EP1315892B1 - Verfahren zur gemischadaption - Google Patents

Verfahren zur gemischadaption Download PDF

Info

Publication number
EP1315892B1
EP1315892B1 EP01962669A EP01962669A EP1315892B1 EP 1315892 B1 EP1315892 B1 EP 1315892B1 EP 01962669 A EP01962669 A EP 01962669A EP 01962669 A EP01962669 A EP 01962669A EP 1315892 B1 EP1315892 B1 EP 1315892B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
variable
temperature
low temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962669A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1315892A1 (de
Inventor
Jens Wagner
Peter Kaltenbrunn
Gholamabas Esteghlal
Klaus Hirschmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1315892A1 publication Critical patent/EP1315892A1/de
Application granted granted Critical
Publication of EP1315892B1 publication Critical patent/EP1315892B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0606Fuel temperature

Definitions

  • US Pat. No. 4,584,982 describes an adaptation with different adaptation variables in different regions of the load / rotational speed spectrum of an internal combustion engine.
  • the different adaptation variables are aimed at the compensation of different errors. According to cause and effect, three types of errors can be distinguished: Errors of a hot-film air mass meter have a multiplicative effect on the fuel metering. Leakage influences have an additive effect per unit of time and errors in the compensation of the pull-in delay of the injection valves have an additive effect per injection.
  • the invention is directed to compensate for the temperature-related mismatches that are not observed when the engine is warm.
  • a further temperature-dependent correction variable compensates for the possibly occurring mismatching of the precontrol at low engine temperatures. This is particularly advantageous in order to allow a reliable statement on the secondary air mass flow in the diagnosis of a secondary air system, which is preferably active at low engine temperatures.
  • the compensation of the temperature-dependent error relieves the lambda control during subsequent cold starts.
  • the normal mixture adaptation When the normal mixture adaptation is active at high engine temperature, among other things, it learns the density of the fuel. At low temperature, the fuel has a higher density than at high temperature and thus tunes the adapted at high temperatures feedforward no longer.
  • the invention eliminates this disadvantage by the additional adaptation of the pilot control at low temperature.
  • An embodiment provides that the lower interval limit of an integration interval specified in the independent claims lies in a range of 10 ° C.-30 ° C., in particular 20 ° C., and that the upper interval limit of the integration interval stated in the independent claims corresponds to that temperature. in which the conventional adaptation is activated. This limit is for example at 70 ° C.
  • Another embodiment provides that the one further correction variable, which acts on the fuel metering so that its effect is greater at low temperatures of the internal combustion engine than at high temperatures, depending on the engine temperature is changed so that at high temperatures no differences result to the known adaptation with a warm engine.
  • Another embodiment provides that an output of an integrator with a temperature-dependent variable is linked in such a way that the result of the combination becomes smaller as the temperature increases.
  • the temperature-dependent variable form a varying between zero and one multiplicative correction, wherein the value is zero when the engine is warm. Between these extremes, the correction can vary continuously.
  • the integration speed can be dependent on values for load and speed of the internal combustion engine.
  • the invention is also directed to an electronic control device for carrying out the above-mentioned methods and embodiments.
  • Fig. 1 shows the technical environment of the invention.
  • Fig. 2 illustrates the formation of a fuel metering signal based on the signals of Fig. 1 and Fig. 3 discloses the formation of an inventive intervention in the formation of the Kraftstoffzumesssignals in the form of function blocks as an embodiment of the invention.
  • the fuel metering means 4 can be, for example, an arrangement of injectors for direct injection of Fuel in the combustion chambers of the engine exist.
  • the sensor 5 provides the controller with a signal about the air mass ml drawn by the engine.
  • Sensor 6 provides an engine speed signal n.
  • Sensor 7 provides the engine temperature T and sensor 8 provides a signal Us on the exhaust gas composition of the engine.
  • the control unit forms, in addition to other control variables, the fuel metering signals ti for controlling the fuel metering means 4 such that a desired behavior of the engine, in particular a desired exhaust gas composition, is established.
  • FIG. 2 shows the formation of the fuel metering signal.
  • Block 2.1 represents a map, which is addressed by the rotational speed n and the relative air charge rl and are stored in the pilot control values rk for the formation of the fuel metering signals.
  • the relative air charge rl is related to a maximum filling of the combustion chamber with air and thus to a certain extent indicates the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml.
  • the quantity rk corresponds to the fuel quantity assigned to the air quantity rl.
  • Block 2.2 shows the known multiplicative lambda control intervention.
  • a mismatch of the amount of fuel to the amount of air is reflected in the signal Us of the exhaust probe.
  • a controller 2.3 forms the control manipulated variable fr, which reduces the mismatch via the intervention 2.2.
  • Block 2.4 thus represents the conversion of the relative and corrected fuel quantity into a real drive signal taking into account fuel pressure, injection valve geometry, etc.
  • the blocks 2.5 to 2.9 represent the known operating parameter-dependent mixture adaptation, which can act multiplicatively and / or additively.
  • the circle 2.9 should represent these 3 possibilities.
  • the switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 operating parameters of the internal combustion engine such as temperature T, air mass ml and speed n are supplied. Means 2.6 in conjunction with the switch 2.5 thus allows a operating parameter range-dependent activation of the three adaptation options mentioned.
  • the formation of the adaptation engagement on fuel metering signal formation is illustrated by blocks 2.7 and 2.8.
  • Block 2.7 forms the mean value frm of the control manipulated variable fr when the switch 2.5 is closed. Deviations of the mean value frm from the neutral value 1 are taken over by the block 2.8 into the adaptation intervention variable fra.
  • the control manipulated variable fr initially goes against 1.05 due to a mismatching of the precontrol.
  • the deviation 0.05 from the value 1 is converted from block 2.8 to the value fra of Adopted adaptation.
  • fra goes against 1.05, with the result that again goes to 1.
  • the adaptation ensures that misadjustments of the feedforward control do not have to be compensated for every change of operating point.
  • This adaptation of the adaptation variable fra is carried out at high temperatures of the internal combustion engine, for example above a cooling water temperature of 70 ° Celsius, with then closed switch 2.5. Once adjusted, fra also acts with open switch 2.5 on the formation of the fuel metering signal.
  • Block 3.1 provides the deviation of the mean control variable frm from the value 1 to an integrator block 3.2.
  • Block 3.3 activates the comparator for comparatively low engine temperatures T from an interval TMN ⁇ T ⁇ TMX.
  • TMN as the lower interval limit can be, for example, 10 to 30, in particular 20 ° Celsuis;
  • TMX as the upper interval limit may, for example, correspond to the temperature at which the conventional adaptation is activated by closing the switch 2.5. A typical value for this temperature is 70 ° Celsius.
  • the output value of the integrator provides with the value frak a measure of the mismatch with a comparatively cold motor.
  • An essential feature of the invention is this value in the case of a cold engine in fuel metering signal formation to take into account without differences at high temperatures to the known adaptation with a warm engine.
  • ftk represents a multiplicative correction varying between zero and one.
  • the value zero results when the engine is warm, that is, at T> TMX.
  • the minimum selection in block 3.7 returns the value TMX.
  • Block 3.8 the difference between TMX and TMX results in the value zero, which is fed to the quotient formation in block 3.9 as a counter.
  • the sum frat has the value 1 and therefore does not change the fuel metering signal formation in the case of a warm engine in the case of the multiplicative link in block 2.10.
  • ftk has a maximum attenuating effect on frak.
  • the map 3.10 provides values K for the integration speed in the integrator 3.2 as a function of values for drl and n. For example, K becomes smaller the larger drl.
  • the size drl is the change in the intake air mass, which is particularly large, for example, in transient operating conditions. In this way, mismatches in transient operating states affect the adaptation only in a weaker form.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
EP01962669A 2000-09-02 2001-08-23 Verfahren zur gemischadaption Expired - Lifetime EP1315892B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043256 2000-09-02
DE10043256A DE10043256A1 (de) 2000-09-02 2000-09-02 Verfahren zur Gemischadaption
PCT/DE2001/003227 WO2002018766A1 (de) 2000-09-02 2001-08-23 Verfahren zur gemischadaption

Publications (2)

Publication Number Publication Date
EP1315892A1 EP1315892A1 (de) 2003-06-04
EP1315892B1 true EP1315892B1 (de) 2006-06-21

Family

ID=7654737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962669A Expired - Lifetime EP1315892B1 (de) 2000-09-02 2001-08-23 Verfahren zur gemischadaption

Country Status (6)

Country Link
US (1) US6883510B2 (es)
EP (1) EP1315892B1 (es)
JP (1) JP4773675B2 (es)
DE (2) DE10043256A1 (es)
ES (1) ES2266239T3 (es)
WO (1) WO2002018766A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337228A1 (de) * 2003-08-13 2005-03-17 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
JP4102401B2 (ja) * 2005-11-02 2008-06-18 三菱電機株式会社 内燃機関制御装置
DE102006040743B4 (de) * 2006-08-31 2019-05-16 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
DE102006061682B4 (de) 2006-12-28 2022-01-27 Robert Bosch Gmbh Verfahren zur Vorsteuerung einer Lambdaregelung
DE102007016572B4 (de) 2007-04-07 2018-08-02 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
DE102015220403A1 (de) 2015-10-20 2017-04-20 Robert Bosch Gmbh Verfahren zur Gemischadaption bei einer Brennkraftmaschine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1596504A (en) * 1976-11-04 1981-08-26 Lucas Industries Ltd Electronic fuel injection control for an internal combustion engine
US4248196A (en) * 1979-05-01 1981-02-03 The Bendix Corporation Open loop compensation circuit
DE3042245A1 (de) * 1980-11-08 1982-06-09 Robert Bosch Gmbh, 7000 Stuttgart Elektronisches brennkraftmaschinensteuersystem
US4513722A (en) * 1981-02-20 1985-04-30 Honda Giken Kogyo Kabushiki Kaisha Method for controlling fuel supply to internal combustion engines at acceleration in cold conditions
JPS5946329A (ja) * 1982-08-25 1984-03-15 Honda Motor Co Ltd 内燃エンジンの始動後燃料供給制御方法
DE3341015A1 (de) * 1983-11-12 1985-05-30 Robert Bosch Gmbh, 7000 Stuttgart Einrichtung fuer die gemischaufbereitung bei einer brennkraftmaschine
JPS6293445A (ja) * 1985-10-18 1987-04-28 Honda Motor Co Ltd 内燃エンジンの始動時の燃料供給制御方法
JP2580334B2 (ja) * 1989-07-26 1997-02-12 株式会社日本自動車部品総合研究所 パイロット噴射制御装置
US5074271A (en) * 1990-10-26 1991-12-24 Fuji Heavy Industries Ltd. Fuel injection rate control system for starting two-cycle engine
DE4325844A1 (de) * 1993-07-31 1995-02-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur ergänzenden Kraftstoffzumessung bei einem Verbrennungsmotor
JP2000008858A (ja) * 1998-06-17 2000-01-11 Toyota Autom Loom Works Ltd 直噴式エンジン及びそのピストン

Also Published As

Publication number Publication date
ES2266239T3 (es) 2007-03-01
JP4773675B2 (ja) 2011-09-14
DE50110277D1 (de) 2006-08-03
US6883510B2 (en) 2005-04-26
JP2004507655A (ja) 2004-03-11
DE10043256A1 (de) 2002-03-14
US20040035405A1 (en) 2004-02-26
WO2002018766A1 (de) 2002-03-07
EP1315892A1 (de) 2003-06-04

Similar Documents

Publication Publication Date Title
EP1315894B1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
DE102007028900B4 (de) Verfahren und Vorrichtung zur Diagnose eines mit einer Kraftstoffverteilerleiste in Verbindung stehenden Einspritzventils einer Brennkraftmaschine
DE102008043165B4 (de) Verfahren und Vorrichtung zur Kalibrierung der Voreinspritzmenge einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE102008012607B4 (de) Verfahren und Vorrichtung zur Ermittlung eines Adaptionswertes für die Einstellung eines Luft-Kraftstoff-Verhältnis eines Einspritzsystems eines Verbrennungsmotors
EP1317617B1 (de) Verfahren und elektronische steuereinrichtung zur diagnose der gemischbildung einer brennkraftmaschine
EP2297444B1 (de) Verfahren und vorrichtung zur druckwellenkompensation bei zeitlich aufeinander folgenden einspritzungen in einem einspritzsystem einer brennkraftmaschine
DE102014202101B4 (de) Abschwächung des fehlertrends zur verschlechterung von luft-kraftstoff-verhältnissensoren
DE102006040743A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1712768A2 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in wenigstens einen Brennraum einer Brennkraftmaschine
DE4423241C2 (de) Verfahren zur Einstellung der Zusammensetzung des Betriebsgemisches für eine Brennkraftmaschine
DE102005056519A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19927674A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE3429351C2 (de) Verfahren und Einrichtung zur Steuerung und/oder Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
EP1315892B1 (de) Verfahren zur gemischadaption
DE102009045792A1 (de) Verfahren und Steuergerät zum Abgleichen von Abgassondensignalen beim Betrieb eines Verbrennungsmotors mit variabler Spülrate
EP1315895B1 (de) Verfahren zur gemischadaption bei verbrennungsmotoren mit benzindirekteinspritzung
DE19900729A1 (de) System zum Betreiben einer Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE10256906B4 (de) Verfahren zur Regelung eines Luft-/Kraftstoff-Gemisches bei einer Brennkraftmaschine
EP2032824A1 (de) Verfahren und vorrichtung zur steuerung der kraftstoffzumessung in wenigstens einen brennraum einer brennkraftmaschine
EP1212526B1 (de) Verfahren und vorrichtung zum regeln der abgasrückführung einer brennkraftmaschine
EP1741910A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1382822B1 (de) Verfahren zur Adaption eines Kraftstoff-Luft-Gemisches bei einem Verbrennungsmotor und elektronische Steuereinrichtung
DE4323244B4 (de) Elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine
DE102006030192A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102005017130A1 (de) Verfahren zur Steuerung einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030402

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR SE

17Q First examination report despatched

Effective date: 20050607

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HIRSCHMANN, KLAUS

Inventor name: ESTEGHLAL, GHOLAMABAS

Inventor name: WAGNER, JENS

Inventor name: KALTENBRUNN, PETER

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR SE

REF Corresponds to:

Ref document number: 50110277

Country of ref document: DE

Date of ref document: 20060803

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266239

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070322

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170901

Year of fee payment: 17

Ref country code: FR

Payment date: 20170823

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20170830

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181024

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20190918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180824

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110277

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303