EP1285153A1 - Piege a particules - Google Patents
Piege a particulesInfo
- Publication number
- EP1285153A1 EP1285153A1 EP01981922A EP01981922A EP1285153A1 EP 1285153 A1 EP1285153 A1 EP 1285153A1 EP 01981922 A EP01981922 A EP 01981922A EP 01981922 A EP01981922 A EP 01981922A EP 1285153 A1 EP1285153 A1 EP 1285153A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- particle trap
- particle
- trap
- upstream
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/01—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/022—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
- F01N3/0222—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/28—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/30—Honeycomb supports characterised by their structural details
- F01N2330/32—Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2330/00—Structure of catalyst support or particle filter
- F01N2330/30—Honeycomb supports characterised by their structural details
- F01N2330/38—Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
Definitions
- the invention relates to a particle trap for a fluid loaded with particles, in particular for the exhaust gas of a diesel engine, the particle trap being regenerable by oxidation of the particles and placed in a pipe, e.g. can be installed in the exhaust line of a motor vehicle,
- a fluid such as The exhaust gas from a motor vehicle contains gaseous components as well as particles. These are expelled with the exhaust gas or possibly accumulate in the exhaust line and / or in a catalytic converter of a motor vehicle. When the load changes, they are then in the form of a particle cloud, e.g. a cloud of soot.
- Sieves also sometimes called filters
- the use of the sieves has two significant disadvantages: on the one hand they can clog and on the other hand they cause an undesirably high pressure drop.
- legal values for motor vehicle emissions that would be exceeded without particle reduction must be observed. There is therefore a need to create collection elements for exhaust gas particles that overcome the disadvantages of the screens, filters or other systems.
- the invention relates to a particle trap with flow channels and structures in order to produce swirling, calming and / or dead zones in a fluid flow that flows through the particle trap, the particle trap being at least partially open.
- the invention also relates to a particle trap with flow channels and structures in order to To generate fluid flow that flows through the particle trap, swirling, calming and / or dead zones, wherein the particle trap is at least partially open and at least part of the flow channels at least a portion with an increased heat capacity, for. B. by higher wall thickness, larger number of cells or the like, so that the effect of thermophoresis occurs increasingly in these areas during dynamic load changes with rapidly increasing fluid temperature for entrained particles in the fluid.
- various uses of the particle trap in various combinations with other modules are the subject of the invention.
- the particles are presumably thrown by swirling against the inner walls of the channels and adhere there.
- the swirls are generated by structures on the inside of the channels, these structures not only creating swirls but also calming or dead zones in the flow shadow. In the calming and / or dead zones, the particles are presumably washed up (comparable to gravity separation) and then adhere firmly.
- a possible interaction of metal-soot and / or also the temperature gradient fluid / channel wall plays a role in the adhesion of the particles. A strong agglomeration of the particles in the gas stream or on the walls is also observed.
- a calming zone is a zone in the channel with low flow velocity and a dead zone is a zone without fluid movement.
- the particle trap is referred to as "open" because no flow dead ends are provided.
- this property can also be used to characterize the particle trap, for example an openness of 20% means that in a cross-sectional view, approx. With a carrier with 600 cpsi (cells per square inch) with a hydraulic diameter of the channels of approximately 0.8 mm, this would correspond to an area of approximately 0.01 mm 2 .
- the particle trap does not become clogged, like a conventional filter system, where pores can become clogged, because the flow would entrain the part of the agglomerated particles that could be torn off due to its increased air resistance.
- At least partially structured layers are layered or wound according to known methods and connected by joining technology, in particular soldered.
- the cell density of the particle trap depends on the corrugation of the layers.
- the corrugation of the layers is not necessarily uniform over an entire layer, but different flows and / or pressure conditions can be produced within the particle trap through which the layer structure is suitably produced.
- the particle trap can be monolithic or made up of several disks, that is to say it can be made up of one element or several individual elements connected in series.
- a system with conical channels or an element in the form of a cone is preferred.
- Such systems as described for example in WO93 / 20339, have widening or narrowing channels, so that at any mass throughput at any point on the channels, if they correspond with them Deflection or turbulence structures are provided, particularly favorable conditions for collecting particles arise.
- conical designations denote both the designs that show a diameter expansion in the direction of flow and the designs that have a diameter reduction.
- Cylindrical honeycomb bodies with channels, some of which narrow and some widen, have suitable properties.
- a smooth layer lying between two corrugations has holes, so that a fluid exchange between the channels created by the winding is possible. This enables a radial flow through the particle trap, which is not tied to a 90 ° deflection.
- these preferably come to rest at the outlet of flow guide vanes, so that the flow is conducted directly into the holes.
- another penetrable material such as a fiber material can be used.
- the material of the layers is preferably metal (sheet metal), but it can also be a substance of inorganic (ceramic, fiber material), organic or organometallic nature and / or a sintered material, as long as it has a surface to which the particles adhere without coating succeed.
- the particle trap is subject to large temperature fluctuations in a partially oxidative atmosphere (air), and various oxides are formed on the surface of the layers, if these are made of metal, possibly even in the form of needle-shaped crystals, so-called whiskers, which cause a certain surface roughness.
- the particles of the flow which basically behave similar to molecules, are generated by different mechanisms, in particular impaction or interception in turbulent flow or thermophoresis in a laminar flow on this rough surface and washed there, the adhesion being caused essentially by Van der Waals forces.
- the deposition of the particles takes place on the uncoated metal foil, it cannot be ruled out that there are also coated areas of the particle trap, for example because the particle trap is also designed in part as a catalyst carrier.
- the film thickness of the layers is preferably in the range between 0.02 and 0.2 mm, particularly preferably between 0.05 and 0.08 mm, in regions with increased heat capacity preferably between 0.65 and 0.11 mm.
- the particle trap with several layers wound they are made of the same or different material or have the same or different film thickness.
- the particles in the exhaust gas of a diesel engine which essentially consist of soot, can be charged and / or polarized by passing them through an electric field, so that they are deflected from their preferred direction of flow (for example the axial direction of the particle trap parallel to the flow channels).
- This increases the probability of the particles hitting the walls of the flow channels of the particle trap, since they now also have a velocity component in another direction, in particular perpendicular to the preferred direction of flow, when flowing through the particle trap.
- This can also be achieved, for example, with a plasma reactor upstream of the particle trap, which ensures polarization of the particles.
- the particle trap forms at least one pole of the polarization path, in particular if the particle trap at least partially has a positive charge, and electrically negatively polarized particles are thus actively attracted.
- the mechanisms by the particles are flushed against the wall from the interior of the flow (eg interception and impaction), accelerated and amplified.
- the particle trap In the event that the particle trap is charged, it is advantageous that peaks are arranged on the layers and / or in the structure of the film forming the layers, which intensify the charging effect.
- the particles of the fluid can, for example, be passed through a polarization path for charging, the particles then being polarized.
- the particle trap can also be grounded and remain charge-neutral, especially if suitable insulation is provided with regard to the tips and / or the polarization path.
- the polarization and / or charging also takes place via photoionization.
- the particles are charged and / or polarized via a corona discharge.
- thermooresis use is made of the knowledge that a temperature difference between the channel wall and the flow serves to cause the particles to migrate more strongly to the channel wall (thermophoresis).
- the thick duct wall has a high heat capacity and therefore maintains a temperature difference between the flow and the duct wall longer than a thin duct wall with dynamic load changes and increasing exhaust gas temperature and thus maintains the separation-promoting effect longer than a thin duct wall.
- the lead structures are
- thermophoresis is used by cascading several particle traps, each with channel walls of different thicknesses.
- the cell densities of the particle trap are preferably in the range between 25 to 1000 cpsi, preferably between 200 and 400 cpsi.
- a typical particle trap with 200 cpsi has a volume, based on a diesel engine, of about 0.2 to 11 per 100 kW, preferably 0.4-0.851 / 100 kW. To 78m 2 / 100kW for the geometric surface area results in example l. Compared to the volumes of conventional filters and screening systems, this is a very small volume or a very small geometric surface compared to a conventional design with a surface area of approximately 4 m 2 per 100 kW.
- the particle trap can be regenerated, and in the case of soot separation in the diesel engine exhaust line, regeneration by oxidation of the soot either by nitrogen dioxide (NO 2 ) at a temperature above about 200 ° C. or with air or oxygen (O 2 ), for example at Temperatures above 500 ° C or by injection of an additive (eg cerium).
- NO 2 nitrogen dioxide
- O 2 air or oxygen
- C + 2NO 2 -> CO 2 + 2NO requires that an oxidation catalytic converter is placed in front of the particle trap in the exhaust line, which oxidizes NO to NO 2 in sufficient quantity.
- the quantitative ratio of the reactants also depends significantly on the Mixing of the fluids from, so that depending on the design of the channels of the particle trap, different proportions should also be used.
- an aid is provided for the thermal regeneration of the particle trap.
- the element is at least partially electrically heated, or an electrically heatable auxiliary, such as a heating catalytic converter, is connected upstream of the element.
- an auxiliary device is switched on or on for regeneration as a function of the occupancy / degree of filling of the particle trap, which in the simplest case is measured via the pressure loss that the particle trap generates in the exhaust line.
- an oxidation catalyst upstream of the particle trap has a lower specific heat capacity per unit volume and number of cells than the particle trap itself.
- the oxidation catalyst preferably has a volume of 0.5 liters, a cell number of 400 cpsi and a film thickness of 0.05 mm , while the particle trap with the same volume and the same number of cells has a film thickness of 0.08 mm and a downstream SCR catalyst again has a film thickness of 0.05 mm.
- the combination of the particle trap with at least one catalytic converter and a turbocharger or the combination of a particle trap with a turbocharger is also advantageous.
- the particle trap downstream of the turbocharger can be arranged close to the engine or in the underbody position.
- the particle trap is also used in combination with an upstream or downstream one
- Soot filter used the soot filter downstream can be much smaller than the conventional soot filter, because it should only provide additional protection that particle emission is excluded.
- a filter is preferred the size 0.5m 2 per 100kW diesel engine used up to a maximum of Im 2 , (with a downstream filter area, the cross-sectional area of the filter is adapted to that of the particle trap, both in the case of a narrowing cross-section as well as in the case of a cross-section expansion), whereas filter sizes of approx. 4m 2 per 100kW are required.
- the soot filter can also be in the form of filter material installed directly before or after the storage / oxidation element, the filter material being directly, e.g. via a solder connection, can be connected to the storage / oxidation element.
- Soot filter (possibly cone to increase the pipe cross section) reduction catalyst
- the particle trap is used in combination with at least one catalyst.
- catalysts electrocatalysts and / or
- Pre-catalysts are particularly suitable for this: oxidation catalyst, Heating catalytic converter with upstream or downstream heating disc, hydrolysis catalytic converter and / or reduction catalytic converter.
- Oxidation catalysts which also oxidize NO x (nitrous gases) to nitrogen dioxide (NO 2 ) are used, in addition to those which oxidize hydrocarbons and carbon monoxide to carbon dioxide.
- the catalysts are, for example, tubular or conical.
- a nitrogen dioxide (NO 2 ) store is preferably used in front of the particle trap, which, if required, provides NO 2 in sufficient quantity for the oxidation of the soot in the particle trap.
- This store can be, for example, an activated carbon store, for example, with an adequate supply of oxygen.
- the particle trap can have different coatings in some areas, each of which requires functionality.
- the particle trap in addition to the function as a trap for particles, can have a storage, mixing, oxidation, flow-imparting function and also e.g. have a function as a hydrolysis catalyst.
- the particle trap is not used in the form of an element, but rather in the form of several narrow elements connected in series, as a multi-disc element.
- Particle traps, the corrugations without structures to create swirling and calming zones and with a coating can also be used. Up to 10 elements are preferably used.
- This construction referred to as a “disk arrangement” or “disk catalytic converter”, can be used, for example, if particle separation is desired in the range from 10 to 20% (when using conventional catalysts).
- the present invention proposes a particle trap that can replace conventional filter and sieve systems and has serious advantages over these systems:
- FIG. 1 is a perspective view of a particle trap according to the invention in the form of a layered honeycomb body
- Fig. 2 shows a single layer with structures for generating
- FIG. 3 shows a further embodiment of the particle trap according to the invention with a plasma reactor
- Fig. 4 shows a further embodiment of the structures for generating
- 5 a particle trap according to the invention which can be flowed through radially
- 6 shows a layer with structures for generating turbulence
- Fig. 7 is a particle trap in a disk arrangement with others
- FIG. 1 shows a particle trap 11 according to the invention, which is constructed from metallic layers 4, 6, which has flow channels 2 through which a fluid can flow.
- the layers 4, 6 are designed either as a corrugated layer 4 or as a smooth layer 6.
- the film thickness of the layers 4, 6 is preferably in the range between 0.02 and 0.2 mm, in particular less than 0.05 mm.
- FIG. 2 schematically shows a detailed view of the corrugated layer 4, which has structures 3 for generating swirling, calming and / or dead zones 5.
- the fluid flows along the preferred direction of flow indicated by arrow 16.
- FIG. 3 shows a further embodiment of the particle trap 11 according to the invention with an upstream plasma reactor 17.
- the fluid or the particles contained therein are / are at least polarized, possibly even ionized, with the plasma reactor 17 if the fluid in the preferred one
- Plasma reactor 17 is connected to the negative pole of a voltage source 20.
- the positive pole of the voltage source 20 is connected to tips 18 of the particle trap 11, which are arranged as close as possible to the axis 19, so that a
- FIG. 4 shows an alternative embodiment of the corrugated layers 4.
- FIG. 5 shows a particle trap which can be flowed through radially (radius 21) (arrow 16).
- the flow channels 2 extend from a central channel 22, which is porous in the area of the honeycomb body 1, radially outward to a porous jacket 23 surrounding the honeycomb body 1.
- the honeycomb body 1 is made of segmented or annular smooth layers 6 and corrugations 4 educated.
- FIG. 6 shows a possible, segmented, embodiment of the corrugated layer 4 with structures 3 for generating swirling, calming and / or dead zones.
- FIG. 7 shows a particle trap which has conical channels and which comprises a plurality of, possibly narrow, elements which are particle traps and / or catalysts.
- honeycomb bodies 1 are arranged one behind the other, each widening or tapering in a conical shape.
- an additive addition 7 a nitrogen reservoir 14 and an oxidation catalyst 8, with which nitrous gases (No s ) are oxidized to nitrogen dioxide (NO 2 ), are connected upstream in the exhaust line 12.
- a turbocharger 9 and a soot filter 10 are connected downstream.
- the particle trap 11 is advantageously used in combination with an aid for soot oxidation 15.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Separating Particles In Gases By Inertia (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Filtering Of Dispersed Particles In Gases (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE20122703U DE20122703U1 (de) | 2000-05-30 | 2001-05-29 | Partikelfalle |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10026696 | 2000-05-30 | ||
DE10026696A DE10026696A1 (de) | 2000-05-30 | 2000-05-30 | Partikelfalle |
PCT/EP2001/006071 WO2001092692A1 (fr) | 2000-05-30 | 2001-05-29 | Piege a particules |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1285153A1 true EP1285153A1 (fr) | 2003-02-26 |
EP1285153B1 EP1285153B1 (fr) | 2008-01-16 |
Family
ID=7644037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01981922A Revoked EP1285153B1 (fr) | 2000-05-30 | 2001-05-29 | Piege a particules |
Country Status (9)
Country | Link |
---|---|
US (1) | US7267805B2 (fr) |
EP (1) | EP1285153B1 (fr) |
JP (2) | JP4913309B2 (fr) |
KR (1) | KR100759146B1 (fr) |
CN (1) | CN1288330C (fr) |
AU (1) | AU2002211949A1 (fr) |
DE (2) | DE10026696A1 (fr) |
ES (1) | ES2299522T3 (fr) |
WO (1) | WO2001092692A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112049715A (zh) * | 2020-09-04 | 2020-12-08 | 拓信(台州)精密工业有限公司 | 具有扰流作用的金属蜂窝载体 |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003301713A (ja) * | 2002-04-09 | 2003-10-24 | Nissan Motor Co Ltd | エンジンの排気浄化装置 |
DE10226975A1 (de) * | 2002-06-17 | 2004-01-15 | Siemens Ag | Vorrichtung und Verfahren zur Reinigung von Abgas eines Dieselmotors |
DE10247987A1 (de) * | 2002-10-15 | 2004-04-29 | Robert Bosch Gmbh | Anordnung und Verfahren zur Nachbehandlung des Abgases einer Brennkraftmaschine |
DE10254661A1 (de) * | 2002-11-22 | 2004-06-09 | Umicore Ag & Co.Kg | Verfahren zur Beschichtung eines Katalysatorträgers enthaltend zwei unterschiedliche Teilstrukturen mit einer katalytisch aktiven Beschichtung und dadurch erhaltener Katalysator |
DE10254764A1 (de) | 2002-11-22 | 2004-06-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Abgasanlage |
DE10257113A1 (de) * | 2002-12-05 | 2004-06-24 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Partikelfalle mit beschichteter Faserlage |
JP2006515401A (ja) * | 2003-01-14 | 2006-05-25 | エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング | 入れ子式に位置する往流領域及び還流領域を備え同じ側で排ガスの流出入を行う省スペース形排ガス後処理装置 |
JP3543969B1 (ja) * | 2003-06-05 | 2004-07-21 | 株式会社オーデン | 金属フィルタ及び該金属フィルタを備える黒煙微粒子除去装置並びにディーゼル車 |
DE10345896A1 (de) * | 2003-09-30 | 2005-04-21 | Emitec Emissionstechnologie | Beschichteter Wabenkörper mit Messfühler |
DE10349352B3 (de) | 2003-10-19 | 2005-01-13 | Trippe, Gustav, Dr. | Reinigungsaggregat für Abgase aus Brennkraftmaschinen |
DE102004001418A1 (de) * | 2004-01-09 | 2005-07-28 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Fluid-Umformung von Metallblechen |
BE1016015A5 (fr) * | 2004-05-11 | 2006-01-10 | Mann Naturenergie Gmbh & Co Kg | Installation d'epuration des gaz d'echappement pour moteurs a combustion et procede d'epuration des gaz d'echappement. |
DE102004024685A1 (de) * | 2004-05-19 | 2005-12-15 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Katalysator-Trägerkörper für einen motornah einzusetzenden katalytischen Konverter |
WO2006022564A1 (fr) * | 2004-08-23 | 2006-03-02 | Anna Wysocka | Installation et procede de nettoyage des gaz d'echappement |
CN1317490C (zh) * | 2004-12-24 | 2007-05-23 | 清华大学 | 一种汽车尾气可吸入颗粒物脱除装置 |
DE102005000890A1 (de) | 2005-01-07 | 2006-08-31 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Verfahren zum Entfernen von Partikeln aus Abgasen sowie Faserlage und Partikelfilter dazu |
US7340888B2 (en) | 2005-04-26 | 2008-03-11 | Donaldson Company, Inc. | Diesel particulate matter reduction system |
DE102005023385A1 (de) * | 2005-05-17 | 2006-11-23 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Fügen metallischer Fasern zu Vliesen zur Herstellung von Wabenkörpern |
DE102005029338A1 (de) * | 2005-06-24 | 2007-02-08 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Verfahren zum Betrieb einer Partikelfalle sowie Vorrichtung zur Durchführung des Verfahrens |
DE102005031816A1 (de) * | 2005-07-06 | 2007-01-18 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Verfahren zur Reduzierung des Partikel- und Stickoxidanteils im Abgasstrom einer Verbrennungskraftmaschine und entsprechende Abgasaufbereitungseinheit |
DE102005032348A1 (de) * | 2005-07-08 | 2007-01-11 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Filterlage für einen, insbesondere konischen, Wabenkörper zur Abgasbehandlung und Verfahren zur Herstellung der Filterlage |
ATE444807T1 (de) * | 2005-08-05 | 2009-10-15 | Basf Catalysts Llc | Dieselabgasartikel und katalysatorzusammensetzungen dafür |
US7841170B2 (en) * | 2005-10-28 | 2010-11-30 | Corning Incorporated | Regeneration of diesel particulate filters |
SE0600003L (sv) * | 2006-01-02 | 2007-07-03 | Sven Melker Nilsson | Kanalsystem |
DE102006001831A1 (de) * | 2006-01-13 | 2007-09-20 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Verfahren und Vorrichtung zur Verringerung der Partikelanzahl im Abgas einer Verbrennungskraftmaschine |
US7862640B2 (en) | 2006-03-21 | 2011-01-04 | Donaldson Company, Inc. | Low temperature diesel particulate matter reduction system |
JP4710825B2 (ja) * | 2006-12-28 | 2011-06-29 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
EP1990510B1 (fr) | 2007-05-02 | 2010-04-07 | ACR Co., Ltd. | Support pour purification de gaz d'échappement |
DE102007032736A1 (de) | 2007-07-13 | 2009-01-15 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Abgasnachbehandlung vor einem Turbolader |
DE102008022990A1 (de) | 2008-05-09 | 2009-11-12 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Partikelfilter mit Hydrolysebeschichtung |
DE102008057960A1 (de) * | 2008-11-19 | 2010-05-20 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Anordnung und Verfahren zur Reinigung eines Abgasstromes einer Verbrennungskraftmaschine durch die Abscheidung von Partikeln |
DE102008062417A1 (de) * | 2008-12-17 | 2010-07-01 | Volkswagen Ag | Abgasreinigung eines Abgasstroms einer Brennkraftmaschine |
DE102009041090A1 (de) * | 2009-09-14 | 2011-03-24 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung und Verfahren zur Behandlung von Rußpartikel enthaltendem Abgas |
US20110064633A1 (en) * | 2009-09-14 | 2011-03-17 | Ford Global Technologies, Llc | Multi-Functional Catalyst Block and Method of Using the Same |
CN101912712A (zh) * | 2010-07-26 | 2010-12-15 | 长治市丰雨机械有限公司 | 板式旋涡发生器 |
DE102010034250A1 (de) * | 2010-08-13 | 2012-02-16 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Halterung für zumindest eine Elektrode in einer Abgasleitung |
DE102010045506A1 (de) * | 2010-09-15 | 2012-03-15 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung zur Erzeugung eines elektrischen Feldes in einem Abgassystem |
DE102010051655A1 (de) * | 2010-11-17 | 2012-05-24 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas |
CN102042058B (zh) * | 2011-01-25 | 2012-07-18 | 无锡爱奇特汽车环保科技有限公司 | 尾气颗粒捕集器及其滤芯 |
US8468803B2 (en) * | 2011-02-26 | 2013-06-25 | International Engine Intellectual Property Company, Llc | Soot resistant diesel fuel reformer for diesel engine emissions aftertreatment |
DE102012022988A1 (de) * | 2011-12-16 | 2013-06-20 | Mann + Hummel Gmbh | Filtereinrichtung, insbesondere Dieselpartikelfilter |
JP2013189900A (ja) * | 2012-03-13 | 2013-09-26 | Isuzu Motors Ltd | 排気ガス浄化装置 |
DE202012011813U1 (de) * | 2012-12-10 | 2013-01-14 | Liebherr-Werk Ehingen Gmbh | Abgasnachbehandlungssystem |
US10176901B2 (en) | 2013-08-14 | 2019-01-08 | Ge-Hitachi Nuclear Energy Americas Llc | Systems, methods, and filters for radioactive material capture |
DE102014005153B4 (de) * | 2014-04-08 | 2023-12-14 | Andreas Döring | Abgasnachbehandlungssystem und Verfahren zur Abgasnachbehandlung |
US9302226B2 (en) | 2014-05-05 | 2016-04-05 | Ge-Hitachi Nuclear Energy Americas Llc | Salt filtration system and method of removing a radioactive material from a gas using the same |
CN104179551B (zh) * | 2014-08-22 | 2017-05-24 | 成都代代吉前瞻科技股份有限公司 | 一种介电电泳汽车尾气净化系统 |
CN104696050A (zh) * | 2015-02-10 | 2015-06-10 | 浙江天泽环境科技有限公司 | 一种全闭式颗粒捕集器的过滤元件及使用方法 |
AT518216A1 (de) * | 2016-01-21 | 2017-08-15 | Ge Jenbacher Gmbh & Co Og | Brennkraftmaschine |
GB2562410A (en) * | 2016-10-21 | 2018-11-14 | Cummins Emission Solutions Inc | Substrate shape, geometry, positioning, and/or cell density to improve aftertreatment performance |
DE102016223578A1 (de) * | 2016-11-28 | 2018-05-30 | Continental Automotive Gmbh | Vorrichtung zur Verdampfung eines Fluids |
JP6747466B2 (ja) * | 2018-03-15 | 2020-08-26 | 株式会社デンソー | 電気加熱式触媒 |
DE102018214929B4 (de) * | 2018-09-03 | 2022-01-27 | Vitesco Technologies GmbH | Katalysator mit metallischem Wabenkörper |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3723478A1 (de) * | 1987-07-16 | 1989-01-26 | Navsat Gmbh | Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors |
WO1990012950A1 (fr) * | 1989-04-17 | 1990-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Filtre a suie pour moteur diesel, dote d'un dispositif auxiliaire de reduction des oxydes d'azote et/ou d'oxydation du monoxyde de carbone |
EP1072765A2 (fr) * | 1999-07-26 | 2001-01-31 | Man Nutzfahrzeuge Ag | Procédé et dispositif pour la séparation de particules fines des gaz d'échappement d'un moteur à combustion interne |
WO2001080978A1 (fr) * | 2000-04-25 | 2001-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Procede permettant d'eliminer des particules de suie de gaz d'echappement et element collecteur associe |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3954672A (en) * | 1974-11-04 | 1976-05-04 | General Motors Corporation | Cordierite refractory compositions and method of forming same |
DE2738257C2 (de) * | 1977-08-25 | 1986-06-19 | Regehr, Ulrich, Dr.-Ing., 5100 Aachen | Vorrichtung zur Abscheidung von Tropfen aus strömenden Gasen |
DE2951316A1 (de) * | 1979-12-20 | 1981-07-02 | Degussa Ag, 6000 Frankfurt | Katalytisches filter fuer die dieselabgasreinigung |
US4390355A (en) * | 1982-02-02 | 1983-06-28 | General Motors Corporation | Wall-flow monolith filter |
DE3341177A1 (de) * | 1983-11-14 | 1984-04-05 | Wilhelm Dr.-Ing. 3200 Hildesheim Wiederhold | Auswechselbarer filtereinsatz, insbesondere zur reinigung von dieselmotorabgasen |
DE3341868A1 (de) * | 1983-11-19 | 1985-05-30 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart | Matrix fuer einen katalytischen reaktor |
US4672809A (en) * | 1984-09-07 | 1987-06-16 | Cornelison Richard C | Catalytic converter for a diesel engine |
US4597262A (en) * | 1984-09-07 | 1986-07-01 | Retallick William B | Catalytic converter for a diesel engine |
DE8438260U1 (de) * | 1984-12-29 | 1985-04-11 | Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart | Traegermatrix, insbesondere fuer einen katalytischen reaktor zur abgasreinigung |
JPS61237812A (ja) * | 1985-04-15 | 1986-10-23 | Mazda Motor Corp | エンジンの排気ガス浄化装置 |
JPS63185425A (ja) * | 1987-01-28 | 1988-08-01 | Ngk Insulators Ltd | 排ガス浄化用セラミツクハニカムフイルタ |
SE461018B (sv) * | 1987-07-06 | 1989-12-18 | Svenska Emmisionsteknik Ab | Katalysatorbaerare |
US5403559A (en) * | 1989-07-18 | 1995-04-04 | Emitec Gesellschaft Fuer Emissionstechnologie | Device for cleaning exhaust gases of motor vehicles |
DE8908738U1 (de) | 1989-07-18 | 1989-09-07 | Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar | Wabenkörper mit internen Strömungsleitflächen, insbesondere Katalysatorkörper für Kraftfahrzeuge |
DE8909128U1 (de) * | 1989-07-27 | 1990-11-29 | Emitec Gesellschaft für Emissionstechnologie mbH, 5204 Lohmar | Wabenkörper mit internen Anströmkanten, insbesondere Katalysatorkörper für Kraftfahrzeuge |
DE4004079A1 (de) * | 1990-02-08 | 1991-08-14 | Lippold Hans Joachim | Filtereinsatz |
JP2722828B2 (ja) * | 1991-03-06 | 1998-03-09 | 日産自動車株式会社 | 内燃機関の排気フィルタ |
RU2107828C1 (ru) | 1992-04-03 | 1998-03-27 | Эмитек Гезелльшафт Фюр Эмиссионстехнологи Мбх | Элемент с сотовой структурой |
US6045628A (en) * | 1996-04-30 | 2000-04-04 | American Scientific Materials Technologies, L.P. | Thin-walled monolithic metal oxide structures made from metals, and methods for manufacturing such structures |
JP3358392B2 (ja) * | 1995-06-15 | 2002-12-16 | トヨタ自動車株式会社 | ディーゼル機関の排気浄化装置 |
JP3899534B2 (ja) * | 1995-08-14 | 2007-03-28 | トヨタ自動車株式会社 | ディーゼル機関の排気浄化方法 |
JP3421958B2 (ja) * | 1995-09-22 | 2003-06-30 | 日野自動車株式会社 | ターボチャージャ付エンジンの排ガス浄化装置 |
DE29611143U1 (de) * | 1996-06-25 | 1996-09-12 | Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar | Konischer Wabenkörper mit Longitudinalstrukturen |
DE19704147A1 (de) * | 1997-02-04 | 1998-08-06 | Emitec Emissionstechnologie | Hitzebeständiger und regenerierbarer Filterkörper mit Strömungswegen |
DE19813722C1 (de) * | 1998-03-27 | 2000-03-23 | Siemens Ag | Verfahren und Vorrichtung zur katalytischen Reduzierung von Stickoxiden im Abgas einer Verbrennungsanlage |
JP3228232B2 (ja) * | 1998-07-28 | 2001-11-12 | トヨタ自動車株式会社 | 内燃機関の排気浄化装置 |
WO2000021647A1 (fr) * | 1998-10-12 | 2000-04-20 | Johnson Matthey Public Limited Company | Procede et dispositif de traitement de gaz d'echappement |
DE29821009U1 (de) * | 1998-11-24 | 1999-01-28 | Oberland Mangold GmbH, 82467 Garmisch-Partenkirchen | Trägermischstruktur |
DE19938854C5 (de) * | 1999-08-17 | 2006-12-28 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Vorrichtung zur Verringerung des Stickoxidanteils in einem Abgas einer Verbrennungskraftmaschine |
DE10118327A1 (de) * | 2001-04-12 | 2002-10-17 | Emitec Emissionstechnologie | Abgassystem |
DE20117659U1 (de) * | 2001-10-29 | 2002-01-10 | Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar | Offener Partikelfilter mit Heizelement |
DE20117873U1 (de) * | 2001-11-06 | 2002-02-14 | Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar | Offener Filterkörper mit verbesserten Strömungseigenschaften |
DE10254764A1 (de) * | 2002-11-22 | 2004-06-03 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Abgasanlage |
DE10257113A1 (de) * | 2002-12-05 | 2004-06-24 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Partikelfalle mit beschichteter Faserlage |
-
2000
- 2000-05-30 DE DE10026696A patent/DE10026696A1/de not_active Ceased
-
2001
- 2001-05-29 JP JP2002500077A patent/JP4913309B2/ja not_active Expired - Fee Related
- 2001-05-29 DE DE50113505T patent/DE50113505D1/de not_active Expired - Lifetime
- 2001-05-29 CN CNB018103561A patent/CN1288330C/zh not_active Expired - Fee Related
- 2001-05-29 WO PCT/EP2001/006071 patent/WO2001092692A1/fr active IP Right Grant
- 2001-05-29 KR KR1020027016299A patent/KR100759146B1/ko active IP Right Grant
- 2001-05-29 AU AU2002211949A patent/AU2002211949A1/en not_active Abandoned
- 2001-05-29 ES ES01981922T patent/ES2299522T3/es not_active Expired - Lifetime
- 2001-05-29 EP EP01981922A patent/EP1285153B1/fr not_active Revoked
-
2002
- 2002-12-02 US US10/310,265 patent/US7267805B2/en not_active Expired - Fee Related
-
2010
- 2010-01-27 JP JP2010015789A patent/JP5199287B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3723478A1 (de) * | 1987-07-16 | 1989-01-26 | Navsat Gmbh | Vorrichtung fuer die abscheidung von russ aus dem abgas eines verbrennungsmotors |
WO1990012950A1 (fr) * | 1989-04-17 | 1990-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Filtre a suie pour moteur diesel, dote d'un dispositif auxiliaire de reduction des oxydes d'azote et/ou d'oxydation du monoxyde de carbone |
EP1072765A2 (fr) * | 1999-07-26 | 2001-01-31 | Man Nutzfahrzeuge Ag | Procédé et dispositif pour la séparation de particules fines des gaz d'échappement d'un moteur à combustion interne |
WO2001080978A1 (fr) * | 2000-04-25 | 2001-11-01 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Procede permettant d'eliminer des particules de suie de gaz d'echappement et element collecteur associe |
Non-Patent Citations (3)
Title |
---|
MAUS W.; BRÜCK R.: 'Flow improved efficiency by new cell structures in metallic s ubstrates' SAE Bd. SAE, Nr. 950788, * |
MOULIJN J.A.: 'Structured catalysts and reactors', 1998, MARCEL DEKKER INC., NEW YORK, ISBN 0-8247-9921-6 * Seite 68 - Seite 69 * * |
See also references of WO0192692A1 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112049715A (zh) * | 2020-09-04 | 2020-12-08 | 拓信(台州)精密工业有限公司 | 具有扰流作用的金属蜂窝载体 |
Also Published As
Publication number | Publication date |
---|---|
CN1432100A (zh) | 2003-07-23 |
US20030086837A1 (en) | 2003-05-08 |
ES2299522T3 (es) | 2008-06-01 |
DE50113505D1 (de) | 2008-03-06 |
WO2001092692A1 (fr) | 2001-12-06 |
JP4913309B2 (ja) | 2012-04-11 |
JP5199287B2 (ja) | 2013-05-15 |
CN1288330C (zh) | 2006-12-06 |
KR20030007795A (ko) | 2003-01-23 |
JP2003535253A (ja) | 2003-11-25 |
JP2010169097A (ja) | 2010-08-05 |
EP1285153B1 (fr) | 2008-01-16 |
US7267805B2 (en) | 2007-09-11 |
AU2002211949A1 (en) | 2001-12-11 |
KR100759146B1 (ko) | 2007-09-14 |
DE10026696A1 (de) | 2001-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1285153B1 (fr) | Piege a particules | |
EP1276549B1 (fr) | Procede permettant d'eliminer des particules de suie de gaz d'echappement et element collecteur associe | |
EP1440226B1 (fr) | Filtre particulaire ouvert muni d'un element chauffant | |
EP2356322B1 (fr) | Système et procédé de purification d'un flux de gaz d'échappement d'un moteur à combustion interne par dépôt de particules | |
EP1567247B1 (fr) | Piege a particules muni d'une couche de fibres enduite | |
EP1834068B1 (fr) | Procede d'elimination de particules contenues dans des gaz d'echappement, couche fibreuse et filtre de particules appropries | |
EP1885473A1 (fr) | Procede et dispositif pour traiter les gaz d'echappement de moteurs a combustion interne | |
EP2443325B1 (fr) | Dispositif et procédé de traitement de gaz d'échappement présentant des particules | |
DE102017125192A1 (de) | Katalytisches Wandstromfilter mit partieller Oberflächenbeschichtung | |
EP1747356A1 (fr) | Corps support de catalyseur destine a un convertisseur catalytique employe a proximite du moteur | |
DE60313151T2 (de) | Behandlung von abgasen aus einem verbrennungsmotor | |
EP1527262B1 (fr) | Filtre pour gaz d'echappement et procede d'epuration de gaz d'echappement | |
DE20122703U1 (de) | Partikelfalle | |
DE20122823U1 (de) | Partikelfalle mit Hydrolysefunktion | |
DE102004054845A1 (de) | Beschichtete Partikelfalle mit Stickstoffdioxid-Neubildung | |
EP1344907A1 (fr) | Dispositif pour enlever des particules de carbone des gases d'échappement | |
EP2740913A1 (fr) | Système de traitement postérieur de gaz d'échappement | |
EP1431528B1 (fr) | Dispositif de purification des gaz d'échappement | |
DE3627734C2 (fr) | ||
DE102010008273B4 (de) | Partikelfilteranordnung | |
DE102006061693A1 (de) | Abgasnachbehandlungsanordnung zur Behandlung von Abgasen einer Brennkraftmaschine | |
DE20122744U1 (de) | Auffangelement zum Entfernen von Rußpartikeln aus einem Abgas | |
DE10323385B4 (de) | Abgasreinigungsanlage für eine Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021128 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BRUECK, ROLF Inventor name: REIZIG, MEIKE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT BE CH CY DE ES FR GB IT LI |
|
17Q | First examination report despatched |
Effective date: 20041215 |
|
17Q | First examination report despatched |
Effective date: 20041215 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50113505 Country of ref document: DE Date of ref document: 20080306 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20080413 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2299522 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: OBERLAND MANGOLD GMBH Effective date: 20081016 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: OBERLAND MANGOLD GMBH Effective date: 20081016 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: OBERLAND MANGOLD GMBH Effective date: 20081016 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: OBERLAND MANGOLD GMBH Effective date: 20081016 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLAH | Information related to despatch of examination report in opposition + time limit modified |
Free format text: ORIGINAL CODE: EPIDOSCORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50113505 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 50113505 Country of ref document: DE Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50113505 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 50113505 Country of ref document: DE Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20160331 AND 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: F01N 3/033 20060101ALI20161010BHEP Ipc: F01N 13/00 20100101ALI20161010BHEP Ipc: F01N 3/023 20060101ALI20161010BHEP Ipc: F01N 3/20 20060101ALI20161010BHEP Ipc: F01N 3/035 20060101ALI20161010BHEP Ipc: F01N 3/01 20060101ALI20161010BHEP Ipc: F01N 3/022 20060101AFI20161010BHEP |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20180625 Year of fee payment: 18 Ref country code: DE Payment date: 20180531 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180530 Year of fee payment: 18 Ref country code: FR Payment date: 20180522 Year of fee payment: 18 |
|
APBY | Invitation to file observations in appeal sent |
Free format text: ORIGINAL CODE: EPIDOSNOBA2O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180518 Year of fee payment: 18 |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: F01N 3/20 20060101ALI20161010BHEP Ipc: F01N 3/033 20060101ALI20161010BHEP Ipc: F01N 3/01 20060101ALI20161010BHEP Ipc: F01N 3/035 20060101ALI20161010BHEP Ipc: F01N 13/00 20100101ALI20161010BHEP Ipc: F01N 3/022 20060101AFI20161010BHEP Ipc: F01N 3/023 20060101ALI20161010BHEP |
|
APCA | Receipt of observations in appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNOBA4O |
|
RIC2 | Information provided on ipc code assigned after grant |
Ipc: F01N 13/00 20100101ALI20161010BHEP Ipc: F01N 3/022 20060101AFI20161010BHEP Ipc: F01N 3/035 20060101ALI20161010BHEP Ipc: F01N 3/01 20060101ALI20161010BHEP Ipc: F01N 3/033 20060101ALI20161010BHEP Ipc: F01N 3/20 20060101ALI20161010BHEP Ipc: F01N 3/023 20060101ALI20161010BHEP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50113505 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190529 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190529 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20200930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190530 |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R103 Ref document number: 50113505 Country of ref document: DE Ref country code: DE Ref legal event code: R064 Ref document number: 50113505 Country of ref document: DE |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20220708 |