EP1313664A1 - Redundantes sicherheitssystem eines fahrzeuges - Google Patents
Redundantes sicherheitssystem eines fahrzeugesInfo
- Publication number
- EP1313664A1 EP1313664A1 EP01978301A EP01978301A EP1313664A1 EP 1313664 A1 EP1313664 A1 EP 1313664A1 EP 01978301 A EP01978301 A EP 01978301A EP 01978301 A EP01978301 A EP 01978301A EP 1313664 A1 EP1313664 A1 EP 1313664A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensors
- signals
- control unit
- vehicle
- redundant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F11/00—Lifting devices specially adapted for particular uses not otherwise provided for
- B66F11/04—Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
- B66F11/044—Working platforms suspended from booms
- B66F11/046—Working platforms suspended from booms of the telescoping type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66F—HOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
- B66F17/00—Safety devices, e.g. for limiting or indicating lifting force
- B66F17/006—Safety devices, e.g. for limiting or indicating lifting force for working platforms
Definitions
- the invention relates to a redundant safety system of a vehicle, in particular a mobile work platform, according to the features of the preamble of patent claim 1.
- Safety systems are known in vehicles, particularly in work vehicles such as mobile work platforms or the like. In these safety systems, when an operating parameter leaves a predetermined range or reaches a certain target value, a warning or countermeasure is carried out in order to avoid safety-critical conditions.
- the angle of the main arm or the load on the work cage can be detected, z. B. the angle or the
- Basket load must be reduced by taking appropriate countermeasures.
- the sensors that record the operating parameters are usually double, i. H. redundant, so that in the event that a sensor is defective or fails, the signal from the still available sensor can be used.
- the invention is therefore based on the object of providing a redundant safety system for a vehicle which does not have the disadvantages described at the outset and can therefore effectively prevent safety-critical conditions and provide protection against manipulation.
- At least two sensors are designed to detect different parameters and the signals of the at least two sensors can be processed and evaluated separately in the at least one control unit.
- this has the advantage that only a single sensor is required to detect an operating parameter, while — as explained below — the use of two sensors ensures that safety-critical conditions are avoided.
- a first output signal is thus calculated from the signal detected by the first sensor, which represents a first operating parameter. The same applies to the second
- the at least two sensors can be of the same type, but are particularly advantageous because of the security against manipulation of different types. From the two output signals of the two sensors, with more than two sensors and
- the presence of at least one sensor or a group of sensors on each control unit in the respective control unit calculates the comparable actual value and supplies it to the other control unit, so that an error can be determined if the comparable actual values deviate.
- a comparison between the actual values of the two control units need not necessarily be carried out; It is also conceivable that the comparable actual values are compared with stored target values, that is to say that if the calculated actual value falls below or exceeds a predetermined target value or leaves a specific target value range or reaches a predefinable target value range, at least one error message is generated. It is therefore provided that the two control units (computers) with different physical values recorded in different ways come to different computing paths and compare them with one another.
- control unit in the mobile working platform a control unit is installed in the driver's cab of the vehicle of the working platform, while the second control unit in the
- Basket of the working platform is located.
- the error message can be displayed both in the driver's cabin of the vehicle and in the basket.
- actuators (drive elements) of the vehicle can also be controlled in such a way that a non-safety-critical state is assumed. This can mean, for example in the mobile working platform, that the angle of inclination of the main arm is changed in the direction that the vehicle is prevented from tipping over.
- a redundant safety system is described below for the purpose of explaining the invention using the example of a mobile work platform and explained with reference to the figures.
- the invention is not limited to use in a mobile work platform, but can generally be used in vehicles or work vehicles.
- FIG. 1 shows a first embodiment of a redundant security system
- Figure 2 shows a second embodiment of a redundant security system
- FIG. 1 shows a first embodiment of a redundant safety system of a vehicle, in particular a work vehicle, which has a control unit 1.
- This control unit 1 comprises an input unit 2, via which outside influence on the control unit 1 (for example for carrying out an update) can be exerted.
- the control unit 1 comprises a display unit 3, via which operating parameters, calculated values or the state of the control unit 1 can be provided. Via the display unit 3, the delivery of the
- control unit 1 comprises a computing unit 4 and a storage unit 5, the computing unit 4 processing the signals fed to it and evaluating them in cooperation with the storage unit 5 and being able to generate the comparable actual value or several comparable actual values.
- At least two sensors are connected to the control unit 1, which can be of the same type or different from one another, but record different operating parameters of the vehicle.
- FIG. 1 shows that a first group of sensors 6 to 9 and a second group of sensors 10 to 13 are connected to the control unit 1.
- the number of groups or the number of sensors themselves depends on the operating parameters that are to be recorded when the vehicle is in operation.
- actuators of the same type or different from one another are also required, which are shown by way of example in FIG. 1 as a first group of actuators 14 to 16 and as a second group of actuators 17, 18.
- the number of the respective actuators or groups depends on the components of the vehicle to be controlled.
- the control unit 1 is designed, for. B. from the signals of the sensors 6 to 9 of the first group in a first calculation way to generate a first actual value.
- the sensors 10 to 13 of the second group are designed to detect further operating parameters and to calculate a further actual value using a different calculation method than for the sensors 6 to 9 of the first group, although both calculated actual values are comparable with one another, ie one Represent operating parameters or a fictitious parameter.
- comparable target parameters or actual values are calculated which are directly comparable with one another.
- an error message can be issued to the operator of the vehicle via the display unit 3 or at least one of the actuators 14 are controlled in such a way that the current state is maintained (switch-off function) or a safety-uncritical state is achieved again.
- the manner in which the at least one actuator is activated when a safety-critical state has been reached can also be stored in the storage unit 5.
- FIG. 2 shows a further embodiment of a redundant security system, with two control units, each control unit each having a display and
- Operating console 100, 200 (which includes the display unit 3 and the input unit 2) and each comprises a mobile controller 101, 201.
- the display and control console 100, 200 is connected to the mobile controller 101, 201 via a data transmission link 19, 20.
- the two control units, in particular the mobile controls 101 and 201 are connected to one another via a data transmission link 21 for the purpose of data exchange.
- At least one sensor, in particular a group of sensors 22, 23 (at least two), and at least one actuator, in particular a group of actuators 24, 25, are again connected to the mobile controls 101, 201.
- the security system shown in FIG. 2 works on the same principle as has already been described for the security system according to FIG. 1.
- the design of the security system according to Figure 2 has the advantage that, for. B.
- the display and control consoles 100 and 200 can be installed once in the driver's cab and once in the basket of the work platform in order to be able to give the operators the appropriate information, in particular the error messages, at these points.
- the presence of the mobile controls 101 and 201 has the advantage that, for. B. the
- Actuation of the basket (raising and lowering and deflecting the arm the work platform) can be remotely controlled by a person next to the vehicle or in the basket.
- the control process can intervene if necessary from the further mobile control.
- the controls 100/101 can also each be designed as a control unit (analogous to the control unit 1 from FIG. 1).
- FIG. 3 shows a preferred application of the invention to a mobile work platform 26.
- a rotating platform 28 is installed on a mobile vehicle chassis 27 with driver's cab, via which a telescopic
- FIG. 3 also shows those operating parameters (such as, for example, the main angle of the arm, the angle of inclination of the basket arm, the force sensor of the basket load, etc.) that are detected by the sensors shown and described in FIGS. 1 and 2.
- the length or the pressure of the support of hydraulic support pillars 33 can be recorded and evaluated as operating parameters, which are required for the stability of the working platform 26 during operation.
- control unit (s) can be designed in such a way that they can monitor and control processes (for example the operation of the
- Vehicle or only monitor the process and then intervene (for example, by actuating an actuator) if a safety-critical state has been reached or is about to be reached in order to prevent this.
- the extension of the basket 31 could be stopped (switch-off function) if there is a risk of tipping over.
- both control units can both compare the utilization calculation leading to the shutdown and also compare the directly measured values (geometry) or the back-calculated values (basket load from geometry and pressure).
- this basic concept can also be extended to the undercarriage. From the recorded values for moment and radius or load and position (radius) and idle moment, it is possible to calculate the center of gravity of the complete body above the swivel table. From this information and the position detected by the angle of rotation, the supporting forces that occur can be calculated back. The length of the sliding beams measured by switches or analogue encoders is also included (horizontal support position).
- the actual support force can be directly recorded by pressure measurement on all four supports and compared directly with the calculated value. It is therefore possible to check a rotary encoder that is only of simple design. Single errors in support pressure, support length or incorrect position in the turning range are recognized. This provides additional protection against tipping over by measuring the supporting force.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mechanical Engineering (AREA)
- Component Parts Of Construction Machinery (AREA)
- Safety Devices In Control Systems (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10042816 | 2000-08-30 | ||
DE10042816 | 2000-08-30 | ||
DE10138898 | 2001-08-08 | ||
DE10138898A DE10138898A1 (de) | 2000-08-30 | 2001-08-08 | Redundantes Sicherheitssystem eines Fahrzeuges |
PCT/EP2001/009779 WO2002018264A1 (de) | 2000-08-30 | 2001-08-24 | Redundantes sicherheitssystem eines fahrzeuges |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1313664A1 true EP1313664A1 (de) | 2003-05-28 |
EP1313664B1 EP1313664B1 (de) | 2008-10-08 |
Family
ID=26006869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01978301A Expired - Lifetime EP1313664B1 (de) | 2000-08-30 | 2001-08-24 | Redundantes sicherheitssystem eines fahrzeuges |
Country Status (3)
Country | Link |
---|---|
US (1) | US20040085184A1 (de) |
EP (1) | EP1313664B1 (de) |
WO (1) | WO2002018264A1 (de) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1378482A1 (de) * | 2002-07-04 | 2004-01-07 | Bison stematec, Maschinenbau- und Hubarbeitsbühnen Produktionsgesellschaft mbH | Hubarbeitsbühne |
DE20210958U1 (de) | 2002-07-19 | 2003-01-09 | MOBA-Mobile Automation GmbH, 65604 Elz | Lasterfassungseinrichtung |
EP1422190A1 (de) * | 2002-11-25 | 2004-05-26 | Jennissen-Gruppe GmbH | Fahrbare Hubarbeitsbühne |
DE50302492D1 (de) * | 2003-04-08 | 2006-04-27 | Palfinger Europ Gmbh Bergheim | Nivelliervorrichtung und Verfahren zur Nivellierung eines Arbeitskorbs einer Hubarbeitsbühne |
ITMO20030296A1 (it) * | 2003-10-31 | 2005-05-01 | Aron S P A | Apparato e metodo per controllare il livellamento di un piano di supporto. |
EP1902998A1 (de) * | 2006-09-22 | 2008-03-26 | ISB S.r.l. | Sicherheitssystem |
FR2908119B1 (fr) * | 2006-11-07 | 2009-02-06 | Haulotte Group Sa | Nacelle elevatrice et procede de commande d'une telle nacelle |
CN106836362B (zh) * | 2011-03-03 | 2019-08-09 | 伊顿智能动力有限公司 | 操作液压电路的控制系统的方法、控制液压致动系统的方法、为液压系统配置控制器的方法 |
EP3943759A3 (de) | 2012-12-26 | 2022-05-04 | Danfoss Power Solutions II Technology A/S | Fehlerisolierungs- und dekontaminierungsverfahren für elektrohydraulische ventile |
ES2569259T3 (es) * | 2013-04-10 | 2016-05-09 | Iveco Magirus Ag | Sistema de elevación aéreo, en particular sistema de escalera giratoria |
EP3362400B1 (de) * | 2015-10-16 | 2019-09-11 | Palfinger AG | Anordnung aus einer steuerung und einem mobilen steuerungsmodul |
CN106829812B (zh) * | 2017-01-10 | 2022-11-15 | 徐工消防安全装备有限公司 | 高空作业平台电控系统、电控方法及高空作业平台 |
CN106829754B (zh) * | 2017-03-24 | 2018-05-22 | 徐州海伦哲专用车辆股份有限公司 | 一种绝缘高空作业车及其绝缘工作平台自动限幅方法 |
EP3634117B1 (de) | 2017-06-07 | 2021-12-29 | DeLaval Holding AB | System zum bedienen eines melkkarussells und verfahren zum bedienen eines melkkarussells |
IT201800010234A1 (it) * | 2018-11-12 | 2020-05-12 | Manitou Italia Srl | Telehandler con sistema di controllo. |
US11919756B2 (en) * | 2020-02-04 | 2024-03-05 | Xtreme Manufacturing, Llc | Aerial work vehicle boom auxiliary control panel |
US20210238021A1 (en) * | 2020-02-04 | 2021-08-05 | Xtreme Manufacturing, Llc | Aerial work vehicle auxiliary wireless control device |
GB2618581A (en) * | 2022-05-11 | 2023-11-15 | Caterpillar Inc | Safety control unit for a lifting arm machine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4831539A (en) * | 1984-04-27 | 1989-05-16 | Hagenbuch Roy George Le | Apparatus and method for locating a vehicle in a working area and for the on-board measuring of parameters indicative of vehicle performance |
US4722044A (en) * | 1985-03-19 | 1988-01-26 | Sundstrand Corporation | Boom control system |
GB8513772D0 (en) * | 1985-05-31 | 1985-07-03 | Coal Industry Patents Ltd | Resultant velocity control |
FR2584835A1 (fr) * | 1985-07-12 | 1987-01-16 | Ibis International | Appareillage de commande d'un elevateur de nacelle a partir de la nacelle, a transmission optique numerique des commandes aux servo-mecanismes |
IT1204913B (it) * | 1987-03-06 | 1989-03-10 | 3B6 Sistemi Elettro Idraulici | Dispositivo limitatore di sbraccio e/o di momento per piataforme elevatrici |
DE4030954C2 (de) * | 1990-09-29 | 1994-08-04 | Danfoss As | Verfahren zur Steuerung der Bewegung eines hydraulisch bewegbaren Arbeitsgeräts und Bahnsteuereinrichtung zur Durchführung des Verfahrens |
DE4133268A1 (de) * | 1991-10-08 | 1993-04-15 | Bosch Gmbh Robert | Vorrichtung zur steuerung der antriebsleistung eines fahrzeuges |
JP3438406B2 (ja) * | 1995-05-18 | 2003-08-18 | 株式会社デンソー | 内燃機関のスロットル制御装置 |
DE19704313C2 (de) * | 1997-02-05 | 2003-07-03 | Siemens Ag | Verfahren und Einrichtung zum Steuern einer Brennkraftmaschine |
US6233511B1 (en) * | 1997-11-26 | 2001-05-15 | Case Corporation | Electronic control for a two-axis work implement |
SG82672A1 (en) * | 1999-02-04 | 2001-08-21 | Snorkel International Inc | Aerial work platform boom having ground and platform controls linked by a controller area network |
-
2001
- 2001-08-24 US US10/362,839 patent/US20040085184A1/en not_active Abandoned
- 2001-08-24 WO PCT/EP2001/009779 patent/WO2002018264A1/de active Application Filing
- 2001-08-24 EP EP01978301A patent/EP1313664B1/de not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO0218264A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2002018264A1 (de) | 2002-03-07 |
EP1313664B1 (de) | 2008-10-08 |
US20040085184A1 (en) | 2004-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1313664B1 (de) | Redundantes sicherheitssystem eines fahrzeuges | |
EP2984350B1 (de) | Elektrohydraulischer steuerkreis | |
EP3303732B1 (de) | Grossmanipulator mit schnell ein- und ausfaltbarem knickmast | |
DE60221949T2 (de) | Elektrische Lenkung für ein Fahrzeug mit dreifacher Redundanz | |
DE102005040105B4 (de) | Steuerknüppelvorrichtung mit redundanter Sensorverarbeitung | |
EP2347309B1 (de) | Verfahren und vorrichtung zur sicheren erfassung einer kinematischen grösse eines manipulators | |
EP2674384B1 (de) | Verfahren zur Überwachung der Kransicherheit sowie Kran | |
EP2139803B2 (de) | Verfahren zum steuern einer lastbewegungsvorrichtung und steuerung einer lastbewegungsvorrichtung | |
WO2017178413A1 (de) | ELEKTROHYDRAULISCHER STEUERKREIS FÜR EINEN GROßMANIPULATOR | |
EP3359913A1 (de) | Überwachung eines sicherheitsrelevanten parameters eines koordinatenmessgeräts | |
EP2449288B1 (de) | Elektromechanische linearstelleinheit | |
EP0394412B1 (de) | Regelungsverfahren für einen kran | |
EP3634833B1 (de) | Vorrichtung und verfahren zum pilotierten fahren eines kraftfahrzeugs | |
DE102012011726B4 (de) | Verfahren zum Betreiben eines Krans mit Überwachungseinheit sowie Kran | |
EP3368462A1 (de) | Verfahren zum betreiben von mindestens zwei hebezeugen in einem gruppen-betrieb und anordnung mit mindestens zwei hebezeugen | |
EP3137948B1 (de) | Vorrichtung und verfahren zum fehlersicheren überwachen eines beweglichen maschinenteils | |
DE10138898A1 (de) | Redundantes Sicherheitssystem eines Fahrzeuges | |
EP3470301B1 (de) | Lenkungssteuersystem für ein lenksystem eines kraftfahrzeuges sowie verfahren zum betreiben eines lenkungssteuersystems | |
DE102020000546A1 (de) | Anlage mit auf einer Verfahrfläche der Anlage bewegbarem Mobilteil | |
EP0747535A1 (de) | Vorrichtung und Verfahren zum Bewegen von Bauwerken | |
WO2022117507A2 (de) | Stellvorrichtung | |
EP3301065B1 (de) | Verfahren zur bedienung eines flurförderzeugs mit einem bedienelement sowie ein flurförderzeug | |
EP2844804B2 (de) | Baumaschinesteuerung | |
EP3466662B1 (de) | Sichere steuerungsvorrichtung und verfahren zum verstellen der hublänge einer exzenterpresse | |
EP1800926A2 (de) | Lastabhängige Betätigungsanordnung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030220 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20061218 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B66F 17/00 20060101AFI20080401BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50114396 Country of ref document: DE Date of ref document: 20081120 Kind code of ref document: P |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090119 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090218 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090108 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
26N | No opposition filed |
Effective date: 20090709 |
|
BERE | Be: lapsed |
Owner name: PAT G.M.B.H. Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100302 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090824 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081008 |