EP1307874A1 - Procede et circuit de commande d'un ecran a plasma - Google Patents

Procede et circuit de commande d'un ecran a plasma

Info

Publication number
EP1307874A1
EP1307874A1 EP01963085A EP01963085A EP1307874A1 EP 1307874 A1 EP1307874 A1 EP 1307874A1 EP 01963085 A EP01963085 A EP 01963085A EP 01963085 A EP01963085 A EP 01963085A EP 1307874 A1 EP1307874 A1 EP 1307874A1
Authority
EP
European Patent Office
Prior art keywords
column
activation
activated
input
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01963085A
Other languages
German (de)
English (en)
Other versions
EP1307874B1 (fr
Inventor
Gilles Troussel
Céline MAS
Eric Benoit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP1307874A1 publication Critical patent/EP1307874A1/fr
Application granted granted Critical
Publication of EP1307874B1 publication Critical patent/EP1307874B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/025Reduction of instantaneous peaks of current

Definitions

  • the present invention relates to plasma screens and more particularly to the control of the cells of a plasma screen.
  • a plasma screen is a matrix type screen, formed of cells arranged at the intersections of rows and columns.
  • a cell comprises a cavity filled with a rare gas, and at least two control electrodes.
  • the cell is selected by applying a potential difference between. its control electrodes, then an ionization of the cell gas is triggered, generally by means of a third control electrode. This ionization is accompanied by an emission of ultraviolet rays.
  • the creation of the light point is obtained by excitation of a red, green or blue luminescent material by the rays emitted.
  • FIG. 1 represents a conventional plasma screen structure formed by cells 4.
  • Each cell 4 has two control electrodes respectively connected to a ⁇ line and to a column 8.
  • the selection of cells, with a view to creating images, is conventionally carried out by logic circuits producing control signals.
  • the logical states of these deter- undermine the cells which are controlled to produce a light point and those which are controlled not to produce one.
  • the ionization of the gas in a cell requires that potentials of the order of a hundred volts be applied between the two control electrodes for a predetermined duration, of the order of 2 microseconds.
  • Each cell has an equivalent capacity of the order of several tens of picofarads.
  • FIG. 2 represents a plasma screen whose cells 4 are represented by an equivalent capacity.
  • a line control circuit 10 for each line 6 comprises a line control block '14 having an output connected to the line 6.
  • a column control circuit 12 comprises, for each column 8 a column control unit 18 which an output 20 is connected to the column 8.
  • the circuits 10 and 12 are generally integrated on the same semiconductor chip.
  • the cells of a plasma screen are activated line by line.
  • the lines that are not activated are set to a resting potential VDDl (for example 150 V).
  • the activated line is brought to an GND activation potential (0 V).
  • VDD2 80 V
  • the columns corresponding to the other points of the activated line are brought to the GND potential (0 V).
  • the lit cells of the activated row see a column-row potential equal to VDD2 - GND (80 V) and the unlit cells of the activated row see a column-row potential equal to GND - GND (0 V).
  • Each line control block 14 comprises a pair of complementary power transistors 22 and 24.
  • the transistor 24 receives the potential VDDl on its source. Its drain is connected to a line 6 and its gate receives an LSN command signal for line inactivation.
  • the source of transistor 22 is linked to potential GND. Its drain is connected to line 6 and its grid receives an LS control signal complementary to the LSN signal.
  • the LS and LSN signals are produced, for example, by a microprocessor not shown.
  • Each column control block 18 comprises an output stage 5 comprising a pair of power transistors (not shown) making it possible to bring the output 20 to the potentials VDD2 or GND as a function of a logic signal for selecting the LCS column supplied. on stage 26.
  • Each control block 18 also includes a memory element 28 connected, for example to 10. a microprocessor not shown, for receiving and memorizing the value of the logic signal LCS intended for output stage 26.
  • Each block control 18 further comprises a logic switch 30 controlled by a validation signal VAL, connected between the memory element 28 and the output stage 26.
  • the logic switch 30 is provided to supply an inactive signal to the stage of output 26 as long as the validation signal VAL is inactive, for example at a low logic level.
  • the switch 30 is also provided for, when the signal VAL is active, supply to the output stage 26 the LCS signal stored in the element
  • the signal VAL is conventionally activated for a predetermined duration after each activation of a line of the screen.
  • FIG. 3 is a timing diagram illustrating the voltage V6 of a line 6, the validation signal VAL, the voltage V8 of a column 8, and the current 122 in the transistor 22 of the line control circuit 14.
  • the line is selected and the voltage V6 goes from the potential VDDl to the potential GND.
  • the voltage V8 is then at the potential GND.
  • the signal VAL is activated and the column 8 is connected to the potential VDD2, for a point to light up.
  • the selected cell is
  • the transistor 22 is crossed by a first current peak PI.
  • a second current peak P2 more intense than the first.
  • the instant tl can be located 10 to 20 ns after the instant to
  • the instant t2 can be located 50 to 100 ns after the instant tl
  • the instants t3 and t4 can be located 150 to 200 ns after instants tl and t2 respectively.
  • the cell load can correspond to current peaks PI and P2 of 0.1 and 0.3 mA respectively.
  • a control circuit is conventionally used to control more than 3000 columns. Thus, if all the columns 8 of a selected row must be lit, the second peak of current passing through the transistor 22 can reach 1 A.
  • the transistors 22 must have a large size to be able to be crossed by such a current.
  • An object of the present invention is to provide a circuit for controlling the cells of a plasma screen, which is of small size and inexpensive. To achieve this object, the present invention provides for delaying the selection of the different columns so that the charge of the equivalent capacities of the cells of the same line of the screen is not simultaneous.
  • the present invention provides a method for controlling cells of a matrix type plasma screen, formed of cells arranged at the intersections of rows and columns, comprising the step of sequentially applying to each row a potential of activation- and, during the activation of a row, applying an activation potential to selected columns, in which while a row is activated, the selected columns are activated non-simultaneously.
  • the activation of the selected columns is controlled by a single signal activating several control blocks, each of which controls with a delay of its own the application of the activation potential to the column.
  • the present invention also relates to a circuit for controlling the cells of a matrix type plasma screen, formed of cells arranged at the intersections of lines and columns, comprising line command blocks for sequentially applying an activation potential to each line, and comprising column command blocks for, while each line being activated, applying an activation potential to selected columns, each column control block comprising a predetermined delay means for delaying the application of the activation potential to the selected columns.
  • the predetermined delay means of each column control block is connected for. be activated by the same validation signal.
  • each means with predetermined delay delays the application of the activation potential to a selected column with a predetermined delay from its activation.
  • each column control block comprises: an output stage coupled to the column activated by the control block, and receiving an input signal, a memory element for receiving and storing a signal column selection means, and a predetermined delay means comprising a NAND gate having a first input connected to the output of the memory element, a second input which receives said validation signal and an output connected to the input of the output stage via an inverter comprising a P-type OS transistor whose dimensions are such that said inverter switches at a predetermined speed.
  • the column control blocks form several groups, the column control blocks of the same group each activating a column with the same predetermined delay and each column control block comprising: a output stage coupled to the column activated by the control block, and receiving an input signal, a memory element for receiving and storing a column selection signal, and a predetermined delay means comprising a NAND gate having a first input connected to the output of the memory element, a second input which receives said validation signal and a output connected to the input of the output stage by means of an inverter supplied between a ground and a supply node, the supply nodes of the column control blocks of the same group being connected together and separated from the supply nodes of the other column control blocks by a resistor, the supply nodes of a first group of column control blocks being connected to a supply voltage.
  • FIG. 1, previously described schematically represents a conventional plasma screen structure
  • FIG. 2, previously described schematically represents a plasma screen connected to a conventional control circuit
  • Figure 3, previously described illustrates the load of a cell of a line of the screen of Figure 2
  • FIG. 4 schematically represents column control blocks according to the present invention
  • FIG. 5 illustrates the cell load of a line of a plasma screen controlled by a control circuit according to the present invention
  • FIG. 6 schematically represents an embodiment of a logic switch of a column control block according to the present invention
  • FIG. 7 schematically represents another embodiment of the logic switch of a column control block according to the present invention.
  • FIG. 4 schematically represents a circuit 12 ′ for controlling the columns of a plasma screen (not shown) according to the present invention.
  • the circuit 12 comprises, for each column 8 of the plasma screen, a column control block 18', one output 20 of which is connected to column 8.
  • Each control block 18 includes an output stage 26 controlled by an LCS column activation logic signal, and a memory element 28 connected to receive and store the value of the logic signal to be supplied to stage 26.
  • Each control block 18 'further comprises a logic switch 30' controlled by a validation signal VAL and connected between the memory element 28 and the output stage 26.
  • the logic switch 30 'of each control block 18' is provided for, when the signal VAL is activated, supply the LCS signal stored in memory element 28 at output stage 26 with a predetermined delay.
  • the logic switches 30 'of the different ' blocks 18 ' can each introduce a different delay with respect to the signal VAL or else they can be divided into several groups of switches introducing the same delay. The greater the number of blocks 18 ′ introducing a different delay, the lower the number of cells whose equivalent capacities can be charged simultaneously, and the lower the maximum current likely to pass through the transistor 22.
  • FIG. 5 represents various voltages and currents appearing during the operation of the circuit of FIG. 4.
  • V8a, V ⁇ b, V8c represent the voltages of three columns connected to three blocks 18 ′ according to the present invention whose logic muters introduce respectively delays Da, Db, From.
  • a line 6 is selected and its voltage V6 goes from the potential VDDl to the potential GND.
  • the voltages V8a, V8b and V8c are then at the potential GND.
  • the signal VAL is activated at an instant tl.
  • the logic switches 30 'of the three blocks 18' respectively produce activation signals LCSa, LCSb, LCSc at times tla, tlb, tic delayed by Da, Db and De with respect to the instant tl.
  • Columns 8a, 8b and 8c are connected to potential VDD2 substantially at times tla, tlb and tic.
  • the capacities of the cells connected to columns 8a, 8b and 8c are loaded respectively between times tla and t2a, tlb and t2b, tic and t2c.
  • the transistor 22 is crossed by first current peaks Pla, Plb, Peak of the order of 0.1 A each during the charging of each of the three capacitors. As seen above, each charge is followed by a second peak current.
  • Transistor 22 is crossed by three second current peaks P2a, P2b, P2c of the order of 0.3 mA each between instants t3a and t4a, t3b and t4b, t3c and t4c.
  • the maximum current flowing through the transistor 22 is only equal to the sum of the current peaks produced by the blocks 18 'introducing a same delay. If, for example, the blocks 18 ′ are distributed into three groups a, b, c respectively introducing a delay Da, Db, De, the present invention makes it possible to divide by three the maximum current in the transistor 22.
  • the illustrated charging times that is to say the width of the current peaks, and the delays Da, Db, De are such that the current peaks corresponding to the different delays are distinct. In practice, however, the charging times and delays may be such that the different peaks overlap.
  • FIG. 6 schematically represents an embodiment of a logic switch 30 '.
  • the switch 30 ' includes a conventional NAND gate 34.
  • the two input terminals of door 34 are the two input terminals of the switch logic 30 '.
  • the output of the gate 34 is connected to the output S of the switch 30 ′ via an inverter 36.
  • the inverter 36 comprises an N-type MOS transistor connected between ground and the output S and a MOS transistor of P type connected between the output S and a VDD power line, for example 3 or 5 V.
  • the specific width / width (/ L) ratio for the P type MOS transistor of the inverter 36 is used to get a specific delay.
  • the W / L ratio of the P-type transistor determines in particular the current which can pass through this transistor, and thereby the speed with which the switch 30 'can bring a load (stage 26) connected to its output S to a voltage. corresponding to a high logic state.
  • the W / L ratio of the P-type MOS transistor of the inverter 36 makes it possible to adjust the delay introduced by the logic switch 30 '.
  • FIG. 7 shows the logic switches 30 "of a control circuit according to another embodiment of the present invention.
  • Each logical switch 30" includes a NAND gate 34 whose inputs are the inputs of the switch logic, and the output of which is connected to the output S of the logic switch 30 "via an inverter 38.
  • Each inverter 38 is supplied between a supply node A and ground.
  • the logic switches 30" are divided into n groups Gl, G2, ... Gn (where n is an integer), introducing different delays.
  • FIG. 7 represents groups of two switches 30 ".
  • the nodes A of switches 30" belonging to the same group are linked together.
  • the nodes A of the switches of group G1 are connected to a supply voltage VDD.
  • the nodes A of the switches of group G2 are connected to the nodes A of the switches of the group
  • the nodes A of the switches of a group Gi (where i is between 2 and n) are connected to the nodes A of the switches of the group Gi-1 via resistance 40.
  • the inverters 38 of the switches 30 "of the same group have the same supply voltage, and the inverters of two different groups have different supply voltages.
  • the speed at which each inverter can bring a load (stage 26) connected to its output S at a voltage corresponding to a high logic state depends on the supply voltage of this inverter.
  • the delays introduced by the 30 "switches of groups Gl, G2, .. .Gn depend on the supply voltage of the respective inverters 38 of these switches.
  • the supply voltage of the inverters 38 depends on the voltage drops in the resistors 40 and these voltage drops depend on the number of inverters 38 whose state changes.
  • the number of activated cells is large, which in the prior art caused large current peaks in the transistor 22, the number of inverters 38 whose state changes is large and the voltage drops in the resistors 40 are important. This implies that the delays introduced by the switches 30 "of Gl groups, G2, ... Gn are important, and it reduces current peaks in the transistor 22.
  • the number of activated cells is low, the number of inverters 38 whose state changes is low and the voltage drops in the resistors 40 are low.
  • the delays introduced by the switches 30 "of the groups Gl, G2, ... Gn are then insignificant and the line selection time is thus unimportant.
  • Such a control circuit thus operates at an optimal speed while having transistors 22 of reduced size.
  • the present invention is susceptible to various variants and modifications which will appear to a person skilled in the art.
  • embodiments of the present invention have been described in which the column activation signal is delayed from a single VAL validation signal, but those skilled in the art will easily adapt the present invention to a embodiment in which one uses reads several delayed VAL validation signals produced from an initial VAL signal.
  • the present invention has been described in relation to logic switches (30 ', 30 ") provided for receiving and supplying active logic signals at a high level, but a person skilled in the art will easily adapt the present invention to logic switches provided to receive and provide active logic signals at a low level.
  • the present invention has been described in relation to a logic switch (30 ', 30 ") whose output is provided by an inverter (36, 38) intended to introduce a predetermined delay, but those skilled in the art will easily adapt the present invention to a logic switch also comprising other elements (such as a NAND logic gate) provided for introducing a predetermined delay.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electronic Switches (AREA)
  • Pulse Circuits (AREA)

Abstract

L'invention concerne un procédé de commande de cellules d'un écran à plasma de type matriciel, formé de cellules (4) disposées aux intersections de lignes (6) et de colonnes (8), comprenant l'étape consistant à appliquer séquentiellement à chaque ligne un potentiel d'activation et, pendant l'activation d'une ligne, à appliquer un potentiel d'activation à des colonnes sélectionnées, dans lequel tandis qu'une ligne est activée, les colonnes sélectionnées sont activées de manière non simultanée.

Description

PROCEDE ET CIRCUIT DE COMMANDE D ' UN ECRAN A PLASMA
La présente invention concerne les écrans à plasma et plus particulièrement la commande des cellules d'un écran à plasma.
Un écran à plasma est un écran de type matriciel, formé de cellules disposées aux intersections de lignes et de colonnes. Une cellule comprend une cavité remplie d'un gaz rare, et au moins deux électrodes de commande. Pour créer un point lumineux sur l'écran, en utilisant une cellule donnée, on sélectionne la cellule en appliquant une différence de potentiel entre . ses électrodes de commande, puis on déclenche une ionisation du gaz de la cellule, généralement au moyen d'une troisième électrode de commande. Cette ionisation s'accompagne d'une émission de rayons ultraviolets. La création du point lumineux est obtenue par excitation d'un matériau luminescent rouge, vert ou bleu par les rayons émis.
La figure 1 représente une structure classique d'écran à plasma formé de ,cellules 4. Chaque cellule 4 a deux électrodes de commande respectivement reliées à une ligne β et à une colonne 8. La sélection des cellules, en vue de créer des images, est réalisée, classiquement, par des circuits logiques produisant des signaux de commande. Les états logiques de ces signaux déter- minent les cellules qui sont commandées pour produire un point lumineux et celles qui sont commandées pour ne pas en produire. L'ionisation du gaz d'une cellule nécessite que des potentiels de l'ordre d'une centaine de volts soient appliqués entre les deux électrodes de commande pendant une durée prédéterminée, de l'ordre de 2 microsecondes. Chaque cellule a une capacité équivalente de l'ordre de plusieurs dizaines de picofarads.
La figure 2 représente un écran à plasma dont les cellules 4 sont représentées par une capacité équivalente. Un circuit de commande de ligne 10 comprend pour chaque ligne 6 un bloc de commande de ligne '14 dont une sortie est reliée à la ligne 6. Un circuit de commande de colonne 12 comprend pour chaque colonne 8 un bloc de commande de colonne 18 dont une sortie 20 est reliée à la colonne 8. Les circuits 10 et 12 sont généralement intégrés sur une même puce de semiconducteur.
Classiquement, les cellules d'un écran à plasma sont activées ligne par ligne. Les lignes non activées sont mises à un potentiel VDDl de repos (par exemple 150 V) . La ligne activée est amenée à un potentiel GND d'activation (0 V) . Pour allumer des points choisis de la ligne activée, les colonnes correspondantes sont amenées à un potentiel VDD2 (80 V) . Les colonnes correspondant aux autres points de la ligne activée, sont amenées au potentiel GND (0 V) . Ainsi, les cellules allumées de la ligne activée voient un potentiel colonne-ligne égal à VDD2 - GND (80 V) et les cellules non allumées de la ligne activée voient un potentiel colonne-ligne égal à GND - GND (0 V) . Pour toutes les lignes non-activées, le potentiel de ligne est VDDl (150 V) et le potentiel de colonne est de 0 ou 80 V. Dans les deux cas, les cellules des lignes non-activées sont polarisées en inverse. Chaque bloc de commande de ligne 14 comporte un couple de transistors de puissance 22 et 24 complémentaires . Le transistor 24 reçoit le potentiel VDDl sur sa source. Son drain est relié à une ligne 6 et sa grille reçoit un signal de commande LSN d' inactivation de ligne. La source du transistor 22 est liée au potentiel GND. Son drain est relié à la ligne 6 et sa grille reçoit un signal de commande LS complémentaire du signal LSN. Les signaux LS et LSN sont produits, par exemple, par un microprocesseur non représenté.
Chaque bloc de commande de colonne 18 comprend un étage 5 de sortie 26 comportant un couple de transistors de puissance (non représentés) permettant d'amener la sortie 20 aux potentiels VDD2 ou GND en fonction d'un signal logique de sélection de colonne LCS fourni à l'étage 26. Chaque bloc de commande 18 comprend également un élément mémoire 28 connecté, par exemple à 10. un microprocesseur non représenté, pour recevoir et mémoriser la valeur du signal logique LCS destiné à l'étage de sortie 26. Chaque bloc de commande 18 comprend en outre un commutateur logique 30 commandé par un signal de validation VAL, connecté entre l'élément mémoire 28 et l'étage de sortie 26. Le commutais teur logique 30 est prévu pour fournir un signal inactif à l'étage de sortie 26 tant que le signal de validation VAL est inactif, par exemple à un niveau logique bas. Le commutateur 30 est également prévu pour, lorsque le signal VAL est actif, fournir à l'étage de sortie 26 le signal LCS mémorisé dans l'élément
20 mémoire 28. Le signal VAL est classiquement activé une durée prédéterminée après chaque activation d'une ligne de l'écran.
La figure 3 est un chronogramme illustrant la tension V6 d'une ligne 6, le signal de validation VAL, la tension V8 d'une colonne 8, et le courant 122 dans le transistor 22 du 25 circuit de commande de ligne 14. A un instant to, la ligne est sélectionnée et la tension V6 passe du potentiel VDDl au potentiel GND. La tension V8 est alors au potentiel GND. A un instant tl, le signal VAL est activé et la colonne 8 est reliée au potentiel VDD2, pour un point à allumer. La cellule sélectionnée se
30 charge entre l'instant tl et un instant t2 et la tension V8 passe de GND à VDD2. Pendant cette charge, le transistor 22 est traversé par un premier pic de courant PI. Pour des raisons physiques liées à la structure de la cellule, peu après ce premier pic de courant, il survient entre des instants t3 et t4 35 un second pic de courant P2 plus intense que le premier. A titre d'exemple, l'instant tl peut être situé 10 à 20 ns après l'instant to, l'instant t2 peut être situé 50 à 100 ns après l'instant tl, et les instants t3 et t4 peuvent être situés 150 à 200 ns après les instants tl et t2 respectivement. La charge d'une cellule peut correspondre à des pics de courant PI et P2 respectivement de 0,1 et 0,3 mA. Un circuit de commande est classiquement utilisé pour commander plus de 3000 colonnes. Ainsi, si toutes les colonnes 8 d'une ligne sélectionnée doivent être allumées, le second pic de courant traversant le transistor 22 peut atteindre 1 A. Les transistors 22 doivent avoir une taille importante pour pouvoir être traversés par un tel courant.
Un objet de la présente invention est de prévoir un circuit de commande des cellules d'un écran à plasma, qui soit de taille réduite et peu coûteux. Pour atteindre cet objet, la présente invention prévoit de retarder la sélection des différentes colonnes pour que la charge des capacités équivalentes des cellules d'une même ligne de l'écran ne soit pas simultanée.
Plus particulièrement, la présente invention prévoit un procédé de commande de cellules d'un écran à plasma de type matriciel, formé de cellules disposées aux intersections de lignes et de colonnes, comprenant l'étape consistant à appliquer séquentiellement à chaque ligne un potentiel d'activation- et, pendant l'activâtion d'une ligne, à appliquer un potentiel d'activation à des colonnes sélectionnées, dans lequel tandis qu'une ligne est activée, les colonnes sélectionnées sont activées de manière non simultanée.
Selon un mode de réalisation de la présente invention, 1 ' activation des colonnes sélectionnées est commandée par un signal unique activant plusieurs blocs de commande dont chacun commande avec un retard qui lui est propre l'application du potentiel d'activation à la colonne.
La présente invention vise également un circuit de commande des cellules d'un écran à plasma de type matriciel, formé de cellules disposées aux intersections de lignes et de colonnes, .comprenant des blocs de commande de ligne pour appliquer séquentiellement à chaque ligne un potentiel d'activation, et comprenant des blocs de commande de colonne pour, tandis que chaque ligne est activée, appliquer un potentiel d'activation à des colonnes sélectionnées, chaque bloc de commande de colonne comprenant un moyen à retard prédéterminé pour retarder l'application du potentiel d'activation aux colonnes sélectionnées.
Selon un mode de réalisation de la présente invention, le moyen à retard prédéterminé de chaque bloc de commande de colonne est connecté pour . être activé par un même signal de validation.
Selon un mode de réalisation de la présente invention, chaque moyen à retard prédéterminé retarde l'application du potentiel d'activation à une colonne sélectionnée avec un retard prédéterminé à partir de son activation.
Selon un mode de réalisation de la présente invention, chaque bloc de commande de colonne comporte : un étage de sortie couplé à la colonne activée par le bloc de commande, et recevant un signal d'entrée, un élément mémoire pour recevoir et mémoriser un signal de sélection de colonne, et un moyen à retard prédéterminé comprenant une porte NON-ET ayant une première entrée connectée en sortie de .1 'élément mémoire, une deuxième entrée qui reçoit ledit signal de valida- tion et une sortie reliée à l'entrée de l'étage de sortie par l'intermédiaire d'un inverseur comportant un transistor OS de type P dont les dimensions sont telles que ledit inverseur commute à une vitesse prédéterminée.
Selon un mode de réalisation de la présente invention, les blocs de commande de colonne forment plusieurs groupes, les blocs de commande de colonne d'un même groupe activant chacun une colonne avec un même retard prédéterminé et chaque bloc de commande de colonne comportant : un étage de sortie couplé à la colonne activée par le bloc de commande, et recevant un signal d'entrée, un élément mémoire pour recevoir et mémoriser un signal de sélection de colonne, et un moyen à retard prédéterminé comprenant une porte NON-ET ayant une première entrée connectée en sortie de l'élément mémoire, une deuxième entrée qui reçoit ledit signal de validation et une sortie reliée à l'entrée de l'étage de sortie par l'intermédiaire d'un inverseur alimenté entre une masse et un noeud d'alimentation, les noeuds d'alimentation des blocs de commande de colonne d'un même groupe étant reliés ensemble et séparés des noeuds d'alimentation des autres blocs de commande de colonne par une résistance, les noeuds d'alimentation d'un premier groupe de blocs de commande de colonne étant reliés à une tension d'alimentation.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente schémati- quement une structure classique d'écran à plasma ; la figure 2, précédemment décrite, représente schématiquement un écran à plasma relié à un circuit de commande classique ; la figure 3, précédemment décrite, illustre la charge d'une cellule d'une ligne de l'écran de la figure 2 ; la figure 4 représente schématiquement des blocs de commande de colonne selon la présente invention ; la figure 5 illustre la charge de cellules d'une ligne d'un écran à plasma commandée par un circuit de commande selon la présente invention ; la figure 6 représente schématiquement un mode de réalisation d'un commutateur logique d'un bloc de commande de colonne selon la présente invention ; et la figure 7 représente schématiquement un autre mode de réalisation du commutateur logique d'un bloc de commande de colonne selon la présente invention.
Dans les figures, seuls les éléments nécessaires à la compréhension de la présente invention ont été représentés. De mêmes références représentent de mêmes éléments aux différentes figures .
La figure 4 représente schématiquement un circuit 12 ' de commande des colonnes d'un écran à plasma (non représenté) selon la présente invention. Le circuit 12' comprend, pour chaque colonne 8 de l'écran à plasma, un bloc de commande de colonne 18' dont une sortie 20 est reliée à la colonne 8. Chaque bloc de commande 18 ' comprend un étage de sortie 26 commandé par un signal logique d'activation de colonne LCS, et un élément mémoire 28 connecté pour recevoir et mémoriser la valeur du signal logique à fournir à l'étage 26. Chaque bloc de commande 18' comprend en outre un commutateur logique 30' commandé par un signal de validation VAL et connecté entre l'élément mémoire 28 et l'étage de sortie 26. Selon la présente invention, le commutateur logique 30' de chaque bloc de commande 18' est prévu pour, lorsque le signal VAL est activé, fournir le signal LCS mémorisé dans l'élément mémoire 28 à l'étage de sortie 26 avec un retard prédéterminé. Les commutateurs logiques 30' des différents' blocs 18' peuvent chaώun introduire un retard différent par rapport au signal VAL ou bien ils peuvent être répartis en plusieurs groupes de commutateurs introduisant un même retard. Plus le nombre de blocs 18 ' introduisant un retard différent est grand, plus le nombre de cellules dont les capacités équivalentes peuvent être chargées simultanément est réduit, et plus le courant maximum susceptible de traverser le transistor 22 est réduit.
La figure 5 représente diverses tensions et courants apparaissant lors du fonctionnement du circuit de la figure 4. V8a, Vδb, V8c représentent les tensions de trois colonnes reliées à trois blocs 18' selon la présente invention dont les co muta- teurs logiques introduisent respectivement des retards Da, Db, De. A un instant to, une ligne 6 est sélectionnée et sa tension V6 passe du potentiel VDDl au potentiel GND. Les tensions V8a, V8b et V8c sont alors au potentiel GND. Le signal VAL est activé à un instant tl. Les commutateurs logiques 30' des trois blocs 18' produisent respectivement des signaux d'activation LCSa, LCSb, LCSc à des instants tla, tlb, tic retardés de Da, Db et De par rapport à l'instant tl. Les colonnes 8a, 8b et 8c sont reliées au potentiel VDD2 sensiblement aux instants tla, tlb et tic. Les capacités des cellules reliées aux colonnes 8a, 8b et 8c se chargent respectivement entre des instants tla et t2a, tlb et t2b, tic et t2c. Le transistor 22 est traversé par des premiers pics de courant Pla, Plb, Pic de l'ordre de 0,1 A chacun pendant la charge de chacune des trois capacités. Comme on l'a vu précédemment, chaque charge est suivie d'un second pic de courant. Le transistor 22 est traversé par trois seconds pics de courant P2a, P2b, P2c de l'ordre de 0,3 mA chacun entre des instants t3a et t4a, t3b et t4b, t3c et t4c. Lorsque toutes les colonnes 8 d'une ligne doivent être allumées par un circuit de commande de colonne selon la présente invention, le courant maximal qui traverse le transistor 22 est égal seulement à la somme des pics de courant produits par les blocs 18' introduisant un même retard. Si par exemple les blocs 18' sont répartis en trois groupes a, b ,c introduisant respectivement un retard Da, Db, De, la présente invention permet de diviser par trois le courant maximal dans le transistor 22.
On notera qu'en figure 5, les durées de charge illustrées, c'est-à-dire la largeur des pics de courant, et les retards Da, Db, De sont tels que les pics de courant correspondant aux différents retards sont distincts. En pratique cependant, les durées de charge et les retards pourront être tels que les différents pics se chevauchent.
La figure 6 représente schématiquement un mode de réalisation d'un commutateur logique 30'. Le commutateur 30' comprend une porte NON-ET 34 classique. Les deux bornes d'entrée de la porte 34 sont les deux bornes d'entrée du commutateur logique 30' . La sortie de la porte 34 est reliée à la sortie S du commutateur 30' par l'intermédiaire d'un inverseur 36. L'inverseur 36 comprend un transistor MOS de type N relié entre la masse et la sortie S et un transistor MOS de type P relié entre la sortie S et une ligne d'alimentation VDD, par exemple 3 ou 5 V. Selon la présente invention, le rapport largeur/ ongueur ( /L) spécifique pour le transistor MOS de type P de l'inverseur 36 est utilisé pour obtenir un retard spécifique. Le rapport W/L du transistor de type P détermine notamment le courant qui peut traverser ce transistor, et par là, la vitesse avec laquelle le commutateur 30' peut amener une charge (l'étage 26) reliée à sa sortie S à une tension correspondant à un état logique haut. Ainsi, le rapport W/L du transistor MOS de type P de l'inverseur 36 permet d'ajuster le retard introduit par le commutateur logi- que 30' .
La figure 7 représente des commutateurs logiques 30" d'un circuit de commande selon un autre mode de réalisation de la présente invention. Chaque commutateur logique 30" comprend une porte NON-ET 34 dont les entrées constituent les entrées du commutateur' logique, et dont la sortie est reliée à la sortie S du commutateur logique 30" par l'intermédiaire d'un inverseur 38. Chaque inverseur 38 est alimenté entre un noeud d'alimentation A et la masse. Selon la présente invention, les commutateurs logiques 30" sont répartis en n groupes Gl, G2, ...Gn (où n est entier), introduisant des retards différents. La figure 7 représente des groupes de deux commutateurs 30". Les noeuds A des commutateurs 30" appartenant à un même groupe sont reliés ensemble. Les noeuds A des commutateurs du groupe Gl sont reliés à une tension d'alimentation VDD. Les noeuds A des commutateurs du groupe G2 sont reliés aux noeuds A des commutateurs du groupe
Gl par l'intermédiaire d'une résistance 40. De même, les noeuds A des commutateurs d'un groupe Gi (où i est compris entre 2 et n) sont reliés aux noeuds A des commutateurs du groupe Gi-1 par l'intermédiaire d'une résistance 40. Selon ce mode de réalisation, les inverseurs 38 des commutateurs 30" d'un même groupe ont la même tension d'alimentation, et les inverseurs de deux groupes différents ont des tensions d'alimentation différentes. La vitesse à laquelle chaque inverseur peut amener une charge (l'étage 26) reliée à sa sortie S à une tension correspondant à un état logique haut dépend de la tension d'alimentation de cet inverseur. Ainsi, les retards introduits par les commutateurs 30" des groupes Gl, G2, ...Gn, dépendent de la tension d'alimentation des inverseurs 38 respec- tifs de ces commutateurs. La tension d'alimentation des inverseurs 38 dépend des chutes de tension dans les résistances 40 et ces chutes de tension dépendent du nombre d'inverseurs 38 dont l'état change. Lorsque le nombre de cellules activées est grand, ce qui dans l'art antérieur entraînait des pics de courant importants dans le transistor 22, le nombre d'inverseurs 38 dont l'état change est grand et les chutes de tension dans les résistances 40 sont importantes. Cela entraîne que les retards introduits par les commutateurs 30" des' groupes Gl, G2, ...Gn sont importants, et cela réduit les pics de courant dans le transistor 22. Lorsque le nombre de cellules activées est faible, le nombre d'inverseurs 38 dont l'état change est faible et les chutes de tension dans les résistances 40 sont faibles. Les retards introduits par les commutateurs 30" des groupes Gl, G2, ...Gn sont alors peu importants et le temps de sélection de ligne est ainsi peu important. Un tel circuit de commande fonctionne ainsi à une vitesse optimale tout en ayant des transistors 22 de taille réduite.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme du métier. En particulier, on a décrit des modes de réalisation de la présente invention dans lesquels on retarde le signal d'activation des colonnes à partir d'un signal de validation VAL unique, mais l'homme du métier adaptera sans difficultés la présente invention à un mode de réalisation dans lequel on uti- lise plusieurs signaux de validation VAL retardés produits à partir d'un signal VAL initial.
La présente invention a été décrite en relation avec des commutateurs logiques (30', 30") prévus pour recevoir et fournir des signaux logiques actifs à un niveau haut, mais l'homme du métier adaptera sans difficultés la présente invention à des commutateurs logiques prévus pour recevoir et fournir des signaux logiques actifs à un niveau bas.
En outre, la présente invention a été décrite en rela- tion avec un commutateur logique (30', 30") dont la sortie est fournie par un inverseur (36, 38) prévu pour introduire un retard prédéterminé, mais l'homme du métier adaptera sans difficultés la présente invention à un commutateur logique comprenant également d'autres éléments (tels qu'une porte logique NON-ET) prévus pour introduire un retard prédéterminé.

Claims

KEvΕ_DI<_ATIONS
1. Procédé de commande de cellules d'un écran à plasma de type matriciel, formé de cellules (4) disposées aux intersections de lignes (6) et de colonnes (8), comprenant l'étape consistant à appliquer séquentiellement à chaque ligne un poten- tiel d'activation et, pendant l' activation d'une ligne, à appliquer un potentiel d'activation à des colonnes sélectionnées, caractérisé en ce que, tandis qu'une ligne est activée, les colonnes sélectionnées sont activées de manière non simultanée .
2. Procédé selon la revendication 1, dans lequel
1' activation des colonnes sélectionnées est commandée par un signal (VAL) unique activant plusieurs blocs de commande (18) dont chacun commande avec un retard qui lui est propre (Da, Db, De) l'application du potentiel d'activation à la colonne.
3. Circuit de commande des cellules d'un écran à plasma de type matriciel, formé de cellules (4) disposées aux intersections de lignes (6) et de colonnes (8) , comprenant des blocs de commande de ligne (14) pour appliquer séquentiellement à chaque ligne un potentiel d'activation, et comprenant des blocs de commande de colonne (18) pour, tandis que chaque ligne est activée, appliquer un potentiel d'activation à des colonnes sélectionnées, caractérisé en ce que chaque bloc de commande de colonne comprend un moyen à retard prédéterminé (30 ' ) pour retarder l'application du potentiel d'activation aux colonnes sélectionnées .
4. Circuit selon la revendication 3, dans lequel le moyen à retard prédéterminé de chaque bloc de commande de colonne est connecté pour être activé par un même signal de validation (VAL) .
5. Circuit selon la revendication 4, dans lequel chaque moyen à retard prédéterminé retarde l'application du potentiel d'activation à une colonne sélectionnée avec un retard prédéterminé (Da, Db, De) à partir de son activation.
6. Circuit selon la revendication 5, dans lequel chaque bloc de commande de colonne (18) comporte : un étage de sortie (26) couplé à la colonne activée par le bloc de commande, et recevant un signal d'entrée, un élément mémoire (28) pour recevoir et mémoriser un signal de sélection de colonne (LCS) , et un moyen à retard prédéterminé comprenant une porte NON-ET (34) ayant une première entrée connectée en sortie de l'élément mémoire, une deuxième entrée qui reçoit ledit signal de validation et une sortie reliée à l'entrée de l'étage de sortie (26) par l'intermédiaire d'un inverseur (36) comportant un transistor MOS de type P dont les dimensions sont telles que ledit inverseur commute à une vitesse prédéterminée.
7. Circuit selon la revendication 4, dans lequel les blocs de commande de colonne forment plusieurs groupes (a, b, c) , les blocs de commande de colonne d'un même groupe activant chacun une colonne avec un même retard prédéterminé (Da, Db, De) et chaque bloc de commande de colonne (18) comportant : un étage de sortie (26) couplé à la colonne activée par le bloc de commande, et recevant un signal d'entrée, un élément mémoire (28) pour recevoir et mémoriser un signal de sélection de colonne (LCS) , et un moyen à retard prédéterminé comprenant une porte NON-ET (34) ayant une première entrée connectée en sortie de l'élément mémoire, une deuxième entrée qui reçoit ledit signal de validation (VAL) et une sortie reliée à l'entrée de l'étage de sortie (26) par l'intermédiaire d'un inverseur (38) alimenté entre une masse et un noeud d'alimentation (A), les noeuds d'alimentation des blocs de commande de colonne d'un même groupe étant reliés ensemble et séparés des noeuds d'alimentation des autres blocs de commande de colonne par une résistance (40), les noeuds d'alimentation d'un premier groupe de blocs de commande de colonne étant reliés à une tension d'alimentation (VDD) .
EP01963085A 2000-08-11 2001-08-09 Procede et circuit de commande d'un ecran a plasma Expired - Lifetime EP1307874B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0010609 2000-08-11
FR0010609A FR2812963B1 (fr) 2000-08-11 2000-08-11 Procede et circuit de commande de cellules d'un ecran a plasma
PCT/FR2001/002590 WO2002015163A1 (fr) 2000-08-11 2001-08-09 Procede et circuit de commande d'un ecran a plasma

Publications (2)

Publication Number Publication Date
EP1307874A1 true EP1307874A1 (fr) 2003-05-07
EP1307874B1 EP1307874B1 (fr) 2011-04-20

Family

ID=8853523

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01963085A Expired - Lifetime EP1307874B1 (fr) 2000-08-11 2001-08-09 Procede et circuit de commande d'un ecran a plasma

Country Status (5)

Country Link
US (1) US6853146B2 (fr)
EP (1) EP1307874B1 (fr)
DE (1) DE60144478D1 (fr)
FR (1) FR2812963B1 (fr)
WO (1) WO2002015163A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880175A1 (fr) * 2004-12-23 2006-06-30 St Microelectronics Sa Procede et dispositif de commande d'un ecran a plasma matriciel
KR20070087706A (ko) * 2005-05-10 2007-08-29 엘지전자 주식회사 플라즈마 디스플레이 장치 및 그의 구동 방법
FR2896610A1 (fr) * 2006-01-20 2007-07-27 St Microelectronics Sa Procede et dispositif de commande d'un ecran a plasma matriciel
FR2900266A1 (fr) * 2006-04-19 2007-10-26 St Microelectronics Sa Procede de commande d'un ecran, en particulier d'un ecran a plasma, et dispositif correspondant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316123A (en) * 1980-01-08 1982-02-16 International Business Machines Corporation Staggered sustain voltage generator and technique
FR2662292B1 (fr) * 1990-05-15 1992-07-24 Thomson Tubes Electroniques Procede de reglage de la luminosite d'ecrans de visualisation.
US5732024A (en) * 1995-04-19 1998-03-24 Cirrus Logic, Inc. Circuits, systems and methods for modifying data stored in a memory using logic operations
FR2741468B1 (fr) * 1995-11-17 1997-12-12 Thomson Tubes Electroniques Procede de commande d'un ecran de visualisation et dispositif de visualisation mettant en oeuvre ce procede
FR2750525B1 (fr) * 1996-06-28 1998-09-18 Thomson Csf Procede d'activation des cellules d'un ecran de visualisation d'image, et dispositif de visualisation d'image mettant en oeuvre le procede
JP3447185B2 (ja) * 1996-10-15 2003-09-16 富士通株式会社 フラット表示パネルを利用した表示装置
FR2763735B1 (fr) * 1997-05-22 1999-08-13 Sgs Thomson Microelectronics Etage de sortie de puissance pour la commande de cellules d'ecran a plasma
FR2769743B1 (fr) * 1997-10-09 2000-01-07 Thomson Multimedia Sa Procede et dispositif de balayage d'un panneau a plasma
US6275070B1 (en) * 1999-09-21 2001-08-14 Motorola, Inc. Integrated circuit having a high speed clock input buffer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0215163A1 *

Also Published As

Publication number Publication date
EP1307874B1 (fr) 2011-04-20
US6853146B2 (en) 2005-02-08
FR2812963B1 (fr) 2003-07-25
DE60144478D1 (de) 2011-06-01
US20030057852A1 (en) 2003-03-27
FR2812963A1 (fr) 2002-02-15
WO2002015163A1 (fr) 2002-02-21

Similar Documents

Publication Publication Date Title
EP0562904B1 (fr) Procédé et dispositif de réglage de retard à plusieurs gammes
JPH0896592A (ja) 集積回路メモリ装置
EP0880124B1 (fr) Etage de sortie de puissance pour la commande de cellules d&#39;écran à plasma
FR2729499A1 (fr) Generateur de tension de survoltage d&#39;un dispositif de memoire a semi-conducteurs
WO2005059883A2 (fr) Cellule de commande electronique pour diode electroluminescente organique d&#39;afficheur a matrice active, procedes de fonctionnement et afficheur
EP1307874B1 (fr) Procede et circuit de commande d&#39;un ecran a plasma
EP1073202B1 (fr) Dispositif de commande d&#39;un commutateur haute tension de type translateur
EP1073203B1 (fr) Dispositif de commande d&#39;un commutateur haute tension de type translateur
GB2072419A (en) Mos integrated circuit device
US4171524A (en) Display device having a matrix of gas discharge display elements
WO2002041292A1 (fr) Circuit de commande d&#39;un ecran a plasma
EP1862999A2 (fr) Commande d&#39;un écran plasma
EP0951711B1 (fr) Procede de commande d&#39;adressage d&#39;un panneau a plasma de type alternatif
EP0139804B1 (fr) Dispositif permettant l&#39;emmagasinage d&#39;un bit d&#39;information et sa lecture
EP0990917B1 (fr) Procédé de test de la connexion des sorties d&#39;au moins un circuit de puissance pour écran à plasma et circuit de puissance pour sa mise en oeuvre.
FR2475266A1 (fr)
US5299167A (en) Bipolar ram apparatus
KR100298821B1 (ko) 단일 ras 싸이클에서 스태거된 로우선 점화
FR2677771A1 (fr) Circuit de detection de niveau de polarisation inverse dans un dispositif de memoire a semiconducteurs.
FR3140470A1 (fr) Dispositif optoélectronique
FR3140471A1 (fr) Dispositif optoélectronique
FR2783927A1 (fr) Circuit de puissance pour la commande d&#39;un ecran a plasma, module de puissance l&#39;incorporant et procede de test d&#39;un tel module
FR2846464A1 (fr) Point memoire, son procede de programmation et son procede de lecture, et circuit integre incorporant de tels points memoire
FR2860634A1 (fr) Dispositif de commande d&#39;un panneau d&#39;affichage au plasma
EP0669622B1 (fr) Circuit de polarisation pour transistor dans une cellule de mémorisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020510

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BENOIT, ERIC

Inventor name: MAS, CELINE

Inventor name: TROUSSEL, GILLES

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

17Q First examination report despatched

Effective date: 20071010

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60144478

Country of ref document: DE

Date of ref document: 20110601

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60144478

Country of ref document: DE

Effective date: 20110601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60144478

Country of ref document: DE

Effective date: 20120123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200721

Year of fee payment: 20

Ref country code: GB

Payment date: 20200722

Year of fee payment: 20

Ref country code: DE

Payment date: 20200721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20200721

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60144478

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210808