EP0880124B1 - Etage de sortie de puissance pour la commande de cellules d'écran à plasma - Google Patents

Etage de sortie de puissance pour la commande de cellules d'écran à plasma Download PDF

Info

Publication number
EP0880124B1
EP0880124B1 EP98410053A EP98410053A EP0880124B1 EP 0880124 B1 EP0880124 B1 EP 0880124B1 EP 98410053 A EP98410053 A EP 98410053A EP 98410053 A EP98410053 A EP 98410053A EP 0880124 B1 EP0880124 B1 EP 0880124B1
Authority
EP
European Patent Office
Prior art keywords
transistor
output
transistors
channel
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98410053A
Other languages
German (de)
English (en)
Other versions
EP0880124A1 (fr
Inventor
Gilles Troussel
Céline Lardeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SA
Original Assignee
STMicroelectronics SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SA filed Critical STMicroelectronics SA
Publication of EP0880124A1 publication Critical patent/EP0880124A1/fr
Application granted granted Critical
Publication of EP0880124B1 publication Critical patent/EP0880124B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/296Driving circuits for producing the waveforms applied to the driving electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/24Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using incandescent filaments
    • G09G3/26Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using incandescent filaments to give the appearance of moving signs

Definitions

  • the present invention relates to a power output stage for controlling plasma screen cells.
  • a plasma screen is a matrix-type screen, made up of cells arranged at intersections of rows and columns.
  • a cell comprises a cavity filled with a rare gas, two control electrodes and a red, green or blue phosphorus deposit.
  • a potential difference is applied between the control electrodes of this cell, so as to trigger an ionization of its gas. This ionization is accompanied by an emission of ultraviolet rays.
  • the creation of the luminous point is obtained by excitation of the phosphorus deposited by the emitted rays.
  • the control of the cells in order to create images, is conventionally carried out by logic circuits producing control signals.
  • the logic states of these signals determine the cells that are controlled to produce a bright spot and those that are controlled to not produce one.
  • These logic circuits are generally supplied with low voltage, for example with a supply voltage of 5 volts or less. This voltage is not sufficient to directly drive the electrodes of the cells. Between the logic circuits and the cells to be controlled, therefore, power output stages are used to convert the low voltage control signals into high voltage control signals.
  • the ionization of the gas cavities requires the application of high potentials on the control electrodes, of the order of magnitude of the hundred volts.
  • the electrodes can be represented, schematically, by relatively high equivalent capacities of the order of one hundred picofarad (and, correlatively, current sources of a few tens of milliamperes).
  • the control of these electrodes is therefore equivalent to the control of charge or discharge of a capacitance.
  • control of the plasma screen electrodes is performed by power output stages receiving low voltage logic signals and converting them into high voltage control signals.
  • FIG. 1 illustrates an example of a conventional embodiment of an output stage 1 for controlling an electrode.
  • the stage 1 comprises a control input 2 and an output 4.
  • the control input 2 receives an input logic signal IN1. It is assumed that this signal is a low voltage signal that can assume two states, a high state and a low state.
  • the output 4 provides an output control signal OUT1.
  • This output signal is supplied to an electrode, represented by an equivalent capacity Cout mounted between the output 4 and the ground.
  • the control of the electrode is to charge the capacity Cout, to bring it to a potential high voltage VPP, or to discharge it, if it was loaded. It will be assumed that the load is controlled when the signal IN1 is high, and the discharge is controlled when the signal IN1 is low.
  • the stage 1 comprises a pair 6 of power transistors 8 and 10.
  • These transistors are, typically, complementary VDMOS type, N channel type, and thick oxide, P-channel type HVMOS transistors.
  • VDMOS transistor means vertical N-channel MOS type transistors capable of withstanding large differences in source-drain potential and providing or absorbing large currents.
  • thin oxide HVMOS transistor refers to MOS P-channel transistors capable of withstanding large differences in source-drain and source-gate potential.
  • Transistor 8 of the P-channel HVMOS type receives the potential VPP on its source. Its drain is connected to the output 4 and its control gate receives an INP control signal. This transistor can charge the Cout capacity, when it is passing. The transistor 10 is then blocked.
  • the circuit 14 comprises two P-channel MOS power transistors 16 and 18, and two N-channel MOS type power transistors 20 and 22.
  • Transistors capable of withstanding the high voltage for example VDMOS transistors, will be used.
  • Transistors 16 and 18 receive the VPP potential at their sources.
  • Transistors 20 and 22 receive the potential GND on their sources.
  • the drain of the transistor 16 is connected to the control gate of the transistor 18 and the drain of the transistor 20.
  • the drain of the transistor 18 is connected to the control gate of the transistor 16 and the drain of the transistor 22.
  • the drains of the transistors 18 and 22 provide the control signal INP.
  • the transistor 20 receives the signal INN on its control gate.
  • the transistor 22 receives a control signal NIN on its control gate.
  • This NIN signal is provided by an inverter 24, supplied with low voltage, and receiving the input signal INN.
  • INN GND
  • transistors 20 and 22 are respectively blocked and switched on. Transistors 16 and 18 are therefore respectively conducting and blocked.
  • INP GND.
  • the charge transistor 8 is on and the discharge transistor 10 is off.
  • INN VCC
  • transistors 20 and 22 are, respectively, turned off and on. Transistors 16 and 18 are therefore respectively conducting and blocked.
  • INP VPP. Charge transistor 8 is off and discharge transistor 10 is on.
  • a first problem posed by the circuit of FIG. 1 is the area necessary to produce the charge transistor 8. Indeed, taking into account, on the one hand, differences in the conductivity of the P-channel and N-channel transistors and, on the other hand, significant values of the charging and discharging currents, the transistor 8 occupies a surface of the order of two to three times greater than that occupied by the transistor 10, equivalent in current performance.
  • a second problem posed by the circuit of FIG. 1 is the risk of simultaneous conduction of the output transistors 8 and 10, when the input signal IN1 changes state. Such simultaneous conduction, when modifying the control signals of transistors 8 and 10, leads to significant dissipation, given the values of voltage and current for these transistors.
  • An object of the invention is to propose an output stage structure which makes it possible to reduce the area required for the load transistor and to avoid simultaneous conduction of the load and discharge transistors during the changes in the state of the signal of the load. 'Entrance.
  • the invention proposes to replace the P-channel charge transistor with an N-channel transistor arranged to form a composite P-type transistor, and to control the N-channel charge and discharge transistors at the same time. Inverters dimensioned to avoid simultaneous conduction.
  • the invention relates to a power output stage for controlling plasma screen cells, comprising an input for receiving a low voltage input logic signal, an output for providing a high voltage output control signal, a output circuit comprising, on the one hand, a load transistor receiving a high voltage potential on a drain and having a source connected to the control output and, on the other hand, a discharge transistor receiving a reference potential on a source and having a drain connected to the output, and control means providing control signals to the load and discharge transistors for controlling these transistors as a function of the input logic signal, characterized in that the load transistors and the discharge are of N-channel VDMOS type, the charge transistor being arranged to form a composite P type transistor, and in that the control means are arranged so that the potent the load transistor control gate drops more rapidly than the output potential when the input logic signal controls discharge of the output.
  • the output circuit comprises, on the one hand, a P-channel power transistor controlled by a potential translator circuit, said P-channel transistor receiving the high voltage potential on a source and having a drain connected to a control gate of the charge transistor and, secondly, an N-channel power transistor having a source receiving the potential reference and having a drain connected to the control gate of the load transistor, said P-channel and N-channel transistors being controlled so that the P-channel transistor is on when it is desired to make the load transistor go through and the N-channel transistor is conducting when it is desired to block the load transistor, and in that the control means comprise low-voltage inverters for controlling the N-channel transistor and the discharge transistor, said inverters being sized so that on the one hand, the discharge transistor is turned on after the N-channel transistor is turned on, when it is desired to control the discharge of the output and, on the other hand, the N-channel transistor is blocked after that the discharge transistor is off, when it is desired to control a load of the output through the load transistor.
  • the control means comprise low-voltage
  • control means are dimensioned so that, when one of the P-channel and N-channel transistors of the output circuit is turned on, the other of these transistors is previously blocked, way to avoid simultaneous conduction of these transistors.
  • the stage comprises filtering logic circuits for filtering the input logic signal so as to avoid a modification of control signals of the stage power transistors if spurious pulses of a shorter duration at a given time appear in the input logic signal.
  • FIG. 2 illustrates a power output stage 30 produced according to the invention.
  • the output stage 30 includes a control input 32 for receiving an input logic signal IN2 and an output 34 for providing a high voltage output control signal OUT2.
  • the signal IN2 will typically be provided by a logic circuitry, not shown, which will determine its logical state as a function of images to be formed.
  • the output stage 30 comprises an output circuit 36 making it possible to connect the output 34 of the stage 30 to a high voltage VPP supply potential or to the GND ground potential.
  • a high voltage VPP supply potential 150 volts will be chosen.
  • this electrode is connected to the output 34 of the stage 30. This electrode will behave as a capacitor, which can be charged or discharged, as illustrated on Figure 1.
  • the output circuit 36 comprises two power transistors 38 and 40 respectively for increasing the potential of the control output 34 to the potential VPP and the potential GND.
  • the drain of transistor 38 called charge, receives the potential VPP.
  • the source of transistor 40 called discharge, receives the potential GND.
  • the drain of the transistor 40 and the source of the transistor 38 are interconnected and constitute the output 34.
  • the load transistor 38 provides a charging current at the output 34, to bring the signal potential OUT2 substantially to the potential level. VPP.
  • the discharge transistor 40 makes it possible to absorb a discharge current supplied by the output 34, in order to bring the potential of the signal OUT2 substantially to the level of the potential GND. Considering a capacitive load of 100 picofarads on the output 34 and charging and discharging times of the order of 100 to 200 nanoseconds, the charging and discharging currents will be of the order of 80 milliamps.
  • Transistors 38 and 40 are N-channel VDMOS type transistors capable of providing and absorbing large currents and withstanding large source-drain voltages. For example, transistors having a number of elementary cells of 9 * 10 and 5 * 18, respectively, will be chosen.
  • the output circuit 36 furthermore comprises two MOS type power transistors 42 and 44 associated with the load transistor 38. These transistors 42 and 44, respectively P-channel and N-channel, make it possible to form, together with the transistor 38, a transistor type P composite.
  • Transistor 42 receives the potential VPP on its source. Its drain is connected to the control gate of the charge transistor 38. It receives a control signal, denoted S10, on its control gate.
  • the transistor 44 of the N-channel MOS type, receives the GND potential on its source. Its drain is connected to the drain of transistor 42 and to the control gate of charge transistor 38. Its control gate receives a control signal denoted S9.
  • the signal received by the control gate of the charge transistor 38, supplied by the transistors 42 and 44, is noted as PCDE.
  • a transistor 42, of the MOS type having a W / L ratio of 294/18 (with W / L the channel width / channel length ratio of the transistor) and a transistor 44, of the VDMOS type, will be selected. having a number of elementary cells of 6 * 2.
  • the potential of the PCDE signal increases, by charging the equivalent gate capacitance of the charge transistor 38. Once the PCDE reaches the threshold voltage Vt of the charge transistor 38, the charge transistor 38 becomes passing and the potential on its source reaches substantially VPP - Vt.
  • the control signal S9 is produced by a low voltage inverter 46, formed of two complementary transistors 48 and 50, of the MOS type.
  • Transistor 48 P-channel, receives the potential VCC on its source.
  • the N-channel transistor 50 receives the GND potential on its source.
  • the drains of these transistors are interconnected and provide the signal S9.
  • the control gates of these transistors are interconnected and receive a control logic signal S5. For example, transistors 48 and 50 having a W / L ratio of 100/5 and 50/3, respectively, will be selected.
  • the control signal NCDE is produced by a low voltage inverter 52, formed of two complementary transistors 54 and 56, of the MOS type.
  • the P-channel transistor 54 receives the potential VCC on its source.
  • the N-channel transistor 56 receives the GND potential on its source.
  • the drains of these transistors are interconnected and provide the NCDE signal.
  • the control gates of these transistors are interconnected and receive the control logic signal S5. For example, transistors 54 and 56 having a W / L ratio of 250/5 and 100/3, respectively, will be selected.
  • the control signal S10 is produced by a potential translator circuit 58, similar to that described for FIG. 1.
  • the circuit 58 comprises two P-channel MOS power transistors 60 and 62, and two power transistors 64 and 66. , of N-channel MOS type. Transistors capable of withstanding the high voltage will be used. Transistors 60 and 62 having, respectively, a W / L ratio of 50/18 and 100/18 and transistors 64 and 66, of the VDMOS type, having a number of elementary cells of 6 * 1, will be chosen, for example.
  • Transistors 60 and 62 receive the VPP potential on their sources.
  • Transistors 64 and 66 receive the GND potential on their sources.
  • the drain of the transistor 60 is connected to the control gate of the transistor 62 and to the drain of the transistor 64.
  • the drain of the transistor 62 is connected to the control gate of the transistor 60 and to the drain of the transistor 66.
  • the drains of the transistors 62 and 66 provide the control signal S10.
  • Transistor 66 receives a control logic signal S7 on its control gate.
  • Transistors 62 and 60 are therefore respectively conducting and blocked.
  • S10 VPP.
  • S7 VCC
  • transistors 66 and 64 are respectively on and off.
  • Transistors 60 and 62 are therefore respectively conducting and blocked.
  • S10 GND.
  • the output stage 30 further comprises logic circuits introducing delays. These delay circuits comprise inverters 70, 72, 76, 78 and 82, these inverters comprising an input and an output, and two logic gates 74 and 80, of the NON_ET type, these gates comprising two inputs and an output. It is assumed that these circuits are supplied with low voltage, for example by the potentials VCC and GND.
  • the inverter 70 receives the input signal IN2 as input and produces, at its output, a logic signal S1, by inverting the signal IN2.
  • This signal S1 is supplied to a first input of the gate 80 and to the input of the inverter 72.
  • This inverter 72 produces, at its output, a logic signal S2.
  • This signal is supplied to a first input of the gate 74 and to the input of the inverter 76.
  • This inverter 76 produces, at its output, a logic signal S3.
  • the signal S3 is supplied to the input of the inverter 78 which produces, at its output, a logic signal S4.
  • the signal S4 is supplied to the second input of the gate 74.
  • the gate 74 produces, at its output, the logic signal S5 which is supplied to the inverters 46 and 52.
  • the signal S5 is, moreover, supplied to the second input of the gate 80.
  • This gate produces, at its output, a logic signal S6 which is supplied to the input of the inverter 82.
  • the inverter 82 produces, at its output, the logic signal S7 supplied to the potential translator circuit 58. .
  • the assembly formed by the gate 74 and the inverters 76 and 78 makes it possible, as will be seen hereinafter, to delay the positive pulses in the input signal IN2.
  • FIGS. 3a to 3n respectively illustrate the input logic signal IN2, the signal S1, the signal S5, the signal S2, the signal S4, the signal S3, S6, S7, S8, NCDE, S9, S10, PCDE and OUT2.
  • the input signal IN2 is set high.
  • IN2 VCC.
  • the signal S1 will therefore go to the low state. This causes, on the one hand, a high rise of the signal S6 and, on the other hand, a rise to the high state of the signal S2. Subsequently, the signal S3 goes down, and the signal S4 goes up. Once the signal S4 is mounted high, the signal S5 goes low.
  • the inverters 76 and 78 make it possible to delay the positive spurious pulses appearing in the signal IN2. Indeed, as long as the transition to the state the top of the signal S2 has not propagated in the inverters 76 and 78, the signal S5 is kept high. To increase the minimum delay of delay, it will be possible to increase the number of inverters placed between the output of the inverter 72 and the second input of the gate 74, or else to modify the dimensioning of the transistors forming these inverters. It will also be possible to place a capacitor between the inverters 76 and 78.
  • the delay of the positive edges in the signal IN2 with respect to the signals S9 and NCDE makes it possible to avoid simultaneous conduction in the transistors 42 and 44 and in the transistors 38. and 40. The conduction of the transistors 40 and 44 is delayed until the transistor 42 is turned off by the potential translator circuit 58 controlled by the signal S7.
  • the lowering of the signal S1 to the low state causes the high state of the signal S6 to rise. This causes the signal S7 to go down to a low state and the signal S8 to rise further in the high state. As a result, the voltage VPP is raised to the signal S10, which blocks the transistor 42. If it is assumed that the signal S9 is then always in the low state, the potential PCDE is then maintained, by capacitive effect, at level of the gate of the charge transistor 38. Simultaneous conduction of the transistors 42 and 44 is avoided.
  • the transistors 50 and 56 will lock and the transistors 48 and 54 will become on.
  • the potential of the signal S9 will increase more rapidly than the potential of the signal NCDE.
  • the control gate of the charge transistor 38 will be discharged more rapidly than the output 34, thus ensuring that the transistor 38 remains always blocked during the discharge of the output 34. Knowing the output loads of the inverters 46 and 52, we have indeed sized the transistors 48 and 54 accordingly. As a result, when the transistor 40 becomes on, the transistor 38 remains blocked, which eliminates the phenomenon of simultaneous conduction in these transistors. Once the transistor 40 passes, the potential of the signal OUT2 will fall to reach the potential GND.
  • the signal S1 will go up. This will cause the signal S2 to go low. As a result, the signal S5 will go up, independently of the signals S3 and S4 which, in parallel, will go respectively to the high state and the low state. Therefore, we will block the transistors 48 and 54 and pass transistors 50 and 56. By sizing the transistors 50 and 56 so that the potential of the NCDE signal drops faster than that of the signal S9, we will block the transistor 40 before blocking transistor 44.
  • the rise of the signal S5 leads, in parallel, the descent of the signal S6.
  • the positive pulses with the inverters 76 and 78 were delayed, the negative pulses with the inverter 72 and the gate 74 will be delayed here.
  • This delay makes it possible to ensure that the transistors 40 and 44 are blocked before the transistor 38 is turned on. As before, this delay is realized in the low voltage logic circuits located at the input, which makes it possible to avoid the appearance of simultaneous conduction phenomena in the power transistors. .
  • the invention makes it possible to have an output stage that is both compact and optimized with regard to the problems of simultaneous conduction.
  • the circuit is optimized so that the load transistor 38 is turned off before the discharge transistor 40 becomes on. To do this, it is necessary to ensure a drop in the potential of the signal PCDE which is faster than the fall of the potential of the signal OUT2. In fact, in the opposite case, a positive gate-drain potential difference can be seen at the level of the charge transistor 38, particularly if the capacitive load associated with the output 34 is small. In this case, the transistor 38 being N-channel, there would be a return to conduction of the transistor 38 and a simultaneous conduction phenomenon. To avoid the occurrence of this phenomenon, so the transistor 42 is controlled so that it discharges the control gate of the charge transistor 38 faster than the transistor 40 discharges the output 34.
  • Cgd denote the gate - drain capacitance of a transistor, Csd its source - drain capacitance, Cg the equivalent capacitance on the gate, Csub its capacitance substrate, Cs the capacitive load connected to the output 34, C (34) the capacitance equivalent of the output 34 and Vt the threshold voltage of the N channel transistors.
  • the transistor source 40 will be connected to an analog ground to absorb the discharge current supplied by this output 34 and will use a different mass for the other components of the output stage.
  • a safety device represented by a Zener diode 84 placed between the output 34 and the control gate of the transistor 38.
  • This Zener diode makes it possible to avoid the appearance of a difference in potential too important between the control gate of the transistor 38 and its source. The presence of this diode creates a potential path of discharge of the output 34 to the source of the transistor 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electronic Switches (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Logic Circuits (AREA)

Description

  • La présente invention concerne un étage de sortie de puissance pour la commande de cellules d'écran à plasma.
  • Un écran à plasma est un écran de type matriciel, formé de cellules disposées aux intersections de lignes et de colonnes. Une cellule comprend une cavité remplie d'un gaz rare, deux électrodes de commande et un dépôt de phosphore rouge, vert ou bleu. Pour créer un point lumineux sur l'écran, en utilisant une cellule donnée, on applique une différence de potentiel entre les électrodes de commande de cette cellule, de sorte à déclencher une ionisation de son gaz. Cette ionisation s'accompagne d'une émission de rayons ultraviolets. La création du point lumineux est obtenue par excitation du phosphore déposé, par les rayons émis.
  • La commande des cellules, en vue de créer des images, est réalisée, classiquement, par des circuits logiques produisant des signaux de commande. Les états logiques de ces signaux déterminent les cellules qui sont commandées pour produire un point lumineux et celles qui sont commandées pour ne pas en produire. Ces circuits logiques sont généralement alimentés en basse tension, par exemple avec une tension d'alimentation de 5 volts ou moins. Cette tension n'est pas suffisante pour piloter directement les électrodes des cellules. Entre les circuits logiques et les cellules à commander, on utilise donc des étages de sortie de puissance, pour convertir les signaux de commande basse tension en signaux de commande haute tension.
  • L'ionisation du gaz des cavités nécessite l'application de potentiels élevés sur les électrodes de commande, de l'ordre de grandeur de la centaine de volts. D'autre part, il est nécessaire de pouvoir fournir aux électrodes (et, corrélativement, de pouvoir recevoir de ces électrodes) des courants importants, de l'ordre de plusieurs dizaines de milliampères. En effet, les électrodes peuvent être représentées, schématiquement, par des capacités équivalentes relativement élevées de l'ordre de la centaine de picofarad (et, corrélativement, par des sources de courant de quelques dizaines de milliampères). La commande de ces électrodes est donc équivalente à la commande de charge ou de décharge d'une capacité. Or on souhaite, généralement, dans les écrans à plasma, obtenir des signaux qui ont des fronts raides. Cela représente, par exemple, des durées de charge et de décharge de l'ordre de la centaine de nanosecondes. Compte tenu du potentiel élevé à atteindre et de l'importance de la charge capacitive, cela suppose que l'on puisse fournir des courants de charge et absorber des courants de décharge très importants, pouvant atteindre la centaine de milliampères.
  • Comme on l'a mentionné, la commande des électrodes d'écran à plasma est réalisée par des étages de sortie de puissance recevant des signaux logiques basse tension et les convertissant en signaux de commande haute tension.
  • La figure 1 illustre un exemple de réalisation classique d'un étage de sortie 1 permettant de commander une électrode. L'étage 1 comprend une entrée de commande 2 et une sortie 4. L'entrée de commande 2 reçoit un signal logique d'entrée IN1. On suppose que ce signal est un signal basse tension, pouvant prendre deux états, un état haut et un état bas. L'état haut sera représenté par un potentiel positif VCC, avec par exemple VCC = 5 V. L'état bas sera représenté par un potentiel de masse GND = 0 V. La sortie 4 fournit un signal de commande de sortie OUT1. Ce signal de sortie est fourni à une électrode, représentée par une capacité équivalente Cout montée entre la sortie 4 et la masse. La commande de l'électrode consiste à charger la capacité Cout, pour l'amener à un potentiel haute tension VPP, ou à la décharger, si elle était chargée. On supposera que la charge est commandée quand le signal IN1 est à l'état haut, et que la décharge est commandée quand le signal IN1 est à l'état bas.
  • L'étage 1 comprend une paire 6 de transistors de puissance 8 et 10. Ces transistors sont, typiquement, des transistors de puissance complémentaires de type VDMOS, à canal N, et de type HVMOS à oxyde épais, à canal P. Par transistor VDMOS, on entend des transistors de type MOS verticaux, à canal N, aptes à supporter de fortes différences de potentiel source - drain et à fournir ou absorber des courants importants. Par transistor HVMOS sur oxyde épais, on entend des transistors de type MOS, à canal P, aptes à supporter de fortes différences de potentiel source - drain et source - grille. Le transistor 8, de type HVMOS à canal P, reçoit le potentiel VPP sur sa source. Son drain est relié à la sortie 4 et sa grille de commande reçoit un signal de commande INP. Ce transistor permet de charger la capacité Cout, lorsqu'il est passant. Le transistor 10 est alors bloqué. Le transistor 10, de type VDMOS à canal N, reçoit le potentiel GND sur sa source. Son drain est relié à la sortie 4 et sa grille de commande reçoit un signal de commande INN. Ce transistor permet de décharger la capacité Cout, lorsqu'il est passant. Le transistor 8 est alors bloqué. La commande du transistor de décharge 10 est réalisable en basse tension. Si INN = VCC il est passant, et si INN = GND, il est bloqué. Ainsi, dans la circuit 1, le signal INN est fourni par un inverseur 12 recevant le signal IN1. On utilisera un inverseur basse tension, alimenté par les potentiels VCC et GND. Cet inverseur permet d'inverser la polarité du signal IN1 de sorte que la charge et la décharge soient commandées, respectivement, par IN1 = VCC et IN1 = GND. La commande du transistor de charge 8 nécessite une commande haute tension. En effet, si INP = GND, le transistor 8 est passant, mais pour pouvoir le bloquer, il faut que le signal INP puisse atteindre un potentiel au moins égal à VPP. Pour ce faire, la commande du transistor 8 est réalisée par un circuit 14 translateur de potentiel, ce circuit 14 étant piloté par le signal d'entrée IN1.
  • Le circuit 14 comprend deux transistors de puissance 16 et 18 de type MOS à canal P, et deux transistors de puissance 20 et 22, de type MOS à canal N. On utilisera des transistors aptes à supporter la haute tension, par exemple des transistors VDMOS, à canal N, et des transistors HVMOS sur oxyde épais, à canal P. Les transistors 16 et 18 reçoivent le potentiel VPP sur leurs sources. Les transistors 20 et 22 reçoivent le potentiel GND sur leurs sources. Le drain du transistor 16 est relié à la grille de commande du transistor 18 et au drain du transistor 20. Le drain du transistor 18 est relié à la grille de commande du transistor 16 et au drain du transistor 22. Les drains des transistors 18 et 22 fournissent le signal de commande INP. Le transistor 20 reçoit le signal INN sur sa grille de commande. Enfin, le transistor 22 reçoit un signal de commande NIN sur sa grille de commande. Ce signal NIN est fourni par un inverseur 24, alimenté en basse tension, et recevant le signal INN en entrée. Lorsque INN = GND, les transistors 20 et 22 sont, respectivement, bloqué et passant. Les transistors 16 et 18 sont, de ce fait, respectivement passant et bloqué. On a alors INP = GND. Le transistor de charge 8 est passant et le transistor de décharge 10 est bloqué. Lorsque INN = VCC, alors les transistors 20 et 22 sont, respectivement, bloqué et passant. Les transistors 16 et 18 sont, de ce fait, respectivement passant et bloqué. On a alors INP = VPP. Le transistor de charge 8 est bloqué et le transistor de décharge 10 est passant.
  • Un premier problème posé par le circuit de la figure 1 est la surface nécessaire pour réaliser le transistor de charge 8. En effet, compte tenu, d'une part, des différences de conductivité des transistors à canal P et à canal N et, d'autre part, des valeurs importantes des courants de charge et de décharge, le transistor 8 occupe une surface de l'ordre de deux à trois fois supérieure à celle occupée par le transistor 10, à performance équivalente en courant.
  • Un deuxième problème posé par le circuit de la figure 1 est le risque de conduction simultanée des transistors de sortie 8 et 10, lorsque le signal d'entrée IN1 change d'état. Une telle conduction simultanée, lorsque l'on modifie les signaux de commande des transistors 8 et 10, entraîne une dissipation importante, compte tenu des valeurs de tension et de courant concernant ces transistors.
  • Un but de l'invention est de proposer une structure d'étage de sortie qui permette de diminuer la surface nécessaire au transistor de charge et d'éviter une conduction simultanée des transistors de charge et de décharge lors des changements d'état du signal d'entrée. Pour ce faire, l'invention propose de remplacer le transistor de charge à canal P par un transistor à canal N agencé de manière à former un transistor de type P composite, et de commander les transistors à canal N de charge et de décharge à l'aide d'inverseurs dimensionnés pour éviter toute conduction simultanée.
  • Ainsi l'invention concerne un étage de sortie de puissance pour la commande de cellules d'écran à plasma, comprenant une entrée pour recevoir un signal logique d'entrée basse tension, une sortie pour fournir un signal de commande de sortie haute tension, un circuit de sortie comprenant, d'une part, un transistor de charge recevant un potentiel haute tension sur un drain et ayant une source reliée à la sortie de commande et, d'autre part, un transistor de décharge recevant un potentiel de référence sur une source et ayant un drain relié à la sortie, et des moyens de commande fournissant des signaux de commandes aux transistors de charge et de décharge pour commander ces transistors en fonction du signal logique d'entrée, caractérisé en ce que les transistors de charge et de décharge sont de type VDMOS à canal N, le transistor de charge étant agencé pour former un transistor de type P composite, et en ce que les moyens de commandes sont agencés de sorte que le potentiel de la grille de commande du transistor de charge chute plus rapidement que le potentiel de la sortie lorsque le signal logique d'entrée commande une décharge de la sortie.
  • Selon un mode de réalisation, le circuit de sortie comprend, d'une part, un transistor de puissance à canal P commandé par un circuit translateur de potentiel, le dit transistor à canal P recevant le potentiel haute tension sur une source et ayant un drain relié à une grille de commande du transistor de charge et, d'autre part, un transistor de puissance à canal N ayant une source recevant le potentiel de référence et ayant un drain relié à la grille de commande du transistor de charge, les dits transistors à canal P et à canal N étant commandés de sorte que le transistor à canal P soit passant quand on souhaite rendre le transistor de charge passant et que le transistor à canal N soit passant quand on souhaite bloquer le transistor de charge, et en ce que les moyens de commande comprennent des inverseurs basse tension pour commander le transistor à canal N et le transistor de décharge, les dits inverseurs étant dimensionnés de sorte que, d'une part, le transistor de décharge soit rendu passant après que le transistor à canal N soit rendu passant, lorsque l'on souhaite commander la décharge de la sortie et, d'autre part, le transistor à canal N soit bloqué après que le transistor de décharge soit bloqué, lorsque l'on souhaite commander une charge de la sortie au travers du transistor de charge.
  • Selon un mode de réalisation, les moyens de commandes sont dimensionnés de sorte que, lorsque l'on rend passant l'un des transistors à canal P et à canal N du circuit de sortie, l'autre de ces transistors soit bloqué antérieurement, de manière à éviter toute conduction simultanée de ces transistors.
  • Selon un mode de réalisation, l'étage comprend des circuits logiques de filtrage pour filtrer le signal logique d'entrée de manière à éviter une modification de signaux de commande des transistors de puissance de l'étage si des impulsions parasites d'une durée inférieure à une durée donnée apparaissent dans le signal logique d'entrée.
  • D'autres avantages et particularités apparaîtront à la lecture de la description qui suit d'un exemple de réalisation de l'invention, à lire conjointement aux dessins annexés dans lesquels :
    • la figure 1 illustre un étage de sortie selon l'état de la technique,
    • la figure 2 illustre un étage de sortie selon l'invention, et
    • les figures 3a à 3n illustrent des chronogrammes de signaux et de potentiels produits ou fournis par le circuit selon l'invention.
  • La figure 2 illustre un étage de sortie de puissance 30 réalisé selon l'invention.
  • L'étage de sortie 30 comprend une entrée de commande 32 pour recevoir un signal logique d'entrée IN2 et une sortie 34 pour fournir un signal de commande de sortie haute tension OUT2. Le signal logique IN2 sera un signal basse tension, dont le potentiel sera représentatif d'un état logique donné : IN2 = VCC, avec VCC un potentiel d'alimentation basse tension, représentera un état logique haut, et IN2 = GND, avec GND un potentiel de référence (encore appelé potentiel de masse), représentera un état logique bas. On aura, par exemple, VCC = 5 V et GND = 0 V. Le signal IN2 sera, typiquement, fourni par une circuiterie logique, non illustrée, qui déterminera son état logique en fonction d'images à former.
  • L'étage de sortie 30 comprend un circuit de sortie 36 permettant de relier la sortie 34 de l'étage 30 à un potentiel d'alimentation VPP haute tension ou au potentiel de masse GND. On choisira, par exemple, un potentiel d'alimentation VPP haute tension de 150 volts. Pour commander une électrode de cellule d'écran plasma, non représentée, on relie cette électrode à la sortie 34 de l'étage 30. Cette électrode se comportera comme un condensateur, que l'on peut charger ou décharger, tel qu'illustré sur la figure 1.
  • Le circuit de sortie 36 comprend deux transistors de puissance 38 et 40 permettant, respectivement, de porter le potentiel de la sortie de commande 34 au potentiel VPP et au potentiel GND. Le drain du transistor 38, dit de charge, reçoit le potentiel VPP. La source du transistor 40, dit de décharge, reçoit le potentiel GND. Le drain du transistor 40 et la source du transistor 38 sont reliés entre eux et constituent la sortie 34. Le transistor de charge 38 permet de fournir un courant de charge à la sortie 34, pour amener le potentiel du signal OUT2 sensiblement au niveau du potentiel VPP. Le transistor de décharge 40 permet d'absorber un courant de décharge fourni par la sortie 34, pour amener le potentiel du signal OUT2 sensiblement au niveau du potentiel GND. En considérant une charge capacitive de 100 picofarads sur la sortie 34 et des temps de charge et de décharge de l'ordre de 100 à 200 nanosecondes, les courants de charge et de décharge seront de l'ordre de 80 milliampères.
  • Les transistors 38 et 40 sont des transistors de type VDMOS à canal N, aptes à fournir et absorber des courants importants et à supporter des tensions source - drain importantes. On choisira, par exemple, des transistors ayant un nombre de cellules élémentaires, respectivement, de 9*10 et 5*18. Le circuit de sortie 36 comprend, en outre, deux transistors de puissance 42 et 44 de type MOS associés au transistor de charge 38. Ces transistors 42 et 44, respectivement à canal P et à canal N, permettent de former, conjointement avec le transistor 38, un transistor de type P composite.
  • Le transistor 42, de type MOS à canal P, reçoit le potentiel VPP sur sa source. Son drain est relié à la grille de commande du transistor de charge 38. Il reçoit un signal de commande, noté S10, sur sa grille de commande. Le transistor 44, de type MOS à canal N, reçoit le potentiel GND sur sa source. Son drain est relié au drain du transistor 42 et à la grille de commande du transistor de charge 38. Sa grille de commande reçoit un signal de commande noté S9. Le signal reçu par la grille de commande du transistor de charge 38, fourni par les transistors 42 et 44, est noté PCDE. On choisira, par exemple, un transistor 42, de type MOS, ayant un rapport W/L de 294/18 (avec W/L le rapport largeur de canal / longueur de canal du transistor) et un transistor 44, de type VDMOS, ayant un nombre de cellules élémentaires de 6*2.
  • Le transistor de puissance 42 permet de rendre passant le transistor de charge 38. Pour cela, il suffit de fournir un signal S10 tel que le transistor 42 soit passant. On prendra, par exemple, S10 = GND. Le potentiel du signal S9 aura alors une valeur telle que le transistor 44 sera bloqué. On choisira, par exemple, S9 = GND. Quand le transistor 42 est passant, alors le potentiel du signal PCDE augmente, par la charge de la capacité de grille équivalente du transistor de charge 38. Une fois que PCDE atteint la tension de seuil Vt du transistor de charge 38, le transistor de charge 38 devient passant et le potentiel sur sa source atteint sensiblement VPP - Vt.
  • Pour bloquer le transistor de charge 38, on utilise le transistor 44. Pour cela, il suffit d'imposer, par exemple, S9 = VCC et S10 = VPP. Le transistor 44 devient passant et on décharge, vers la masse, la capacité de grille équivalente du transistor 38. Pendant cette décharge, bien entendu, le transistor 42 doit être bloqué. Ainsi, le transistor 38, à canal N, est commandé de telle sorte qu'un potentiel bas (S10 = GND) le rende passant et qu'un potentiel haut (S9 = VCC) le bloque, ce qui correspond au comportement d'un transistor à canal P. Par contre, on peut utiliser un transistor de charge deux à trois fois moins gros que le transistor 8 de la figure 1, à courant de charge égal.
  • Le signal de commande S9 est produit par un inverseur 46 basse tension, formé de deux transistors 48 et 50 complémentaires, de type MOS. Le transistor 48, à canal P, reçoit le potentiel VCC sur sa source. Le transistor 50, à canal N, reçoit le potentiel GND sur sa source. Les drains de ces transistors sont reliés entre eux et fournissent le signal S9. Les grilles de commande de ces transistors sont reliées entre elles et reçoivent un signal logique de commande S5. On choisira, par exemple, des transistors 48 et 50 ayant, respectivement, un rapport W/L de 100/5 et 50/3.
  • Le signal de commande NCDE est produit par un inverseur 52 basse tension, formé de deux transistors 54 et 56 complémentaires, de type MOS. Le transistor 54, à canal P, reçoit le potentiel VCC sur sa source. Le transistor 56, à canal N, reçoit le potentiel GND sur sa source. Les drains de ces transistors sont reliés entre eux et fournissent le signal NCDE. Les grilles de commande de ces transistors sont reliées entre elles et reçoivent le signal logique de commande S5. On choisira, par exemple, des transistors 54 et 56 ayant, respectivement, un rapport W/L de 250/5 et 100/3.
  • Le signal de commande S10 est produit par un circuit translateur de potentiel 58, semblable à celui décrit pour la figure 1. Le circuit 58 comprend deux transistors de puissance 60 et 62 de type MOS à canal P, et deux transistors de puissance 64 et 66, de type MOS à canal N. On utilisera des transistors aptes à supporter la haute tension. On choisira, par exemple, des transistors 60 et 62 ayant, respectivement, un rapport W/L de 50/18 et 100/18 et des transistors 64 et 66, de type VDMOS, ayant un nombre de cellules élémentaires de 6*1.
  • Les transistors 60 et 62 reçoivent le potentiel VPP sur leurs sources. Les transistors 64 et 66 reçoivent le potentiel GND sur leurs sources. Le drain du transistor 60 est relié à la grille de commande du transistor 62 et au drain du transistor 64. Le drain du transistor 62 est relié à la grille de commande du transistor 60 et au drain du transistor 66. Les drains des transistors 62 et 66 fournissent le signal de commande S10. Le transistor 66 reçoit un signal logique de commande S7 sur sa grille de commande. Enfin, le transistor 64 reçoit un signal de commande S8 sur sa grille de commande. Ce signal S8 est fourni par un inverseur 68, alimenté en basse tension, et recevant le signal S7 en entrée. Lorsque S7 = GND, les transistors 66 et 64 sont, respectivement, bloqué et passant. Les transistors 62 et 60 sont, de ce fait, respectivement passant et bloqué. On a alors S10 = VPP. Lorsque S7 = VCC, les transistors 66 et 64 sont, respectivement, passant et bloqué. Les transistors 60 et 62 sont, de ce fait, respectivement passant et bloqué. On a alors S10 = GND.
  • L'étage de sortie 30 comporte, en outre, des circuits logiques introduisant des retards. Ces circuits de retard comprennent des inverseurs 70, 72, 76, 78 et 82, ces inverseurs comprenant une entrée et une sortie, et deux portes logiques 74 et 80, de type NON_ET, ces portes comprenant deux entrées et une sortie. On suppose que ces circuits sont alimentés en basse tension, par exemple par les potentiels VCC et GND.
  • L'inverseur 70 reçoit en entrée le signal d'entrée IN2 et produit, sur sa sortie, un signal logique S1, par inversion du signal IN2. Ce signal S1 est fourni à une première entrée de la porte 80 et à l'entrée de l'inverseur 72. Cet inverseur 72 produit, sur sa sortie, un signal logique S2. Ce signal est fourni à une première entrée de la porte 74 et à l'entrée de l'inverseur 76. Cet inverseur 76 produit, sur sa sortie, un signal logique S3. Le signal S3 est fourni à l'entrée de l'inverseur 78 qui produit, sur sa sortie, un signal logique S4. Le signal S4 est fourni à la deuxième entrée de la porte 74. La porte 74 produit, sur sa sortie, le signal logique S5 qui est fourni aux inverseurs 46 et 52. Le signal S5 est, par ailleurs, fourni à la deuxième entrée de la porte 80. Cette porte produit, sur sa sortie, un signal logique S6 qui est fourni à l'entrée de l'inverseur 82. L'inverseur 82 produit, sur sa sortie, le signal logique S7 fourni au circuit translateur de potentiel 58.
  • L'ensemble formé par la porte 74 et les inverseurs 76 et 78 permet, comme on le verra ci-après, de retarder les impulsions positives dans le signal d'entrée IN2. Cet ensemble, concurremment avec l'inverseur 72 et la porte 80, permet de retarder les impulsions négatives dans le signal d'entrée IN2.
  • On va maintenant décrire le fonctionnement du circuit 30, en se référant aux figures 3a à 3n qui illustrent respectivement, le signal logique d'entrée IN2, le signal S1, le signal S5, le signal S2, le signal S4, le signal S3, le signal S6, le signal S7, le signal S8, le signal NCDE, le signal S9, le signal S10, le signal PCDE et le signal de commande de sortie OUT2.
  • On supposera qu'initialement on a S1 = S5 = S3 = S7 = VCC, PCDE = OUT2 = VPP, et IN2 = S2 = S4 = S6 = S8 = NCDE = S9 = S10 = GND. Autrement dit, le transistor de charge 38 est passant et le transistor de décharge 40 est bloqué. Le potentiel du signal OUT2 est donc sensiblement égal au potentiel VPP, en négligeant la tension de seuil du transistor 38.
  • Supposons qu'on souhaite commander une décharge de la sortie de commande 34 au travers du transistor de décharge 40. Pour ce faire, on positionne le signal d'entrée IN2 à l'état haut. On a alors IN2 = VCC. Le signal S1 va donc passer à l'état bas. Cela entraîne, d'une part, une montée à l'état haut du signal S6 et, d'autre part, une montée à l'état haut du signal S2. Ultérieurement, le signal S3 descend à l'état bas, et le signal S4 monte à l'état haut. Une fois que le signal S4 est monté à l'état haut, le le signal S5 passe à l'état bas.
  • Les inverseurs 76 et 78 permettent de retarder les impulsions parasites positives, apparaissant dans le signal IN2. En effet, tant que la transition à l'état haut du signal S2 ne s'est pas propagée dans les inverseurs 76 et 78, le signal S5 est maintenu à l'état haut. Pour augmenter le délai minimal de retard, on pourra augmenter le nombre d'inverseurs placés entre la sortie de l'inverseur 72 et la deuxième entrée de la porte 74, ou bien encore modifier le dimensionnement des transistors formant ces inverseurs. On pourra, également, placer un condensateur entre les inverseurs 76 et 78. Le retard des fronts positifs dans le signal IN2 vis à vis des signaux S9 et NCDE permet d'éviter une conduction simultanée dans les transistors 42 et 44 et dans les transistors 38 et 40. La mise en conduction des transistors 40 et 44 est retardée jusqu'à la mise hors conduction du transistor 42 par le circuit translateur de potentiel 58 commandé par le signal S7.
  • La descente à l'état bas du signal S1, outre la descente ultérieure induite du signal S5, provoque la montée à l'état haut du signal S6. Cela entraîne la descente à l'état bas du signal S7 et la montée ultérieure, à l'état haut, du signal S8. De ce fait, on provoque la montée au potentiel VPP du signal S10, ce qui bloque le transistor 42. Si on suppose que le signal S9 est alors toujours à l'état bas, le potentiel PCDE est alors maintenu, par effet capacitif, au niveau de la grille du transistor de charge 38. On évite une conduction simultanée des transistors 42 et 44.
  • Quand le signal S5 descend à l'état bas, les transistors 50 et 56 vont se bloquer et les transistors 48 et 54 vont devenir passant. La charge capacitive vue par le transistor 50 étant inférieure à celle supportée par le transistor 54, le potentiel du signal S9 va augmenter plus rapidement que le potentiel du signal NCDE. On va donc décharger la grille de commande du transistor de charge 38 plus rapidement que la sortie 34, assurant ainsi que le transistor 38 reste toujours bloqué durant la décharge de la sortie 34. Connaissant les charges en sortie des inverseurs 46 et 52, on a en effet dimensionné les transistors 48 et 54 en conséquence. De ce fait, quand le transistor 40 devient passant, le transistor 38 reste bloqué, ce qui supprime le phénomène de conduction simultanée dans ces transistors. Une fois le transistor 40 passant, le potentiel du signal OUT2 va chuter pour atteindre le potentiel GND.
  • Supposons qu'ultérieurement on souhaite commander la charge de la sortie 34. Pour ce faire, on va positionner le signal IN2 d'entrée à l'état bas. On a alors IN2=GND.
  • Le signal S1 va monter à l'état haut. Cela va entraîner le passage à l'état bas du signal S2. En conséquence, le signal S5 va monter à l'état haut, indépendamment des signaux S3 et S4 qui, parallèlement, vont passer respectivement à l'état haut et à l'état bas. Par conséquent, on va bloquer les transistors 48 et 54 et rendre passants les transistors 50 et 56. En dimensionnant les transistors 50 et 56 de telle sorte que le potentiel du signal NCDE chute plus rapidement que celui du signal S9, on va bloquer le transistor 40 avant de bloquer le transistor 44.
  • La montée du signal S5 entraîne, parallèlement, la descente du signal S6. De même que, précédemment, on retardait les impulsions positives avec les inverseurs 76 et 78, on va, ici, retarder les impulsions négatives avec l'inverseur 72 et la porte 74. Ce retard permet de s'assurer que les transistors 40 et 44 sont bien bloqués avant la mise en conduction du transistor 38. De même que précédemment, ce retard est réalisé dans les circuits logiques basse tension situés en entrée, ce qui permet d'éviter l'apparition de phénomènes de conduction simultanée dans les transistors de puissance.
  • Le passage à l'état haut du signal S6 entraîne la descente à l'état bas du signal S7 et, par suite, la montée à l'état haut du signal S8. En conséquence, le transistor 66 va devenir passant et le potentiel du signal S10 va descendre à GND. On va alors rendre passant le transistor 42. Celui-ci étant passant, le potentiel sur la grille du transistor de charge 38 va augmenter. On suppose qu'alors le transistor 44 est, bien entendu, bloqué, pour éviter toute conduction simultanée dans les transistors 42 et 44. Pour ce faire, on dimensionnera les inverseurs 82 et 68 en conséquence, connaissant la charge supportée par le transistor 50. Le transistor 38 va donc devenir passant et le potentiel du signal OUT2 va augmenter. A ce moment, le transistor 40 étant bloqué, il ne peut y avoir de conduction simultanée des transistors 38 et 40.
  • Ainsi, l'invention permet de disposer d'un étage de sortie à la fois peu encombrant et optimisé en ce qui concerne les problèmes de conduction simultanée.
  • Comme on l'a vu, lorsque l'on commande une décharge de la sortie 34, le circuit est optimisé de sorte que le transistor de charge 38 soit bloqué avant que le transistor de décharge 40 ne devienne passant. Pour ce faire, il convient d'assurer une chute du potentiel du signal PCDE qui soit plus rapide que la chute du potentiel du signal OUT2. En effet, dans le cas contraire, on peut voir apparaître une différence de potentiel grille - drain positive au niveau du transistor de charge 38, particulièrement si la charge capacitive associée à la sortie 34 est faible. Dans ce cas, le transistor 38 étant à canal N, on assisterait à une remise en conduction du transistor 38 et à un phénomène de conduction simultanée. Pour éviter l'apparition de ce phénomène, on commande donc le transistor 42 de telle sorte qu'il décharge la grille de commande du transistor de charge 38 plus vite que le transistor 40 ne décharge la sortie 34.
  • Notons Cgd la capacité grille - drain d'un transistor, Csd sa capacité source - drain, Cg la capacité équivalente sur la grille, Csub sa capacité substrat, Cs la charge capacitive reliée à la sortie 34, C(34) la capacité équivalente de la sortie 34 et Vt la tension de seuil des transistors à canal N.
  • Lors du passage de la charge à la décharge de la sortie, des courants fournis par les transistors 54 et 48 vont charger les capacités grille - drain des transistors 40 et 44. Ces courants sont d'autant plus élevés que la variation dV/dt du potentiel du signal OUT2 est importante. Ces courants viennent réduire les différences de potentiel grille - source des transistors 40 et 44. En réduisant la résistance à l'état passant Ron du transistor 48, on applique une différence de potentiel grille - source plus importante pour le transistor 44. De la sorte, on accélère la descente du potentiel de la grille du transistor de charge 38 par rapport à sa source.
  • On a : Cg ( 38 ) = Cgd ( 38 ) + Csd ( 42 ) + Csub ( 44 )
    Figure imgb0001
    et C ( 34 ) = Cs + Csd ( 38 ) + Csub ( 40 ) .
    Figure imgb0002
  • Par ailleurs, on a : Vgs ( 44 ) = VCC Ron ( 48 ) Cgd ( 44 ) d V / dt ( PCDE )
    Figure imgb0003
    et Vgs ( 40 ) = VCC Ron ( 54 ) Cgd ( 40 ) d V / dt ( OUT 2 )
    Figure imgb0004
  • Pour ce qui concerne les passages de la décharge à la charge de la sortie 34, on veillera à satisfaire les conditions suivantes : Ron ( 50 ) Cgd ( 44 ) d V / dt ( PCDE ) < V t ( 44 )
    Figure imgb0005
    et Ron ( 56 ) Cgd ( 40 ) d V / dt ( OUT 2 ) < V t ( 40 ) .
    Figure imgb0006
  • Avantageusement, afin d'éviter une perturbation de la partie logique de l'étage de sortie 30 par la décharge de sortie 34, la source de transistor 40 sera reliée à une masse analogique pour absorber le courant de décharge fourni par cette sortie 34 et on utilisera une masse différente pour les autres composants de l'étage de sortie.
  • Dans l'étage de sortie 30, on a prévu un dispositif de sécurité représenté par une diode Zener 84 placée entre la sortie 34 et la grille de commande du transistor 38. Cette diode Zener permet d'éviter l'apparition d'une différence de potentiel trop importante entre la grille de commande du transistor 38 et sa source. La présence de cette diode crée un chemin potentiel de décharge de la sortie 34 vers la source du transistor 44. Ceci n'est pas pénalisant dans la mesure où le contrôle des transistors 44 et 40 est réalisé par des dispositifs de même type, les inverseurs 46 et 52. Si ces dispositifs subissent des variations de leurs caractéristiques, par exemples dues aux variations de paramètres de fabrication ou de température de fonctionnement, ces variations seront de même nature pour ces deux inverseurs 46 et 52. De ce fait, l'influence de variations de caractéristiques de ces inverseurs sur le fonctionnement de l'étage de sortie sera très limitée. On peut donc aisément concilier la protection du transistor 38 et un bon fonctionnement de l'étage, en dimensionnant les inverseurs 46 et 52 de sorte que la majeure partie du courant de décharge de la sortie soit absorbée par le transistor de décharge 40, dont c'est la fonction, plutôt que par le transistor 44.
  • Bien entendu, diverses modifications pourront être apportées par l'homme du métier, sans que l'on sorte pour autant du cadre de l'invention. Ainsi, on pourra modifier la polarité des signaux logiques et/ou les produire avec des portes logiques différentes. On pourra, par exemple, choisir d'inverser les polarités des signaux de commande et utiliser des portes de type NON_OU en lieu et place des portes NON_ET.

Claims (4)

  1. Etage de sortie de puissance (30) pour la commande de cellules d'écran à plasma, comprenant une entrée (32) pour recevoir un signal logique d'entrée basse tension (IN2), une sortie (34) pour fournir un signal de commande de sortie haute tension (OUT2), un circuit de sortie (36) comprenant, d'une part, un transistor de charge (38) recevant un potentiel haute tension (VPP) sur un drain et ayant une source reliée à la sortie (34) et, d'autre part, un transistor de décharge (40) recevant un potentiel de référence (GND) sur une source et ayant un drain relié à la sortie (34), et des moyens de commande (42, 44, 46, 52, 58) fournissant des signaux de commandes (PCDE, NCDE) aux transistors de charge et de décharge pour commander ces transistors en fonction du signal logique d'entrée, caractérisé en ce que les transistors de charge et de décharge (38, 40) sont de type VDMOS à canal N, le transistor de charge (38) étant agencé pour former un transistor de type P composite, et en ce que les moyens de commandes sont agencés de sorte que le potentiel de la grille de commande du transistor de charge chute plus rapidement que le potentiel de la sortie lorsque le signal logique d'entrée commande une décharge de la sortie.
  2. Etage selon la revendication 1, caractérisé en ce que le circuit de sortie (36) comprend, d'une part, un transistor de puissance à canal P (42) commandé par un circuit translateur de potentiel (58), le dit transistor à canal P recevant le potentiel haute tension (VPP) sur une source et ayant un drain relié à une grille de commande du transistor de charge (38) et, d'autre part, un transistor de puissance à canal N (44) ayant une source recevant le potentiel de référence (GND) et ayant un drain relié à la grille de commande du transistor de charge (38), lesdits transistors à canal P et à canal N étant commandés de sorte que le transistor à canal P (42) soit passant quand on souhaite rendre le transistor de charge (38) passant et que le transistor à canal N (44) soit passant quand on souhaite bloquer le transistor de charge (38), et en ce que les moyens de commande comprennent des inverseurs basse tension (46, 52) pour commander le transistor à canal N (44) et le transistor de décharge (40), lesdits inverseurs étant dimensionnés de sorte que, d'une part, le transistor de décharge (40) soit rendu passant après que le transistor à canal N (44) soit rendu passant, lorsque l'on souhaite commander la décharge de la sortie et, d'autre part, le transistor à canal N (44) soit bloqué après que le transistor de décharge (40) soit bloqué, lorsque l'on souhaite commander une charge de la sortie au travers du transistor de charge (38).
  3. Etage selon la revendication 2, caractérisé en ce que les moyens de commandes sont dimensionnés de sorte que, lorsque l'on rend passant l'un des transistors à canal P et à canal N (42, 44) du circuit de sortie, l'autre de ces transistor soit bloqué antérieurement, de manière à éviter toute conduction simultanée de ces transistors.
  4. Etage selon l'une des revendications 1 à 3, caractérisé en ce qu'il comprend des circuits logiques de retard (72, 74, 76, 78, 80) pour retarder le signal logique d'entrée (IN2) de manière à éviter une modification de signaux de commande (PCDE, NCDE) des transistors de puissance de l'étage si des impulsions parasites d'une durée inférieure à une durée donnée apparaissent dans le signal logique d'entrée.
EP98410053A 1997-05-22 1998-05-18 Etage de sortie de puissance pour la commande de cellules d'écran à plasma Expired - Lifetime EP0880124B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9706498 1997-05-22
FR9706498A FR2763735B1 (fr) 1997-05-22 1997-05-22 Etage de sortie de puissance pour la commande de cellules d'ecran a plasma

Publications (2)

Publication Number Publication Date
EP0880124A1 EP0880124A1 (fr) 1998-11-25
EP0880124B1 true EP0880124B1 (fr) 2006-03-08

Family

ID=9507299

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98410053A Expired - Lifetime EP0880124B1 (fr) 1997-05-22 1998-05-18 Etage de sortie de puissance pour la commande de cellules d'écran à plasma

Country Status (5)

Country Link
US (1) US6097214A (fr)
EP (1) EP0880124B1 (fr)
JP (1) JP3365310B2 (fr)
DE (1) DE69833741T2 (fr)
FR (1) FR2763735B1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6275070B1 (en) * 1999-09-21 2001-08-14 Motorola, Inc. Integrated circuit having a high speed clock input buffer
KR100358698B1 (ko) * 1999-09-21 2002-10-30 엘지전자주식회사 플라즈마 디스플레이 패널의 저전압 구동장치 및 방법
JP3644867B2 (ja) 2000-03-29 2005-05-11 富士通日立プラズマディスプレイ株式会社 プラズマディスプレイ装置及びその製造方法
US6262599B1 (en) * 2000-04-06 2001-07-17 International Business Machines Corporation Level shifting CMOS I/O buffer
FR2812963B1 (fr) * 2000-08-11 2003-07-25 St Microelectronics Sa Procede et circuit de commande de cellules d'un ecran a plasma
JP2002215087A (ja) * 2001-01-19 2002-07-31 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置およびその制御方法
KR100786667B1 (ko) * 2001-05-04 2007-12-21 오리온피디피주식회사 부쓰트래핑 레벨 쉬프터 방식의 플라즈마 디스플레이 패널 구동회로의 고전압 출력단 회로
US20040129996A1 (en) * 2001-05-03 2004-07-08 Hong Jae Shin High-voltage output circuit for a driving circuit of a plasma
JP3853195B2 (ja) * 2001-10-29 2006-12-06 株式会社ルネサステクノロジ 半導体装置
US6838905B1 (en) * 2002-10-15 2005-01-04 National Semiconductor Corporation Level translator for high voltage digital CMOS process
CN1275388C (zh) * 2004-07-30 2006-09-13 东南大学 低功耗cmos型高压驱动电路
FR2878065A1 (fr) 2004-11-18 2006-05-19 St Microelectronics Sa Circuit de decharge d'une charge electrique, et etage de sortie de puissance comprenant un tel circuit de decharge pour la commande de cellules d'ecran plasma
KR100678458B1 (ko) * 2004-12-24 2007-02-02 삼성전자주식회사 레벨 쉬프트 회로 및 이의 동작 방법
JP2006235512A (ja) * 2005-02-28 2006-09-07 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置
FR2884078A1 (fr) * 2005-04-04 2006-10-06 St Microelectronics Sa Dispositif de decalage de niveau de tension
JP2009017276A (ja) * 2007-07-05 2009-01-22 Nec Electronics Corp 半導体装置
JP2010145802A (ja) * 2008-12-19 2010-07-01 Panasonic Corp 駆動装置及び表示装置
US9349795B2 (en) * 2014-06-20 2016-05-24 Infineon Technologies Austria Ag Semiconductor switching device with different local threshold voltage
US9293533B2 (en) 2014-06-20 2016-03-22 Infineon Technologies Austria Ag Semiconductor switching devices with different local transconductance
US9231049B1 (en) * 2014-06-20 2016-01-05 Infineon Technologies Austria Ag Semiconductor switching device with different local cell geometry

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3730649A1 (de) * 1987-09-11 1989-03-30 Siemens Ag Schaltungsanordnung mit wenigstens einer serienschaltung zweier transistoren
JPH0229115A (ja) * 1988-07-19 1990-01-31 Toshiba Corp 出力回路
JP2545979B2 (ja) * 1989-04-25 1996-10-23 富士電機株式会社 半導体集積回路装置
TW265489B (en) * 1994-07-20 1995-12-11 Micron Technology Inc Low-to-high voltage cmos driver circuit for driving capacitive loads
US5510731A (en) * 1994-12-16 1996-04-23 Thomson Consumer Electronics, S.A. Level translator with a voltage shifting element
US5926055A (en) * 1996-12-20 1999-07-20 Cirrus Logic, Inc. Five volt output connection for a chip manufactured in a three volt process

Also Published As

Publication number Publication date
JP3365310B2 (ja) 2003-01-08
DE69833741D1 (de) 2006-05-04
FR2763735B1 (fr) 1999-08-13
DE69833741T2 (de) 2006-11-16
FR2763735A1 (fr) 1998-11-27
EP0880124A1 (fr) 1998-11-25
JPH11143427A (ja) 1999-05-28
US6097214A (en) 2000-08-01

Similar Documents

Publication Publication Date Title
EP0880124B1 (fr) Etage de sortie de puissance pour la commande de cellules d&#39;écran à plasma
EP0080394B1 (fr) Bascule bistable à stockage non volatil et à repositionnement statique
FR2743662A1 (fr) Perfectionnement aux registres a decalage utilisant des transistors mis de meme polarite
FR2787913A1 (fr) Registre a decalage
EP0453376B1 (fr) Interrupteur statique moyenne tension
EP0275752B1 (fr) Circuit intégré comportant des éléments d&#39;aiguillage vers des éléments de redondance dans une mémoire
EP0080395B1 (fr) Bascule bistable à stockage non volatil et à repositionnement dynamique
FR2767982A1 (fr) Circuit a retard variable
FR2665775A1 (fr) Circuit de commande en technologie mos.
EP0757427B1 (fr) Circuit générateur de phases pour circuit d&#39;alimentation négative du type pompe de charge
FR2760151A1 (fr) Amplificateur-tampon de commande de bus
FR2739506A1 (fr) Circuit de commande de sortie a trois etats pour circuits logiques cmos a 3,3 v ou a 5 v
FR3009772A1 (fr) Circuit logique a interrupteurs mecaniques a faible consommation
FR2816746A1 (fr) Circuit de commande des cellules d&#39;un ecran a plasma
EP3483773B1 (fr) Procédé de modification aléatoire du profil de consommation d&#39;un circuit logique, et dispositif associé
EP0845783B1 (fr) Circuit de lecture pour mémoire
FR2709372A1 (fr) Circuit de commande de cathode pour un panneau d&#39;affichage à plasma.
EP0187584A1 (fr) Porte logique à coîncidence, et circuits logiques séquentiels mettant en oeuvre cette porte à coîncidence
FR2812963A1 (fr) Procede et circuit de commande de cellules d&#39;un ecran a plasma
JP3838769B2 (ja) 出力バッファ回路
FR2597681A1 (fr) Systeme anti-chevauchement de phases pour circuits integres mos, en particulier pour le controle de filtres a capacites commutees.
FR3088507A1 (fr) Cellule logique adiabatique
FR2855902A1 (fr) Amplificateur de lecture desequilibre dynamiquement
FR2896610A1 (fr) Procede et dispositif de commande d&#39;un ecran a plasma matriciel
FR2725325A1 (fr) Circuit monostable a faibles dispersions du temps de basculement et circuit electronique l&#39;incorporant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STMICROELECTRONICS S.A.

17P Request for examination filed

Effective date: 19990514

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: STMICROELECTRONICS S.A.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060308

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69833741

Country of ref document: DE

Date of ref document: 20060504

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060515

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060517

Year of fee payment: 9

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060614

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070518

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531