EP1283067A1 - Honigwabenfilter zur abgasreinigung - Google Patents

Honigwabenfilter zur abgasreinigung Download PDF

Info

Publication number
EP1283067A1
EP1283067A1 EP02701661A EP02701661A EP1283067A1 EP 1283067 A1 EP1283067 A1 EP 1283067A1 EP 02701661 A EP02701661 A EP 02701661A EP 02701661 A EP02701661 A EP 02701661A EP 1283067 A1 EP1283067 A1 EP 1283067A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
slit
honeycomb
filler
honeycomb structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02701661A
Other languages
English (en)
French (fr)
Other versions
EP1283067B1 (de
EP1283067A4 (de
Inventor
Toshiyuki c/o NGK INSULATORS LTD. HAMANAKA
Takashi c/o NGK INSULATORS LTD. Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of EP1283067A1 publication Critical patent/EP1283067A1/de
Publication of EP1283067A4 publication Critical patent/EP1283067A4/de
Application granted granted Critical
Publication of EP1283067B1 publication Critical patent/EP1283067B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/10Exhaust treating devices having provisions not otherwise provided for for avoiding stress caused by expansions or contractions due to temperature variations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the present invention relates to a honeycomb filter for exhaust gas purification. More particularly, the present invention relates to a honeycomb filter for exhaust gas purification which possesses high thermal shock resistance, and can be used continuously over a long period, yet has a high purification ability for capturing and removing the particulate matter present in a particle-containing fluid such as exhaust gas or the like.
  • the honeycomb filter for exhaust gas purification generally has a structure possessing a plurality of through-holes which are separated from each other by porous partition walls and which are plugged alternately at its exhaust gas inlet face and its exhaust gas outlet face.
  • the honeycomb filter captures and removes a particulate matter contained in an exhaust gas, passed through the partition walls in the filter from the open through-holes of the exhaust gas inlet face forcibly.
  • JP-A-59-199586 discloses a honeycomb structure having a large number of through-holes surrounded by partition walls, characterized in that through-holes having at least one slit in the partition walls surrounding the through-holes are provided substantially uniformly at given portions of the honeycomb structure.
  • JP-A-8-28246 discloses a ceramic honeycomb filter of improved durability obtained by dividing a honeycomb structure into a plurality of honeycomb members for thermal stress relaxation and adhering the individual honeycomb members with an elastic sealing material obtained by bonding at least a three-dimensionally interwoven inorganic fiber and inorganic particles with each other via an inorganic binder and an organic binder.
  • the present invention has been made in view of the above problems and aims at providing a honeycomb filter for exhaust gas purification which has a high purification ability, yet possesses high thermal shock resistance, and can be used continuously over a long period.
  • the present inventor made a study in order to solve the above problems. As a result, the present inventor found out that the above aim can be achieved by forming a slit in a honeycomb structure at least at the exhaust gas inlet face and filling a filler in a portion of the slit containing its opening at the exhaust gas inlet face, in a given depth.
  • the present invention has been completed based on the above finding.
  • a honeycomb filter for exhaust gas purification possessing a honeycomb structure having a plurality of through-holes which are separated from each other by porous partition walls and plugged alternately at the exhaust gas inlet face and the exhaust gas outlet face, characterized in that the honeycomb structure has a slit possessing an opening at least at the exhaust gas inlet face, and the slit is partially filled with a filler in a depth of 3 to 25 times the width of the slit from the exhaust gas inlet face toward a flow direction of exhaust gas and a gap is formed inside from a portion of the slit filled with the filler.
  • the slit is preferably filled with a filler in a depth of 6 to 25 times the width of the slit.
  • the honeycomb structure further has a slit possessing an opening at the exhaust gas outlet face and/or the side of the honeycomb structure. In this case, the slit possessing an opening at the exhaust gas outlet face and/or the side may be filled with a filler at least partially.
  • the honeycomb structure is constituted by bonding a plurality of honeycomb members with a bonding material at each portion of the two opposed sides and the slit is formed between the individual honeycomb members.
  • the bonding material is composed of the substantially same material as that of the basal body of the honeycomb member or that the bonding material is composed of a material having a strength lower than that of the material of the basal body of the honeycomb member.
  • the honeycomb members are contacted with each other at least at part of each portion of the two opposed sides not bonded with each other with the bonding material.
  • the filler is preferably composed of a material having a strength and/or Young's modulus lower than those of the material of the basal body of the honeycomb filter and is preferably obtained by bonding at least a three-dimensionally interwoven inorganic fiber and inorganic particles with each other via an inorganic binder and/or an organic binder.
  • the basal body of honeycomb filter preferably contains, as its main crystalline phase, one kind selected from the group consisting of cordierite, silicon carbide, metallic silicon, silicon nitride, alumina, mullite, aluminum titanate and lithium aluminum silicate.
  • Figs. 1 (a) and (b) schematically show an embodiment of the honeycomb filter for exhaust gas purification according to the present invention.
  • Fig. 1 (a) is a perspective view and Fig. 1 (b) is a top view of Fig. 1 (a).
  • Fig. 2 is a perspective view schematically showing an example of the slit pattern in the honeycomb filter for exhaust gas purification of the present invention.
  • Fig. 3 is a perspective view schematically showing other example of the slit pattern in the honeycomb filter for exhaust gas purification of the present invention.
  • Fig. 4 is a perspective view schematically showing other example of the slit pattern in the honeycomb filter for exhaust gas purification of the present invention.
  • Fig. 5 is a perspective view schematically showing other example of the slit pattern in the honeycomb filter for exhaust gas purification of the present invention.
  • Fig. 6 is a perspective view schematically showing other embodiment of the honeycomb filter for exhaust gas purification of the present invention.
  • Fig. 7 is a perspective view schematically showing other embodiment of the honeycomb filter for exhaust gas purification of the present invention.
  • the honeycomb filter of the present invention there are formed a slit possessing an opening at least at the exhaust gas inlet face, where the largest thermal stress appears during filter regeneration, and the slit is filled only partially with a filler to form a gap; therefore, the thermal stress relaxation is large, generation of cracks can be prevented greatly even when nonuniform temperature distribution arises in various positions of filter during filter regeneration, etc., and very high thermal shock resistance can be obtained.
  • the filler is filled in a portion of the slit including the opening present at the exhaust gas inlet face of filter; therefore, there is no leakage of exhaust gas into the slit, the above-mentioned high thermal shock resistance is achieved, and yet the exhaust gas purification ability can be maintained at a high level.
  • the honeycomb filter for exhaust gas purification possesses a honeycomb structure having a plurality of through-holes which are separated from each other by porous partition walls and plugged alternately at the exhaust gas inlet face and the exhaust gas outlet face; thereby, the exhaust gas which has entered the filter inside, is forcibly passed through the partition walls and the particulate matter in the exhaust gas can be captured and removed.
  • honeycomb structure there is no particular restriction as to the shape of the honeycomb structure.
  • sectional shape of honeycomb structure there can be mentioned, for example, a circle, an ellipse and a race track.
  • shape of through-holes (cell shape) of honeycomb structure there is no particular restriction, either, as to the shape of through-holes (cell shape) of honeycomb structure.
  • the sectional shape is preferably a triangle or a tetragon in order to secure the area of capturing.
  • the cell density of through-holes is preferably 6 to 2,000 cells/in. 2 (0.9 to 311 cells/cm 2 ), more preferably 50 to 400 cells/in. 2 (7.8 to 62 cells/cm 2 ).
  • the partition walls preferably have a metal having a catalytic activity, loaded thereon, in order to, in using the structure as a means for exhaust gas purification in internal combustion engine or burner, accelerate the combustion and removal of particulate matter captured and conduct filter regeneration effectively.
  • a metal having a catalytic activity there can be mentioned, for example, Pt, Pd and Rh. These metals can be used in one kind or in combination of two or more kinds.
  • ceramics each containing, as its main crystalline phase, one kind selected from the group consisting of cordierite, silicon carbide. metallic silicon, silicon nitride, alumina, mullite, aluminum titanate and lithium aluminum silicate.
  • ceramics each containing, as its main crystalline phase, silicon carbide or metallic silicon and silicon carbide, for their superiority in heat resistance and thermal conduction.
  • the Si content defined by Si/(Si+SiC) is preferably 5 to 50% by mass, more preferably 10 to 40% by mass.
  • the bonding by Si is sufficient; therefore, a high thermal conductivity and a high strength can be obtained, and pores can be formed in the partition walls of honeycomb structure so as to have a porosity and a pore diameter which are both suitable for capture and removal of particulate matter.
  • such a honeycomb structure has a slit having an opening at least at the exhaust gas inlet face; thereby, an increase in thermal stress relaxation is obtained at the exhaust gas inlet face, where the largest thermal stress appears during filter regeneration, and generation of cracks, etc. can be prevented effectively.
  • the slit used in the present invention is blocked, as described later, with a filler at the opening present at the exhaust gas inlet face.
  • Figs. 1 (a) and (b) schematically show an embodiment of the present invention.
  • Fig. 1 (a) is a perspective view
  • Fig. 1 (b) is a top view.
  • Figs. 2 to 5 are each a perspective view schematically showing an example of the slit pattern in the honeycomb filter for exhaust gas purification according to the present invention and, in these drawings, no filler is shown.
  • a type as shown in Fig. 3 wherein the slit 5 has an opening at the side 4 of honeycomb structure 1 over the entire length of axial direction 10 and is formed so that the length of the slit 5 in a direction 11 extending toward the center of honeycomb structure 1 becomes short gradually; and a type as shown in Fig. 2, wherein the slit 5 has an opening at the side 4 of honeycomb structure 1 in a portion of the entire length of axial direction 10 including the part at which the side 4 and the exhaust gas inlet face 2 meet with each other, and is formed so that the length of the slit 5 in a direction extending the center of honeycomb structure 1 becomes constant in the axial direction of honeycomb structure 1.
  • a type as shown in Fig. 5 wherein the slit 5 has an opening at the side 4 over the entire length of axial direction 10 and is formed so that that the length of the slit 5 in a direction 11 extending toward the center of honeycomb structure 1 becomes constant in the axial direction 10 of honeycomb structure 1; and a type as shown in Fig.
  • the slit 5 has an opening at the side 4 of honeycomb structure 1 in a portion of the entire length of axial direction 10 including the part at which the side 4 and the exhaust gas inlet face 2 meet with each other, as well as in a portion of the entire length of axial direction 10 including the part at which the side 4 and the exhaust gas outlet face 3 meet with each other, and is formed so that the length of the slit 5 in a direction 11 extending toward the center of honeycomb structure 1 becomes constant in the axial direction of honeycomb structure 1.
  • each slit 5 has, at the exhaust gas inlet face 2 of honeycomb structure 1, a continuous opening which includes two points (A and B, or C and D) of the periphery 2a of inlet face, and the openings 5a of slits intersect with each other at the center 2b of exhaust gas inlet face 2, or, as shown in Fig. 3 or 5, each slit 5 has an opening extending from the periphery 2a of exhaust gas inlet face 2 toward about the center 2b of inlet face 2 and the individual slits 5 have no openings at the center 2b of each face and exist independently from each other.
  • slits in terms of high thermal stress relaxation efficiency, preferred is a type as shown in Figs. 1 (a) and (b), Fig. 4 or Fig. 5, wherein the slit 5 has openings at the exhaust gas inlet face 2, exhaust gas outlet face 3 and side 4 of honeycomb structure 1; and particularly preferred is a type as shown in Figs. 1 (a) and (b).
  • the slits 5 in the present invention are preferably provided at such positions as to divide a honeycomb structure 1 into at least three equal portions in, for example, its axial direction 10, from the standpoint of increased thermal shock resistance.
  • At least part of the slit 5 in the present invention extends from the opening at the side of honeycomb structure 1 to a direction 11 toward its center by 1/4 of the total width of honeycomb structure 1 in the above direction 11, from the standpoint of increased thermal shock resistance.
  • at least part of the slit 5 extends from the opening at the exhaust gas inlet face 2 of honeycomb structure 1 to the flow direction 10 of exhaust gas by 1/4 of the total length of honeycomb structure 1 in the direction 10.
  • the width of a slit 5 is preferably 1 to 3 mm from the standpoint of stress relaxation and filtration efficiency.
  • the width of slit 5 need not be constant and, when slits 5 are formed in a plurality of locations, each slit 5 may have a different width.
  • a slit 5 having an opening at the side 4 of honeycomb structure 1 over its entire length of axial direction 10 may have such a width that is large around the exhaust gas inlet face 2 or exhaust gas outlet face 3 and small at the middle thereof; thus, a slit 5 may have different widths depending upon the position in the slit 5.
  • Second method wherein extrusion is conducted to produce a honeycomb structure extrudate having through-holes 8 and then the extrudate is subjected to a cutting operation to form a slit 5 at desired locations.
  • the slit 5 it is preferred to form the slit 5 by the third method of the above methods because formation of the slit 5 is easy and large thermal stress relaxation is obtained.
  • a bonding material 9 composed of substantially the same material as that of the basal body of honeycomb member 12 or (2) use a bonding material 9 having a strength lower than that of the basal body of honeycomb member 12 and further contacting honeycomb members 12 with each other at least at part of each non-bonding portion of two opposed sides of honeycomb members 12.
  • contact refers to a state in which thermal conduction exists between honeycomb members and, when deformation appears owing to thermal expansion, the position relationship of contact sides of honeycomb segments can change; and “strength” refers to a value obtained by measurement by a four-point bending strength test using a material testing machine.
  • the bonding material 9 used in the above (2), similarly to the filler 6 described later, is preferably, for the heat resistance, thermal shock resistance, etc., one kind or a combination of two kinds or more selected from a fiber material or powder composed mainly of a ceramic used in the basal body of honeycomb structure 1, a cement, etc.
  • the bonding material 6 is composed of metallic Si and SiC and its Si content defined by Si/(Si+SiC) is the same as or more than in the basal body of honeycomb members 12 to be bonded with each other and is 10 to 80% by mass. In this range, the bonding strength can be maintained at a sufficient level and sufficient oxidation resistance is obtainable at high temperature.
  • such a slit is filled with a filler at least at a portion including an opening at the exhaust gas inlet face, and a gap is formed inside from the portion filled with the filler; thereby can be obtained a honeycomb filter for exhaust gas purification, high in purification ability and yet high in thermal shock resistance.
  • the slit is filled with a filler from the exhaust gas inlet face toward the flow direction of exhaust gas, in a depth 3 to 25 times the width of slit, preferably in a depth 6 to 25 times the width of slit, more preferably in a depth of 7 to 25 times the width of slit.
  • the bonding strength between filler and honeycomb structure is low and the filler is peeled owing to the vibration and heat generated during operation. Meanwhile, when the depth is more than 25 times the width of slit, the thermal stress relaxation brought about by the slit is insufficient and rupture of honeycomb structure takes place owing to the thermal stress generated.
  • width of slit in relation to the depth of filling of filler refers, as shown in Fig. 1 (b), to a length 5d in a direction perpendicular to the lengthwise direction of slit, in each opening [in Fig. 1 (b), only an opening 5a at an exhaust gas inlet face 2 is shown] of the slit 5 at each face [in Fig. 1 (b), only an exhaust gas inlet face 2 is shown].
  • width of slit refers to an average length (an average length when measurement have been made at 10 or more points of equal intervals).
  • the bonding strength of the filler 6 filled in the slit 5 needs to become higher when the width 5d of slit is larger. Therefore, the relationship between the width 5d of slit and the depth of filling of filler 6 is important.
  • the depth of filling of filler 6 is not necessarily the same in all part of the slit 5 filled with a filler 6. It is preferred that, for example, those slits 5 of all slits 5, formed at the exhaust gas inlet face 2 are filled in a larger depth depending upon the pressure of exhaust gas.
  • filler 6 there are preferred, for example, a form in which, as shown in Figs. 1 (a) and (b), a filler 6 is filled only in an opening 5a of the slit 5 at an exhaust gas inlet face 2 and a gap 5e is formed in other portion of slit 5; a form in which, as shown in Fig. 6, a filler 6 is filled in an opening 5a of each 5 at an exhaust gas inlet face 2 and an opening 5b of slit 5 at an exhaust gas outlet face 3 and a gap 5e is formed in other portion of slit 5; and a form in which, as shown in Fig.
  • a filler 6 is filled in an opening 5a of slit 5 at an exhaust gas inlet face 2, an opening 5b of slit 5 at an exhaust gas outlet face 3 and an opening 5c of slit 5 at a side 4 and a gap 5e is formed in other portion of slit 5.
  • the filler 6 used in the present invention preferably has a strength and Young's modulus both lower than those of the basal body of honeycomb member 12 in order to obtain a honeycomb structure of large thermal stress relaxation.
  • the filler 6 is preferably superior in heat resistance, thermal shock resistance, etc. and is preferably one kind or a mixture of, for example, a cement, and a material composed mainly of a ceramic containing, as its main crystalline phase, one kind selected from the group consisting of cordierite, silicon carbide, metallic silicon, silicon nitride, alumina, mullite, aluminum titanate and lithium aluminum silicate .
  • a fiber material composed mainly of the above-mentioned ceramic because it has a high elastic modulus and can achieve a greater reduction in thermal stress; more preferred is a material obtained by bonding an inorganic fiber and inorganic particles both composed mainly of the above-mentioned ceramic, with each other via an inorganic binder and/or an organic binder, because it can give a honeycomb structure of increased durability.
  • a ceramic material there was used a powder obtained by mixing 75% by mass of a silicon carbide (SiC) powder and 25% by mass of a metallic silicon (Si) powder. To the powder were added methyl cellulose, hydroxypropoxyl-methyl cellulose, a surfactant and water, followed by kneading to produce a plastic puddle.
  • SiC silicon carbide
  • Si metallic silicon
  • this puddle was subjected to extrusion molding to produce four honeycomb member extrudates that had a partition wall thickness of 0.3 mm, a cell density of 31 cells/cm 2 , a cylindrical shape shown in Fig. 7 when assembled, and a fan-like sectional shape.
  • honeycomb member extrudates were dried using a microwave and hot air; thereafter, their through-holes were plugged alternately at the exhaust gas inlet face of extrudate and the through-holes not plugged were plugged at the exhaust gas outlet face of extrudate, to produce dried honeycomb members.
  • each dried honeycomb member was coated, at portions to become bonding portions after firing, with a bonding material slurry having the same composition as the kneaded material; thereafter, the dried honeycomb members were bonded with each other into a unified body, followed by drying.
  • the dried unified body was subjected to debindering in a N 2 atmosphere at about 400°C, followed by firing in an Ar inert atmosphere at about 1,550°C.
  • a filler slurry containing an aluminosilicate-based fiber, a silicon carbide (SiC) powder, a metallic silicon (Si) powder, an organic binder, an inorganic binder and water, in a depth of 15 mm from the exhaust gas inlet face toward a flow direction of exhaust gas.
  • Into each opening present at the exhaust gas outlet face and side of dried unified body was filled the same filler slurry in a depth smaller than that in each opening at the exhaust gas inlet face.
  • the unified body filled with the filler slurry was dried at about 100°C, whereby was produced a honeycomb filter constituted by a honeycomb structure shown in Fig. 7.
  • the obtained honeycomb filter had a partition wall thickness of 0.3 mm, a cell density of 31 cells/cm 2 and a size of 144 mm (diameter) x 152 mm (length).
  • the slits of the honeycomb filter were as follows. Slit width: 2 mm (all slits), slit depth from opening at side toward the center of honeycomb structure: 40 mm, slit depth from opening at exhaust gas inlet face toward axial direction of honeycomb structure: 50 mm, and slit depth from opening at exhaust gas outlet face toward axial direction of honeycomb structure: 50 mm.
  • the filler (after drying) was measured for strength using a material testing machine according to a four-point bending strength test. As a result, the strength was lower than the strength (measured in the same manner) of the material constituting the basal body of honeycomb structure.
  • Honeycomb filters were obtained in the same manner as in Example 1 except that each filler was filled in depths shown in Table 1.
  • a filter regeneration test was conducted according to a method shown below, to examine the thermal shock resistance of the honeycomb filter of each Example or each Comparative Example.
  • a ceramic-made nonintumescent mat as a holding material was wound around the outer surface of the honeycomb filter of each Example or each Comparative Example.
  • Each resulting honeycomb filter was forced into a SUS 409-made canning case to obtain canning structures.
  • a soot-containing combustion gas generated by combustion of a gas oil (a diesel fuel) was allowed to flow into the canning structure from the through-holes open at the exhaust gas inlet face, whereby the soot contained in the exhaust gas was captured inside the honeycomb filter.
  • each honeycomb filter was allowed to cool to room temperature and then a combustion gas containing a given proportion of oxygen was allowed to enter at 800°C from the through-holes at the exhaust gas inlet face of honeycomb filter, to burn and remove the soot.
  • a filter regeneration test was carried out.
  • the present invention can provide a honeycomb filter for exhaust gas purification, which has high purification ability, yet possesses high thermal shock resistance, and can be used continuously over a long period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filtering Materials (AREA)
  • Catalysts (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
EP02701661A 2001-03-16 2002-03-01 Honigwabenfilter zur abgasreinigung Expired - Lifetime EP1283067B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001075580A JP4408183B2 (ja) 2001-03-16 2001-03-16 排ガス浄化用ハニカムフィルター
JP2001075580 2001-03-16
PCT/JP2002/001895 WO2002074417A1 (fr) 2001-03-16 2002-03-01 Filtre alveolaire permettant de purifier les gaz d'echappement

Publications (3)

Publication Number Publication Date
EP1283067A1 true EP1283067A1 (de) 2003-02-12
EP1283067A4 EP1283067A4 (de) 2004-03-31
EP1283067B1 EP1283067B1 (de) 2005-08-31

Family

ID=18932636

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02701661A Expired - Lifetime EP1283067B1 (de) 2001-03-16 2002-03-01 Honigwabenfilter zur abgasreinigung

Country Status (7)

Country Link
US (1) US6942712B2 (de)
EP (1) EP1283067B1 (de)
JP (1) JP4408183B2 (de)
DE (1) DE60205828T2 (de)
PL (1) PL198744B1 (de)
WO (1) WO2002074417A1 (de)
ZA (1) ZA200208981B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413345A1 (de) * 2001-07-31 2004-04-28 Ngk Insulators, Ltd. Wabenstrukturkörper und verfahren zur herstellung des sturkturkörpers
WO2008034664A1 (de) * 2006-09-18 2008-03-27 Robert Bosch Gmbh Filterelement, insbesondere zur filterung von abgasen einer brennkraftmaschine
EP2108436A1 (de) * 2008-04-02 2009-10-14 NGK Insulators, Ltd. Wabenstruktur und zugehöriges Herstellungsverfahren
EP2233194A1 (de) 2009-03-16 2010-09-29 NGK Insulators, Ltd. Wabenstruktur
WO2011004351A1 (fr) * 2009-07-09 2011-01-13 Saint-Gobain Centre De Recherches Et D'etudes Europeen Structure en nid d'abeille marquée
EP2105274A3 (de) * 2008-03-27 2011-05-25 NGK Insulators, Ltd. Herstellungsverfahren für eine Wabenstruktur
EP3056274A4 (de) * 2013-10-08 2017-06-21 NGK Insulators, Ltd. Wabenstruktur

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4511065B2 (ja) * 2000-06-05 2010-07-28 日本碍子株式会社 ハニカム構造体とハニカムフィルター、及びそれらの製造方法
FR2833857B1 (fr) * 2001-12-20 2004-10-15 Saint Gobain Ct Recherches Corps filtrant comportant une pluralite de blocs filtrants, notamment destine a un filtre a particules
JP4197425B2 (ja) * 2002-11-07 2008-12-17 日本碍子株式会社 ハニカム構造体
JP4267947B2 (ja) 2003-03-19 2009-05-27 日本碍子株式会社 ハニカム構造体
FR2853256B1 (fr) * 2003-04-01 2005-10-21 Saint Gobain Ct Recherches Structure de filtration, notamment filtre a particules pour les gaz d'echappement d'un moteur a combustion interne.
JP4322542B2 (ja) 2003-04-21 2009-09-02 日本碍子株式会社 ハニカム構造体、その製造方法及び成形用口金並びに排出流体浄化システム
FR2857695B1 (fr) * 2003-07-15 2007-04-20 Saint Gobain Ct Recherches Bloc pour la filtration de particules contenues dans les gaz d'echappement d'un moteur a combustion interne
WO2005047209A1 (ja) * 2003-11-12 2005-05-26 Ngk Insulators, Ltd. ハニカム構造体
FR2864577B1 (fr) * 2003-12-24 2006-05-05 Saint Gobain Ct Recherches Structure de filtration, notamment filtre a particules pour les gaz d'echappement d'un moteur a combustion interne et organe d'armature destine a une telle structure
FR2865661B1 (fr) * 2004-02-04 2006-05-05 Saint Gobain Ct Recherches Structure de filtration, notamment filtre a particules pour les gaz d'echappement d'un moteur a combustion interne, et ligne d'echappement associee.
US20090288380A1 (en) * 2004-07-12 2009-11-26 Vincent Gleize Filtration structure, in particular a particulate filter for the exhaust gases of an internal combustion engine, and associated exhaust line
WO2007111199A1 (ja) * 2006-03-24 2007-10-04 Ngk Insulators, Ltd. 焼結体、発光管及びその製造方法
US20080178992A1 (en) * 2007-01-31 2008-07-31 Geo2 Technologies, Inc. Porous Substrate and Method of Fabricating the Same
JP5219742B2 (ja) * 2008-10-31 2013-06-26 日本碍子株式会社 ハニカム構造体及びハニカム触媒体
JP5345371B2 (ja) * 2008-11-14 2013-11-20 日本碍子株式会社 ハニカム構造体の製造方法
JP5390171B2 (ja) * 2008-11-14 2014-01-15 日本碍子株式会社 ハニカム構造体の製造方法
JP5193922B2 (ja) * 2009-03-30 2013-05-08 日本碍子株式会社 排ガス浄化処理装置
JP5261256B2 (ja) * 2009-03-30 2013-08-14 日本碍子株式会社 通電発熱用ハニカム体及びその製造方法
WO2010114132A1 (ja) 2009-04-03 2010-10-07 株式会社 キャタラー 排ガス浄化用触媒の製造方法及び装置並びにそれに使用するノズル
TW201109078A (en) * 2009-04-30 2011-03-16 Corning Inc Minireactor array
JP5137902B2 (ja) * 2009-06-08 2013-02-06 東京窯業株式会社 ガス浄化フィルタ及びガス浄化フィルタの製造方法
JP5137901B2 (ja) * 2009-06-08 2013-02-06 東京窯業株式会社 ガス浄化フィルタの製造方法
JP5599207B2 (ja) * 2010-03-19 2014-10-01 日本碍子株式会社 ハニカム構造体
JP5574368B2 (ja) * 2010-05-18 2014-08-20 独立行政法人産業技術総合研究所 多孔質マイクロ波発熱体とその製造方法及びフィルタとその製造方法
JP5612949B2 (ja) * 2010-07-28 2014-10-22 東京窯業株式会社 ハニカム構造体及びフィルタ装置
JP2012072041A (ja) * 2010-09-30 2012-04-12 Tokyo Yogyo Co Ltd 導電性ハニカム構造体
JP2012072042A (ja) * 2010-09-30 2012-04-12 Tokyo Yogyo Co Ltd 導電性炭化珪素質ハニカム構造体の製造方法
JP5811394B2 (ja) * 2011-07-21 2015-11-11 トヨタ自動車株式会社 ディーゼルパティキュレートフィルタ
WO2013146955A1 (ja) * 2012-03-30 2013-10-03 日本碍子株式会社 ハニカム構造体
JP6022985B2 (ja) * 2013-03-29 2016-11-09 日本碍子株式会社 ハニカム構造体
JP6022984B2 (ja) * 2013-03-29 2016-11-09 日本碍子株式会社 ハニカム構造体、及びその製造方法
US9005348B2 (en) * 2014-04-03 2015-04-14 M&D Wholesale Distributors, Inc. Segmented portable humidity control device for an enclosed volume storage device
JP7189824B2 (ja) * 2019-03-29 2022-12-14 日本碍子株式会社 ハニカム構造体及びハニカム構造体の製造方法
JP7422635B2 (ja) * 2020-09-23 2024-01-26 日本碍子株式会社 電気加熱式担体、排気ガス浄化装置及び電気加熱式担体の製造方法
CN115779661B (zh) * 2022-11-14 2024-06-18 华南农业大学 一种可调孔隙率的畜禽养殖末端空气净化填料装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063029A (en) * 1990-04-12 1991-11-05 Ngk Insulators, Ltd. Resistance adjusting type heater and catalytic converter
JPH03258347A (ja) * 1990-03-06 1991-11-18 Matsushita Electric Ind Co Ltd 排ガス浄化用セラミック構造体
EP0565879A1 (de) * 1992-04-13 1993-10-20 Corning Incorporated Verstärkung und Befestigung geschlitzter metallener Honigwabenstrukturen
EP1153643A1 (de) * 1999-11-19 2001-11-14 Ngk Insulators, Ltd. Körper mit wabenförmiger struktur
EP1291061A1 (de) * 2000-06-05 2003-03-12 Ngk Insulators, Ltd. Wabenstruktur und wabenfilter und verfahren zu deren herstellung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363644A (en) * 1980-02-04 1982-12-14 Nippon Soken, Inc. Filter for purifying exhaust gas
US4335783A (en) * 1980-11-10 1982-06-22 Corning Glass Works Method for improving thermal shock resistance of honeycombed structures formed from joined cellular segments
JPS59199586A (ja) 1983-04-26 1984-11-12 日本碍子株式会社 セラミツクハニカム構造体
US5207807A (en) * 1986-12-05 1993-05-04 Iveco Fiat S.P.A. Regenerable filter for exhaust gases of an internal-combustion engine
JP2548279Y2 (ja) 1991-09-19 1997-09-17 イビデン株式会社 ディーゼルパティキュレートフィルタ
DE4324347A1 (de) * 1992-07-23 1994-01-27 Noritake Co Ltd Monolithischer Keramikfilter
DE4307431C2 (de) * 1993-03-09 1996-06-27 Emitec Emissionstechnologie Elektrisch beheizbarer, in Teilbereiche unterteilter Wabenkörper mit zusätzlichen elektrischen Leiterelementen
JP3121497B2 (ja) * 1994-07-14 2000-12-25 イビデン株式会社 セラミック構造体
DE69630681T2 (de) * 1996-01-12 2004-04-22 Ibiden Co. Ltd., Ogaki Keramische struktur
US5702508A (en) * 1996-01-25 1997-12-30 Moratalla; Jose Ceramic desiccant device
JP3736986B2 (ja) * 1998-07-28 2006-01-18 イビデン株式会社 セラミック構造体の製造方法
JP2000153117A (ja) * 1998-11-18 2000-06-06 Ngk Insulators Ltd セラミックフィルタ
DE29822871U1 (de) * 1998-12-23 1999-02-25 Thomas Josef Heimbach GmbH & Co., 52353 Düren Filtereinrichtung
US6126833A (en) * 1999-02-22 2000-10-03 Ceramem Corporation Cross-flow filtration device with filtrate conduit network and method of making same
DE60032392T2 (de) * 1999-09-29 2007-10-11 Ibiden Co., Ltd., Ogaki Wabenförmiger Filter und Anordnung von keramischen Filtern
DE20016803U1 (de) * 2000-09-29 2000-12-28 Thomas Josef Heimbach GmbH, 52353 Düren Filtereinrichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03258347A (ja) * 1990-03-06 1991-11-18 Matsushita Electric Ind Co Ltd 排ガス浄化用セラミック構造体
US5063029A (en) * 1990-04-12 1991-11-05 Ngk Insulators, Ltd. Resistance adjusting type heater and catalytic converter
EP0565879A1 (de) * 1992-04-13 1993-10-20 Corning Incorporated Verstärkung und Befestigung geschlitzter metallener Honigwabenstrukturen
EP1153643A1 (de) * 1999-11-19 2001-11-14 Ngk Insulators, Ltd. Körper mit wabenförmiger struktur
EP1291061A1 (de) * 2000-06-05 2003-03-12 Ngk Insulators, Ltd. Wabenstruktur und wabenfilter und verfahren zu deren herstellung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 016, no. 061 (C-0910), 17 February 1992 (1992-02-17) & JP 03 258347 A (MATSUSHITA ELECTRIC IND CO LTD), 18 November 1991 (1991-11-18) *
See also references of WO02074417A1 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1413345A1 (de) * 2001-07-31 2004-04-28 Ngk Insulators, Ltd. Wabenstrukturkörper und verfahren zur herstellung des sturkturkörpers
EP1413345A4 (de) * 2001-07-31 2007-06-13 Ngk Insulators Ltd Wabenstrukturkörper und verfahren zur herstellung des sturkturkörpers
WO2008034664A1 (de) * 2006-09-18 2008-03-27 Robert Bosch Gmbh Filterelement, insbesondere zur filterung von abgasen einer brennkraftmaschine
US8632619B2 (en) 2006-09-18 2014-01-21 Robert Bosch Gmbh Filter element, in particular for filtering exhaust gases of an internal combustion engine
EP2105274A3 (de) * 2008-03-27 2011-05-25 NGK Insulators, Ltd. Herstellungsverfahren für eine Wabenstruktur
US8257629B2 (en) 2008-03-27 2012-09-04 Ngk Insulators, Ltd. Manufacturing method of honeycomb structure
EP2108436A1 (de) * 2008-04-02 2009-10-14 NGK Insulators, Ltd. Wabenstruktur und zugehöriges Herstellungsverfahren
EP2233194A1 (de) 2009-03-16 2010-09-29 NGK Insulators, Ltd. Wabenstruktur
WO2011004351A1 (fr) * 2009-07-09 2011-01-13 Saint-Gobain Centre De Recherches Et D'etudes Europeen Structure en nid d'abeille marquée
FR2947735A1 (fr) * 2009-07-09 2011-01-14 Saint Gobain Ct Recherches Structure en nid d'abeille marquee
EP3056274A4 (de) * 2013-10-08 2017-06-21 NGK Insulators, Ltd. Wabenstruktur
US9885271B2 (en) 2013-10-08 2018-02-06 Ngk Insulators, Ltd. Honeycomb structure

Also Published As

Publication number Publication date
EP1283067B1 (de) 2005-08-31
DE60205828T2 (de) 2006-06-14
US6942712B2 (en) 2005-09-13
PL198744B1 (pl) 2008-07-31
US20030140608A1 (en) 2003-07-31
JP4408183B2 (ja) 2010-02-03
PL357337A1 (en) 2004-07-26
EP1283067A4 (de) 2004-03-31
JP2002273124A (ja) 2002-09-24
DE60205828D1 (de) 2005-10-06
ZA200208981B (en) 2003-11-05
WO2002074417A1 (fr) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1283067B1 (de) Honigwabenfilter zur abgasreinigung
EP2106835B1 (de) System enthaltend einen keramikwabenfilter und herstellungsverfahren dafür
JP3983117B2 (ja) ハニカム構造体及びその製造方法
EP1291061A1 (de) Wabenstruktur und wabenfilter und verfahren zu deren herstellung
US8361400B2 (en) Honeycomb structural body
JP4246425B2 (ja) ハニカムフィルター
EP2737945B1 (de) Wabenförmiger Katalysatorkörper
KR100692355B1 (ko) 벌집형 구조체
JP6219796B2 (ja) ハニカムフィルタ
EP1101910B1 (de) Wabenartige Struktur
KR100845203B1 (ko) 허니컴 필터
JP3927038B2 (ja) Si含有ハニカム構造体及びその製造方法
JP2002273130A (ja) ハニカム構造体
JP2003001029A (ja) 多孔質セラミックハニカムフィルタ
US8236404B2 (en) Honeycomb structure
JP4471621B2 (ja) ハニカム構造体
JP4402732B1 (ja) ハニカム構造体
CN113457314B (zh) 蜂窝过滤器
CN110314450B (zh) 陶瓷多孔体及其制造方法、和集尘用过滤器
JP2008137872A (ja) ハニカム構造体
JP6635757B2 (ja) ハニカムフィルタ
ZA200200839B (en) Honeycomb structure and honeycomb filter, and method of producing them.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021107

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20040218

RIC1 Information provided on ipc code assigned before grant

Ipc: 7B 01D 39/20 A

Ipc: 7B 01D 46/00 B

Ipc: 7F 01N 3/022 B

Ipc: 7F 01N 3/28 B

17Q First examination report despatched

Effective date: 20040603

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR

REF Corresponds to:

Ref document number: 60205828

Country of ref document: DE

Date of ref document: 20051006

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060601

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210216

Year of fee payment: 20

Ref country code: BE

Payment date: 20210217

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60205828

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20220301