EP1305581A1 - Vorrichtung zur messung des füllstands eines füllguts in einem behälter - Google Patents
Vorrichtung zur messung des füllstands eines füllguts in einem behälterInfo
- Publication number
- EP1305581A1 EP1305581A1 EP01955368A EP01955368A EP1305581A1 EP 1305581 A1 EP1305581 A1 EP 1305581A1 EP 01955368 A EP01955368 A EP 01955368A EP 01955368 A EP01955368 A EP 01955368A EP 1305581 A1 EP1305581 A1 EP 1305581A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sensor
- measuring
- container
- level
- conductive element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/26—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
- G01F23/263—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
- G01F23/266—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/284—Electromagnetic waves
Definitions
- the invention relates to a device for measuring the filling level of a filling material in a container.
- measuring systems are used which measure different physical quantities.
- the desired information about the fill level is subsequently derived on the basis of these variables.
- capacitive, conductive or hydrostatic measuring probes are used, as are detectors that work on the basis of ultrasound, microwaves or radioactive radiation.
- the capacitive probe and container wall form the electrodes of a capacitor. If the container wall is not conductive, a separate second electrode must be provided inside or outside the container. Depending on the fill level of the medium in the container, there is either air or medium between the two electrodes, which is reflected in a change in the measuring capacitance due to the different dielectric constants of the two substances. Furthermore, the measuring capacity is of course also dependent on the respective fill level of the medium in the container, since the two variables' fill level 1 and 'measuring capacity' are functionally dependent on one another. Capacitive probes can therefore be used both for point level detection and for continuous level determination.
- a capacitive level probe is e.g. B. become known from DE 195 36 199 C2.
- the measurement signals are coupled onto a conductive element or a waveguide and by means of the Waveguide in the container in which the contents are stored, be introduced.
- the known variants are suitable as waveguides: surface waveguides according to Sommerfeld or Goubau or Lecher waveguides.
- this measuring method takes advantage of the effect that at the interface between two different media, e.g. air and oil or air and water, part of the high-frequency pulses or respectively, due to the sudden change (discontinuity) in the dielectric constant of both media the reflected microwaves are reflected and passed back via the conductive element into a receiving device.
- two different media e.g. air and oil or air and water
- the reflected microwaves are reflected and passed back via the conductive element into a receiving device.
- the proportion (- useful echo signal) is greater, the greater the difference in the dielectric constant of the two media.
- the distance to the surface of the filling material can be determined on the basis of the transit time of the reflected portion of the high-frequency pulses or the CW signals (echo signals).
- a direct comparison between a capacitive measuring system and a measuring system with guided electromagnetic measuring signals shows certain advantages, but also disadvantages compared to the other method: Measurements of a capacitive sensor are almost insensitive to a moving surface of the medium. Furthermore, the measurements are not significantly influenced by foaming filling goods or by the formation of deposits on the capacitive sensor. However, in order to be able to carry out the level measurement with high precision, calibration of the capacitive measuring system at at least two water levels is required - which, depending on the container size and the contents, can be very time-consuming or, in extreme cases, preclude the use of a capacitive sensor. Another disadvantage of capacitive measuring systems can be seen in the fact that the measurement in the case of a non-conductive filling material is dependent on the respective dielectric constant.
- the interference signals are caused, for example, by reflections of the measurement signals in the area of the coupling of the measurement signals onto the conductive element, or they occur as a result of the interaction of the measurement signals with one Nozzle in which the measuring system is attached (upper block distance).
- Another interference signal that limits the possible measuring range occurs at the free end of the conductive element (lower block distance).
- measuring systems with guided high-frequency measuring signals that they deliver highly precise measuring results and that usually no adjustment, in particular no two-point adjustment as with capacitive measuring systems, is necessary. Furthermore, the measurement by means of guided measurement signals is largely independent of the respective dielectric constant of the medium; in addition, a measuring system with guided high-frequency measuring signals works sufficiently well even with relatively low dielectric constants.
- the invention is based on the object of proposing a device which allows optimized level determination and / or level monitoring in a container.
- the device comprises a sensor and a control / evaluation unit, the sensor being designed in such a way that it is operated in connection with at least two different measuring methods or in that the sensor operates in at least two different operating modes, wherein the control / evaluation unit operates the sensor in each case according to one of the two measurement methods or in one of the two operating modes, and the control / evaluation unit uses the measurement data of the sensor, which are supplied via at least one measurement method or during at least one operating mode Level of the filling material in the container determined.
- the solution according to the invention provides that the measured values are obtained either alternately, with any time offset, or simultaneously, that is to say quasi in parallel, using the capacitive measuring method or the method with guided high-frequency measuring signals.
- an optimized adaptation of the measuring system to the properties of the product to be measured can be achieved; furthermore, it is possible to use the measuring system to obtain the measured values that delivers the best measurement results under the given conditions.
- the measured values from the capacitive measuring system and the measuring system with guided measuring signals close together in time a plausibility check can even be carried out.
- the device according to the invention is characterized in particular by the fact that high-precision fill level measurements are possible over the entire container height, the measurement values used in each case being almost unaffected by the nature and type of the fill substance to be measured.
- the highly precise measurements over the entire container height are made possible by the fact that one method is or can be replaced by the other method whenever the disadvantages of the other system come into play.
- the senor is at least one conductive element that extends into the container.
- the conductive element can be, for example, at least one rod or at least one rope.
- the at least one conductive element is optionally used to carry out a capacitive measuring method or a transit time method, in the case of the capacitive measuring method the at least one conductive element forming an electrode and, in the case of the transit time method, high-frequency measurement signals along of the at least one conductive element.
- an input / output unit via which the respectively desired operating mode of the sensor is entered.
- the operating personnel can therefore optimally adapt the measuring system used to the nature of the medium to be measured or monitored.
- a switching unit is provided, via which the sensor can be switched from one to the other operating mode.
- the switching unit is an electronic switch, preferably a MOSFET transistor.
- one or the other measuring system can be activated alternately via the switch, so that the measured values of one or the other measuring system can be used for level determination / level monitoring.
- a preferred development of the device according to the invention proposes that a program for controlling the sensor is stored in the control / evaluation unit, via which the sensor is switched alternately or according to a predetermined circuit diagram into the at least two different operating modes.
- the control / evaluation unit carries out a plausibility check on the basis of the fill level values, which are determined according to at least two different measuring methods.
- the senor is controlled in such a way that the measurement data determined using the at least two measurement methods are measured or made available simultaneously or almost simultaneously.
- FIG. 1 The invention is explained in more detail with reference to the following drawing, FIG. 1.
- a filling material 12 is located in the container 11.
- This filling material 12 is either a liquid or a solid.
- the sensor 3 which in an opening 13, for. B. is fixed in a nozzle in the lid 14 of the container 11.
- An essential part of the sensor 2 is the conductive element 3.
- the conductive element 3 is designed either as a rope or as a rod.
- the conductive element 3 preferably extends over the entire height of the container 11.
- the sensor 2 is designed in such a way that, alternately or in parallel, it supplies both level measurement values which are obtained via a capacitance measurement and also provides level measurement values which are determined by measuring the transit time of high-frequency measurement signals. If the sensor 3 operates in the operating mode 'runtime method', the high-frequency measurement signals are conducted along the conductive element 3 into the container 11 and out of the container 11.
- the level measurement values are optionally provided via one of the two possible measurement methods.
- the alternating activation takes place via the control / evaluation unit 4 and the switching unit 7.
- the control circuit 5 for the capacitive sensor is just connected to the sensor 2 via the switching unit 7, i. H. the
- Level measurements are obtained via a capacity measurement. After a predetermined time has elapsed, for example controlled by the control / evaluation unit 4, the control circuit 6 for the sensor 2 is connected to the guided measurement signals via the switching unit 7 with the sensor 2. Now the level of the filling material 12 in the container 11 is determined by measuring the transit time of the guided high-frequency measurement signals.
- a plausibility check can be carried out. If the deviation between the two measured values falls outside a predetermined tolerance range, a corresponding message can be output to the operating personnel, for example, via the input / output unit 10. An alarm can also be activated.
- the two measuring systems so that one compensates for the weaknesses of the other.
- the capacitive measuring system it is possible for the capacitive measuring system to be compared by means of the measuring system with guided measuring signals. It is also provided that fill level values which occur in the area of the block distance of the measuring system with guided measuring signals are determined via the capacitive measuring system.
- sensor 2 it is also possible to use sensor 2 as a kind of universal sensor. Since the two measuring methods - capacitive measuring method and measuring method via the runtime determination of guided high-frequency measuring signals - complement each other perfectly, one or the other measuring method will deliver better measuring results depending on the application. For example, depending on the product 12 to be measured, the sensor 2 can be operated specifically according to one of the two possible measurement methods. The • desired function of the sensor 2 can be set by the operating personnel via the input / output unit 10.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10037715A DE10037715A1 (de) | 2000-08-02 | 2000-08-02 | Vorrichtung zur Messung des Füllstands eines Füllguts in einem Behälter |
DE10037715 | 2000-08-02 | ||
PCT/EP2001/008570 WO2002010696A1 (de) | 2000-08-02 | 2001-07-25 | Vorrichtung zur messung des füllstands eines füllguts in einem behälter |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1305581A1 true EP1305581A1 (de) | 2003-05-02 |
Family
ID=7651107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01955368A Ceased EP1305581A1 (de) | 2000-08-02 | 2001-07-25 | Vorrichtung zur messung des füllstands eines füllguts in einem behälter |
Country Status (9)
Country | Link |
---|---|
US (1) | US6481276B2 (de) |
EP (1) | EP1305581A1 (de) |
JP (1) | JP3806405B2 (de) |
CN (1) | CN1222758C (de) |
AU (1) | AU2001277551A1 (de) |
CA (1) | CA2424036C (de) |
DE (1) | DE10037715A1 (de) |
EA (1) | EA005706B1 (de) |
WO (1) | WO2002010696A1 (de) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE0200486L (sv) * | 2002-02-18 | 2003-08-19 | Hedson Technologies Ab | Mätanordning |
DE10240550A1 (de) * | 2002-08-29 | 2004-03-18 | Krohne S.A. | Füllstandsmeßgerät |
KR100517305B1 (ko) * | 2002-12-09 | 2005-09-27 | 손덕수 | 전송선을 이용한 자동차 연료 게이지 |
US6948377B2 (en) | 2003-12-08 | 2005-09-27 | Honeywell International, Inc. | Method and apparatus for detecting the strain levels imposed on a circuit board |
US7162922B2 (en) | 2003-12-23 | 2007-01-16 | Freger David I | Non-invasive method for detecting and measuring filling material in vessels |
KR101368748B1 (ko) | 2004-06-04 | 2014-03-05 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | 인쇄가능한 반도체소자들의 제조 및 조립방법과 장치 |
US7799699B2 (en) | 2004-06-04 | 2010-09-21 | The Board Of Trustees Of The University Of Illinois | Printable semiconductor structures and related methods of making and assembling |
EP1804038A1 (de) * | 2005-12-29 | 2007-07-04 | Endress + Hauser GmbH + Co. KG | Verfahren zur Feststellung des Füllstandes einer ersten Flüssigkeit in einem Behälter und zur Feststellung des Vorhandenseins einer zweiten Flüssigkeit unter der ersten Flüssigkeit sowie Füllstandsmessvorrichtung zur Ausführung dieses Verfahrens |
US20080129583A1 (en) * | 2006-12-01 | 2008-06-05 | Lars Ove Larsson | Radar level detector |
MY149292A (en) | 2007-01-17 | 2013-08-30 | Univ Illinois | Optical systems fabricated by printing-based assembly |
DE102007007024A1 (de) * | 2007-02-08 | 2008-08-21 | KROHNE Meßtechnik GmbH & Co. KG | Verwendung eines nach dem Radar-Prinzip arbeitenden Füllstandsmeßgeräts |
DE102007042043A1 (de) | 2007-09-05 | 2009-03-12 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Ermittlung und Überwachung des Füllstands eines Füllguts in einem Behälter |
DE102007061573A1 (de) | 2007-12-18 | 2009-06-25 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Ermittlung und/oder Überwachung zumindest eines Füllstands von zumindest einem Medium in einem Behälter gemäß einer Laufzeitmessmethode und/oder einer kapazitiven Messmethode |
DE102007061574A1 (de) | 2007-12-18 | 2009-06-25 | Endress + Hauser Gmbh + Co. Kg | Verfahren zur Füllstandsmessung |
US8410948B2 (en) * | 2008-05-12 | 2013-04-02 | John Vander Horst | Recreational vehicle holding tank sensor probe |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US8886334B2 (en) | 2008-10-07 | 2014-11-11 | Mc10, Inc. | Systems, methods, and devices using stretchable or flexible electronics for medical applications |
EP2349440B1 (de) | 2008-10-07 | 2019-08-21 | Mc10, Inc. | Katheterballon mit dehnbarer integrierter schaltung und sensoranordnung |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US8372726B2 (en) | 2008-10-07 | 2013-02-12 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
DE102008043252A1 (de) * | 2008-10-29 | 2010-05-06 | Endress + Hauser Gmbh + Co. Kg | Füllstandsmessgerät |
DE102008043412A1 (de) * | 2008-11-03 | 2010-05-06 | Endress + Hauser Gmbh + Co. Kg | Vorrichtung zur Bestimmung und/oder Überwachung einer Prozessgröße eines Mediums |
CN101551264B (zh) * | 2009-04-28 | 2011-01-05 | 哈尔滨威帝电子股份有限公司 | 一种电容电子式燃油传感器 |
TWI592996B (zh) | 2009-05-12 | 2017-07-21 | 美國伊利諾大學理事會 | 用於可變形及半透明顯示器之超薄微刻度無機發光二極體之印刷總成 |
US20110056289A1 (en) * | 2009-09-07 | 2011-03-10 | Senghaas Karl A | Floatless Rain Gauge |
EP2547258B1 (de) | 2010-03-17 | 2015-08-05 | The Board of Trustees of the University of Illionis | Implantierbare biomedizinische vorrichtungen auf bioresorbierbaren substraten |
US8701483B2 (en) | 2010-12-16 | 2014-04-22 | Vega Grieshaber Kg | Device for emulsion measuring by means of a standpipe |
JP5158218B2 (ja) * | 2011-01-10 | 2013-03-06 | 株式会社デンソー | 液面レベル計測装置 |
US9442285B2 (en) | 2011-01-14 | 2016-09-13 | The Board Of Trustees Of The University Of Illinois | Optical component array having adjustable curvature |
EP2702371A2 (de) | 2011-04-29 | 2014-03-05 | Ametek, Inc. | System zur messung von materiafüllständen anhand von kapazitäts- und zeitbereichsreflektometriesensoren |
JP2014523633A (ja) | 2011-05-27 | 2014-09-11 | エムシー10 インコーポレイテッド | 電子的、光学的、且つ/又は機械的装置及びシステム並びにこれらの装置及びシステムを製造する方法 |
EP2713863B1 (de) | 2011-06-03 | 2020-01-15 | The Board of Trustees of the University of Illionis | Anpassbare aktiv multiplexierte elektrodenanordnung mit hochdichter oberfläche zur elektrophysiologischen messung am gehirn |
US9019367B2 (en) * | 2011-06-10 | 2015-04-28 | Wuerth Elektronik Ics Gmbh & Co. Kg | Method for dynamically detecting the fill level of a container, container therefor, and system for dynamically monitoring the fill level of a plurality of containers |
DE102011053407A1 (de) * | 2011-09-08 | 2013-03-14 | Beko Technologies Gmbh | Füllstandsüberwachung |
US9261395B2 (en) * | 2012-02-13 | 2016-02-16 | Goodrich Corporation | Liquid level sensing system |
WO2013149181A1 (en) | 2012-03-30 | 2013-10-03 | The Board Of Trustees Of The University Of Illinois | Appendage mountable electronic devices conformable to surfaces |
GB2505190A (en) * | 2012-08-21 | 2014-02-26 | Schrader Electronics Ltd | Level sensing in a vehicle fuel tank using electromagnetic fields |
US9228877B2 (en) * | 2012-09-26 | 2016-01-05 | Rosemount Tank Radar Ab | Guided wave radar level gauge system with dielectric constant compensation through multi-frequency propagation |
US9171794B2 (en) | 2012-10-09 | 2015-10-27 | Mc10, Inc. | Embedding thin chips in polymer |
US10113994B2 (en) | 2013-02-06 | 2018-10-30 | Ultimo Measurement Llc | Non-invasive method for measurement of physical properties of free flowing materials in vessels |
DE102013102055A1 (de) | 2013-03-01 | 2014-09-18 | Endress + Hauser Gmbh + Co. Kg | Verfahren und Vorrichtung zur Überwachung eines vorgegebenen Füllstands eines Mediums in einem Behälter |
DE102013104781A1 (de) * | 2013-05-08 | 2014-11-13 | Endress + Hauser Gmbh + Co. Kg | Verfahren zur Überwachung zumindest einer medienspezifischen Eigenschaft eines Mediums |
RU2579634C2 (ru) * | 2013-05-16 | 2016-04-10 | ОАО "Теплоприбор" | Радиолокационный волноводный уровнемер с волноводной парой |
US9816848B2 (en) | 2014-01-23 | 2017-11-14 | Ultimo Measurement Llc | Method and apparatus for non-invasively measuring physical properties of materials in a conduit |
DE102014107927A1 (de) * | 2014-06-05 | 2015-12-17 | Endress + Hauser Gmbh + Co. Kg | Verfahren und Vorrichtung zur Überwachung des Füllstandes eines Mediums in einem Behälter |
KR20160019656A (ko) * | 2014-08-12 | 2016-02-22 | 엘지전자 주식회사 | 공기조화기의 제어방법 그에 따른 공기조화기 |
CA3077632A1 (en) * | 2017-11-16 | 2019-05-23 | Casale Sa | A method and system for measuring a liquid level in a pressure vessel of a urea synthesis plant |
CN109328620B (zh) * | 2018-09-19 | 2020-04-24 | 农业部南京农业机械化研究所 | 一种谷物联合收割机的实时测产系统及方法 |
DE102020114108A1 (de) * | 2020-05-26 | 2021-12-02 | Endress+Hauser SE+Co. KG | Füllstandsmessgerät |
RU2757542C1 (ru) * | 2021-02-19 | 2021-10-18 | Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук | Способ измерения уровня диэлектрической жидкости в емкости |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4169543A (en) * | 1977-10-20 | 1979-10-02 | Keystone International, Inc. | Amplitude responsive detector |
FR2514497A1 (fr) * | 1981-10-08 | 1983-04-15 | Jaeger | Dispositif de detection numerique de niveau par fil chaud |
US4601201A (en) * | 1984-03-14 | 1986-07-22 | Tokyo Tatsuno Co., Ltd. | Liquid level and quantity measuring apparatus |
DE3617223A1 (de) | 1985-05-28 | 1986-12-04 | Jakob 7954 Bad Wurzach Altvater | Verfahren und transportfahrzeug zur behandlung von klaergas, deponiegas o. dgl. |
US4799174A (en) * | 1986-03-13 | 1989-01-17 | Drexelbrook Controls, Inc. | Multiple set point condition monitoring systems |
US4739658A (en) * | 1986-04-02 | 1988-04-26 | Nuvatec, Inc. | Level sensing system |
DE3617234A1 (de) * | 1986-05-22 | 1987-11-26 | Meyer Fa Rud Otto | Wasser- oder feuchtemelder |
EP0289172B1 (de) * | 1987-04-28 | 1992-06-10 | Simmonds Precision Products Inc. | Apparat und Methode zum Bestimmen einer Flüssigkeitsmenge |
DE3904824A1 (de) * | 1989-02-17 | 1990-08-23 | Gok Gmbh & Co Kg | Inhaltsanzeiger fuer fluessiggasbehaelter |
GB2260235B (en) * | 1991-09-26 | 1995-07-12 | Schlumberger Ind Ltd | Measurement of liquid level |
DE4233324C2 (de) * | 1992-10-05 | 1996-02-01 | Krohne Messtechnik Kg | Verfahren zur Messung des Füllstandes einer Flüssigkeit in einem Behälter nach dem Radarprinzip |
JPH07128115A (ja) * | 1993-10-28 | 1995-05-19 | Yoshijirou Watanabe | 静電容量式レベル検出装置 |
DE4405238C2 (de) * | 1994-02-18 | 1998-07-09 | Endress Hauser Gmbh Co | Anordnung zur Messung des Füllstands in einem Behälter |
JPH07294309A (ja) * | 1994-04-26 | 1995-11-10 | Yokogawa Uezatsuku Kk | 水位計測システム |
DE19510484C2 (de) * | 1995-03-27 | 1998-04-09 | Krohne Messtechnik Kg | Füllstandsmesser |
DE19536199C2 (de) | 1995-09-28 | 1997-11-06 | Endress Hauser Gmbh Co | Verfahren zur Einstellung des Schaltpunktes bei einem kapazitiven Füllstandsgrenzschalter |
US5827985A (en) * | 1995-12-19 | 1998-10-27 | Endress + Hauser Gmbh + Co. | Sensor apparatus for process measurement |
DE19646685A1 (de) * | 1996-11-12 | 1998-05-14 | Heuft Systemtechnik Gmbh | Verfahren zur Bestimmung von Parametern, z. B. Füllstand, Druck, Gaszusammensetzung in verschlossenen Behältern |
US6006604A (en) | 1997-12-23 | 1999-12-28 | Simmonds Precision Products, Inc. | Probe placement using genetic algorithm analysis |
JP2000055712A (ja) * | 1998-08-08 | 2000-02-25 | Miura Co Ltd | 液位検出器の異常検出方法および校正方法 |
-
2000
- 2000-08-02 DE DE10037715A patent/DE10037715A1/de not_active Withdrawn
- 2000-12-20 US US09/739,973 patent/US6481276B2/en not_active Expired - Lifetime
-
2001
- 2001-07-25 AU AU2001277551A patent/AU2001277551A1/en not_active Abandoned
- 2001-07-25 EP EP01955368A patent/EP1305581A1/de not_active Ceased
- 2001-07-25 CN CNB018131700A patent/CN1222758C/zh not_active Expired - Fee Related
- 2001-07-25 CA CA002424036A patent/CA2424036C/en not_active Expired - Fee Related
- 2001-07-25 JP JP2002516576A patent/JP3806405B2/ja not_active Expired - Fee Related
- 2001-07-25 WO PCT/EP2001/008570 patent/WO2002010696A1/de active Application Filing
- 2001-07-25 EA EA200300210A patent/EA005706B1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO0210696A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN1443302A (zh) | 2003-09-17 |
JP3806405B2 (ja) | 2006-08-09 |
CA2424036C (en) | 2007-01-23 |
JP2004513330A (ja) | 2004-04-30 |
WO2002010696A1 (de) | 2002-02-07 |
EA005706B1 (ru) | 2005-04-28 |
EA200300210A1 (ru) | 2003-06-26 |
CN1222758C (zh) | 2005-10-12 |
US6481276B2 (en) | 2002-11-19 |
AU2001277551A1 (en) | 2002-02-13 |
CA2424036A1 (en) | 2003-03-17 |
US20020017131A1 (en) | 2002-02-14 |
DE10037715A1 (de) | 2002-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002010696A1 (de) | Vorrichtung zur messung des füllstands eines füllguts in einem behälter | |
EP1972905B1 (de) | Füllstandsmessvorrichtung | |
DE102007060579B4 (de) | Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälters | |
EP2223059B1 (de) | Verfahren zur füllstandsmessung | |
EP0681184B1 (de) | Analysengerät mit automatischer Justierung der Transporteinrichtung der Pipettiernadel | |
EP3080563B1 (de) | Vorrichtung zur messung des füllstands eines füllguts in einem behälter | |
EP2223060B1 (de) | VORRICHTUNG ZUR ERMITTLUNG UND/ODER ÜBERWACHUNG ZUMINDEST EINES FÜLLSTANDS VON ZUMINDEST EINEM MEDIUM IN EINEM BEHÄLTER GEMÄß EINER LAUFZEITMESSMETHODE UND/ODER EINER KAPAZITIVEN MESSMETHODE | |
DE102010038732B4 (de) | Vorrichtung und Verfahren zur Sicherung der Befestigung eines koaxial um eine Messsonde angeordneten Rohres einer Messsondeneinheit eines Füllstandsmessgerätes an einem Prozessanschlusselement | |
EP3054271B1 (de) | Grenzstandschalter mit integriertem Lagesensor | |
EP3791171A1 (de) | Tdr-messvorrichtung zur bestimmung der dielektrizitätskonstanten | |
DE10325267A1 (de) | Anordnung und Verfahren zur Füllstandsmessung | |
EP1454117B1 (de) | Vorrichtung zur bestimmung und/oder überwachung des füllstandes eines füllguts in einem behälter | |
EP1083412A1 (de) | Vorrichtung zur Bestimmung einer physikalischen Grösse eines flüssigen oder festen Mediums | |
EP1128169A1 (de) | Verfahren und Vorrichtung zur Bestimmung des Grenzfüllstandes eines Füllguts in einem Behälter | |
EP3447456A1 (de) | Tdr-füllstandmessgerät und verfahren zum betreiben eines tdr-füllstandmessgeräts | |
EP1191315A2 (de) | Vorrichtung und Verfahren zur Ermittlung der Positionen der Grenzfläche unterschiedlicher Medien | |
DE102005015548B4 (de) | Vorrichtung zur Bestimmung und/oder Überwachung des Füllstandes eines Mediums | |
DE19516789B4 (de) | Blutreservoirfüllstand-Überwachungsvorrichtung | |
EP4031842B1 (de) | Messgerät zur bestimmung eines dielektrizitätswertes | |
DE19934041A1 (de) | Füllstand-Sensorvorrichtung | |
DE102015202448A1 (de) | Auswerteverfahren für einen TDR-Grenzstandschalter | |
EP3837509B1 (de) | Füllstandsmessgerät | |
DE10196640B4 (de) | Verbesserte Schwellenwerteinstellung für einen Radar-Pegeltransmitter | |
DE20016962U1 (de) | Zeitbereichsreflektometer für den Einsatz als Grenzwertschalter zur Erfassung des Grenzstandes eines Gutes | |
EP4196775B1 (de) | Temperaturkompensiertes dielektrizitätswert-messgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021123 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GRITTKE, UDO Inventor name: KRAUSE, MICHAEL Inventor name: WARTMANN, GERD Inventor name: NEUHAUS, JOACHIM |
|
17Q | First examination report despatched |
Effective date: 20080730 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ENDRESS+HAUSER SE+CO. KG |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20180628 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01F 23/00 20060101ALI20020212BHEP Ipc: G01F 23/26 20060101AFI20020212BHEP |