EP1299643A1 - Verdrängerpumpe - Google Patents

Verdrängerpumpe

Info

Publication number
EP1299643A1
EP1299643A1 EP01971753A EP01971753A EP1299643A1 EP 1299643 A1 EP1299643 A1 EP 1299643A1 EP 01971753 A EP01971753 A EP 01971753A EP 01971753 A EP01971753 A EP 01971753A EP 1299643 A1 EP1299643 A1 EP 1299643A1
Authority
EP
European Patent Office
Prior art keywords
displacement pump
pump according
rotor sleeve
longitudinal
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01971753A
Other languages
English (en)
French (fr)
Other versions
EP1299643B1 (de
Inventor
Manfred Roth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tankol GmbH
Original Assignee
Tankol GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tankol GmbH filed Critical Tankol GmbH
Publication of EP1299643A1 publication Critical patent/EP1299643A1/de
Application granted granted Critical
Publication of EP1299643B1 publication Critical patent/EP1299643B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/047Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0426Arrangements for pressing the pistons against the actuated cam; Arrangements for connecting the pistons to the actuated cam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/348Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the vanes positively engaging, with circumferential play, an outer rotatable member

Definitions

  • the invention relates to a positive displacement pump - in particular an oscillating positive displacement pump - with at least one piston which is relatively movable in a pump housing while changing the shape of a working space.
  • Piston machines offer a work space that changes periodically and is filled with a fluid; its pressure changes with compression, decreases with expansion.
  • the essential geometric size is the stroke volume as the change in the working space caused by the displacer during a cycle.
  • Pumps of this type are generally driven in the classic unit design, ie the pump and motor are connected on a base plate or via a lantern in the alignment of both shaft axes by a coupling element which transmits the necessary drive power.
  • the direct coupling of the motor is an exception;
  • the pump shaft is designed as a hollow shaft on the drive side in such a way that the motor shaft is inserted and a torque can then be transmitted.
  • a pump body is mounted in a rotor sleeve and is provided with longitudinal grooves extending from its circumferential surface for receiving pistons therein — associated with energy stores;
  • Each piston is assigned a bolt-like or needle-like body on its head surface facing the 5 rotor sleeve, on the outer surface of which the inner surface of the rotor sleeve rests.
  • the latter should advantageously be rotatably mounted around the pump body.
  • the pump body runs eccentrically in cross section in the rotor sleeve; in a particularly favorable embodiment, the inner bore of the rotor sleeve is arranged eccentrically in this. In any case, there is an existing between these two parts
  • the pump body is arranged with two or more longitudinal grooves - arranged radially and evenly distributed on the circumference - centrally to the pivot point of the drive motor so that the pistons inserted into the longitudinal grooves are guided by the rotating one
  • the longitudinal grooves in the pump body are advantageously arranged at an angle to the cross-section of the diameter; the cross-sectional longitudinal axis of the longitudinal groove delimits an angle of approximately 20 ° to 40 °, in particular approximately 25 °, with one of the diameter lines of the pump body.
  • a preferred positive displacement pump is characterized by two 35 pairs of longitudinal grooves, the orifices of which are offset from one another by 90 ° on the circumferential surface of the pump body; because two such longitudinal grooves are approximately opposite each other on a straight line in diameter. associated mouths, the mouth centers according to the invention being located on different sides of the assigned diameter straight line at a distance from it, that is to say they are offset from one another.
  • the invention is not limited to the configuration described with two pairs of longitudinal grooves; a larger number of such pairings can also be provided.
  • a channel-like longitudinal indentation in the head surface of the cross-sectionally flat piston as a bearing for the bolt-like or needle-like body formed by a bearing needle; approximately at right angles to the longitudinal indentation or the top surface of the flat piston should run in this recesses for receiving a force accumulator.
  • Each of these recesses is preferably located next to the cross-sectional longitudinal axis of the longitudinal groove; The purpose of this offset is to increase the ridge surface on the bearing pressure side.
  • the energy storage device which is designed as a coil spring and is supported on the groove base of the longitudinal groove, the flat piston is held at a variable distance from the groove base. The energy accumulator ensures that the piston is fixed without play via the head needle bearings to the eccentric rotor sleeve.
  • the underside of the flat piston and the bottom of the groove determine the height of a conveying or working space which is delimited on both sides by groove walls. This should be connected to the needle bearing by at least one bore provided between the underside of the flat piston and its longitudinal molding.
  • the rotor sleeve in the displacement pump has ball bearings on both ends and is closed on both ends by a pump cover.
  • these pump covers which are arranged on the right and left of the pump body, have corresponding valves in order to generate a delivery process of the delivery medium from the suction to the pressure side of the pump according to the invention from the stroke movement of each flat piston.
  • the Individual delivery rooms or delivery chambers - equal to the number of flat pistons selected in each case - are combined in the pump covers and form the connections for the suction and pressure lines via the motor covers.
  • this structural design can be represented both in a direct current and in an alternating current motor version.
  • the choice of the number of flat pistons and the choice of a relatively wide range of changed strokes - changing the eccentricity of the inner bore of the rotor sleeve - for a "size” means the delivery quantities "quantity” and "pressure” in changed a wide range.
  • a particular advantage over conventional positive displacement pumps is improved security against "seizing" of the delivery elements, since the delivery pressure always decreases on both sides in the lubrication gap between the pump body and the flat piston, whereby the pressure component from the delivery chamber does not act in the direction of the slide bearing surfaces, as is the case with for example, the case with a screw pump.
  • the hydrostatic pressure in the lubricating gap increases to the same extent with increasing delivery pressure.
  • the classic design of the rotor of a three-phase motor consists of the laminated core of the cage rotor on a drive shaft with the cast-out cage grooves as a short-circuit rotor. If you replace the drive shaft - within the framework of the necessary minimum dimensions of the cage bars - with the rotor sleeve according to the invention and change the motor housing cover in the manner described, then the complete motor / pump / unit is formed. With such a design, there is no shaft seal, which is commonly known as the weakest link in pumps with an emerging shaft end. At the same time, the "hermetically sealed" pump can be achieved without additional additions at a cost which corresponds approximately to that of a simple unit structure. The alignment of the motor and pump which is usually necessary in the case of the classic assembly structure in order to ensure the proper functioning of the intermediate clutch is also eliminated in the present invention.
  • the - mentioned - design as a DC or single-phase machine is also possible;
  • the rotor winding is replaced by a package of permanent magnets - known from the magnetic couplings. This enables small designs (here the system diameter) and opens up a wide field of application for the large-scale production of small pumps with high pressure ranges.
  • the drive takes place by means of a toothed or V-belt engaging on that outer rotor.
  • This makes it possible to use it as a flange-mounted auxiliary unit on all types of engines. If one replaces the outer rotor with magnets, including the toothed or V-belt elements, for example by a DC or commutatorless three-phase stator, the use of the pump generally described above can be seen; Because of the dimensions, this pump is particularly suitable for mobile use.
  • Fig. 2 a partially sectioned side view of the tangential piston pump
  • FIG. 3 shows a partially sectioned side view of the tangential piston pump as a three-phase short-circuit machine
  • FIG. 4 the longitudinal section through the tangential piston pump, enlarged compared to FIG. 3;
  • FIG. 5 shows an enlarged cross section through a central part of FIG. 1 and its section line V - V;
  • FIG. 6 a detail from FIG. 5;
  • a rotor sleeve 20 of the inner diameter d which surrounds a pump body 22 of circular cross-section of the diameter e, is mounted in a tubular housing 16 - closed on both ends by fastening strips 12 having housing covers 14 - in the region of ball bearings 18.
  • the longitudinal axis of the pump body 22 is denoted by A, and four longitudinal grooves 24 are arranged in it with a groove base 26 which is rounded in the form of a partially circular circle in such a way that, in the example shown, their cross-sectional longitudinal axes Q with the central cross-sectional axis M, which defines a straight line, or the transverse axis perpendicular to this B of the pump body 22 limit an angle w of approximately 25 °.
  • the center of the mouth 25 of the longitudinal grooves 24 on the body circumference is offset laterally by a dimension i to the corresponding cross-sectional central axis M or the transverse axis B, and the cross-sectional longitudinal axes Q of the two longitudinal grooves 24 on the cross-sectional central axis M run parallel to one another as well as the cross-sectional longitudinal axes Q of the two longitudinal grooves 24 assigned to the transverse axis B.
  • Each longitudinal groove 24 of cross-sectional width a receives a flat piston 30, in the outwardly directed head surface 32 of which a bearing needle 36 rests in an indentation 34 extending in its longitudinal direction - the width b of its part-circular cross-section;
  • a minimum stroke is sufficient for the representation of the delivery volume - with a corresponding selection of the number of pistons.
  • the maximum stroke is in the range of 2 to 6.5 mm. The consequence of this is that the known disadvantages of oscillating displacement pumps with regard to the pulsating flow can be reduced to a minimum. If there is more than one flat piston 30, the pressure pulsation which forms at the pressure port of the pump 10 is thus also greatly reduced.
  • the piston movement during the suction stroke ie the running of the flat piston 30 in the area of the diameter increase or the positive eccentricity of the inside diameter d of the rotor sleeve 20 takes place through the pretensioning force of springs inserted into the recesses 38 of the flat piston 30 as a force accumulator 40 and the lubrication of the needle bearing on Piston head 32 of the flat piston 30 through the medium through the arrangement of holes 46 or the like. Connections of the delivery chamber 28 remaining in the longitudinal groove 24 to the bearing recess or longitudinal indentation 34 in the piston head 32.
  • a wide range of the lubricating properties of the delivery medium (also v ⁇ 1 mm ⁇ 2 / sec.) Can be achieved by appropriate choice of material and surface of the needle bearing parts hydrostatic lubrication can be maintained since the lubrication pressure always increases with the delivery pressure.
  • the motor stator is not sealed off from the pumped medium. If required, the stator can be given a thin-walled tube made of the classic materials of this application, as in the known "canned motor". For aggressive media - e.g. in chemistry - due to the negligible lubrication limit due to the lack of plain bearing conditions, a wide range can be covered by appropriate choice of materials for pump body parts and the flat pistons.
  • the stator housing Since no classic fan can be arranged on the motor shaft in this construction, the stator housing must be provided with appropriate surface cooling. In any case, however, a certain amount of the magnetic heat loss is absorbed by the circuit of the leakage currents that flow through the bearings on the stator to the suction side and by the heat conduction of the squirrel-cage rotor / rotor sleeve.
  • the rotor sleeve 20 can also be driven via a magnetic coupling.
  • the rotor sleeve 20 of the tangential piston pump 10 a according to FIGS. 7, 8 carries at least one sleeve-like magnetic element 50 on its axially parallel outer contour.
  • the inner magnet element 50 runs in a gap 56 parallel to the longitudinal axis A.
  • the outer rotor 54 on the magnetic coupling 52 formed by the magnetic elements 50, 51 is driven by a toothed or V-belt 64.
  • the drive torque - coming from an outer shaft - is supplied to the pump body 22 on the inside via the magnetic coupling 52, which in particular detects the two rotors 20, 54.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Description

BESCHREIBUNG
Verdrängerpumpe
Die Erfindung betrifft eine Verdrängerpumpe — insbesondere eine oszillierende Verdrängerpumpe — mit zumindest einem in einem Pumpengehäuse unter Veränderung der Gestalt eines Arbeitsraumes relativ bewegbaren Kolben.
Kolbenmaschinen bieten einen periodisch gestaltveränderlichen Arbeitsraum an, der mit einem Fließmedium gefüllt ist; dessen Druck verändert sich bei einer Kompression steigend, bei einer Expansion fallend. Die wesentliche geometrische Größe ist das Hubvolumen als die vom Verdränger bewirkte Änderung des Arbeitsraumes während eines Taktes .
Bei Kolbenpumpen — sog. oszillierenden Verdrängerpumpen — fördert ein Kolben in einem abgeschlossenen Verdrängerraum das Verdränger-Volumen über druckabhängige Öffnungselemente gegen einen Anlagendruck. Die theoretische Förderarbeit wird aus dem Hubvolumen und dem Differenzdruck von Saug- zur Druckseite gebildet, das Hubvolumen ensteht durch die Bewegung des Kolbens zwischen einem unteren und einem oberen Totpunkt. Die Bewegung wird meist durch Umwandlung einer Drehbewegung der Antriebseinheit über eine "Kurbel" in eine hin- und hergehende Bewegung umgewandelt; die kon- stante Drehbewegung des Antriebes wird in eine nicht konstante Hubbewegung des Pumpenkolbens umgewandelt. Dies hat zur Folge, dass das zu fördernde Fluid mit einer relativ hohen Änderung der Strömungsgeschwindigkeit — oszillierende Strömung — im Hubraum der Pumpe bewegt wird. Diese sog. Pulsation der Strömung ist durch eine Messung der Druckpulsation nachweisbar. Die daraus möglicherweise entstehenden Nachteile sind bekannt. Allgemein erfolgt der Antrieb derartiger Pumpen im klassischen Aggregataufbau, d.h. Pumpe und Motor sind auf einer Grundplatte oder über eine Laterne in Ausrichtung beider Wellenachsen durch ein kuppelndes, die notwendige Antriebsleistung übertragendes Element verbunden. Eine Ausnahme bildet die Direktkupplung des Motors; hierbei ist die Pumpenwelle antriebsseitig als Hohlwelle derart ausgeführt, dass die Motorwelle eingesteckt wird und dann ein Drehmoment übertragen kann.
10
Weitere Ausnahmen sind die sog. hermetisch dichten Pumpenaufbauten. Hierbei muss wegen toxischer, aggressiver oder brennbarer Fördermedien eine irgendwie geartete Leckage an der Wellendichtung der austretenden Pumpenwelle vermieden
15 werden. Dies erfolgt entweder durch Zwischeneinbau bekannter Magnetkupplungen zwischen Pumpenwelle und Aggregat- Kupplung, oder durch die dichte Verbindung des Motorgehäuses mit dem Pumpengehäuse mittels einer hermetischen Abdichtung zwischen Stator und Rotor des Motors in sog.
Ξ0 "canned motor"-Ausführung. Derartige hermetisch dichte Pumpen sind äußerst kostenaufwendig. Bei der Magnet-Kupplung kommt noch hinzu, dass jedweder Schlupf zwischen Außen- und Innenrotor durch große Sicherheitszuschläge in der Auslegung vermieden werden muss, da kein Wiederanlauf nach einem
Ξ5 kurzzeitigen Schlupf zwischen beiden Rotoren möglich ist.
In Kenntnis dieses Standes der Technik hat sich der Erfinder das Ziel gesetzt, eine stets hermetisch dichte Pumpe ohne aufwendige Pumpe/Motor-Konstruktion darzustellen.
30
Zur Lösung dieser Aufgabe führt die Lehre nach dem unabhängigen Patentanspruch; die Unteransprüche geben günstige Weiterbildungen an. Zudem fallen in den Rahmen der Erfindung alle Kombinationen aus zumindest zwei der in der Be-
35 Schreibung, der Zeichnung und/oder den Ansprüchen offenbarten Merkmale. Erfindungsgemäß ist ein Pumpenkörper in einer Rotorbüchse gelagert sowie mit von seiner Umfangsflache ausgehenden Längsnuten zur Aufnahme von darin — Kraftspeichern zugeordneten — Kolben versehen; jedem Kolben ist an seiner zur 5 Rotorbüchse weisenden Kopffläche ein bolzen- oder nadelartiger Körper zugeordnet, an dessen Außenfläche die Innenfläche der Rotorbüchse anliegt. Letztere soll vorteilhafterweise drehbar um den Pumpenkörper gelagert sein.
10 Nach einem weiteren Merkmal der Erfindung verläuft der Pumpenkörper in der Rotorbüchse querschnittlich exzentrisch; bei einer besonders günstigen Ausführung ist die Innenbohrung der Rotorbüchse in dieser exzentrisch angeordnet. In jedem Falle ist ein zwischen diesen beiden Teilen vorhande-
15 ner Ringspalt von in Umfangsrichtung sich verjüngender Spaltweite.
Es wird also statt der Rotorwelle des klassischen Antriebes die Rotorbüchse mit exzentrisch angeordneter Innenbohrung
Ξ0 eingesetzt. Innerhalb dieser exzentrischen Innenbohrung ist der Pumpenkörper mit zwei oder mehr — radial und am Umfang gleichmäßig verteilt angeordneten — Längsnuten zentrisch zum Drehpunkt des Antriebsmotors so angeordnet, dass die in die Längsnuten eingelegten Kolben durch die umlaufende
Ξ5 exzentrische Bohrung der Rotorbüchse zu einer Hubbewegung gezwungen werden.
Vorteilhafterweise sind die Längsnuten im Pumpenkörper querschnittlich zu dessen Durchmessergeraden geneigt ange- 30 bracht; die Querschnittslängsachse der Längsnut begrenzt mit einer der Durchmessergeraden des Pumpenkörpers einen Winkel von etwa 20° bis 40°, insbesondere von etwa 25°.
Eine bevorzugte Verdrängerpumpe zeichnet sich durch zwei 35 Paare von Längsnuten aus, deren Mündungen zueinander an der Umfangsflache des Pumpenkörpers um jeweils 90° versetzt sind; denn jeweils zwei solcher Längsnuten sind an einer Durchmessergeraden mit einander beidends etwa gegenüberlie- genden Mündungen zugeordnet, wobei erfindungsgemäß deren MündungsZentren an unterschiedlichen Seiten der zugeordneten Durchmessergeraden in Abstand zu dieser liegen, also seitenversetzt sind. Selbstverständlich ist die Erfindung auf die beschriebene Ausgestaltung mit zwei Paaren von Längsnuten nicht beschränkt; es kann auch eine größere Zahl solcher Paarungen vorgesehen werden.
Als günstig hat es sich erwiesen, in der Kopffläche des querschnittlich flachen Kolbens eine rinnenartige Längseinformung als Lager für den von einer Lagernadel gebildeten bolzen- oder nadelartigen Körper vorzusehen; etwa rechtwinkelig zu der Längseinformung oder der Kopffläche des Flachkolbens sollen in diesem Ausnehmungen zur Aufnahme jeweils eines KraftSpeichers verlaufen. Jede dieser Ausnehmungen befindet sich bevorzugt neben der Querschnittslängsachse der Längsnut; Sinn dieses Versatzes ist die lagerdrucksei- tige Firstflächenmehrung. Dank der sich am Nutengrund der Längsnut abstützenden, als Schraubenfeder ausgebildeten Kraftspeicher wird der Flachkolben in veränderbarem Abstand zum Nutengrund gehalten. Der Kraftspeicher stellt die spiellose Fixierung des Kolbens über die Kopfnadellager zur exzentrischen Rotorbüchse sicher.
Im Rahmen der Erfindung bestimmen die Unterseite des Flachkolbens und der Nutengrund die Höhe eines beidseits von Nutwänden begrenzten Förder- oder Arbeitsraumes. Dieser soll durch zumindest eine zwischen der Unterseite des Flachkolbens und dessen Längseinformung vorgesehene Bohrung an das Nadellager angeschlossen sein.
Erfindungsgemäß ist die Rotorbüchse in der Verdrängerpumpe beidends kugelgelagert und beidends von einem Pumpendeckel verschlossen. Diese rechts und links vom Pumpenkörper ange- ordneten Pumpendeckel besitzen erfindungsgemäß entsprechende Ventile, um aus der Hubbewegung jedes Flachkolbens einen Fördervorgang des Fördermediums von der Saug- zur Druckseite der erfindungsgemäßen Pumpe zu erzeugen. Die einzelnen Förderräume oder Förderkammern - gleich der jeweils gewählten Anzahl der Flachkolben - werden in den Pumpendeckeln zusammengefasst und bilden über die Motordeckel die Anschlüsse für die Saug- und Druckleitung.
Es liegt im Rahmen der Erfindung, dass diese konstruktive Ausführung sowohl in Gleichstrom- als auch in Wechselstrom- Motorausführung dargestellt werden kann.
Zudem hat es sich als günstig erwiesen, dass durch entsprechende Werkstoffwahl sowohl schmierende als auch kaum schmierende Fördermedien gepumpt werden können. Die konstruktive Ausführung stellt immer eine "Inline-Ausführung" gemäß der Pumpennormen dar, wobei jeglicher "Aggregataufbau" entfällt.
Nach einem weiteren Merkmal der Erfindung wird durch die Wahl der Anzahl der Flachkolben und die Wahl von einem relativ weiten Bereich geänderter Hübe — Ändern der Exzen- trizität der Innenbohrung der Rotorbüchse — bei einer "Baugröße" die Fördergrößen "Menge" und "Druck" in einem weiten Bereich verändert.
Ein besonderer Vorteil gegenüber herkömmlichen Verdränger- pumpen ist eine verbesserte Sicherheit gegen "Festfressen" der Förderelemente, da sich im Schmierspalt zwischen Pumpenkörper und Flachkolben stets der Förderdruck beidseitig abbaut, wobei die Druckkomponente aus dem Förderraum nicht in Richtung der Gleitlagerflächen wirkt, wie dies bei- spielsweise bei einer Schraubenspindelpumpe der Fall ist. Bei dem Gegenstand der vorliegenden Erfindung steigt mit zunehmender Tangentialkraft auf die Flachkolben — durch die Zunahme des übertragenen Moments der Rotorbüchse — bei steigendem Förderdruck in gleichem Maße auch der hydro- statische Druck im Schmierspalt. Der klassische Aufbau des Rotors eines Drehstrommotors besteht bekanntlich aus dem Blechpaket des Käfigläufers auf einer Antriebswelle mit den ausgegossenen Käfignuten als Kurzschlussläufer. Ersetzt man nun die Antriebswelle - im Rahmen der notwendigen Mindestabmessungen der Käfigstäbe - durch die erfindungsgemäße Rotorbüchse und verändert die Motorgehäuse-Deckel in beschriebener Weise, dann bildet sich daraus die vollständige Motor/Pumpen/-Einheit . Bei einer derartigen Ausführung entfällt jede Wellendichtung, die gemeinhin als das schwächste Glied bei Pumpen mit austretendem Wellenende bekannt ist. Zugleich erreicht man ohne weiteren Zusatz die "hermetisch dichte" Pumpe mit einem Kostenaufwand, der etwa demjenigen eines einfachen Aggregataufbaues entspricht. Die üblicherweise notwendige Ausrichtung von Motor und Pumpe beim klassischen Aggregataufbau, um eine einwandfreie Funktion der zwischengeschalteten Kupplung zu sichern, entfällt bei der vorliegenden Erfindung ebenfalls.
Bei einer erforderlichen Drehzahlregelung dieser Pumpe und/oder bei Anwendungen von höheren Drehzahlen ist die — erwähnte — Ausführung als Gleichstrom- bzw. Einphasenstrom-Maschine ebenfalls möglich; hierbei wird die Rotorwicklung durch ein Paket von Permanentmagneten — bekannt von den Magnetkupplungen — ersetzt. Dies ermöglicht geringe Bauformen (hier dem Systemdurchmesser) und eröffnet ein weites Feld der Anwendung der Großserienfertigung von Kleinpumpen mit hohen Druckbereichen.
In jedem Fall entsteht im Statorraum nur der Saugdruck des Fördermediums, da die auftretenden Leckagen sowohl von den Spielen des Flachkolbens im Pumpenkörper als auch denjenigen der Nadellager durch eine Verbindung zum Saugraum der Pumpe abgeführt werden. Statt der üblichen Antriebssysteme mit Gleichstrom, Wechselstrom oder Drehstrom hat sich der Einsatz einer Magnetkupplung als besonders günstig erwiesen, der mit einem inneren Magnetelement verbundenen, bereits erörterten Rotorbüchse einen Außenrotor gegenüberzustellen, der ein entsprechendes magnetisches Gegenelement trägt; die beiden Magnetelemente bilden eine Magnetkupplung; durch den Einsatz einer hermetisch dichten Magnetkupplung werden beim Erfindungsgegenstand die beiden das Moment übertragenden und mit Magneten bestückten Rotoren mittels Spaltrohr abgedichtet.
Der Antrieb erfolgt mittels eines an jenem Außenrotor angreifenden Zahn- oder Keilriemens. Dadurch ist die Einsatzmöglichkeit als angeflanschtes Hilfsaggregat bei Kraftmaschinen aller Art ermöglicht. Ersetzt man den Magnete aufweisenden Außenrotor samt den Zahn- oder Keilriemenelementen z.B. durch einen Gleichstrom- oder kommutatorlosen Drehstrom-Stator, ist die Anwendung der weiter oben allgemein beschriebenen Pumpe zu erkennen; wegen der Dimensionierung ist besonders die Anwendung dieser Pumpe im mobilen Einsatz gegeben.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnung; diese zeigt in
Fig. 1: eine teilweise geschnittene Stirnansicht einer Tangentialkolbenpumpe;
Fig. 2: eine teilweise geschnittene Seitenan- sieht der Tangentialkolbenpumpe als
Gleichstrommaschine;
Fig. 3: eine teilweise geschnittene Seitenansicht der Tangentialkolbenpumpe als Drehstromkurzschlussläufermaschine;
Fig. 4: den gegenüber Fig. 3 vergrößerten Längsschnitt durch die Tangentialkolbenpumpe;
Fig. 5: einen vergrößerten Querschnitt durch einen zentralen Teil der Fig. 1 und deren Schnittlinie V - V;
Fig. 6: einen Ausschnitt aus Fig. 5;
Fig. 7 , 8: eine teilweise geschnittene Stirnansicht sowie eine gleichermaßen teilweise geschnittene Stirnansicht einer anderen Ausgestaltung einer
Pumpe . Bei einer Tangentialkolbenpumpe 10 ist in einem — beidends von Befestigungsleisten 12 aufweisenden Gehäusedeckeln 14 verschlossenen — rohrartigen Gehäuse 16 im Bereich von Kugellagern 18 eine Rotorbüchse 20 des Innendurchmessers d gelagert, die einen Pumpenkörper 22 kreisförmigen Querschnitts des Durchmessers e umgibt.
Die Längsachse des Pumpenkörpers 22 ist mit A bezeichnet, und in ihm sind vier Längsnuten 24 mit querschnittlich teilkreisförmig gerundetem Nutengrund 26 derart angeordnet, dass im dargestellten Beispiel ihre Querschnittslängsachsen Q mit der — eine Durchmessergerade bestimmenden -- Querschnittsmittelachse M bzw. der zu dieser rechtwinkeligen Querachse B des Pumpenkörpers 22 einen Winkel w von etwa 25° begrenzen. Das Zentrum der Mündung 25 der Längsnuten 24 am Körperumfang ist gemäß Fig. 5 um ein Maß i zu der entsprechenden Querschnittsmittelachse M bzw. der Querachse B seitenversetzt, und die Querschnittslängsachsen Q der beiden Längsnuten 24 an der Querschnittsmittelachse M verlaufen ebenso parallel zueinander wie die Querschnittslängsachsen Q der beiden der Querachse B zugeordneten Längsnuten 24.
Jede Längsnut 24 der Querschnittsbreite a nimmt einen Flachkolben 30 auf, in dessen nach außen gerichteter Kopffläche 32 in einer in deren Längsrichtung verlaufenden Ein- formung 34 — der Weite b ihres teilkreisförmigen Querschnitts — eine Lagernadel 36 ruht; an der einen Seite der querschnittlich in einem Maß z — als dem Abstand zwischen der Querschnittslängsachse Q der Längsnut 24 sowie der parallelen Querschnittsachse F dieser Längseinformung 34 — exzentrisch in den Flachkolben 30 verlaufenden Längseinformung 34 ist der breitere Streifen der Kopffläche 32 zu einer Pultfläche 33 der Breite f abgeschrägt. Bei Drehung der Rotorbüchse 20 entsteht durch die Berührung von deren Innenfläche 21 und der Oberfläche der die Umfangsflache 23 des Pumpenkörpers 22 querschnittlich teilweise überragenden Lagernadeln 36 eine Abrollbewegung wie in einem Nadellager. Wird — wie in Fig. 5 verdeutlicht — der Innendurchmesser d der Rotorbüchse 20 exzentrisch zum Außendurchmesser e des Pumpenkörpers 22 angeordnet, so entsteht zwischen jener Umfangsflache 23 und der Innenfläche 21 der Rotorbüchse 20 querschnittlich ein Ringspalt 19 mit sich — in Fig. 5 — abwärts verjüngender Spaltweite t sowie bei Drehung, d.h. beim Abrollen der Rotorbüchse 20 auf den Lagernadeln 36, eine hin- und hergehende Bewegung der Flachkolben 30 mit einem Hub, welcher der doppelten Exzentrizität des Innen- durchmessers d der Rotorbüchse 20 entspricht.
Bei Hub des Flachkolbens 30 im Pumpenkörper 22 gegen einen — in einer exzentrisch zur Querschnittslängsachse Q und parallel zu dieser in Flachkolben 30 verlaufenden Ausneh- ung 38 vorgesehenen — Kraftspeicher 40 wird ein Volumen in einem von den Nutenwänden 27 seitlich begrenzten Förderraum 28 zwischen Kolbenunterseite 31 und Nutengrund 26 verdichtet. Durch entsprechende Anordnung von Ventilen 42 in saug- und druckseitigen Pumpendeckeln 44, 44a an den Stirnseiten des Pumpenkörpers 22 kann durch die Hubbewegung der Flachkolben 30 eine Förderarbeit verrichtet werden. Diese so erzeugte theoretische Förderung entspricht in ihrer Größe (ΔQ/Δt oder allgemein in 1/min) in linearer Abhängigkeit :
"Qheor." = Anzahl Kolben * Kolbenfläche * Hub * Drehzahl,
Durch die Wahl eines Flachkolbens 30 ist für die Darstellung des Fördervolumens — bei entsprechender Wahl der Kol- benanzahl — ein minimaler Hub ausreichend. Für eine Baureihe in einem Förderbereich von beispielsweise 40 bis 1400 1/min und einer Drehzahl von 2950 minA-l bewegt sich der maximale Hub im Bereich von 2 bis 6,5 mm. Das hat zur Folge, dass die bekannten Nachteile an oszillierenden Ver- drängerpumpen hinsichtlich der pulsierenden Strömung auf ein Minimum reduziert werden können. Bei mehr als einem Flachkolben 30 ist damit auch die sich bildende Druckpulsation am Druckstutzen der Pumpe 10 weit reduziert. Die Kolbenbewegung beim Saughub, d.h. das Nachlaufen des Flachkolbens 30 im Bereich der Durchmesservergrößerung oder der positiven Exzentrizität des Innendurchmessers d der Ro- torbüchse 20 erfolgt durch die Vorspannkraft von in die Ausnehmungen 38 des Flachkolbens 30 eingesteckten Federn als KraftSpeicher 40, die Schmierung des Nadellagers am Kolbenkopf 32 des Flachkolbens 30 durch das Fördermedium mittels Anordnung von Bohrungen 46 od.dgl. Verbindungen des in der Längsnut 24 verbleibenden Förderraumes 28 mit der Lagerausnehmung oder Längseinformung 34 im Kolbenkopf 32. Über einen weiten Bereich der Schmiereigenschaft des Fördermediums (auch v < 1 mmΛ2/sec.) kann durch entsprechende Wahl von Werkstoff und Oberfläche der Nadellagerteile eine hydrostatische Schmierung aufrechterhalten werden, da auch hierbei der Schmierdruck stets mit dem Förderdruck steigt.
Bei der oben beschriebenen Ausführung ist eine Abdichtung des Motorstators gegenüber dem Fördermedium nicht ausgeführt. Bei Erfordernis erhält der Stator wie bei dem bekannten "canned motor" ein dünnwandiges Rohr aus den klassischen Werkstoffen dieser Anwendung. Für aggressive Medien - z.B. in der Chemie - kann wegen der vernachlässigbaren Schmiergrenze durch die fehlenden Gleitlagerbedingungen durch entsprechende Werkstoffwahl von Pumpenkörperteilen und den Flachkolben ein weiter Bereich abgedeckt werden.
Da bei dieser Konstruktion kein klassischer Lüfter auf der Motorwelle angeordnet werden kann, ist das Statorgehäuse mit entsprechender Oberflächenkühlung zu versehen. In jedem Fall wird jedoch ein bestimmter Umfang der magnetischen Verlustwärme einmal durch den Kreislauf der Leckageströme, die durch die Lager am Stator zur Saugseite strömen, und zum anderen durch die Wärmeleitung Käfigläufer/Rotorbüchse aufgenommen. Anstelle von Antriebssystemen mit Gleich-, Wechsel- oder Drehstrom kann die Rotorbüchse 20 auch über eine Magnetkupplung angetrieben werden. Hierfür trägt die Rotorbüchse 20 der Tangentialkolbenpumpe 10a nach Fig. 7, 8 an ihrer achsparallelen Außenkontur zumindest ein büchsenähnliches Magnetelement 50. Zwischen diesem und einem magnetischen Gegenelement 51 eines Außenrotors 54 verläuft in einem zur Längsachse A parallelen Spalt 56 die - das innere Magnetelement 50 hermetisch abdichtende - Topfwand 58 eines von jenem Außenrotor 54 umfangenen Spalttopfes 60. Dieser ist endwärts einem Trägerring 62 zugeordnet .
Der Außenrotor 54 an der von den Magnetelementen 50, 51 gebildeten Magnetkupplung 52 wird durch einen Zahn- oder Keilriemen 64 angetrieben.
Bei dieser Pumpe 10a wird das Antriebsdrehmoment — von einer Außenwelle kommend — über die insbesondere die beiden Rotoren 20, 54 erfassende Magnetkupplung 52 dem innenliegenden Pumpenkörper 22 zugeführt.

Claims

PATENTANSPRÜCHE
Verdrängerpumpe (10, 10a) , insbesondere oszillierende Verdrängerpumpe (16) , mit zumindest einem in einem Pumpengehäuse unter Veränderung der Gestalt eines Arbeitsraumes relativ bewegbaren Kolben (30),
dadurch gekennzeichnet,
dass ein Pumpenkörper (22) in einer Rotorbüchse (20) gelagert sowie mit von seiner Umfangsflache (23) ausgehenden Längsnuten (24) zur Aufnahme von darin Kraftspeichern (40) zugeordneten Kolben (30) versehen ist, wobei jedem Kolben an seiner zur Rotorbüchse weisenden Kopffläche (32) ein bolzen- oder nadelartiger Körper (36) zugeordnet ist, an dessen Außenfläche die Innenfläche (21) der Rotorbüchse anliegt.
2. Verdrängerpumpe nach Anspruch 1, dadurch gekennzeichnet, dass die Rotorbüchse (20) drehbar um den Pumpenkörper (22) gelagert ist.
3. Verdrängerpumpe nach Anspruch 1 oder 2 , dadurch ge- kennzeichnet, dass der Pumpenkörper (22) in der Rotorbüchse (20) querschnittlich exzentrisch verläuft und ein zwischen diesen beiden Teilen vorhandener Ringspalt (19) von in Umfangsrichtung sich verjüngender Spaltweite (t) ist.
Verdrängerpumpe nach Anspruch 3, dadurch gekennzeichnet, dass die Innenbohrung der Rotorbüchse (20) in dieser exzentrisch angeordnet ist.
5. Verdrängerpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Querschnittslängsachse
(Q) der Längsnut (24) mit einer Durchmessergeraden (B, M) des Pumpenkörpers (22) einen Winkel (w) begrenzt.
6. Verdrängerpumpe nach Anspruch 5, gekennzeichnet durch einen Winkel (w) von etwa 20° bis 40 ° , bevorzugt etwa 25°, zwischen der Querschnittslängsachse (Q) der Längsnut (24) und der Durchmessergeraden (B, M) des Pumpenkörpers (22).
7. Verdrängerpumpe nach einem der Ansprüche 1 bis 6, gekennzeichnet durch zwei an einer Durchmessergeraden (B oder M) einander beidends etwa gegenüberliegende Mündungen (25) von Längsnuten (24), wobei deren Mündungszentren an unterschiedlichen Seiten der zugeordneten Durchmessergeraden in Abstand (i) zu dieser liegen (Fig. 5) .
8. Verdrängerpumpe nach Anspruch 7, dadurch gekennzeichnet, dass zwei Paare von Längsnuten (24) vorgesehen und deren Mündungen (25) zueinander an der Umfangs- fläche (23) des Pumpenkörpers (22) um jeweils 90° versetzt sind.
9. Verdrängerpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in der Kopffläche (32) des querschnittlich flachen Kolbens (30) eine rinnenar- tige Längseinformung (34) als Lager für den von einer Lagernadel (36) gebildeten bolzen- oder nadelartigen Körper vorgesehen ist.
10. Verdrängerpumpe nach Anspruch 9, dadurch gekenn- zeichnet, dass etwa rechtwinkelig zu der Längseinformung (34) oder der Kopffläche (32) des Flachkolbens
(30) in diesem Ausnehmungen (38) zur Aufnahme jeweils eines Kraftspeichers (40) verlaufen.
11. Verdrängerpumpe nach Anspruch 10, dadurch gekennzeichnet, dass die Ausnehmung (38) neben der Querschnittslängsachse (Q) der Längsnut (24) verläuft.
12. Verdrängerpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Flachkolben (30) durch die sich am Nutengrund (26) der Längsnut (24) abstützende/n Feder/n als Kraftspeicher (40) in ver- änderbarem Abstand zum Nutengrund gehalten ist.
13. Verdrängerpumpe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Unterseite (31) des Flachkolbens (30) und der Nutengrund (26) die Höhe eines beidseits von Nutwänden (27) begrenzten Förderoder Arbeitsraumes (28) bestimmen.
14. Verdrängerpumpe nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass zwischen der Unterseite (31) des Flachkolbens (30) und dessen Längseinformung (34) zumindest eine diese Bereiche verbindende Bohrung (46) vorgesehen ist.
15. Verdrängerpumpe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass in ihr die Rotorbüchse
(20) beidends kugelgelagert und beidends von einem Pumpendeckel (44, 44a) verschlossen ist.
16. Verdrängerpumpe nach Anspruch 14, dadurch gekenn- zeichnet, dass im Pumpendeckel (44, 44a) zumindest ein der Längsnut (24) zugeordnetes Ventil (42) vorgesehen ist.
17. Verdrängerpumpe nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Förderräume (28) in den Pumpendeckeln (44, 44a) durch Anschlüsse für Saug- und Druckleitungen zusammengefasst sind.
18. Verdrängerpumpe nach wenigstens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Rotorbüchse
(20) mit einem Magnetelement (50) verbunden und dieses Teil einer Magnetkupplung (52) ist.
19. Verdrängerpumpe nach Anspruch 18, gekennzeichnet durch ein an einem Außenrotor (54) angeordnetes Gegenelement (51) für das Magnetelement (50) .
20. Verdrängerpumpe nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass in einem Spalt (56) zwischen den beiden Magnetelementen (50, 51) die Topfwand (58) eines Spalttopfes (60) angeordnet ist.
21. Verdrängerpumpe nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass der Außenrotor (54) an einen Zahn- oder Keilriemen (64) als Antriebsorgan angeschlossen ist.
22. Verdrängerpumpe nach Anspruch 21, dadurch gekennzeichnet, dass der Außenrotor (54) sowie der Zahn- ' oder Keilriemen ersetzt sind durch einen kommutatorlosen Gleichstromstator oder durch einen drehzahlgeregelten Drehstromstator .
EP01971753A 2000-07-08 2001-07-06 Verdrängerpumpe Expired - Lifetime EP1299643B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10033404 2000-07-08
DE10033404 2000-07-08
PCT/EP2001/007776 WO2002004812A1 (de) 2000-07-08 2001-07-06 Verdrängerpumpe

Publications (2)

Publication Number Publication Date
EP1299643A1 true EP1299643A1 (de) 2003-04-09
EP1299643B1 EP1299643B1 (de) 2005-10-05

Family

ID=7648363

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01971753A Expired - Lifetime EP1299643B1 (de) 2000-07-08 2001-07-06 Verdrängerpumpe

Country Status (5)

Country Link
EP (1) EP1299643B1 (de)
AT (1) ATE306019T1 (de)
AU (1) AU2001291662A1 (de)
DE (2) DE50107621D1 (de)
WO (1) WO2002004812A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20091513A1 (it) * 2009-08-31 2011-03-01 Enea Mattei Spa Ing Compressore/espansore a palette con testa ad elementi rotanti
JP2013511678A (ja) * 2009-11-20 2013-04-04 イアン マザーズ ノーマン 静圧トルクコンバータおよびトルク増幅器
DE102010041546A1 (de) * 2010-09-28 2012-03-29 Mahle International Gmbh Pendelschieberzellenpumpe
DE102014017242B4 (de) 2014-02-20 2019-01-03 Tankol Gmbh Verdrängerpumpe für hohe Drücke bei nicht schmierenden Medien
DE102014005143A1 (de) * 2014-04-07 2015-10-08 Tankol Gmbh Gesellschaft Für Fluidtechnik Verdrängerpumpe mit mindestens zwei unterschiedlichen Förderleistungen bei Antriebsdrehzahl
EP3394395B1 (de) 2015-12-21 2024-04-24 Mathers Hydraulics Technologies Pty Ltd Hydraulische maschine mit abgeschrägtem ring
WO2018161108A1 (en) 2017-03-06 2018-09-13 Norman Ian Mathers Hydraulic machine with stepped roller vane and fluid power system including hydraulic machine with starter motor capability
CN109944796A (zh) * 2019-04-25 2019-06-28 杭州三花研究院有限公司 油泵
CN110535278B (zh) * 2019-09-20 2020-07-10 山东众泰防爆电机股份有限公司 电机端盖及其电机
CN111049305B (zh) * 2019-11-12 2021-04-20 超音速智能科技(浙江)有限公司 电机

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE421374C (de) * 1923-01-09 1925-11-11 Erwin Sturm Kolbenabdichtung fuer Pumpen oder Kraftmaschinen mit umlaufenden, zwanglaeufig gefuehrten und waehrend ihrer Radialbewegung entlasteten Kolben
US1526343A (en) * 1924-02-25 1925-02-17 Jouanneaux Pierre Rotary pump
GB255873A (en) * 1925-07-22 1927-04-14 Erwin Sturm Improvements in rotary piston machines
US2250947A (en) * 1938-06-17 1941-07-29 Jr Albert Guy Carpenter Pump
GB724540A (en) * 1952-07-26 1955-02-23 Theisen Alois Improvements in or relating to rotary engines or pumps
DE1107084B (de) * 1957-11-29 1961-05-18 Kugelfischer G Schaefer & Co Radial-Kolbenpumpe
FR1526128A (fr) * 1967-04-06 1968-05-24 Comp Generale Electricite Générateur de surpression et de dépression
US5769611A (en) * 1996-09-06 1998-06-23 Stanadyne Automotive Corp. Hydraulic pressure supply pump with multiple sequential plungers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0204812A1 *

Also Published As

Publication number Publication date
AU2001291662A1 (en) 2002-01-21
DE10132298A1 (de) 2002-04-25
EP1299643B1 (de) 2005-10-05
WO2002004812A1 (de) 2002-01-17
DE50107621D1 (de) 2006-02-16
ATE306019T1 (de) 2005-10-15

Similar Documents

Publication Publication Date Title
DE69628755T2 (de) Flüssigkeitspumpe
DE4229069C2 (de) Taumelscheiben-Kältemittelkompressor für ein Kühlsystem
DE3627579A1 (de) Spiralkompressor
DE3917656A1 (de) Verdichter
DE60221595T2 (de) Hydraulischer Drehflügelzellenmotor
EP1299643A1 (de) Verdrängerpumpe
DE102011051486B4 (de) Pumpenanordnung mit Mikropumpe und Lagerelement
WO2012034619A1 (de) Axialkolbenmaschine
EP0210349B1 (de) Gekapselter Rollkolbenverdichter
EP2510192B1 (de) Hydrostatische radialkolbenmaschine
EP2357362A2 (de) Zahnringpumpe
EP0666422B1 (de) Lagerung und Antrieb der Rotoren eines Schraubenrotorverdichters
EP0320060A2 (de) Pumpvorrichtung für leicht viskose Flüssigkeiten
DE4422314A1 (de) Spiralverdichter
DE3631408A1 (de) Axialkolbenpumpe
DE10033405A1 (de) Verdrängerpumpe
DE2912938A1 (de) Fluessigkeitsring-gaspumpe
WO2015150043A1 (de) Schrägscheibenmaschine als axialkolbenpumpe und/oder axialkolbenmotor
EP4217610A1 (de) Motor-pumpe-einheit
EP2005001B1 (de) Zellenpumpe
DE102017128098B4 (de) Hydraulisches System mit einer durch einen Elektromotor angetriebenen Radialkolbenpumpe, mit Pumpenrotor und Elektromotorrotor, die auf einem gemeinsamen Lagerzapfen auf achsversetzt parallel zueinander angeordneten Achsen drehbar gelagert sind
EP2619416B1 (de) Flügelzellenpumpe
DE3322549A1 (de) Fluegelzellenpumpe mit veraenderlichem foerderhub fuer hydraulische betriebsmittel insbesondere von kraftfahrzeugen
DE3223236A1 (de) Kraftstoffpumpe mit magnetantrieb
WO2016008465A1 (de) Hydromotor zum antrieb von nebenaggregaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030115

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20040220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051005

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060116

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HIEBSCH & PEEGE AG PATENTANWAELTE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060118

REF Corresponds to:

Ref document number: 50107621

Country of ref document: DE

Date of ref document: 20060216

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060306

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20060720

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061020

EN Fr: translation not filed
BERE Be: lapsed

Owner name: TANKOL G.M.B.H.

Effective date: 20060731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TANKOL GMBH

Free format text: TANKOL GMBH#WAAFHAUSSTRASSE 21#78532 TUTTLINGEN (DE) -TRANSFER TO- TANKOL GMBH#WAAFHAUSSTRASSE 21#78532 TUTTLINGEN (DE)

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060706

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110714

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110711

Year of fee payment: 11

Ref country code: GB

Payment date: 20110719

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 306019

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120706

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130722

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107621

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50107621

Country of ref document: DE

Effective date: 20150203