EP1287372A2 - Verfahren zur herstellung einer wheatstonebrücke, beinhaltend brückenelemente bestehend aus einem spin-valve-system - Google Patents

Verfahren zur herstellung einer wheatstonebrücke, beinhaltend brückenelemente bestehend aus einem spin-valve-system

Info

Publication number
EP1287372A2
EP1287372A2 EP01960282A EP01960282A EP1287372A2 EP 1287372 A2 EP1287372 A2 EP 1287372A2 EP 01960282 A EP01960282 A EP 01960282A EP 01960282 A EP01960282 A EP 01960282A EP 1287372 A2 EP1287372 A2 EP 1287372A2
Authority
EP
European Patent Office
Prior art keywords
bridge elements
bridge
surface areas
adjacent
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01960282A
Other languages
English (en)
French (fr)
Inventor
Arno Ehresmann
Wolfgang-Dietrich Engel
Jürgen FASSBENDER
Burkard Hillebrands
Roland Mattheis
Tim Mewes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Physikalische Hochtechnologie eV
Original Assignee
Institut fuer Physikalische Hochtechnologie eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Physikalische Hochtechnologie eV filed Critical Institut fuer Physikalische Hochtechnologie eV
Publication of EP1287372A2 publication Critical patent/EP1287372A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12375All metal or with adjacent metals having member which crosses the plane of another member [e.g., T or X cross section, etc.]

Definitions

  • Wheatstone bridge comprising bridge elements consisting of a spin valve system, and a method for their production
  • the invention relates to a Wheatstone bridge, comprising conventionally connected bridge elements, consisting of a spin valve system, and to a method for their production.
  • Such Wheatstone bridges are preferably used as sensors for measuring small magnetic fields and used as non-contact angle detectors.
  • magnetoresistive strip conductors are used according to the prior art, which are anisotropically connected with respect to their magnetoresistive properties and generally as a Wheatstone bridge (cf. for example DD 256 628, DE 43 17 512 AI).
  • the magnetoresistive strip conductors used here have anisotropic changes in resistance with respect to an external magnetic field, which is a desirable property for the intended use, for example as an angle encoder.
  • such strip lines for example based on Permalloy, only show maximum changes in resistance of approximately 2-3%, which is why a relatively high level of electronic and manufacturing effort has to be carried out.
  • Magnetoresistive sensors are designed in a known manner in the form of Wheatstone bridges in order to minimize or totally suppress environmental influences such as temperature changes on the measurement signal.
  • the construction of such Wheatstone bridges presupposes that adjacent bridge branches of a half-bridge behave in the opposite direction to the magnetoresistive change in resistance when exposed to an external magnetic field.
  • Layer systems with a so-called spin valve effect are also known, which are preferably used for the detection of small fields or also for angle detection (cf., for example, DE 43 01 704 AI).
  • a common feature of these layer systems is that they consist of magnetic individual layers in which, ideally, a sensor layer can be easily rotated magnetically and a bias layer is magnetically immovable. So far, these layers can only be operated as individual magnetoresistive strip sensors, which means that they are comparatively high Signals can be obtained, but also all other disturbances, such as temperature fluctuations, influence the measurement signal.
  • a solution to remedy this problem is described in DE 196 49 265 AI, which describes a GMR sensor with a Wheatstone bridge, in which spin valve layer systems are used for the individual bridge elements.
  • this solution requires a relatively complicated layout of the Wheatstone bridges arranged on relatively large chip areas (1 ... 4 mmr). Due to the layout required there, further miniaturization is not possible with this solution.
  • the layer structure of a spin valve system can be designed as a GMR layer system (using giant magnetoresistive materials) or as a TMR layer system (tunnel layer system).
  • the layer system consists of at least one antiferromagnetic layer, a ferromagnetic layer pinned by the antiferromagnet via an exchange bias, which can itself be part of a so-called artificial antiferromagnet (AAF), at least one flux guide layer and a conductive layer arranged between these ferromagnetic layers GMR layer systems or oxide layer for tunnel arrangements, a magnetoresistive sensor system with at least two sensor elements being able to be formed by means of this layer structure. For applications, these sensor elements are usually arranged in Wheatstone bridges.
  • bias magnetization direction (BMR) is usually set by applying a homogeneous magnetic field during the deposition of the magnetic layer system on a 3-6 "Si wafer. This has the consequence that the BMR is the same everywhere.
  • patent DE 198 30 343 Cl shows how, in the case of the use of combinations of antiferromagnetic layers and layer systems which are designed as artificial antiferromagnets, an antiparallel orientation of the BMR can be achieved by a suitable choice of the layers.
  • This proposal therefore proceeds from an identical layer structure for all sensor elements or for all areas that are to form sensor elements. This generally creates harmful asymmetries in terms of resistance and, above all, the temperature coefficient of resistance, which has a detrimental effect on operating behavior.
  • a second possibility is to build the Wheatstone bridges hybrid in such a way that the bridge branches consist of elements that are rotated geometrically by 180 ° in order to achieve an anti-parallel position of the BMR.
  • the former method requires suitable additional layers with suitable properties in the AAF.
  • the latter solution means a considerable additional effort in the production of the Wheatstone bridges, namely additional assembly effort and additional effort for the wiring, which in addition to higher costs also results in a deterioration in reliability.
  • the invention has for its object to provide a Wheatstone bridge, including bridge elements, consisting of a spin valve system, and a method for their production, which create a Wheatstone bridge while maintaining an initially uniform layer structure and a uniform bias magnetization (BMR), in which each adjacent half-bridges each have an anti-parallel BMR, the miniaturization of the Wheatstone bridge should not be limited by a circuitry complicated layout.
  • bridge elements consisting of a spin valve system
  • BMR uniform bias magnetization
  • FIG. 1b shows a Wheatstone bridge with the specified direction of magnetization of the bridge elements during an ion implantation
  • FIG. 1c shows a Wheatstone bridge with the specified direction of magnetization of the bridge elements after the ion implantation
  • FIG Spin valve layer system of the same
  • FIG. 2b shows a section of a wafer covered with
  • FIG. 2c shows a detail from a wafer according to FIG. 2b with surface elements and the direction of magnetization according to FIG.
  • a substrate S is initially assumed, which is initially provided with a spin valve layer system in the usual way.
  • an exemplary layer sequence of permalloy 14, copper 13, cobalt 12, and an antiferromagnetic layer 11, which consists of FeMn, NiO, PtMn, NiMn or the like. can exist, a GMR spin valve layer system is formed.
  • a homogeneous magnetic field is applied during the production of the layer pack, so that a uniformly oriented magnetization ml is "frozen" (pinned) in the boundary layer between the layers 11 and 12.
  • a TMR spin valve layer system is implemented, in which the same layers 11, 12, 14 are provided, but the layer 13 is formed by a tunnel layer, for example made of Al2O3. It is also within the scope of the invention to form the layer 12 as an artificial antiferromagnet (AAF: artificial antiferromagnet) (cf. FIG. 3), so that an AF / AAF layer system is formed according to FIG. Further customary protective layers, for example made of Ta, which cover the layer systems mentioned, as well as any necessary adhesive layers, which are deposited directly on the substrate S before said layer systems are deposited, are not included for reasons of clarity.
  • AAF artificial antiferromagnet
  • 80,000 such surface areas are provided on a 6 "silicon wafer, so that 20,000 Wheatstone bridges, each taking up an area of 0.5 mm 2 , can be produced at the same time.
  • the wiring of the individual Bridge elements can take place before the deposition of the spin valve layer systems mentioned, or in a later process step.
  • the thicknesses of the individual layers 11, 12, 13, 14 are between 0.5 and 50 nm, depending on the embodiment.
  • a silicon wafer provided with a 1.5 ⁇ m thick S1O2 and a 5 nm thick Ta layer can be a typical one 3 with a 5 nm thick Py layer, a 3 nm thick Cu layer, a 4 nm thick Co layer, a 20 nm thick FeMn layer (AF) and a 5 nm thick Ta protective layer, not shown be provided.
  • AF FeMn layer
  • Ta protective layer not shown be provided.
  • the bridge elements 2, 4 or surface areas 20, 40 are provided with a cover 5, which is made of a structured photoresist with a thickness of 10 to be determined depending on the ion type and energy nm to 6 ⁇ m, in the example 1.5 ⁇ m (cf. FIG. 1b), or by a mask (not shown) which is provided with regions which are transparent and non-transparent for ions or a corresponding shadow mask, which in the example in each case represents the bridge elements 1, 3 or surface elements 10, 30 leaves free and only covers the areas 2, 4 or 20, 40, provided.
  • a cover 5 which is made of a structured photoresist with a thickness of 10 to be determined depending on the ion type and energy nm to 6 ⁇ m, in the example 1.5 ⁇ m (cf. FIG. 1b), or by a mask (not shown) which is provided with regions which are transparent and non-transparent for ions or a corresponding shadow mask, which in the example in each case represents the bridge elements 1, 3 or surface elements 10, 30 leaves free and only covers the
  • the special thickness of the cover layer or the masking areas of the shadow mask depends on the energy of the ions to be implanted, which can be predetermined in a specific system; Thicknesses mentioned can therefore be subject to greater fluctuations, but must be set at least so large that they are not penetrated by the ions.
  • the wafers are then subjected to an ion implantation in an ion beam system with a dose of 10 12 to 10 16 atoms / cm 2 with, for example, noble gas ions (He, Ne, Ar), with other doping ions, such as Ga, P or B, used for semiconductor doping processes ions that are unusual for this purpose can also be considered, bombarded with an energy of .JOOO keV, a homogeneous magnetic field, in the example of a thickness of 0.2 T, being applied to the substrate at the same time, which changes the direction of magnetization in the pinned ferromagnetic layer 12 by 180 ° deflects or regarding Aligns the magnetization direction to be aligned ferromagnetic layer 12 (see. Fig.
  • Non-adjacent bridge elements 1, 3 or 2, 4 are below the pinned ferromagnetic layer 12 and possibly into the substrate S, but not within the ferromagnetic layer 12, with a doping of implantable ions I with a proportion between 10 12 to 5 • 10 16 atoms / cm 2 , as is indicated schematically in FIGS. 3, 4 and 6.
  • a scanned ion fine beam can also be used for ion implantation, which only detects the bridge elements or surface areas whose pinned magnetization direction ml is to be rotated.

Abstract

Die Erfindung betrifft eine Wheatstonebrücke, beinhaltend üblich verschaltete Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung. Die Aufgabe der Erfindung, eine Wheatstonebrücke zu schaffen, bei denen jeweils benachbart liegende Halbbrücken jeweils eine antiparallele BMR aufweisen, wird dadurch gelöst, dass jeweils nicht benachbarte Brückenelemente (1, 3 oder 2, 4) unterhalb der gepinnten ferromagnetischen Schicht eines GMR- oder TMR-Spin-Valve-Schichtsystems mit einer Dotierung von implantierbaren Ionen mit einem Anteil zwischen 1. 10<12> bis 5.10<16> Atomen/cm<2> versehen sind, wobei während eines Beschusses ausgewählter Brückenbereiche (1, 3) oder Flächenbereiche, die nicht mit einer Abdeckung (5) versehen sind, mit Ionen niedriger Dosis und niedriger Energie, die so gross festgelegt werden, dass die Ionen die gepinnte ferromagnetische Schicht durchdringen und alle Flächenbereiche oder Brückenelemente (1, 2, 3, 4) einem homogenen, gerichteten, ausreichend starken Magnetfeld ausgesetzt werden.

Description

Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
Beschreibung
Die Erfindung betrifft eine Wheatstonebrücke, beinhaltend üblich verschaltete Brückenelemente, bestehend aus einem Spin-Valve-System, sowie und ein Verfahren zu deren Herstellung.
Solche Wheatstonebrücken werden bevorzugt als Sensoren zur Messung kleiner magnetischer Felder verwendet und als berührungslos messende Winkeldetektoren eingesetzt.
Zur betrags- und richtungsmäßigen Messung von Magnetfeldern werden nach dem Stand der Technik magnetoresistive Streifenleiter eingesetzt, die anisotrop bzgl. ihrer magnetoresistiven Eigenschaften und i.a. als Wheatstonebrücke verschaltet sind (vgl. z.B. DD 256 628, DE 43 17 512 AI). Die dabei zum Einsatz gelangenden magnetoresistiven Streifenleiter weisen bzgl. eines äußeren Magnetfeldes anisotrope Widerstandsänderungen auf, was für den Verwendungszweck z.B. als Drehwinkelgeber eine wünschenswerte Eigenschaft ist. Solche Streifenleiter, z.B. auf der Basis von Permalloy, zeigen jedoch nur maximale Widerstandsänderungen von ca. 2 - 3%, weswegen ein relativ hoher elektronischer und herstellungsmäßiger Aufwand betrieben werden muß. Des weiteren sind auch Materialien bzw. Bauformen mit einem sogenannten Giant Magneto widerstand bekannt geworden (vgl. z.B. S.P.P. Parkin et al., Oscillatory magnetic exchange coupling through thin copper layers, Phys. Rev. Lett, Vol. 66, S. 2152 ff., 1991 und R. von Helmolt et al., Giant Negative Magnetoresistance in Perovskite like La2/3Baι/3MnOx Ferromagnetic Films, Phys. Rev. Lett., Vol. 71, No. 14, S. 2331 ff., 1993). Diese Klasse von Materialien bzw. Bauformen weisen magnetoresistive Widerstandseffekte auf, die die üblicherweise verwendeter magnetoresistiver Materialien um eine bis mehrere Größenordnungen übersteigen. Der Nachteil dieser Materialien für den angestrebten Verwendungszweck besteht jedoch darin, daß sie keinen anisotropen Widerstandseffekt aufweisen. Magnetoresistive Sensoren werden in bekannter Weise in Form von Wheatstonebrücken ausgebildet, um Umwelteinflüsse wie Temperaturänderungen auf das Meßsignal zu minimieren oder total zu unterdrücken. Der Aufbau derartiger Wheatstonebrücken setzt voraus, daß sich benachbarte Brückenzweige einer Halbbrücke bei Einwirkung eines äußeren magnetischen Feldes bzgl. der magnetoresistiven Widerstandsänderung entgegengesetzt verhalten. Dies ist bei Verwendung von anisotropen magnetischen Materialien, wie bei dem in klassischen MR-Sensoren verwendeten Permalloy (NiδlFel9) vergleichsweise einfach realisierbar, indem durch zueinander senkrechte Ausrichtung von zwei MR-Streifenleitern innerhalb einer Halbbrücke oder durch die Verwendung von Barberpolen die Richtung des in dem magnetoresistiven Brückenzweigen fließenden Stromes unterschiedlich eingeprägt ist. Im Falle von isotropen Widerstandssystemen, wie z.B. Systemen mit Giant Magnetowiderstandseffekt, führen die bisher verwendeten Lösungsansätze jedoch zu keiner befriedigenden Lösung. Ein möglicher Lösungsansatz wurde für Drehwinkelsensoren für antiferromagnetisch gekoppelte Viellagenschichten oder Schichtsysteme mit einem kolossalen Magnetowiderstandseffekt bspw. in DE 195 32 674 Cl aufgezeigt. Dort wird durch eine geeignet geformte Geometrie von weichmagnetischen, als magnetische Sammler wirksamen Antennengeometrien eine Änderung der auf benachbarte Brückenzweige wirkenden Magnetfelder erreicht. Dieser Lösungsansatz bewirkt zwar den gewünschten Effekt, jedoch ist er mit zusätzlichen Strukturen und diffizilen Strukturierungsprozessen verbunden und nur für eine Drehwinkelmessung geeignet.
Weiterhin sind Schichtsysteme mit einem sogenannten Spin-Valve- Effekt bekannt, die vorzugsweise zur Detektion kleiner Felder oder auch zur Winkeldetektion verwendet werden (vgl. z.B. DE 43 01 704 AI). Diesen Schichtsystemen ist gemeinsam, daß sie aus magnetischen Einzelschichten bestehen, bei denen idealerweise eine Sensorschicht magnetisch leicht drehbar und eine'Biasschicht magnetisch unbeweglich ist. Diese Schichten können bislang nur als einzelne magnetoresistive Streifensensoren betrieben werden, womit zwar vergleichsweise hohe Signale erhaltbar sind, jedoch auch alle weiteren Störeinflüsse, wie Temperaturschwankungen, das Meßsignal beeinflussen. Eine Lösung zur Behebung dieses Problems ist in DE 196 49 265 AI beschrieben, die einen GMR-Sensor mit einer Wheatstonebrücke beschreibt, bei der Spin-Valve-Schichtsysteme für die einzelnen Brückenelemente eingesetzt sind. Diese Lösung bedarf jedoch eines relativ komplizierten Layouts der auf relativ großen Chipflächen (1...4 mmr) angeordneten Wheatstone-Brücken. Aufgrund des dort zwingend benötigten Layouts ist eine weitere Miniaturisierung bei dieser Lösung jedoch nicht möglich.
Der Schichtaufbau eines Spin-Valve-Systems kann als GMR- Schichtsystem (unter Verwendung von Giant Magnetowiderstandsmaterialien) oder als TMR-Schichtsystem (Tunnelschichtsystem) ausgebildet sein. Das Schichtsystem besteht dabei aus mindestens einer antiferromagnetischen Schicht, einer durch den Antiferromagneten über eine sogenannte Exchange Bias gepinnten ferromagnetischen Schicht, die selbst wieder Bestandteil eines sogenannten künstlichen Antiferromagneten (AAF) sein kann, mindestens einer Flußfuhrungsschicht und einer zwischen diesen ferromagnetischen Schichten angeordneten leitfähigen Schicht für GMR-Schichtsysteme oder oxidischen Schicht für Tunnelanordnungen, wobei mittels dieses Schichtaufbaus ein magnetoresistives Sensorsystem mit mindestens zwei Sensorelementen bildbar ist. Für Anwendungen werden diese Sensorelemente üblicherweise zu Wheatstonebrücken angeordnet.
Aus "Sensors - A Comprehensive Survey" (Hrsg.: W. Göpel u. a.), VCH Verlagsgesellschaft Weinheim, Vol. 5: Magnetic Sensors (Hrsg.: R. Boll u. a.), 1989, Kapitel 9: Magnetoresistive Sensors, Seiten 341 bis 378 sind allgemein der Aufbau von magnetoresistiven Sensoren, deren Funktionsweise und deren Anwendungen zu entnehmen. Die dargestellten Sensoren zeigen einen anisotropen magnetoresistiven Effekt. Aus der Literaturstelle geht auch die Bildung von Sensorbrücken hervor, die beispielsweise zur Herstellung von 360° Winkeldetektoren verwendet werden können. Entsprechende Brücken können auch mit Sensoren aufgebaut werden, die den vorstehend genannten Schichtaufbau aufweisen. Auch hierbei ist es erforderlich, von den die Brücke bildenden vier Sensoren zwei Sensoren hinsichtlich ihrer Biasschicht- Magnetisierung entgegengesetzt zu den anderen auszurichten, um entsprechende Signale über den gesamten Winkelbereich zu erhalten. Dies ist auch bei Sensoren erforderlich, die auf Basis eines magnetischen Tunneleffekts oder mit Spin-Valve-Transistoren arbeiten. Die Einstellung der Biasmagnetisierungsrichtung (BMR) erfolgt üblicherweise durch Anlegen eines homogenen Magnetfeldes bei der Abscheidung des Magnetschichtsystems auf einen 3 - 6" Si-Wafer. Dies hat zur Folge, daß die BMR überall die gleiche ist. Im Patent DE 198 30 343 Cl ist dargestellt, wie im Falle der Verwendung von Kombinationen von antiferromagnetischen Schichten sowie Schichtsystemen, die als künstlicher Antiferromagnet ausgebildet sind, durch geeignete Wahl der Schichten eine antiparallele Ausrichtung der BMR erreicht werden kann. Dies wird dort dadurch erreicht, daß zur Ermöglichung einer lokal antiparallelen Ausrichtung der Magnetisierung der Biasschichten nach der Herstellung des AAF-Systems lokal die Symmetrie des AAF-Systems derart beeinflußt wird, daß die beeinflußten und die nicht beeinflußten Bereiche des Schichtaufbaus ein unterschiedliches Verhalten in einem homogenen Magnetfeld zeigen. Dieser Vorschlag geht also ab von einem identischen Schichtaufbau für sämtliche Sensorelemente bzw. für sämtliche Bereiche, die Sensorelemente bilden sollen. Dies erzeugt im allgemeinen schädliche Asymmetrien bzgl des Widerstandes und vor allem des Temperaturkoeffizienten des Widerstandes, was sich schädlich auf die Betriebsverhalten auswirkt.
Eine zweite Möglichkeit besteht darin, die Wheatstonebrücken hybrid aufzubauen dergestalt, daß die Brückenzweige aus Elementen bestehen, die geometrisch um 180° gedreht sind, um eine Antiparallelstellung der BMR zu erreichen. Ersteres Verfahren setzt im AAF geeignete Zusatzschichten mit geeigneten Eigenschaften voraus. Letztere Lösung bedeutet einen erhebliche Mehraufwand beim Herstellen der Wheatstonebrücken, nämlich zusätzlichen Montageaufwand sowie zusätzlichen Aufwand für die Verdrahtung, was neben höheren Kosten auch eine Verschlechterung der Zuverlässigkeit mit sich bringt. Der Erfindung liegt die Aufgabe zugrunde, eine Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung anzugeben, die unter Beibehaltung eines zunächst einheitlichen Schichtaufbaus und einer einheitlichen Biasmagnetisierung (BMR) eine Wheatstonebrücke schaffen, bei denen jeweils benachbart liegenden Halbbrücken jeweils eine antiparallele BMR aufweisen, wobei die Miniaturisierung der Wheatstonebrücke nicht durch schaltungstechnisch kompliziertes Layout begrenzt sein soll.
Die Aufgabe wird durch die kennzeichnenden Merkmale der Ansprüche 1 und 3 gelöst. Vorteilhafte Ausgestaltungen sind von den jeweils nachgeordneten Ansprüchen erfaßt.
Die Erfindung soll nachstehend anhand schematischer Ausführungs- beispiele näher erläutert werden. Es zeigen:
Fig. la eine Wheatstonebrücke mit magnetoresitiven
Brückenelementen gleicher Magnetisierungsrichtung, Fig. lb eine Wheatstonebrücke, mit angegebener Magnetisierangs- richtung der Brückenelemente während einer Ionenimplantation, Fig. lc eine Wheatstonebrücke, mit angegebener Magnetisierungsrichtung der Brückenelemente nach der Ionenimplantation, Fig. 2a einen Ausschnitt aus einem Wafer, der mit angedeuteten Flächenelementen eines Spin-Valve-Schichtsystems gleicher
Magnetisierungsrichtung versehen ist, Fig. 2b einen Ausschnitt aus einem Wafer, der mit abgedeckten
Flächenelementen während einer Ionenimplantation, Fig. 2c einen Ausschnitt aus einem Wafer nach Fig. 2b mit Flächenelementen und der Magnetisierungsrichtung nach der
Ionenimplantation, Fig. 3, 4 und 6 unter der Erfindung mögliche Ausfuhrungsformen von Spin-Valve-Schichtsystemen und Fig. 5 eine Ausfuhrungsmöglichkeit eines künstlichen Antiferro- magneten. Bei allen nachfolgenden Beispielen wird zunächst von einem Substrat S ausgegangen, das zunächst auf übliche Weise mit einem Spin-Valve- Schichtsystem versehen ist. Bei einer Ausführung nach Figur 3 wird durch eine beispielhafte Schichtfolge aus Permalloy 14, Kupfer 13, Kobalt 12, und eine antiferromagnetische Schicht 11, die aus FeMn, NiO, PtMn, NiMn o.dgl. bestehen kann, ein GMR-Spin-Valve- Schichtsystem gebildet. Bei der Schichtpaketherstellung wird ein homogenes Magnetfeld angelegt, so daß in der Grenzschicht zwischen den Schichten 11 und 12 eine einheitlich ausgerichtete Magnetisierung ml "eingefroren" (gepinnt) wird. Bei einem Beispiel nach Figur 4 ist ein TMR-Spin-Valve-Schichtsystem realisiert, bei dem gleiche Schichten 11, 12, 14 vorgesehen sind, die Schicht 13 jedoch durch eine Tunnelschicht, bspw. aus AI2O3, gebildet ist. Auch liegt es im Rahmen der Erfindung, die Schicht 12 als künstlichen Antiferromagneten (AAF: artificial antiferromagnet) auszubilden (vgl. Fig. 3), so daß nach Figur 6 ein AF/AAF-Schichtsystem gebildet wird. Weitere übliche Schutzschichten, bspw. aus Ta, die genannte Schichtsysteme überdecken, als auch ggf. erforderliche Haftschichten, die direkt auf dem Substrat S abgeschieden sind, bevor genannte Schichtsysteme abgeschieden sind, sind aus Gründen der Übersichtlichkeit nicht mit angegeben.
Danach erfolgt ein üblicher Strukturierungsprozeß, bei dem entweder die einzelnen Brückenelemente 1, 2, 3, 4, die i.d.R. als Mäander (in den Figuren la und lb nicht dargestellt) ausgeführt sind, der Wheatstonebrücke strukturiert werden, oder es werden zunächst nur definiert vorgebbare Flächenbereiche 10, 20, 30, 40 (vgl. Fig. 2b) mit einer Abdeckschicht oder einer geeigneten Maskierung versehen, wobei genannte Flächenbereiche als auch sie trennende Ausnehmungen in einem späteren Strukturierungsschritt mit der endgültigen Mäanderstruktur der Brückenelemente versehen werden. Die zu einer späteren Wheatstonebrücke gehörenden Flächenbereiche sind in Fig. 2a bis 2c durch ein strichliniertes Rechteck umfaßt. Nach einer derzeitigen Realisierungsform sind auf einem 6"-Siliziumwafer 80.000 derartiger Flächenbereiche vorgesehen, so daß zugleich 20.000 Wheatstonebrücken, die eine Fläche von je 0,5 mm2 einnehmen, hergestellt werden können. Die Verdrahtung der einzelnen Brückenelemente kann vor der Abscheidung genannter Spin-Valve- Schichtsysteme oder in einem späteren Verfahrensschritt erfolgen. Die Dicken der Einzelschichten 11, 12, 13, 14 liegen je nach Ausführungsart zwischen 0,5 bis 50 nm. So kann bspw. auf einem mit einer 1,5 μm dicken S1O2- und einer 5 nm dicken Ta-Schicht versehenen Siliziumwafer ein typisches System nach Fig. 3 mit einer 5 nm dicken Py-Schicht, einer 3 nm dicken Cu-Schicht, einer 4 nm dicken Co- Schicht, einer 20 nm dicken FeMn-Schicht (AF) und einer nicht dargestellten 5 nm dicken Ta-Schutzschicht versehen sein. Weitere konkrete Schichtdickenangaben für andere Systeme erübrigen sich an dieser Stelle, da diese zum bekannten Stand der Technik gehören. An diesen nach Fig. la oder Fig. 2a geschaffenen Ausgangssituationen setzt vorliegende Erfindung an. Es werden zunächst in einem ersten Beispiel die Brückenelemente 2, 4 oder Flächenbereiche 20, 40, deren durch einen Pfeil charakterisierte ursprüngliche Magnetisierungsrichtung erhalten bleiben soll, mit einer Abdeckung 5, die aus einem strukturiertem Fotoresist einer je nach Ionenart und -energie festzulegenden Dicke von 10 nm bis 6 μm, im Beispiel 1,5 μm (vgl. Fig. lb), oder durch eine nicht dargestellt Maske, die mit für Ionen transparenten und nicht transparenten Bereichen versehen ist oder eine entsprechende Lochmaske, die im Beispiel jeweils die Brückenelemente 1, 3 oder Flächenelemente 10, 30 frei läßt und lediglich die Bereiche 2, 4 oder 20, 40 abdeckt, versehen. Die spezielle Dicke der Abdeckschicht bzw. der maskierenden Bereiche der Lochmaske ist abhängig von in einer konkreten Anlage vorgebbaren Energie der zu implantierenden Ionen; genannte Dicken können somit größeren Schwankungen unterliegen, sind jedoch mindestens so groß festzulegen, daß sie von den Ionen nicht durchdrungen werden. Danach werden die Wafer in einer Ionenstrahlanlage einer Ionenimplantation mit einer Dosis von 1012 bis 1016 Atomen/cm2 mit z.B. Edelgasionen (He, Ne, Ar), wobei auch sonstige für Halbleiterdotierungsprozesse verwendete Dotierungsionen, wie z.B. Ga, P oder B, als auch dafür unübliche Ionen in Betracht kommen, mit einer Energie von .JOOO keV beschossen, wobei gleichzeitig an das Substrat ein homogenes Magnetfeld, im Beispiel einer Stärke von 0,2 T, angelegt wird, welches die Magnetisierungsrichtung in der gepinnten ferromagnetischen Schicht 12 um 180° auslenkt oder bzgl. ihrer Magnetisierungsrichtung auszurichtenden ferromagnetische Schicht 12 ausrichtet (vgl. Fig. lb und 2b). Die jeweils konkrete Magnetfeldstärke ist abhängig von der eingesetzten Schicht 11 und kann mit fachgemäßen Handeln den speziellen Bedingungen angepaßt werden. Nach Beendigung des lonenbeschusses, was im Beispiel nach ca. 50 sec erfolgt, und nach Entfernung des ausrichtenden Dauermagneten oder Abschaltung eines analog einsetzbaren Elektromagneten verbleibt die gepinnte Magnetisierungsrichtung in der aufgeprägten Lage. Die jeweiligen Endorientierungen, bei denen jeweils benachbarte Brückenelemente 1, 2 oder 3, 4 einer Halbbrücke oder Flächenbereiche 10, 20 oder 30, 40 eine zueinander antiparallele Magnetisierung aufweisen, sind in Fig. lc und 2c mit entsprechenden Pfeilen dargestellt. Dabei sind nicht benachbarte Brückenelemente 1, 3 oder 2, 4 (oder Flächenbereiche 10, 30 oder 20, 40) unterhalb der gepinnten ferromagnetischen Schicht 12 und ggf. bis in das Substrat S hinein, nicht jedoch innerhalb der ferromagnetischen Schicht 12, mit einer Dotierung von implantierbaren Ionen I mit einem Anteil zwischen 1012 bis 5 • 1016 Atomen/cm2 versehen, wie es in den Figuren 3, 4 und 6 schematisch angedeutet ist. Technologisch und zeitlich etwas aufwendiger läßt sich auch ein gescannter Ionenfeinstrahl zur Ionenimplantation einsetzen, der nur die Brückenelemente oder Flächenbereiche erfaßt, deren gepinnte Magnetisierungsrichtung ml gedreht werden soll.
Alle in der Beschreibung, den nachfolgenden Ansprüchen und der Zeichnung dargestellten Merkmale können sowohl einzeln als auch in beliebiger Kombination miteinander erfindungswesentlich sein.
Bezugszeichenliste
1, 2, 3, 4 Brückenelemente einer Wheatstonebrücke
11, 12, 13, 14 Einzelschichten eines GMR- oder TMR- Spin- Valve-Schichtsystems
10, 20, 30, 40 Flächenbereiche eines GMR- oder TMR- Spin
Valve-Schichtsystems
5 Abdeckung
I Ionen ml, m2 Magnetisierungsrichtungen
S Substrat

Claims

Patentansprüche
1. Wheatstonebrücke, beinhaltend üblich verschaltete Brückenelemente, bestehend aus einem GMR- oder TMR-Spin-Valve-System, wobei jeweils zwei Brückenelemente (1, 2 und 3, 4) eine Halbbrücke bilden und die Brückenelemente benachbart liegender Halbbrücken (1, 2 und 3, 4) eine antiparallele Magnetisierung aufweisen, dadurch gekennzeichnet, daß jeweils eins der nicht benachbarten Brückenelemente (1, 3 oder 2, 4) der benachbart liegenden
Halbbrücken (1, 2 und 3, 4) unterhalb der gepinnten ferromagnetischen Schicht (12) mit einer Dotierung von implantierbaren Ionen mit einem Anteil zwischen 1 • 1012 bis 5 • 1016 Atomen/cm2 versehen ist.
2. Wheatstonebrücke nach Anspruch 1. dadurch gekennzeichnet, daß für die implantierbaren Ionen He, Ar oder Ne als Dotierungselemente eingesetzt sind.
3. Verfahren zur Herstellung einer Wheatstonebrücke, beinhaltend üblich verschaltete Brückenelemente, bestehend aus einem GMR- oder TMR-Spin-Valve-System, wobei zwei Brückenelemente (1, 2 und 3, 4) eine Halbbrücke bilden und die Brückenelemente benachbart liegender Halbbrücken (1, 2 und 3, 4) eine antiparallele Magnetisierung aufweisen sollen, dadurch gekennzeichnet, daß ein
Substrat (S) al) mit definiert vorgebbaren Flächenbereichen (10, 20, 30, 40), aus denen die einzelnen Brückenelemente (1, 2, 3, 4) der
Wheatstonebrücke in einem späteren und außerhalb dieses Verfahrens liegenden Strukturierungsprozeß strukturiert werden oder a2) mit bereits strukturierten Wheatstonebrückenelemente (1, 2, 3, 4) eingesetzt wird und dieses einem Ionenbeschuß derart ausgesetzt wird, daß während des lonenbeschusses der Flächenbereiche (10, 20, 30, 40) oder Brückenelemente (1 , 2, 3, 4) bl) jeweils nicht benachbarte Flächenbereiche (10, 30 oder 20, 40) oder Brückenelemente (1, 3 oder 2, 4) der benachbart liegenden Halbbrücken (1, 2 und 3, 4) mit einer ionenundurchlässigen Abdeckung (5) versehen werden oder b2) jeweils nicht benachbarte Flächenbereiche (10, 30 oder 20, 40) oder Brückenelemente (1, 3 oder 2, 4) der benachbart liegenden Halbbrücken (1, 2 und 3, 4) einer ausschließlich diese Bereiche erfassenden Rasterionenbestrahlung ausgesetzt werden und c) während des Beschüsses mit Ionen niedriger Dosis und niedriger Energie, die so groß festgelegt werden, daß die Ionen die bzgl. ihrer
Magnetisierungsrichtung auszurichtenden ferromagnetische Schicht (12) durchdringen, alle Flächenbereiche (10, 20, 30, 40) oder Brückenelemente (1, 2, 3, 4) einem homogenen, gerichteten Magnetfeld ausgesetzt werden, das eine solche Ausrichtung und Stärke hat, daß die Magnetisierungsrichtung in den ferromagnetischen Schichten (12) der Flächenbereiche (10, 20, 30, 40) oder Brückenelemente (1, 2, 3, 4) um 180° gedreht oder ausgerichtet wird d) und nach Entfernung des gerichteten Magnetfeldes ausschließlich die Magnetisierungsrichtung der nicht benachbarten
Flächenbereiche (10, 30 oder 20, 40) oder Brückenelemente (1, 3 oder 2, 4) eine Drehung um 180° oder eine Ausrichtung erfahren.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Flächenbereiche (10, 30 oder 20, 40) oder Brückenelemente (1, 3 oder 2, 4) einem Ionenstrahl mit Teilchenenergien von L.JOOO keV und einer Dosis von 1 10 bis 5 * 1016 Atomen/cm2 ausgesetzt werden.
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß während des lonenbeschusses ein die Brückenelemente (1, 2, 3, 4) bzw. Flächenbereiche (10, 20, 30, 40) erfassendes Magnetfeld einer vorgebbaren Mindeststärke, die eine ferromagnetische Sättigung bewirkt, angelegt wird.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die nicht benachbarte Brückenelemente (1, 3 oder 2, 4) oder Flächenbereiche (10, 30 oder 20, 40), deren Magnetisierungsrichtung unbeeinflußt bleiben soll, während der Ionenimplantation mit einer, je nach Ionenart und -energie, 10 nm bis 6 μm dicken Schicht versehen werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die 10 nm bis 6 μm dicke Schicht durch einen Fotoresist gebildet wird.
8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die nicht benachbarten Brückenelemente (1, 3 oder 2, 4) oder Flächenbereiche (10, 30 oder 20, 40), deren Magnetisierungsrichtung unbeeinflußt bleiben soll, während der Ionenimplantation mit einer separat auflegbaren Maske abgedeckt werden.
EP01960282A 2000-06-09 2001-06-07 Verfahren zur herstellung einer wheatstonebrücke, beinhaltend brückenelemente bestehend aus einem spin-valve-system Withdrawn EP1287372A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028640A DE10028640B4 (de) 2000-06-09 2000-06-09 Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
DE10028640 2000-06-09
PCT/EP2001/006486 WO2001094963A2 (de) 2000-06-09 2001-06-07 Wheatstonebrücke, beinhaltend brückenelemente, bestehend aus einem spin-valve-system, sowie ein verfahren zu deren herstellung

Publications (1)

Publication Number Publication Date
EP1287372A2 true EP1287372A2 (de) 2003-03-05

Family

ID=7645271

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01960282A Withdrawn EP1287372A2 (de) 2000-06-09 2001-06-07 Verfahren zur herstellung einer wheatstonebrücke, beinhaltend brückenelemente bestehend aus einem spin-valve-system

Country Status (4)

Country Link
US (1) US6882145B2 (de)
EP (1) EP1287372A2 (de)
DE (1) DE10028640B4 (de)
WO (1) WO2001094963A2 (de)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10214946B4 (de) 2002-04-04 2006-01-19 "Stiftung Caesar" (Center Of Advanced European Studies And Research) TMR-Sensor
DE10217593C1 (de) * 2002-04-19 2003-10-16 Siemens Ag Schaltungsteil mit mindestens zwei magnetoresistiven Schichtelementen mit invertierten Ausgangssignalen
DE10217598C1 (de) * 2002-04-19 2003-10-16 Siemens Ag Schaltungseinrichtung mit mindestens zwei invertierte Ausgangssignale erzeugenden magnetoresistiven Schaltungselementen
DE10222395B4 (de) * 2002-05-21 2010-08-05 Siemens Ag Schaltungseinrichtung mit mehreren TMR-Sensorelementen
JP4117175B2 (ja) * 2002-10-03 2008-07-16 アルプス電気株式会社 回転角検出装置
US7259545B2 (en) * 2003-02-11 2007-08-21 Allegro Microsystems, Inc. Integrated sensor
US7009268B2 (en) * 2004-04-21 2006-03-07 Hewlett-Packard Development Company, L.P. Wheatstone bridge scheme for sensor
US7777607B2 (en) * 2004-10-12 2010-08-17 Allegro Microsystems, Inc. Resistor having a predetermined temperature coefficient
SE529125C2 (sv) * 2005-03-02 2007-05-08 Tetra Laval Holdings & Finance Sätt och anordning för att bestämma läget hos ett förpackningsmaterial med magnetiska markeringar
JP2007024598A (ja) * 2005-07-13 2007-02-01 Denso Corp 磁気センサ
JP4573736B2 (ja) * 2005-08-31 2010-11-04 三菱電機株式会社 磁界検出装置
US7768083B2 (en) * 2006-01-20 2010-08-03 Allegro Microsystems, Inc. Arrangements for an integrated sensor
FR2899377B1 (fr) * 2006-03-30 2008-08-08 Centre Nat Rech Scient Procede de realisation de structures en multicouches a proprietes controlees
DE102006039490A1 (de) * 2006-08-21 2008-03-27 Institut für Physikalische Hochtechnologie e.V. Magnetischer Sensor und Verfahren zu dessen Herstellung
WO2008039743A2 (en) * 2006-09-25 2008-04-03 Massachusetts Institute Of Technology Wheatstone-bridge magnetoresistive device
GB2446146B (en) * 2007-01-31 2009-11-18 Gm Global Tech Operations Inc Arrangement of a two stage turbocharger system for an internal combustion engine
US7795862B2 (en) 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US7816905B2 (en) * 2008-06-02 2010-10-19 Allegro Microsystems, Inc. Arrangements for a current sensing circuit and integrated current sensor
JP5662357B2 (ja) * 2009-03-10 2015-01-28 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー 磁気抵抗センサにおける温度及びドリフト補償
JP4947321B2 (ja) * 2009-07-30 2012-06-06 Tdk株式会社 回転角度検出装置
DE102010018874A1 (de) * 2010-04-30 2011-11-03 Siemens Aktiengesellschaft Wheatstonebrücke mit XMR-Spinvalve-Systemen
DE102010041646A1 (de) 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Schaltungsanordnung zum Erfassen eines Magnetfelds und Verfahren zum Ermitteln dessen magnetischer Feldstärke
US8797024B2 (en) 2011-02-01 2014-08-05 Infineon Technologies Ag Sensor
US8416613B1 (en) 2011-04-27 2013-04-09 The United States Of America As Represented By The Secretary Of The Navy Magnetoresistive bridge nonvolatile memory device
US8952686B2 (en) * 2011-10-25 2015-02-10 Honeywell International Inc. High current range magnetoresistive-based current sensor
JP6064816B2 (ja) * 2013-07-17 2017-01-25 株式会社デンソー 回転センサ
CN103592608B (zh) * 2013-10-21 2015-12-23 江苏多维科技有限公司 一种用于高强度磁场的推挽桥式磁传感器
JP2015129700A (ja) * 2014-01-08 2015-07-16 アルプス電気株式会社 磁界回転検知センサ及び磁気エンコーダ
US9625281B2 (en) * 2014-12-23 2017-04-18 Infineon Technologies Ag Fail-safe operation of an angle sensor with mixed bridges having separate power supplies
US9841469B2 (en) 2016-01-26 2017-12-12 Nxp Usa, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
US9897667B2 (en) 2016-01-26 2018-02-20 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US10545196B2 (en) 2016-03-24 2020-01-28 Nxp Usa, Inc. Multiple axis magnetic sensor
US10145907B2 (en) 2016-04-07 2018-12-04 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) * 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability
US10901050B2 (en) 2017-12-21 2021-01-26 Isentek Inc. Magnetic field sensing device including magnetoresistor wheatstone bridge
US10935612B2 (en) 2018-08-20 2021-03-02 Allegro Microsystems, Llc Current sensor having multiple sensitivity ranges
CN210108386U (zh) * 2019-06-12 2020-02-21 芯海科技(深圳)股份有限公司 一种传感装置和电子设备
US11385306B2 (en) 2019-08-23 2022-07-12 Western Digital Technologies, Inc. TMR sensor with magnetic tunnel junctions with shape anisotropy
US11169226B2 (en) * 2019-08-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor bias point adjustment method
US11170806B2 (en) * 2019-12-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor array with single TMR film plus laser annealing and characterization
US11187764B2 (en) 2020-03-20 2021-11-30 Allegro Microsystems, Llc Layout of magnetoresistance element
US11567108B2 (en) 2021-03-31 2023-01-31 Allegro Microsystems, Llc Multi-gain channels for multi-range sensor

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940004986B1 (ko) * 1984-08-27 1994-06-09 가부시기가이샤 히다찌세이사꾸쇼 자성막의 제조방법 및 그것을 사용한 자기헤드
DE4301704A1 (de) * 1993-01-22 1994-07-28 Siemens Ag Vorrichtung zum Erfassen einer Winkelposition eines Objektes
DE4317512C2 (de) * 1993-05-26 1995-03-30 Univ Schiller Jena Vorrichtung zur berührungslosen Nullpunkt-, Positions- und Drehwinkelmessung
US5561368A (en) 1994-11-04 1996-10-01 International Business Machines Corporation Bridge circuit magnetic field sensor having spin valve magnetoresistive elements formed on common substrate
DE19532674C1 (de) * 1995-09-05 1996-11-07 Inst Physikalische Hochtech Ev Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
WO1998001762A2 (en) 1996-07-05 1998-01-15 Philips Electronics N.V. A magnetic field sensor and a method of manufacturing such a sensor
DE19649265C2 (de) * 1996-11-28 2001-03-15 Inst Physikalische Hochtech Ev GMR-Sensor mit einer Wheatstonebrücke
EP0855599A3 (de) 1997-01-24 2001-05-02 Siemens Aktiengesellschaft Elektronischer Kompass
DE19743335C1 (de) 1997-09-30 1998-11-12 Siemens Ag Sensoreinrichtung mit einer Brückenschaltung ihrer einen großen magnetoresistiven Effekt zeigenden Brückenelemente
DE19830343C1 (de) * 1998-07-07 2000-04-06 Siemens Ag Verfahren zur Herstellung eines Schichtaufbaus umfassend ein AAF-System sowie magnetoresistive Sensorsysteme
EP1046048A1 (de) * 1998-08-14 2000-10-25 Koninklijke Philips Electronics N.V. Magnetfeldfühler mit einem spin-tunnel-sperrschichtelement
DE60037790T2 (de) * 1999-06-18 2009-01-08 Koninklijke Philips Electronics N.V. Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
US6465053B1 (en) * 1999-06-18 2002-10-15 Koninkl Philips Electronics Nv Method for manufacturing a magnetic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0194963A2 *

Also Published As

Publication number Publication date
DE10028640A1 (de) 2001-12-20
US20040023064A1 (en) 2004-02-05
US6882145B2 (en) 2005-04-19
WO2001094963A2 (de) 2001-12-13
DE10028640B4 (de) 2005-11-03
WO2001094963A3 (de) 2002-04-04

Similar Documents

Publication Publication Date Title
DE10028640B4 (de) Wheatstonebrücke, beinhaltend Brückenelemente, bestehend aus einem Spin-Valve-System, sowie ein Verfahren zu deren Herstellung
DE60037790T2 (de) Magnetisches messsystem mit irreversibler charakteristik, sowie methode zur erzeugung, reparatur und verwendung eines solchen systems
DE69534013T2 (de) Magnetfeldfühler und Verfahren zu ihrer Herstellung
DE69738561T2 (de) Dünnfilm-Magnetkopf
DE102007032867B4 (de) Magnetoresistive Magnetfeldsensorstrukturen und Herstellungsverfahren
DE69533636T2 (de) Magnetowiderstandseffektvorrichtung und hiermit versehener Magnetkopf, Speicher- und Verstärkungsanordnung
DE4427495C2 (de) Sensoreinrichtung mit einem GMR-Sensorelement
EP1105878A2 (de) Speicherzellenanordnung und verfahren zu deren herstellung
DE19520206C2 (de) Magnetfeldsensor mit einer Brückenschaltung von magnetoresistiven Brückenelementen
DE19649265C2 (de) GMR-Sensor mit einer Wheatstonebrücke
DE10113853A1 (de) Magnetspeicherelement, Magnetspeicher und Herstellungsverfahren für einen Magnetspeicher
DE19528245A1 (de) Magneto-Widerstandskopf
DE10017374B4 (de) Magnetische Koppeleinrichtung und deren Verwendung
DE19804339C2 (de) Spinventil-Magnetowiderstandskopf und Herstellungsverfahren dafür
DE19532674C1 (de) Drehwinkelgeber unter Verwendung von Giant Magnetowiderstandsmaterialien
EP1567878B1 (de) Magnetoresistives sensorelement und verfahren zur reduktion des winkelfehlers eines magnetoresistiven sensorelements
DE69825031T2 (de) Magnetfeldsensor mit spin tunnelübergang
DE102019126320B4 (de) Magnetoresistiver Sensor und Fertigungsverfahren für einen magnetoresistiven Sensor
DE10117355A1 (de) Verfahren zur Einstellung einer Magnetisierung in einer Schichtanordnung und dessen Verwendung
EP1576381A1 (de) Magnetoresistives schichtsystem und sensorelement mit diesem schichtsystem
DE19949714A1 (de) Magnetisch sensitives Bauteil, insbesondere Sensorelement, mit magnetoresistiven Schichtsystemen in Brückenschaltung
DE19742366C1 (de) Einrichtung mit magnetoresistivem Sensorelement und zugeordneter Magnetisierungsvorrichtung
EP3918356B1 (de) Anordnung benachbarter schichtstrukturen für einen magnetoresistiven magnetfeldsensor, magnetoresistiver magnetfeldsensor und verfahren zu deren herstellung
DE10158795B4 (de) Magnetoresistive Speicherzelle mit dynamischer Referenzschicht
EP1425754B1 (de) Kompensation eines magnetischen biasfeldes in einer speicherschicht einer magnetoresistiven speicherzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021213

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030606

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD OF PRODUCING A WHEATSTONE BRIDGE CONTAINING BRIDGE ELEMENTS CONSISTING OF A SPIN-VALVE SYSTEM

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051221