1317609 B1 EP 1317609B1
Authority
EP
European Patent Office
Prior art keywords
tank venting
internal combustion
combustion engine
rate
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01971660A
Other languages
German (de)
English (en)
Other versions
EP1317609A1 (fr
Inventor
Gholamabas Esteghlal
Dieter Lederer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1317609A1 publication Critical patent/EP1317609A1/fr
Application granted granted Critical
Publication of EP1317609B1 publication Critical patent/EP1317609B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0032Controlling the purging of the canister as a function of the engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • F02D41/023Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the gear ratio shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/003Adding fuel vapours, e.g. drawn from engine fuel reservoir
    • F02D41/0045Estimating, calculating or determining the purging rate, amount, flow or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent

Definitions

  • the fuel vapor buffer can be realized as an activated carbon filter. He picks up evaporating fuel vapor in the tank. Flushing with air regenerates the activated carbon filter. The purge air flows through the activated carbon filter, where it takes up fuel and is supplied as a fuel-laden regeneration gas to the internal combustion engine. The regeneration of the activated carbon filter by purging with air, for example, by opening a tank vent valve between the activated carbon filter and the intake manifold of the engine. The Saugrohrunterdruck acts in this case as a driving force for the flushing of the filter via a fresh air opening. The fuel-laden regeneration gas flows following the pressure gradient over the tank vent valve to the engine.
  • lean-burn operation with a stratified charge distribution which is favored in gasoline direct injection engines, is less suitable because the premixed regeneration gas impairs injection-jet-guided charge stratification.
  • the activated carbon filter Depending on how much fuel vapor the activated carbon filter has absorbed before regeneration, it can be heavily or weakly loaded with fuel. As a result, the regeneration gas may be high or low fuel in a subsequent regeneration after a prolonged inactive tank vent phase.
  • the regeneration gas is very fuel-rich when regeneration begins, the total amount of fuel supplied to the engine is so great that undesirable HC emissions can occur.
  • the invention aims to perform the supply of regeneration gas in internal combustion engines with tank ventilation while reducing the unwanted HC emissions neutral in emissions, not to affect the ride comfort and not to affect the engine torque undesirable.
  • the flush volume should be maximized under the given boundary conditions.
  • the invention discloses a method for controlling a tank vent valve between an internal combustion engine and a fuel vapor storage, wherein the stored fuel vapor from the fuel vapor storage is supplied to the internal combustion engine with the tank vent valve open.
  • a distinction is made between phases of active and inactive tank ventilation and the opening state of the tank ventilation valve is set with active tank ventilation depending on the first operating parameters of the engine and / or the tank ventilation system by a fuel supply means and limited by a second operating parameters dependent Spülratenbegrenzungssch or by predetermined by second operating parameters Spülratenungs specifying means and / or limited by a third operating parameters dependent flow factor.
  • a further embodiment provides that the second operating parameters include the integral value of the mass flow through the tank venting valve.
  • a further embodiment provides that the third operating parameters depend at least on the speed and the quotient of the intake manifold pressure and the ambient pressure.
  • the invention further relates to a method for controlling a tank ventilation valve between an internal combustion engine and a fuel vapor storage, wherein the stored fuel vapor from the fuel vapor storage is supplied to the internal combustion engine with the tank vent valve open, wherein the internal combustion engine is coupled to a torque converter whose transmission ratio is variable during operation of the internal combustion engine, and in which during a change in the transmission ratio, a temporary reduction of the torque supplied by the internal combustion engine takes place, which is characterized in that the tank-venting valve is temporarily closed with a change in the transmission ratio with reduction of the torque supplied by the internal combustion engine.
  • the purge rate is defined as the quotient of the mass flow through the tank vent valve and the total mass flow into the intake manifold.
  • the limitation of the purge rate is canceled if the time during which the decrease was effective exceeds a predetermined threshold.
  • a further embodiment provides that the limitation of the purging rate is canceled when a measure of the regeneration gas flowed to the engine exceeds a threshold value.
  • said measure is made dependent on the integral of the mass flow via the tank venting valve or on the integral over the flushing rate.
  • a further embodiment provides an application in an internal combustion engine with gasoline direct injection, wherein the limitation of the tank ventilation takes place even if it comes during active tank ventilation to undesirably high lambda deviations.
  • another embodiment contemplates that the relative change in the low pass filtered lambda setpoint be evaluated, and that the limitation of tank venting occurs during active tank venting of undesirably high lambda deviations only when the relative change in the low pass filtered lambda setpoint is less than a predetermined threshold.
  • the invention is also directed to an electronic control device for carrying out at least one of the methods and embodiments.
  • phase of active and inactive tank ventilation is set with active tank ventilation depending on operating parameters of the engine and / or the tank ventilation system by a fuel supply means and limited by a Spülratenbegrenzungsstoff or predetermined by a Spülratenvorgabestoff. If the duration of the inactive tank vent phase exceeds a minimum duration, the purge rate will be temporarily lower than that of the following in the subsequent phase with active tank venting Rinse rate limiting means or rinse rate default means limits predetermined rate.
  • the inventive method advantageously avoids that a change in the loading state of the activated carbon filter, which has occurred during a long phase with inactive tank ventilation, leads to an undesirably high increase in the total fuel flow to the internal combustion engine.
  • an undesirable increase in HC emissions after long periods of inactive tank venting can be avoided without having to reduce the desired high regeneration rates after shorter periods of inactive tank venting.
  • Fig. 1 shows the technical environment of the invention.
  • Fig. 2 discloses an embodiment of the invention in the form of functional blocks.
  • 3 shows a modification of the embodiment of FIG. 2.
  • FIG. 1 in FIG. 1 represents the combustion chamber of a cylinder of an internal combustion engine.
  • An inlet valve 2 controls the flow of air to the combustion chamber.
  • the air is sucked in via a suction pipe 3.
  • the intake air amount can be varied via a throttle valve 4, which is controlled by a control unit 5.
  • a signal about the engine speed n from a speed sensor 7 and a signal about the amount ml of the intake air from an air flow meter 8 are supplied to the control unit signals about the torque request of the driver.
  • an intake manifold pressure sensor 8a and / or a throttle position sensor 8b for measuring the air flow is provided.
  • the term of charge detection is used.
  • filling describes the amount of air related to the filling of a single cylinder. In a first approximation, this is the measured amount of air divided by the number of cylinders and the number of revolutions and thus normalized to a stroke.
  • control unit 5 From these and possibly other input signals via further parameters of the internal combustion engine such as intake air and coolant temperature and so on, the control unit 5 outputs output signals for adjusting the throttle angle alpha by an actuator 9 and for controlling a fuel injection valve 10, dosed by the fuel into the combustion chamber of the engine becomes. In addition, by the Control unit, the triggering of the ignition via an ignition device 11 controlled.
  • controller controls a tank ventilation 12 and other functions to achieve efficient combustion of the fuel / air mixture in the combustion chamber.
  • the gas power resulting from the combustion is converted by the piston 13 and crank mechanism 14 into a torque.
  • the tank ventilation system 12 consists of an activated carbon filter 15, which communicates via corresponding lines or connections to the tank, the ambient air and the intake manifold of the internal combustion engine, wherein a tank vent valve 16 is arranged in the line to the intake manifold.
  • the activated carbon filter 15 stores in the tank 19 evaporating fuel.
  • air is sucked out of the environment 17 through the activated carbon filter, which discharges the stored fuel into the air.
  • This fuel-air mixture which is also referred to as a tank venting mixture or else as a regeneration gas, influences the composition of the mixture as a whole supplied to the internal combustion engine, which is co-determined by metering of fuel via the fuel metering device 10, which is adapted to the intake air volume.
  • the fuel sucked in via the tank ventilation system can correspond in extreme cases to a proportion of approximately one third to half of the total fuel quantity.
  • FIG. 2 shows a functional block diagram of an example of the method according to the invention for controlling the tank venting valve.
  • Block 2.1 represents a fuel rate specification means, which may be implemented as a map memory, for example.
  • the fuel rate is first determined depending on the operating point of the engine.
  • the fuel fraction is converted into a purge rate in block 2.2, which is limited by a Spülratenbegrenzungsstoff 2.3 to a maximum operating point-dependent.
  • the fuel rate may be defined as the quotient of the fuel supplied via the tank-venting valve and the total fuel supplied to the combustion
  • the purging rate may be defined as the quotient of the mass flow via the tank-venting valve and the total mass flow into the intake manifold.
  • the operating point is defined by operating parameters of the engine such as speed, torque, required fuel mass, intake air temperature, mixture composition and charge distribution in the combustion chamber. These operating parameters are partially predetermined by the control unit and / or detected by sensors. For example, the controller determines whether the engine is to be operated in homogeneous charge distribution mode or in stratified charge distribution mode.
  • the torque is measured by the control unit from operating parameters such as speed and intake air volume, Intake air temperature, throttle angle, intake manifold pressure and so on.
  • the mixture composition can be calculated from variables which are present in the control unit, such as the fuel flow via the injection valves and the cylinder charge or can be determined by measurement with an exhaust gas probe.
  • the purge rate is converted in block 2.2 in a An Kunststofftastiety for the tank vent valve 16.
  • the mass flow mdk enter via the throttle valve of the engine to first determine a desired mass flow through the tank vent valve from the purge rate. This function is represented by block 2.4. If the flushing rate is, for example, 20% and the mass flow through the throttle valve 4 kg / hour, this results in a desired mass flow through the tank venting valve of 1 kg / hour.
  • a suitable for this flow ⁇ Samuelsstastiety for controlling the tank vent valve for example, from a map, which also takes into account the pressure difference between the intake manifold and the tank venting system, can be obtained. The mentioned pressure difference can in turn be estimated from the measured or modeled in the control unit intake manifold pressure psaug.
  • the drive signal determined in this way is temporarily additionally limited according to the invention.
  • a minimum selection (block 2.3.1) between the maximum value of the flushing rate read from a map (block 2.3.2) and a limiting value of the flushing rate from a block 2.3.3 is suitable.
  • the limiting value can be obtained from a characteristic curve (block 2.3.3), which is addressed with the integral value of the mass flow via the tank venting valve (block 2.3.4), whereby the integral value in phases of inactive tank venting, which exceed a minimum duration, from the control 2.6 reset to zero.
  • the consideration of the integral value of the mass flow via the tank venting valve is particularly advantageous since this is a measure of the flushing quantity conducted through the activated carbon filter. If this exceeds a minimum dimension, which may correspond, for example, to the volume of the line between the activated carbon filter and the intake manifold, then no abrupt change in the HC concentration in the regeneration gas can be expected any more and the limitation of the rinsing rate is then no longer necessary.
  • the mass flow through the tank vent valve can be, for example, from the real purge rate, which also the block 2.4. is supplied, and determine the mass flow mdk via the throttle valve.
  • the reduction is triggered when the length of an operating phase without opening the Tank vent valve exceeds a predetermined value.
  • the changeover between active and inactive tank ventilation is controlled by a sequence control 2.6.
  • the flow control also detects the mass flow via the tank venting valve and thus the length of the phases of non-active tank venting and compares them with a predetermined threshold value.
  • the integral value of the mass flow is reset to zero via the tank vent valve.
  • the purge rate limitation acts until the integral value of the mass flow exceeds the minimum value specified in the characteristic curve 2.33.
  • a multiplicative reduction of the rinsing rate itself or its maximum value can also be carried out.
  • the time during which the reduction was effective can be used. If this time exceeds a predetermined threshold, the reduction is canceled again.
  • the flushing rate can also be specified directly.
  • tank ventilation In addition to the aforementioned interventions, the tank ventilation (TE) is limited in the following operating states:
  • BDE-specific To regenerate the NOx storage catalyst, which is regularly required, driving is carried out with a rich mixture, which can achieve Lambda values of up to 0.7. Since the measuring accuracy of the lambda probe is not sufficient in this area, the loading of the regeneration gas can not be adapted when the TE is simultaneously obtained. To avoid switching over to controlled TE with a very low purge rate, which generally takes place in this lambda range, the purge rate of the tank vent is reduced by means of an applicable factor when regeneration of the NOx storage catalytic converter with lambda values below a threshold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (12)

  1. Procédé de commande d'une soupape de ventilation de réservoir installée entre un moteur à combustion interne et un réservoir à vapeur de carburant, la vapeur de carburant stockée étant fournie à partir du réservoir de vapeur de carburant, au moteur à combustion interne lorsque la soupape de ventilation de réservoir est ouverte et on distingue entre les phases de ventilation active et de ventilation inactive du réservoir et
    l'état d'ouverture de la soupape de ventilation de réservoir lorsque la ventilation de réservoir est activée, dépend de premiers paramètres de fonctionnement du moteur et/ou de l'installation de ventilation de réservoir en étant prédéfini par un moyen de prédéfinition de carburant et
    - par un moyen de limitation du taux de rinçage dépendant de seconds paramètres de fonctionnement ou est prévu par un moyen de prédéfinition de taux de rinçage dépendant des seconds paramètres de fonctionnement,
    - et/ou limité par un coefficient de passage dépendant de troisièmes paramètres de fonctionnement,
    caractérisé en ce que
    si la durée de la phase à ventilation de réservoir inactive, dépasse une durée minimale, on limite l'état d'ouverture de la soupape de ventilation de réservoir dans la phase suivante avec ventilation de réservoir activée, provisoirement, sous la valeur prédéfinie par le moyen de limitation de taux de rinçage ou le moyen de prédéfinition de taux de rinçage.
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les premiers paramètres de fonctionnement du moteur et/ou de l'installation de ventilation de réservoir sont les valeurs de la vitesse de rotation et au moins d'un paramètre de fonctionnement suivant :
    - couple,
    - masse de carburant nécessaire,
    - température de l'air aspiré,
    - composition du mélange et
    - répartition de charge dans la chambre de combustion.
  3. Procédé selon la revendication 1,
    caractérisé en ce que
    les seconds paramètres de fonctionnement comprennent la valeur intégrale du débit massique par la soupape de ventilation de réservoir.
  4. Procédé selon la revendication 1,
    caractérisé en ce que
    les troisièmes paramètres de fonctionnement dépendent au moins de la vitesse de rotation et du quotient de la pression dans la tubulure d'aspiration et de la pression ambiante.
  5. Procédé de commande d'une soupape de ventilation de réservoir selon la revendication 1,
    le moteur à combustion interne étant couplé à un convertisseur de couple dont le rapport de démultiplication est variable pendant le fonctionnement du moteur à combustion interne et pour lequel, pendant la variation du rapport de démultiplication, on a une réduction provisoire du couple fourni par le moteur à combustion interne et
    la soupape de ventilation de réservoir est provisoirement fermée, lors d'une variation du rapport de démultiplication avec réduction du couple fourni par le moteur à combustion interne.
  6. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on définit le taux de rinçage comme quotient entre le débit massique traversant la soupape de ventilation de réservoir et l'ensemble du débit massique par la tubulure d'admission.
  7. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on supprime la limitation du taux de rinçage si le temps pendant lequel la réduction était active dépasse un seuil prédéfini.
  8. Procédé selon la revendication 1,
    caractérisé en ce qu'
    on supprime la limitation du taux de rinçage si une mesure de la quantité de gaz de régénération arrivant dans le moteur dépasse un seuil.
  9. Procédé selon la revendication 8,
    caractérisé en ce que
    la mesure dépend de l'intégrale du débit massique à travers la soupape de ventilation de réservoir ou de l'intégrale du taux de rinçage.
  10. Procédé selon l'une des revendications précédentes,
    caractérisé en ce que
    le moteur à combustion interne est un moteur à essence à injection directe et la limitation de la ventilation du réservoir se fait si pendant une ventilation de réservoir active, on arrive à des déviations de niveau non souhaitées du coefficient lambda.
  11. Procédé selon la revendication 9,
    caractérisé en ce que
    pour le fonctionnement du moteur à combustion interne à charge stratifiée, la variation relative de la valeur de consigne du coefficient lambda est exploitée par filtrage passe-bas et en ce que la limitation de la ventilation du réservoir, non souhaitée à cause de déviations exceptionnellement élevées du coefficient lambda pendant la ventilation active du réservoir, ne se fait que si la variation relative de la valeur de consigne du coefficient lambda, après filtrage passe-bas, est inférieure à un seuil prédéfini.
  12. Installation de commande électronique pour la mise en oeuvre du procédé selon les revendications 1 à 11.
EP01971660A 2000-09-04 2001-08-31 Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques Expired - Lifetime EP1317609B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043862 2000-09-04
DE10043862A DE10043862A1 (de) 2000-09-04 2000-09-04 Verfahren zur Steuerung der Regenerierung eines Kraftstoffdampfzwischenspeichers bei Verbrennungsmotoren
PCT/DE2001/003292 WO2002020960A1 (fr) 2000-09-04 2001-08-31 Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques

Publications (2)

Publication Number Publication Date
EP1317609A1 EP1317609A1 (fr) 2003-06-11
EP1317609B1 true EP1317609B1 (fr) 2008-01-16

Family

ID=7655158

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971660A Expired - Lifetime EP1317609B1 (fr) 2000-09-04 2001-08-31 Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques

Country Status (9)

Country Link
US (1) US6755185B2 (fr)
EP (1) EP1317609B1 (fr)
JP (1) JP2004508482A (fr)
KR (1) KR20020054336A (fr)
CN (1) CN1388855A (fr)
BR (1) BR0107170A (fr)
DE (2) DE10043862A1 (fr)
ES (1) ES2296801T3 (fr)
WO (1) WO2002020960A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10043071A1 (de) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur Diagnose des Tankentlüftungsventils
DE10150420A1 (de) * 2001-10-11 2003-04-30 Bosch Gmbh Robert Verfahren zur Überprüfung der Funktionsfähigkeit eines Tankentlüftungsventils einer Tankentlüftungsanlage
US7347192B2 (en) * 2004-09-17 2008-03-25 Continential Automotive Systems Us, Inc. Low power consumption latch circuit including a time delay for a fuel vapor pressure management apparatus
DE102006004837B4 (de) * 2006-02-02 2011-12-22 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
KR100936983B1 (ko) * 2008-05-07 2010-01-15 현대자동차주식회사 배기가스 제어 시스템 및 이의 방법
US9624876B2 (en) * 2014-09-04 2017-04-18 Ford Global Technologies, Llc Methods and systems for fuel vapor metering via voltage-dependent solenoid valve on duration compensation
DE102015213255A1 (de) * 2015-07-15 2017-01-19 Robert Bosch Gmbh Verfahren zur Adaption einer Querkopplung einer Tankentlüftungsanlage

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3502573C3 (de) 1985-01-26 2002-04-25 Bosch Gmbh Robert Vorrichtung zur Entlüftung von Kraftstofftanks
DE59000761D1 (de) 1990-04-12 1993-02-25 Siemens Ag Tankentlueftungssystem.
US5323751A (en) * 1990-07-13 1994-06-28 Toyota Jidosha Kabushiki Kaisha Device for controlling operation of fuel evaporative purge system of an internal combustion engine
JP2734241B2 (ja) * 1991-08-23 1998-03-30 トヨタ自動車株式会社 内燃機関の供給燃料制御装置
JP3279371B2 (ja) 1993-01-29 2002-04-30 マツダ株式会社 エンジンの蒸発燃料制御装置
JP3362270B2 (ja) * 1994-06-27 2003-01-07 マツダ株式会社 エンジンの蒸発燃料処理装置
JP3141767B2 (ja) * 1996-01-19 2001-03-05 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP3154324B2 (ja) * 1996-05-15 2001-04-09 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
US6012435A (en) 1996-07-31 2000-01-11 Nissan Motor Co., Ltd. Engine combustion controller
JP3651133B2 (ja) * 1996-08-27 2005-05-25 株式会社デンソー 内燃機関の空燃比制御装置
DE19701353C1 (de) * 1997-01-16 1998-03-12 Siemens Ag Verfahren zur Tankentlüftung bei einer Brennkraftmaschine
US6041761A (en) * 1997-05-30 2000-03-28 Honda Giken Kogyo Kabushiki Kaisha Evaporative emission control system for internal combustion engines
CN1234967C (zh) * 1998-08-10 2006-01-04 丰田自动车株式会社 内燃机的蒸发燃料处理装置

Also Published As

Publication number Publication date
US6755185B2 (en) 2004-06-29
EP1317609A1 (fr) 2003-06-11
WO2002020960A1 (fr) 2002-03-14
US20030051716A1 (en) 2003-03-20
ES2296801T3 (es) 2008-05-01
JP2004508482A (ja) 2004-03-18
DE10043862A1 (de) 2002-03-14
CN1388855A (zh) 2003-01-01
DE50113514D1 (de) 2008-03-06
BR0107170A (pt) 2002-06-18
KR20020054336A (ko) 2002-07-06

Similar Documents

Publication Publication Date Title
DE69921736T2 (de) Steuerung der Brennstoffdampfrückgewinnung für Otto-Direkteinspritzbrennkraftmaschinen
DE10138106B4 (de) Verfahren und System zur Steuerung für einen Verbrennungsmotor
DE69922292T2 (de) Vorrichting zur Steuerung der Moden einer Brennkraftmaschine mit Direkteinspritzung
EP1317617B1 (fr) Procede et dispositif de commande electronique pour etablir un diagnostic de la formation du melange d'un moteur a combustion interne
DE3714151A1 (de) Steuereinrichtung fuer die drosselklappe eines verbrennungsmotors
EP1315630B1 (fr) Procede de diagnostic de la soupape de ventilation du reservoir a carburant et dispositif de commande
DE19913272B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102015224402A1 (de) Kraftstoffzumessung für den Betrieb eines Verbrennungsmotors
DE60122642T2 (de) Steuerungsvorrichtung für das Kraftstoff-Luft-Verhältnis in einer Brennkraftmaschine
DE10137851B4 (de) Kraftstoffeinspritzregelsystem für einen direkt einspritzenden Motor
EP0995025B1 (fr) Procede de fonctionnement d'un moteur a combustion interne notamment pour un vehicule a moteur
EP1317609B1 (fr) Procede et dispositif de commande electronique servant a commander la regeneration d'un reservoir intermediaire a vapeur de carburant dans des moteurs thermiques
EP1066458B1 (fr) Procede de fonctionnement d'un moteur a combustion interne
WO2007036411A1 (fr) Procede et dispositif pour commander un moteur a combustion interne
EP1230471B1 (fr) Procede de fonctionnement d'un pot catalytique a accumulation d'un moteur a combustion interne
EP1317610B1 (fr) Procede de determination de la teneur en carburant du gaz de regeneration dans un moteur thermique comprenant une injection directe d'essence a fonctionnement par phases
EP1111208B1 (fr) Procédé de réglage d'un mode de fonctionnement d'un moteur à combustion interne pendant la régénération d'un catalyseur à stockage placé dans un tuyau d'échappement
EP1206635B1 (fr) Procede pour faire fonctionner un moteur a combustion interne
WO2004055351A1 (fr) Procede d'exploitation d'un moteur a combustion interne, et moteur a combustion interne et appareil de commande appropries
WO2003078817A1 (fr) Procede pour faire fonctionner un systeme de dosage de carburant d'une automobile, programme informatique, appareil de commande et systeme de dosage de carburant
WO2001009490A1 (fr) Procede permettant de faire fonctionner un moteur a combustion interne
DE102004041217A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102004002896A1 (de) Motorsteuerung für ein mit einer Abgasreinigungsvorrichtung ausgestattetes Fahrzeug
EP1184557B1 (fr) Procédé d'utilisation d'un moteur à combustion interne d'un véhicule automobile
DE10029858A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030404

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR

17Q First examination report despatched

Effective date: 20061107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR

REF Corresponds to:

Ref document number: 50113514

Country of ref document: DE

Date of ref document: 20080306

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2296801

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081017

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100830

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50113514

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50113514

Country of ref document: DE

Effective date: 20110720

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160825

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161027

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113514

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170831