EP1281084A2 - Direkter nachweis von einzelmolekülen - Google Patents

Direkter nachweis von einzelmolekülen

Info

Publication number
EP1281084A2
EP1281084A2 EP01945119A EP01945119A EP1281084A2 EP 1281084 A2 EP1281084 A2 EP 1281084A2 EP 01945119 A EP01945119 A EP 01945119A EP 01945119 A EP01945119 A EP 01945119A EP 1281084 A2 EP1281084 A2 EP 1281084A2
Authority
EP
European Patent Office
Prior art keywords
analyte
microchannel
sample liquid
laser
receptors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01945119A
Other languages
English (en)
French (fr)
Inventor
Rudolf Rigler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gnothis Holding SA
Original Assignee
Gnothis Holding SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gnothis Holding SA filed Critical Gnothis Holding SA
Publication of EP1281084A2 publication Critical patent/EP1281084A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4412Scattering spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00281Individual reactor vessels
    • B01J2219/00286Reactor vessels with top and bottom openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00306Reactor vessels in a multiple arrangement
    • B01J2219/00313Reactor vessels in a multiple arrangement the reactor vessels being formed by arrays of wells in blocks
    • B01J2219/00315Microtiter plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00414Means for dispensing and evacuation of reagents using suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00439Maskless processes using micromirror arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00351Means for dispensing and evacuation of reagents
    • B01J2219/00436Maskless processes
    • B01J2219/00441Maskless processes using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00497Features relating to the solid phase supports
    • B01J2219/00511Walls of reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/0054Means for coding or tagging the apparatus or the reagents
    • B01J2219/00572Chemical means
    • B01J2219/00576Chemical means fluorophore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00585Parallel processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00596Solid-phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00605Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00657One-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00659Two-dimensional arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00603Making arrays on substantially continuous surfaces
    • B01J2219/00677Ex-situ synthesis followed by deposition on the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/0068Means for controlling the apparatus of the process
    • B01J2219/00686Automatic
    • B01J2219/00689Automatic using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00722Nucleotides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00725Peptides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/00729Peptide nucleic acids [PNA]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00718Type of compounds synthesised
    • B01J2219/0072Organic compounds
    • B01J2219/0074Biological products
    • B01J2219/00743Cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/10Libraries containing peptides or polypeptides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B60/00Apparatus specially adapted for use in combinatorial chemistry or with libraries
    • C40B60/14Apparatus specially adapted for use in combinatorial chemistry or with libraries for creating libraries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Definitions

  • the invention relates to a method for the direct detection of an analyte in a sample liquid and a device suitable therefor.
  • analytes are detected in biological samples, these analytes often only being present in very low concentrations.
  • direct detection of the analyte is problematic, in particular in the case of analyte concentrations in the range ⁇ 10 12 mol / l, for example in the case of virus particles.
  • the number of analyte molecules present in the sample can be increased to a concentration level by means of amplification methods such as PCR or analog methods, which enables detection by conventional methods such as gel electrophoresis or sequencing.
  • amplification methods are very time-consuming and have many sources of error, so that the occurrence of false positive or false negative test results cannot be ruled out.
  • FCS fluorescence correlation spectroscopy
  • European Patent 0 679 251 describes various methods with which the molecules to be detected can be concentrated in the measurement volume. In principle, these methods are based on preconcentrating the analyte to be detected by means of a directed electric field or else using the different diffusion rates of the molecules present in the sample due to the different molecule size.
  • German patent 1 95 08 366 describes an application of the FCS method to the direct detection of analytes in a sample.
  • a test solution is provided with a mixture of different short primers, each of which has a so-called antisense sequence that is complementary to a section of a nucleic acid analyte and is labeled with one or more dye molecules.
  • This test solution is mixed with the test solution and the mixture for the hybridization of the primers is incubated with the nucleic acid strands to be detected. Then the target sequences are discriminated in the incubated solution less, preferably one of the nucleic acid strands to be detected, to which the one or more primers are hybridized, against the background of the fluorescent spectroscopy.
  • Identification is preferably carried out by means of FCS, a measuring volume element of preferably 0.1 to 20 ⁇ 10 ⁇ 15 I of the incubated solution being exposed to an excitation light from the laser, which excites the marking groups in this measuring volume to emit fluorescent light, the emitted fluorescent light is measured from the measurement volume by means of a photodetector, and a correlation is created between the change in the measured emission over time and the relative diffusion speed of the molecules involved, so that individual molecules can be identified in the measurement volume if the dilution is correspondingly strong electrical fields to the sample liquid can be achieved, for example by a capillary electrophoretic separation of unbound labels and labels bound to analyte molecules, a capillary with a tip opening of ⁇ 0.01 mm v or the measurement volume is placed and an electrical constant field is generated in the capillary, which moves the markings bound to the analyte in the direction of the measurement volume.
  • FCS a measuring volume element of preferably 0.1 to 20 ⁇ 10 ⁇ 15 I of
  • German Patent 1 95 08 366 Although the method described in German Patent 1 95 08 366 has proven itself, there is a need - particularly for the determination of very low analyte concentrations - to further improve the sensitivity of the detection.
  • the object on which the invention is based was therefore to provide a method for detecting a low-concentration analyte in a sample liquid, which on the one hand avoids the disadvantages associated with amplification procedures and on the other hand has an improved sensitivity.
  • This object is achieved by a method for the direct detection of an analyte in a sample liquid, comprising the steps: (a) bringing the sample liquid into contact with one or more labeled analyte-specific receptors under conditions in which the receptors can bind to the analyte, whereby at
  • an analyte-receptor complex which contains a higher number of labeling groups than receptors not bound to the analyte, (b) passing the sample liquid or a part thereof through a microchannel under conditions in which there is a predetermined flow profile in the microchannel, and (c) identifying the analyte via the binding of receptor during the flow through the microchannel.
  • the method according to the invention enables the identification of analytes which are present in the sample liquid in extremely low concentrations of, for example, ⁇ 10 "9 mol / l and in particular ⁇ 10 " 12 mol / l.
  • the sensitivity of the method is high enough that even analyte concentrations up to 1015 mol / l or 10 18 mol / l can be detected.
  • the analytes are preferably biopolymers, such as nucleic acids, peptides, proteins and protein aggregates, cells, subcellular Particles, for example virions etc.
  • the analytes are particularly preferably nucleic acids, for example nucleic acids of pathogenic microorganisms, for example viral nucleic acids
  • the sample liquid is preferably a biological sample, for example a body fluid such as blood, urine, saliva, cerebrospinal fluid, lymph or a tissue extract.
  • the analyte is detected by binding with labeled analyte-specific receptors, an analyte-receptor complex being formed which can be detected against the background of non-analyte-bound receptors.
  • radioactive labeling groups and particularly preferably labeling groups detectable by optical methods, such as dyes and in particular fluorescence labeling groups.
  • suitable fluorescent labeling groups are rhodamine, Texas red, phycoerythrin, fluorescein and other fluorescent dyes customary in diagnostic methods.
  • the labeled receptor is specific for the analyte to be detected, i.e. it binds to the analyte to be detected under the test conditions with a sufficiently high affinity and selectivity to enable a determination.
  • labeled probes with a sequence complementary to the analyte are preferably used as receptors, these probes being oligonucleotides or nucleotide analogs e.g. B. Peptide Nucleic Acid (PNA).
  • PNA Peptide Nucleic Acid
  • several different, preferably not overlapping labeled probes with a length of preferably 10 to 50 and particularly preferably 15 to 20 nucleotide or nucleotide analog building blocks are used.
  • a total of 5 to 200, preferably 1 0 to 1 00 different probes can be used, which may carry different but jointly detectable marker groups.
  • Labeled probes used as receptors can be added to the sample liquid in a prefabricated form.
  • the labeled probes can also be generated in situ, ie in the sample liquid depending on the presence of the analyte.
  • unlabeled primers, labeled nucleotide building blocks and a corresponding nucleic acid polymerase for example a DNA polymerase or a reverse transcriptase, are preferably added to the sample liquid, so that in the presence of the Analytes bind the primer to the analyte and an enzymatic primer elongation takes place with the incorporation of several labeled nucleotide building blocks.
  • the labeled probe generated in situ in this way contains several labeling groups and can be discriminated, for example, because of the higher fluorescence intensity by a nucleotide that is not incorporated in the probe.
  • analytes e.g. Peptides, proteins and protein aggregates can be determined using several different, preferably not competing labeled receptors, for example antibodies.
  • the labeled receptors are advantageously used in a molar excess with respect to the analyte, preferably in a concentration of 0.1 to 100 nM. It is also preferred that the labeled receptors or, in the case of receptors generated in situ, the labeled receptor building blocks differ in physico-chemical parameters such as molecular weight and / or charge of analyte-receptor complexes, so that the analyte receptor is preconcentrated by setting appropriate flow conditions Complexes becomes possible.
  • An essential feature of the method according to the invention is that the sample liquid or a part thereof is passed through a microchannel and the analyte is identified during the flow through the microchannel.
  • the flow is preferably a hydrodynamic flow, but the flow can also be an electroosmotic flow generated by an electrical field gradient. A combination of hydrodynamic flow and field gradients is also possible.
  • the flow through the microchannel preferably has a parabolic flow profile, ie the flow rate is at a maximum in the center of the microchannel and decreases in a parabolic function to the edges to a minimum speed.
  • the flow rate through the microchannel the maximum is preferably in the range from 1 to 50 mm / sec, particularly preferably in the range from 5 to 10 mm / sec.
  • the diameter of the microchannel is preferably in the range from 1 to 100 ⁇ m, particularly preferably from 10 to 50 ⁇ m.
  • the measurement is preferably carried out in a linear microchannel with a substantially constant diameter.
  • the analyte molecules can additionally be concentrated in the microchannel by applying an electrical field gradient.
  • this electrical field gradient is applied in a reaction space, from which the analyte molecules are then passed into a microchannel.
  • the reaction space may have a cylindrical or conical shape, e.g. the well of a microtiter plate.
  • the electrical field gradient can be generated by two electrodes in the reaction space, one electrode being able to be arranged as a ring electrode concentrically around the upper part of the reaction space, while the second electrode can be arranged at the bottom of the reaction space as a point electrode or ring electrode with a smaller diameter.
  • At the bottom of the reaction space there is an opening with the microchannel through which the particles pre-concentrated in the electric field are guided and determined by suction or by applying pressure or by applying another electric field.
  • the analyte-receptor complex according to step (c) of the method according to the invention can be identified by means of any measurement method, for example with a spatially and / or time-resolved fluorescence spectroscopy, which is able to measure in a very small volume element as described in there is a microchannel to detect very small signals from marker groups, in particular fluorescence signals down to the single photon count. It is important that that of unbound receptors or Receptor building block signals differ significantly from those caused by the analyte-receptor complexes.
  • the detection can be carried out by means of fluorescence correlation spectroscopy, in which a very small volume element, for example 0.1 to 20 ⁇ 1 0 ⁇ 12 I of the sample liquid flowing through the microchannel, is exposed to an excitation light from a laser, which receptors located in this measurement volume stimulate the emission of fluorescent light, the emitted fluorescence light from the measurement volume being measured by means of a photodetector, and a correlation between the temporal change in the measured emission and the relative flow rate of the molecules involved is created, so that individual ones with a correspondingly strong dilution Molecules in the measurement volume can be identified.
  • European Patent 0 679 251 for details of the implementation of the method and apparatus details for the devices used for the detection.
  • the detection can also be carried out by a time-resolved decay measurement, a so-called time gating, as described, for example, by Rigler et al., "Picosecond Single Photon Fluorescence Spetroscopy of
  • the fluorescence molecules are excited within a measurement volume and then - preferably at a time interval of> 1 00 ps - the detection interval is opened on
  • Time gating is particularly suitable for measuring quench or energy transfer processes.
  • the detection takes place under conditions in which it is possible to discriminate between analyte-bound receptors and non-analyte-bound receptors.
  • This discrimination of analyte-receptor complexes and unbound receptor molecules occurs in that the complex contains a large number of labeling groups, whereas an unbound receptor or, in the case of a receptor generated in situ, a receptor building block only a considerably smaller number of labeling groups, usually only one only marker group.
  • This different fluorescence intensity between analyte-receptor complex and unbound receptor enables the setting of a cut-off value in the detector, ie the detector is set so that it only registers the presence of a single marker group in the detection area as background noise, while the higher one Number of marker groups in the analyte-receptor complex is recognized as a positive signal.
  • An increase in the detection probability of analyte-receptor complexes which is essential to the invention, and thus an improvement in sensitivity is achieved by setting the predetermined flow profile in the microchannel and, if appropriate, suitable preconcentration measures. Due to the - e.g. due to different molecular weight and / or different charge - the complex of analyte molecule and receptor (s) compared to the usually smaller unbound receptors or in the case of receptors generated in situ, the smaller receptor building blocks show differences in the migration behavior due to electric field or / and the microchannel, which lead to a concentration of the analyte-receptor complexes taking place by at least a factor of 10 4 compared to the untreated sample liquid.
  • Another object of the invention is a device for the direct detection of an analyte in a sample liquid, comprising: (a) a reaction space for bringing the sample liquid into contact with one or more labeled receptors, wherein in the presence of the analyte in the sample an analyte-receptor complex is formed which has a higher number of receptors than those not bound to the analyte
  • the device preferably contains automatic manipulation devices, heating or cooling devices such as Peltier
  • the method and the device according to the invention can be used for all diagnostic methods for the direct detection of analytes.
  • Figure 1 shows two embodiments for performing the method according to the invention.
  • the analyte (1) for example a
  • Nucleic acid molecule such as a virus DNA, is used with a variety of viruses
  • B The nucleic acid analyte is brought into contact with a complementary primer (4), labeled nucleotide building blocks (6) and an enzyme suitable for primer elongation (not shown).
  • An elongated receptor molecule which is complementary to the analyte and carries several marker groups is generated by enzymatic primer elongation.
  • Both embodiments have in common that the analyte-receptor complex formed when the analyte is present has a higher number of marker groups than the receptor molecules or receptor building blocks present when the analyte is absent.
  • Figure 2 is a schematic representation of the detection of analyte-receptor complexes in a microchannel.
  • the analyte-receptor complexes (12) migrate to a detection volume (14) in a microchannel (10) with a predetermined flow profile.
  • the detection is carried out in the detection volume (14) by means of a detector (1 6).
  • the detector can comprise, for example, a fluorescence correlation spectroscopy apparatus with a laser, which illuminates the detection volume via a beam splitter and a confocal imaging optical system and images it on a photo detector.
  • FIG. 3 is a schematic representation of a preferred device for performing the method according to the invention.
  • the device contains a reaction chamber (18) in which sample liquid and receptor molecules are brought into contact and then further by pressure or suction or by applying a further electrical field gradient into the microchannel (20) for detection as shown in FIG. 2 can be directed.
  • the reaction chamber is preconcentrated by applying an electrical field gradient between the electrodes (22) and (24).
  • the electrode (22), usually the anode can have an annular shape around the upper region of the reaction space (1 8).
  • the electrode (24), usually the cathode is located at the bottom of the Reaction space and can for example be designed as a metal layer and optionally also in the form of a ring.
  • the device (26) can contain a multiplicity of reaction spaces (1 8) as shown in FIG. 3 (A) in order to enable parallel processing of a multiplicity of samples, for example 10 to 100 samples.
  • FIG. 4 shows, in a schematic and highly simplified representation, a further embodiment of a device for the detection of fluorescent molecules, in particular single molecules, in a sample liquid flowing through a microchannel.
  • the microchannel 1 00 (shown perpendicular to the plane of the drawing) is formed in a carrier 1 02, which on the side 1 04 towards the microchannel 100 is translucent at least for the wavelengths of excitation light of interest here for the fluorescence excitation and for the wavelengths of the Is fluorescent light.
  • the device according to FIG. 4 comprises a laser 1 06 as the light source, in the beam path of which an optical diffraction element or phase-modulating element 108 is arranged, which diffraction pattern from the laser beam 1 10 by light diffraction in the form of a linear or two-dimensional array of "focal points" 1 1 2 generated.
  • the diffracted or phase-modulated beams emanating from the diffraction element 108 are reflected by a dichroic or wavelength-selective mirror 1 1 4 towards the microchannel 1 00, the arrangement preferably being such that the focal points (hereinafter also referred to as confocal volume elements 1 1 2) ) form an essentially complete "detection curtain" across the cross section of the microchannel 1 00.
  • Each molecule passing through the microchannel 1 00 in a sample solution in question must therefore pass the “detection curtain”, that is to say at least one of the confocal volume elements 1 1 2.
  • the presence of such a molecule can be detected by detecting and evaluating the fluorescent light.
  • the fluorescent light can pass the dichroic mirror in the upward direction in FIG. 4.
  • perforated diaphragms 1 1 6 are provided according to FIG. 4 in association with the confocal volume elements 1 1 2.
  • a photodetector arrangement 1 1 8 which can be a group of individual avalanche photodetectors (avalanche diodes) integrated into a matrix (array) on a chip.
  • a control device or evaluation device 1 20 evaluates the output signals of the photodetector arrangement 1 1 8.
  • the evaluation unit 1 20 contains means for correlating the signals, so that the device 4 for carrying out the fluorescence correlation spectroscopy, as described, for example, in Bioimaging 5 (1 997) 139-1 52 "Techniques for Single Molecule Sequencing", Klaus Dörre et al, is explained in principle.
  • a confocal mapping of the measurement volumes or confocal volume elements 1 1 2 onto the relevant photodetector elements of the arrangement 1 18 follows. Fluorescent light which emanates from one or, if necessary, several molecules which are transmitted through the Laser light has been excited to fluorescence is imaged via the dichroic mirror 1 14 into the perforated apertures 1 1 6 conjugated to the focal volume elements 1 1 2 in question and finally onto the assigned element of the detector arrangement 1 1 8.
  • 1 20 and 1 22 denote schematically illustrated illustration elements in FIG. 4.
  • the evaluation unit 1 20, which is z. B. can be a personal computer with a correlator card, evaluates the output signals of the detector arrangement 1 1 8 for information about to be able to provide the presence of certain fluorescent molecules, in particular single molecules.
  • FIG. 5 shows a modification of the device from FIG. 4.
  • the arrangement according to FIG. 5 has a correspondingly arranged array of optical fibers (glass fiber bundles) 1 1 7, the light entry surfaces of which lie at the locations conjugated to the assigned confocal volume elements 1 1 2.
  • the optical fibers are optically connected to a photodetector arrangement 1 1 8, which can correspond to the photodetector arrangement 1 1 8 from FIG. 4, otherwise the device according to FIG. 5 corresponds to the device according to FIG. 4.
  • Both devices are suitable for carrying out the method one of claims 1 - 1 9 and very generally for carrying out methods which involve the detection of molecules in highly diluted sample solutions, in particular the detection of single molecules, for example in the sequencing of nucleic acids.
  • the photodetector elements do not necessarily have to be avalanche diodes, but that other detectors, e.g. B. photomultiplyers, CCD sensors, etc. can be used.
  • FIG. 6 shows a further embodiment of a detection device according to the invention for the detection of molecules in highly diluted sample solutions, in particular single molecules.
  • the arrangement according to FIG. 6 comprises a substrate or a carrier 1 50 with a linear or two-dimensional array of surface emitting lasers, in particular potential well lasers (quantum well lasers) 1 52, which emit light in the area 1 56 delimiting the micro channel 1 54 Emit microchannel 1 54.
  • the microchannel 1 54 extends perpendicular to the plane of the drawing in FIG. 6. Because of its radiation characteristics, each laser element 1 52 covers a certain volume range of the microchannel 1 54 with its radiation field.
  • volume elements illuminated by the laser elements 1 52 should be so close to one another or possibly overlap that, in their entirety, they form a "detection curtain" that is as complete as possible in the sense that each analyte molecule only passes the microchannel 1 54 while passing through a volume element in question can.
  • photodetectors 1 64 are grouped on the channel boundary wall 1 62 opposite the surface 1 56 to form an array which essentially corresponds geometrically to the array of laser elements 1 52, so that a respective photodetector element 1 64 is associated with a respective laser element 1 52 is assigned opposite.
  • the photodetectors 1 64 are preferably integrated avalanche photodiodes.
  • the elements previously described with reference to FIG. 6 preferably form components of an integrated chip component with connections (not shown) for the energy supply and control of the laser elements 1 52 and for the energy supply and signal derivation of the photodetector elements 1 64.
  • the signals received by the photodetectors 1 64 can be evaluated by means of an evaluation unit connected to the chip component, the evaluation unit preferably comprising a correlator device, so that the arrangement shown in FIG. 6 is suitable for fluorescence correlation spectroscopy (FCS).
  • FCS fluorescence correlation spectroscopy
  • the laser elements 1 52 represent the excitation light sources for the fluorescence excitation of the molecules flowing through the microchannel 1 54 and capable of fluorescence.
  • the photodetector elements 1 64 are for Light of the relevant fluorescence wavelength or fluorescence wavelengths sensitive.
  • the arrangement can optionally contain spectral filters in order to implement wavelength selectivity of the detector elements 164.
  • the arrangement according to FIG. 6 can be used to carry out the method according to one of claims 1 to 19 and, moreover, very generally to carry out methods involving the detection of molecules in highly diluted sample solutions, in particular single molecules.
  • This modification consists in that - similar to the channel 154 in FIG. 6 - laser elements 152, as indicated by dashed lines in FIG. 5, are also provided directly on the channel 100. This can e.g. Potential well laser elements that are integrated in a substrate 102 containing the channel 100. The elements 106 and 108 can then be dispensed with.

Abstract

Die Erfindung betrifft ein Verfahren zum direkten Nachweis eines Analyten in einer Probeflüssigkeit Während des Flusses in einem Mikrokanal und eine dafür geeignete Vorrichtung.

Description

Direkter Nachweis von Einzelmolekülen
Beschreibung
Die Erfindung betrifft ein Verfahren zum direkten Nachweis eines Analyten in einer Probeflüssigkeit und eine dafür geeignete Vorrichtung.
Im Rahmen diagnostischer Verfahren erfolgt ein Nachweis von Analyten in biologischen Proben, wobei diese Analyten oftmals nur in sehr geringer Konzentration vorliegen. Insbesondere bei Analytkonzentrationen im Bereich < 10"12 Mol/I, beispielsweise bei Viruspartikeln, ist ein direkter Nachweis des Analyten jedoch problematisch.
Um einen Nukleinsäure-Analyten in sehr geringen Konzentrationen nachzuweisen, kann die Anzahl der in der Probe vorhandenen Analytmoleküle durch Amplifikationsverfahren wie PCR oder analoge Methoden auf ein Konzentrationsniveau erhöht werden, welches einen Nachweis durch konventionelle Methoden wie etwa Gelelektrophorese oder Sequenzierung ermöglicht. Derartige Amplifikationsverfahren sind jedoch sehr zeitaufwendig und haben viele Fehlerquellen, sodass das Auftreten von falsch positiven oder falsch negativen Testergebnissen nicht ausgeschlossen werden kann.
Ein direkter Nachweis von einzelnen Analytmolekülen ist mit dem im europäischen Patent 0 679 251 beschriebenen Verfahren zur Fluoreszenz- Korrelationsspektroskopie (FCS) beschrieben. Mittels FCS kann in einem kleinen Messvolumen von beispielsweise < 1 0"14 I ein einziges oder nur wenige mit Fluoreszenzfarbstoffen markierte Moleküle nachgewiesen werden. Das Messprinzip der FCS beruht darauf, dass ein kleines Volumenelement der Probeflüssigkeit einem starken Anregungslicht, z. B. eines Lasers ausgesetzt wird, sodass nur die jenigen Fluoreszenzmoleküle, die sich in diesem Messvolumen aufhalten, angeregt werden. Das emittierte Fluoreszenzlicht aus diesem Volumenelement wird dann auf einen Detektor, z.B. einen Fotomultiplyer abgebildet. Ein Molekül, das sich im Volumenelement befindet, wird sich gemäß seiner charakteristischen Diffusionsgeschwindigkeit mit einer durchschnittlichen, aber für das betreffende Molekül charakteristischen Zeit wieder aus dem Volumenelement entfernen und dann nicht mehr zu beobachten sein.
Wird nun die Lumineszenz ein- und desselben Moleküls während seiner durchschnittlichen Aufenthaltsdauer in dem Messvolumen mehrmals angeregt, so lassen sich von diesem Molekül viele Signale erfassen.
Um die von der Diffusionsgeschwindigkeit der beteiligten Moleküle abhängige, zum Teil relativ lange Messzeit zu reduzieren, beschreibt das europäische Patent 0 679 251 verschiedene Verfahren, mit denen die nachzuweisenden Moleküle im Messvolumen aufkonzentriert werden können. Im Prinzip beruhen diese Verfahren darauf, den nachzuweisenden Analyten durch ein gerichtetes elektrisches Feld vorzukonzentrieren oder aber die unterschiedlichen Diffusionsgeschwindigkeiten der in der Probe vorhandenen Moleküle aufgrund der unterschiedlichen Molekülgröße auszunutzen.
Das deutsche Patent 1 95 08 366 beschreibt eine Anwendung des FCS- Verfahrens auf den direkten Nachweis von Analyten in einer Probe. Dabei wird eine Testlösung mit einem Gemisch unterschiedlicher kurzer Primer, die jeweils eine zu einem Abschnitt eines Nukleinsäureanalyten komplementäre, sogenannte Antisense-Sequenz aufweisen und mit einem oder mehreren Farbstoffmolekülen markiert sind, bereitgestellt. Diese Testlösung wird mit der Untersuchungslösung gemischt und das Gemisch zur Hybridisierung der Primer mit den nachzuweisenen Nukleinsäuresträngen inkubiert. Dann werden die Zielsequenzen in der inkubierten Lösung durch Diskriminieren weniger, vorzugsweise eines der nachzuweisenden Nukleinsäurestränge an die bzw. den ein oder mehrere Primer hybridisiert sind, vor dem Hintergrund d e r n i c ht h yb ri d i si e rte n Pri me r m ittel s ze ita u f g e l ö ste r Fluoreszenzspektroskopie identifiziert. Die Identifizierung erfolgt vorzugsweise mittels FCS, wobei ein Messvolumenelement von vorzugsweise 0, 1 bis 20 x 1 0"15 I der inkubierten Lösung einem Anregungslicht des Lasers ausgesetzt wird, das die in diesem Messvolumen befindlichen Markierungsgruppen zur Emission von Fluoreszenzlicht anregt, wobei das emittierte Fluoreszenzlicht aus dem Messvolumen mittels eines Fotodetektors gemessen wird, und eine Korrelation zwischen der zeitlichen Veränderung der gemessenen Emission und der relativen Diffusionsgeschwindigkeit der beteiligten Moleküle erstellt wird, sodass bei entsprechend starker Verdünnung einzelne Moleküle in dem Messvolumen identifiziert werden können. Eine Verbesserung der Sensitivität kann durch Anlegen elektrischer Felder an die Probeflüssigkeit erreicht werden, beispielsweise durch eine kapillarelektrophoretische Trennung von ungebundenen Markierungen und an Analytmoleküle gebundenen Markierungen, wobei eine Kapillare mit einer Spitzenöffnung von < 0,01 mm vor das Messvolumen plaziert und in der Kapillare ein elektrisches Gleichfeld erzeugt wird, das die an den Analyten gebundene Markierungen in Richtung auf das Messvolumen bewegt.
Obwohl sich das im deutschen Patent 1 95 08 366 beschriebene Verfahren bewährt hat, besteht - insbesondere für die Bestimmung von sehr geringen Analytkonzentrationen - ein Bedürfnis, die Sensitivität des Nachweises weiter zu verbessern.
Die der Erfindung zugrundeliegende Aufgabe bestand somit darin, ein Verfahren zum Nachweis eines gering konzentrierten Analyten in einer Probeflüssigkeit bereitzustellen, welches einerseits die mit Amplifikationsprozeduren verbundenen Nachteile vermeidet und andererseits eine verbesserte Sensitivität besitzt. Gelöst wird diese Aufgabe durch ein Verfahren zum direkten Nachweis eines Analyten in einer Probeflüssigkeit, umfassend die Schritte: (a) Inkontaktbringen der Probeflüssigkeit mit einem oder mehreren markierten analytspezifischen Rezeptoren unter Bedingungen, bei denen die Rezeptoren an den Analyten binden können, wobei bei
Vorhandensein des Analyten in der Probe ein Analyt-Rezeptor- Komplex gebildet wird, der eine im Vergleich zu nicht an den Analyten gebundenen Rezeptoren höhere Anzahl von Markierungsgruppen enthält, (b) Leiten der Probeflüssigkeit oder eines Teils davon durch einen Mikrokanal unter Bedingungen, bei denen ein vorgegebenes Flussprofil im Mikrokanal vorliegt, und (c) Identifizieren des Analyten über die Bindung von Rezeptor während des Flusses durch den Mikrokanal.
Das erfindungsgemäße Verfahren ermöglicht die Identifizierung von Analyten, die in extrem geringen Konzentrationen von beispielsweise < 10"9 Mol/I und insbesondere < 10"12 Mol/I in der Probeflüssigkeit vorliegen. Die Empfindlichkeit des Verfahrens ist hoch genug, dass sogar Analytkonzentrationen bis zu 1 0'15 Mol/I oder 10"18 Mol/I nachgewiesen werden können. Die Analyten sind vorzugsweise Biopolymere, wie etwa Nukleinsäuren, Peptide, Proteine und Proteinaggregate, Zellen, subzelluläre Partikel, z.B. Virionen etc. Besonders bevorzugt sind die Analyten Nukleinsäuren, z.B. Nukleinsäuren von pathogenen Mikroorganismen, beispielsweise virale Nukleinsäuren. Die Probeflüssigkeit ist vorzugsweise eine biologische Probe, z.B. eine Körperflüssigkeit wie etwa Blut, Urin, Speichel, Cerebrospinalflüssigkeit, Lymphe oder ein Gewebeextrakt.
Der Nachweis des Analyten erfolgt durch Bindung mit markierten analytspezifischen Rezeptoren, wobei ein Analyt-Rezeptor-Komplex gebildet wird, der vor dem Hintergrund nicht analytgebundener Rezeptoren nachweisbar ist. Als Markierungsgruppen kommen insbesondere nicht radioaktive Markierungsgruppen und besonders bevorzugt durch optische Methoden nachweisbare Markierungsgruppen, wie etwa Farbstoffe und insbesondere Fluoresenzmarkierungsgruppen, in Betracht. Beispiele für geeignete Fluoreszenzmarkierungsgruppen sind Rhodamin, Texas-Rot, Phycoerythrin, Fluorescein und andere in diagnostische Verfahren übliche Fluoreszenzfarbstoffe.
Der markierte Rezeptor ist für den nachzuweisenden Analyten spezifisch, d.h. er bindet unter den Testbedingungen mit ausreichend hoher Affinität und Selektivität an den nachzuweisenden Analyten, um eine Bestimmung zu ermöglichen.
Zur Bestimmung eines Nukleinsäureanalyten werden beispielsweise als Rezeptoren vorzugsweise markierte Sonden mit einer zum Analyten komplementären Sequenz verwendet, wobei diese Sonden Oligonukleotide oder Nukleotidanaloga z. B. Peptidnukleinsäure (PNA) umfassen. In einer bevorzugten Ausführungsform werden mehrere unterschiedliche, vorzugsweise nicht miteinander überlappende markierte Sonden mit einer Länge von vorzugsweise 10 bis 50 und besonders bevorzugt 1 5 bis 20 Nukleotid- oder Nukleotidanalog-Bausteinen eingesetzt werden. Dabei können beispielsweise insgesamt 5 bis 200, vorzugsweise 1 0 bis 1 00 verschiedene Sonden eingesetzt werden, die gegebenenfalls unterschiedliche, aber gemeinsam nachweisbare Markierungsgruppen tragen können.
Als Rezeptoren verwendete markierte Sonden können der Probeflüssigkeit in vorgefertigter Form zugesetzt werden. Andererseits können die markierten Sonden auch in situ, d.h. in der Probeflüssigkeit abhängig vom Vorhandensein des Analyten erzeugt werden. Hierzu werden vorzugsweise unmarkierte Primer, markierte Nukleotidbausteine und eine entsprechende Nukleinsäure-Polymerase, z.B. eine DNA-Polymerase oder eine Reverse Transkriptase, der Probeflüssigkeit zugesetzt, sodass in Anwesenheit des Analyten der Primer an den Analyten bindet und eine enzymatische Primerelongation unter Einbau mehrerer markierter Nukleotidbausteine stattfindet. Die auf diese Weise in situ erzeugte markierte Sonde enthält mehrere Markierungsgruppen und kann z.B. aufgrund der höheren Fluoreszenzintensität von einem nicht an die Sonde eingebauten Nukleotid diskriminiert werden.
Auch andere Arten von Analyten, z.B. Peptide, Proteine und Proteinaggregate, können unter Verwendung mehrerer unterschiedlicher, vorzugsweise nicht miteinander kompetierender markierter Rezeptoren, beispielsweise Antikörper bestimmt werden.
Die markierten Rezeptoren werden günstigerweise in einem molaren Überschuss bezüglich des Analyten, vorzugsweise in einer Konzentration von 0, 1 bis 100 nM, eingesetzt. Außerdem ist bevorzugt, dass die markierten Rezeptoren oder im Falle von in situ erzeugten Rezeptoren die markierten Rezeptorbausteine sich in physikalisch-chemischen Parametern wie Molekulargewicht oder/und Ladung von Analyt-Rezeptor-Komplexen unterscheiden, sodass durch Einstellung entsprechender Flussbedingungen eine Vorkonzentrierung der Analyt-Rezeptor-Komplexe möglich wird.
Ein wesentliches Merkmal des erfindungsgemäßen Verfahrens besteht darin, dass die Probeflüssigkeit oder ein Teil davon durch einen Mikrokanal geleitet wird und der Analyt während des Flusses durch den Mikrokanal identifiziert wird. Der Fluss ist vorzugsweise ein hydrodynamischer Fluss, der Fluss kann jedoch auch ein elektroosmotischer Fluss sein, der durch einen elektrischen Feldgradienten erzeugt wird. Weiterhin ist eine Kombination von hydrodynamischem Fluss und Feldgradienten möglich. Der Fluss durch den Mikrokanal weist vorzugsweise ein parabolisches Flussprofil auf, d.h. die Fließgeschwindigkeit ist maximal im Zentrum des Mikrokanals und nimmt in einer parabolischen Funktion zu den Rändern bis zu einer Minimalgeschwindigkeit ab. Die Flussgeschwindigkeit durch den Mikrokanal liegt im Maximum vorzugsweise im Bereich von 1 bis 50 mm/sec, besonders bevorzugt im Bereich von 5 bis 10 mm/sec. Der Durchmesser des Mikrokanals liegt vorzugsweise im Bereich von 1 bis 1 00 μm, besonders bevorzugt von 10 bis 50 μm. Vorzugsweise wird die Messung in einem linearen Mikrokanal mit im Wesentlichen einem konstanten Durchmesser durchgeführt.
Gegebenenfalls kann vor der Analytbestimmung im Mikrokanal noch zusätzlich eine Konzentrierung der Analytmoleküle durch Anlegen eines elektrischen Feldgradienten erfolgen. In einer bevorzugten Ausführungsform der Erfindung wird dieser elektrische Feldgradient in einem Reaktionsraum angelegt, von dem die Analytmoleküle dann in einen Mikrokanal geleitet werden. Der Reaktionsraum kann eine zylindrische oder kegelförmige Gestalt aufweisen, z.B. die Vertiefung einer Mikrotiterplatte. Der elektrische Feldgradient kann durch zwei Elektroden im Reaktionsraum erzeugt werden, wobei eine Elektrode als Ringelektrode konzentrisch um den oberen Teil des Reaktionsraums angeordnet sein kann, während die zweite Elektrode am Boden des Reaktionsraums als Punktelektrode oder Ringelektrode mit kleinerem Durchmesser angeordnet sein kann. Am Boden des Reaktionsraums befindet sich eine Öffnung mit dem Mikrokanal, durch den die im elektrischen Feld vorkonzentrierten Teilchen durch Saug wirkung oder Anlegen von Druck oder durch Anlegen eines weiteren elektrischen Feldes geleitet und bestimmt werden.
Die Identifizierung des Analyt-Rezeptor-Komplexes gemäß Schritt (c) des erfindungsgemäßen Verfahrens kann mittels einer beliebigen Messmethode, z.B. mit einer orts- und/oder zeitaufgelösten Fluoreszenz-Spektroskopie erfolgen, die in der Lage ist, in einem sehr kleinen Volumenelement wie es in einem Mikrokanal vorliegt, sehr geringe Signale von Markierungsgruppen, insbesondere Fluoreszenzsignale bis hinunter zur Einzelphotonenzählung zu erfassen. Wichtig ist dabei, dass die von ungebundenen Rezeptoren oder Rezeptorbausteinen stammenden Signale sich deutlich von denen unterscheiden, die von den Analyt-Rezeptor-Komplexen verursacht werden.
Bei spi e lsweise kan n d i e Detekti o n mitte ls Fl uoreszenz- Korrelationsspektroskopie erfolgen, bei der ein sehr kleines Volumenelement, beispielsweise 0, 1 bis 20 x 1 0~12 I der durch den Mikrokanal strömenden Probeflüssigkeit einem Anregungslicht eines Lasers ausgesetzt wird, das die in diesem Messvolumen befindlichen Rezeptoren zur Emission von Fluoreszenzlicht anregt, wobei das emittierte Fluoreszenzlicht aus dem Messvolumen mittels eines Fotodetektors gemessen wird, und eine Korrelation zwischen der zeitlichen Veränderung der gemessenen Emission und der relativen Flussgeschwindigkeit der beteiligten Moleküle erstellt wird, sodass bei entsprechend starker Verdünnung einzelne Moleküle in dem Messvolumen identifiziert werden können. Auf Einzelheiten zur Verfahrensdurchführung und apparative Details zu den für die Detektion verwendeten Vorrichtungen wird auf die Offenbarung des europäischen Patentes 0 679 251 verwiesen.
Alternativ kann die Detektion auch durch eine zeitaufgelöste Abklingmessung, ein sogenanntes Time Gating erfolgen, wie beispielsweise von Rigler et al., "Picosecond Single Photon Fluorescence Spetroscopy of
Nucleic Acids", in: "Ultrafast Phenomenes", D.H. Auston, Ed., Springer
1 984, beschrieben. Dabei erfolgt die Anregung der Fluoreszenzmoleküle innerhalb eines Messvolumens und anschließend - vorzugsweise in einem zeitlichen Abstand von > 1 00 ps - das Öffnen eines Detektionsintervalls am
Fotodetektor. Auf diese Weise können durch Raman-Effekte erzeugte
Hintergrundsignale ausreichend gering gehalten werden, um eine im
Wesentlichen störungsfreie Detektion zu ermöglichen. Das Time Gating ist besonders zur Messung von Quench- oder Energietransfervorgängen geeignet. Die Detektion erfolgt unter Bedingungen, bei denen zwischen analytgebundenen Rezeptoren und nicht analytgebundenen Rezeptoren diskriminiert werden kann. Diese Diskriminierung von Analyt-Rezeptor- Komplexen und ungebundenen Rezeptormolekülen erfolgt dadurch, dass der Komplex eine Vielzahl von Markierungsgruppen enthält, während ein ungebundener Rezeptor bzw. im Falle eines in situ erzeugten Rezeptors, ein Rezeptorbaustein nur eine erheblich geringere Anzahl von Markierungsgruppen, üblicherweise nur eine einzige Markierungsgruppe, aufweist. Diese unterschiedliche Fluoreszenzintensität zwischen Analyt- Rezeptor-Komplex und ungebundenem Rezeptor ermöglicht die Einstellung eines Cut-off-Werts im Detektor, d.h. der Detektor ist so eingestellt, dass er das Vorhandensein von nur einer einzigen Markierungsgruppe im Detektionsbereich nur als Hintergrundrauschen registriert, während die höhere Anzahl von Markierungsgruppen in Analyt-Rezeptor-Komplex als positives Signal erkannt wird.
Eine erfindungswesentliche Erhöhung der Detektionswahrscheinlichkeit von Analyt-Rezeptor-Komplexen und somit eine Verbesserung der Sensitivität wird durch Einstellung des vorgegebenen Flussprofils im Mikrokanal und gegebenenfalls geeigneten Vorkonzentrierungsmaßnahmen erreicht. Aufgrund der - z.B. durch unterschiedliches Molekulargewicht oder/und unterschiedliche Ladung - des Komplexes aus Analytmolekül und Rezeptor(en) im Vergleich zu den meist kleineren ungebunden Rezeptoren bzw. im Falle von in situ erzeugten Rezeptoren, den kleineren Rezeptorbausteinen zeigen sich Unterschiede im Wanderungsverhalten durch das elektrische Feld oder/und den Mikrokanal, die dazu führen, dass eine Aufkonzentrierung der Analyt-Rezeptor-Komplexe um mindestens den Faktor 104 gegenüber der unbehandelten Probeflüssigkeit erfolgt.
Ein weiterer Gegenstand der Erfindung ist eine Vorrichtung zum direkten Nachweis eines Analyten in einer Probeflüssigkeit, umfassend: (a) einen Reaktionsraum zum Inkontaktbringen der Probeflüssigkeit mit einem oder mehreren markierten Rezeptoren, wobei bei Vorhandensein des Analyten in der Probe ein Analyt-Rezeptor- Komplex gebildet wird, der eine im Vergleich zu nicht an den Analyten gebundenen Rezeptoren höhere Anzahl von
Markierungsgruppen enthält,
(b) Mittel zum Einbrigen von Probeflüssigkeit und Rezeptoren in den Reaktionsraum,
(c) einen Mikrokanal, durch den die Probeflüssigkeit oder ein Teil davon mit einem vorgegebenen Flussprofil geleitet werden kann,
(d) Mittel zur Identifizierung von Analyt-Rezeptor-Komplexen während des Flusses durch den Mikrokanal.
Die Vorrichtung enthält vorzugsweise automatische Manipulationsvorrichtungen, Heiz- oder Kühleinrichtungen wie Peltier-
Elemente, Reservoirs und gegebenenfalls Zufuhrleitungen für
Probeflüssigkeit und Reagenzien sowie elektronische Auswertungsgeräte.
Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung können für alle diagnostischen Verfahren zum direkten Nachweis von Analyten eingesetzt werden.
Weitere Gesichtspunkte der Erfindung sind in den Ansprüchen 22 bis 26 angegeben.
Weiterhin soll die vorliegende Erfindung durch die nachfolgenden Figuren erläutert werden. Es zeigen:
Figur 1 zwei Ausführungsformen zur Durchführung des erfindungsgemäßen Verfahrens. (A): Der Analyt (1), beispielsweise ein
Nukleinsäuremolekül wie etwa eine Virus-DNA, wird mit einer Vielzahl von
Rezeptorsonden (2a, 2b, 2c) in Kontakt gebracht, die gleiche oder unterschiedliche Markierungsgruppen tragen und gleichzeitig an den Analyten binden können. (B) : Der Nukleinsäure-Analyt wird mit einem dazu komplementären Primer (4), markierten Nukleotidbausteinen (6) und einem zur Primerelongation geeigneten Enzym (nicht gezeigt) in Kontakt gebracht. Durch enzymatische Primerelongation wird ein verlängertes, mehrere Markierungsgruppen tragendes zum Analyten komplementäres Rezeptormolekül erzeugt. Beiden Ausführungsformen ist gemeinsam, dass der bei Vorhandensein des Analyten gebildete Analyt-Rezeptor-Komplex eine höhere Anzahl von Markierungsgruppen als die bei Abwesenheit des Analyten vorliegenden Rezeptormoleküle bzw. Rezeptorbausteine aufweist.
Figur 2 die schematische Darstellung des Nachweises von Analyt- Rezeptor-Komplexen in einem Mikrokanal. In einem Mikrokanal ( 1 0) mit einem vorgegebenen Flussprofil wandern die Analyt-Rezeptor-Komplexe (12) zu einem Detektionsvolumen ( 14). Im Detektionsvolumen ( 14) erfolgt mittels eines Detektors ( 1 6) der Nachweis. Der Detektor kann beispielsweise eine Fluoreszenz-Korrelationsspektroskopie-Apparatur mit einem Laser, der über einen Strahlteiler und eine konfokale Abbildungsoptik das Detektionsvolumen ausleuchtet, und auf einen Fotodedektor abbildet, umfassen.
Figur 3 die schematische Darstellung einer bevorzugten Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens. (A): Die Vorrichtung enthält einen Reaktionsraum (18), in dem Probeflüssigkeit und Rezeptormoleküle in Kontakt gebracht und anschließend durch Druck oder Saug wirkung oder durch Anlegen eines weiteren elektrischen Feldgradienten in den Mikrokanal (20) zur Detektion wie in Figur 2 gezeigt, weiter geleitet werden können. Im Reaktionsraum erfolgt eine Vorkonzentrierung durch Anlegen eines elektrischen Feldgradienten zwischen den Elektroden (22) und (24) . Die Elektrode (22), üblicherweise die Anode, kann ringförmig um den oberen Bereich des Reaktionsraums ( 1 8) herum ausgebildet sein. Die Elektrode (24), üblicherweise die Kathode, befindet sich am Boden des Reaktionsraums und kann beispielsweise als Metallschicht und gegebenenfalls ebenfalls in Form eines Ringes ausgebildet sein. (B): Die Vorrichtung (26) kann eine Vielzahl von Reaktionsräumen ( 1 8) wie in Figur 3 (A) dargestellt, enthalten, um eine parallele Prozessierung einer Vielzahl von Proben, beispielsweise 10 bis 100 Proben zu ermöglichen.
Fig. 4 zeigt in schematisierter und stark vereinfachter Darstellung eine weitere Ausführungsform einer Vorrichtung zum Nachweis von fluoreszierenden Molekülen, insbesondere Einzelmolekülen, in einer einen Mikrokanal durchströmenden Probenflüssigkeit.
Gemäß Fig. 4 ist der (senkrecht zur Zeichenebene verlaufend dargestellte) Mikrokanal 1 00 in einem Träger 1 02 ausgebildet, der an der Seite 1 04 zum Mikrokanal 100 hin lichtdurchlässig zumindest für die hier interessierenden Wellenlängen des Anregungslichtes für die Fluoreszenzanregung und für die Wellenlängen des Fluoreszenzlichtes ist.
Die Vorrichtung nach Fig. 4 umfasst als Lichtquelle einen Laser 1 06, in dessen Strahlengang ein optisches Beugungselement oder phasenmodulierendes Element 108 angeordnet ist, welches aus dem Laserstrahl 1 1 0 durch Lichtbeugung ein Beugungsmuster in Form eines linearen oder zweidimensionalen Arrays von "Fokalpunkten" 1 1 2 erzeugt. Die von dem Beugungselement 108 ausgehenden gebeugten bzw. phasenmodulierten Strahlen werden durch einen dichroischen bzw. wellenlängenselektiven Spiegel 1 1 4 zum Mikrokanal 1 00 hin reflektiert, wobei die Anordnung vorzugsweise so getroffen ist, dass die Fokalpunkte (nachstehend auch als konfokale Volumenelemente 1 1 2 bezeichnet) über den Querschnitt des Mikrokanals 1 00 hinweg einen im Wesentlichen lückenlosen "Detektionsvorhang" bilden. Jedes den Mikrokanal 1 00 in einer betreffenden Probenlösung durchwandernde Molekül muss somit den " Detektionsvorhang", also wenigstens eines der konfokalen Volumenelemente 1 1 2 passieren. Handelt es sich bei dem betreffenden Molekül um eines, das von dem Laserlicht zur Fluoreszenz angeregt wird, so kann die Präsenz eines solchen Moleküls durch Erfassung und Auswertung des Fluoreszenzlichts nachgewiesen werden.
Das Fluoreszenzlicht kann den dichroischen Spiegel in Richtung nach oben hin in Fig. 4 passieren.
An einer zu den konfokalen Volumenelementen 1 1 2 jeweils konjugierten Stelle sind gemäß Fig. 4 Lochblenden 1 1 6 in Zuordnung zu den konfokalen Volumenelementen 1 1 2 vorgesehen. Im optischen Strahlengang hinter den Lochblenden 1 1 6 befindet sich eine Fotodetektoranordnung 1 1 8, bei der es sich um eine Gruppe einzelner oder zu einer Matrix (Array) auf einem Chip integrierter Avalanche-Fotodetektoren (Avalanche-Dioden) handeln kann. Eine Steuereinrichtung bzw. Auswerteeinrichtung 1 20 wertet die Ausgangssignale der Fotodetektoranordnung 1 1 8 aus. Die Auswerteeinheit 1 20 enthält Mittel zur Korrelation der Signale, so dass die Vorrichtung 4 zur Durchführung der Fluoreszenz-Korrelationsspektroskopie, wie sie beispielsweise in Bioimaging 5 (1 997) 139 - 1 52 "Techniques for Single Molecule Sequencing", Klaus Dörre et al, prinzipiell erläutert ist.
Bei der Vorrichtung gemäß Fig. 4 folgt eine konfokale Abbildung der Messvolumina bzw. konfokaien Volumenelemente 1 1 2 auf die betreffenden Fotodetektorelemente der Anordnung 1 18. Fluoreszenzlicht, welches von einem oder ggf. mehreren Molekülen ausgeht, die in betreffenden Volumenelementen 1 1 2 durch das Laserlicht zur Fluoreszenz angeregt wurden, wird über den dichroischen Spiegel 1 14 in die zu den betreffenden fokalen Volumenelementen 1 1 2 konjugierten Lochblenden 1 1 6 und schließlich auf das zugeordnete Element der Detektoranordnung 1 1 8 abgebildet. 1 20 und 1 22 bezeichnen in Fig. 4 schematisch dargestellte Abbildungelemente. Die Auswerteeinheit 1 20, bei der es sich z. B. um einen Personal Computer mit einer Korrelatorkarte handeln kann, wertet die Ausgangssignale der Detektoranordnung 1 1 8 aus, um Informationen über die Präsenz bestimmter fluoreszierender Moleküle, insbesondere Einzelmoleküle, bereitstellen zu können.
In Fig. 5 ist eine Abwandlung der Vorrichtung aus Fig. 4 dargestellt.
Anstelle der Lochblendenanordnung 1 1 6 aus Fig. 4 weist die Anordnung gemäß Fig. 5 ein entsprechend angeordnetes Array von Lichtleitfasern (Glasfiberbündeln) 1 1 7 auf, deren Lichteintrittsflächen an den zu den zugeordneten konfokalen Volumenelementen 1 1 2 konjugierten Stellen liegen. Die Lichtleitfasern sind optisch mit einer Fotodetektoranordnung 1 1 8 verbunden, welche der Fotodetektoranordnung 1 1 8 aus Fig. 4 entsprechen kann, im Übrigen entspricht die Vorrichtung nach Fig. 5 der Vorrichtung nach Fig. 4. Beide Vorrichtungen eignen sich zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 1 9 und ganz allgemein zur Durchführung von Verfahren, bei denen es auf den Nachweis von Molekülen in hochverdünnten Probenlösungen, insbesondere um den Nachweis von Einzelmolekülen, beispielsweise bei der Sequenzierung von Nukleinsäuren, geht.
Anzumerken ist ferner noch, dass es sich bei den Fotodetektorelementen nicht unbedingt um Avalanche-Dioden handeln muss, sondern dass alternativ auch andere Detektoren, z. B. Fotomultiplyer, CCD-Sensoren usw. zum Einsatz kommen können.
In Fig. 6 ist eine weitere Ausführungsform einer Nachweisvorrichtung nach der Erfindung für den Nachweis von Molekülen in hochverdünnten Probenlösungen, insbesondere Einzelmolekülen, dargestellt. Die Anordnung nach Fig. 6 umfasst ein Substrat oder einen Träger 1 50 mit einem linearen oder zweidimensionalen Array von oberflächenemittierenden Lasern, insbesondere Potenzialtopf-Lasern (quantum well laser) 1 52, die an der den Mikrokanal 1 54 begrenzenden Fläche 1 56 Licht in den Mikrokanal 1 54 emittieren. Der Mikrokanal 1 54 erstreckt sich senkrecht zur Zeichenebene in Fig. 6. Jedes Laserelement 1 52 deckt aufgrund seiner Strahlungscharakteristik mit seinem Strahlungsfeld einen bestimmten Volumenbereich des Mikrokanals 1 54 ab. Die von den Laserelementen 1 52 ausgeleuchteten Volumenelemente sollten so eng nebeneinander liegen oder ggf. einander überlappen, dass sie in ihrer Gesamtheit einen möglichst lückenlosen "Detektionsvorhang" in dem Sinne bilden, dass jedes Analytmolekül den Mikrokanal 1 54 nur unter Durchgang durch ein betreffendes Volumenelement passieren kann.
In dem Substratbereich oder Trägerbereich 1 60 sind an der der Fläche 1 56 gegenüberliegenden Kanalbegrenzungswand 1 62 Fotodetektoren 1 64 zu einem Array gruppiert, welches geometrisch im Wesentlichen dem Array von Laserelementen 1 52 entspricht, so dass einem jeweiligen Laserelement 1 52 ein jeweiliges Fotodetektorelement 1 64 gegenüberliegend zugeordnet ist. Bei den Fotodetektoren 1 64 handelt es sich vorzugsweise um integrierte Avalanche-Fotodioden.
Vorzugsweise bilden die bisher unter Bezugnahme auf Fig. 6 beschriebenen Elemente Bestandteile eines integrierten Chip-Bauteils mit (nicht gezeigten) Anschlüssen für die Energieversorgung und Steuerung der Laserelemente 1 52 und für die Energieversorgung und Signalableitung der Fotodetektorelemente 1 64.
Die von den Fotodetektoren 1 64 erhaltenen Signale können mittels einer an dem Chip-Bauteil angeschlossenen Auswerteeinheit ausgewertet werden, wobei die Auswerteeinheit vorzugsweise eine Korrelatoreinrichtung umfasst, so dass sich die in Fig. 6 gezeigte Anordnung zur Fluoreszenz- Korrelationsspektroskopie (FCS) eignet.
Die Laserelemente 1 52 stellen die Anregungslichtquellen für die Fluoreszenzanregung der den Mikrokanal 1 54 durchströmenden, zur Fluoreszenz fähigen Moleküle dar. Die Fotodetektorelemente 1 64 sind für Licht der betreffenden Fluoreszenzwellenlänge bzw. Fluoreszenzwellenlängen empfindlich. Die Anordnung kann ggf. Spektralfilter enthalten, um eine Wellenlängenselektivität der Detektorelemente 164 zu realisieren.
Die Anordnung nach Fig. 6 kann zur Durchführung des Verfahrens nach einem der Ansprüche 1 - 19 verwendet werden und darüber hinaus ganz allgemein zur Durchführung von Verfahren, bei denen es um den Nachweis von Molekülen in hochverdünnten Probenlösungen, insbesondere von Einzelmolekülen, geht.
Es sei noch auf eine mögliche Abwandlung der Vorrichtungen gemäß Fig. 4 und Fig.5 hingewiesen. Diese Abwandlung besteht darin, dass - ähnlich wie bei dem Kanal 154 in Fig. 6 - Laserelemente 152, wie sie in Fig. 5 gestrichelt gezeichnet angedeutet sind, auch unmittelbar an dem Kanal 100 vorgesehen sind. Dies können z.B. Potenzialtopf-Laserelemente sein, die in einem den Kanal 100 enthaltenden Substrat 102 integriert sind. Auf die Elemente 106 und 108 kann dann verzichtet werden.
Es sei darauf hingewiesen, dass den Vorrichtungen nach den Figuren 4-6 und den erwähnten Abwandlungen ggf. selbständige Bedeutung im Rahmen der Erfindung zukommt.

Claims

Ansprüche
1. Verfahren zum direkten Nachweis eines Analyten in einer Probeflüssigkeit, umfassend die Schritte:
(a) Inkontaktbringen der Probeflüssigkeit mit einem oder mehreren markierten analytspezifischen Rezeptoren unter Bedingungen, bei denen die Rezeptoren an den Analyten binden können, wobei bei Vorhandensein des Analyten in der Probe ein Analyt- Rezeptor-Komplex gebildet wird, der eine im Vergleich zu nicht an den Analyten gebundenen Rezeptoren höhere Anzahl von Markierungsgruppen enthält,
(b) Leiten der Probeflüssigkeit oder eines Teils davon durch einen Mikrokanal unter Bedingungen, bei denen ein vorgegebenes Flussprofil im Mikrokanal vorliegt, und
(c) Identifizieren des Analyt-Rezeptor-Komplexes während des Flusses durch den Mikrokanal.
2. Verfahren nach Anspruch 2, d a d u rc h g e ke n n z e i c h n et , dass der Analyt aus Nukleinsäuren, Peptiden, Proteinen und Proteinaggregaten ausgewählt wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass die Konzentration des Analyten in der Probeflüssigkeit < 10'9 Mol/I und insbesondere < 10"12 Mol/I beträgt.
4. Verfahren nach einem der Ansprüche 1 bis 3, d a d u rc h g e k e n n z e i c h n e t , dass zur Bestimmung eines Nukleinsäureanalyten als Rezeptoren markierte Sonden mit einer zum Analyten komplementären Sequenz verwendet werden.
5. Verfahren nach Anspruch 4, d a d u r c h g e k e n n z e i c h n et , dass mehrere unterschiedliche, vorzugsweise nicht miteinander überlappende markierte Sonden eingesetzt werden.
6. Verfahren nach Anspruch 4 oder 5, d a d u r c h g e k e n n z e i c h n et , dass die markierten Sonden in vorgefertigter Form der
Probeflüssigkeit zugesetzt werden.
7. Verfahren nach Anspruch 4 oder 5, d a d u rc h g e k e n n z e i c h n et , dass die markierten Sonden in situ erzeugt werden, indem Primer, markierte Nukleotidbausteine und eine Nukleinsäure-Polymerase der Probeflüssigkeit zugesetzt werden und in Anwesenheit des Analyten eine enzymatische Primerelongation unter Einbau der markierten
Nukleotidbausteine erfolgt.
8. Verfahren nach einem der Ansprüche 1 bis 3, d a d u rc h g e k e n n ze i c h n et , dass zur Bestimmung eines Analyten ausgewählt aus Peptiden,
Proteinen und Proteinaggregaten als Rezeptoren markierte Antikörper gegen den Analyten verwendet werden.
9. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e k e n n z e i c h n e t , dass die markierten Rezeptoren in einen molaren Uberschuss bezüglich des Analyten eingesetzt werden.
10. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e k e n n z e i c h n et , dass die Markierungsgruppen Farbstoffe, insbesondere Fluoreszenzfarbstoffe sind.
11. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n et , dass der Fluss ein hydrodynamischer Fluss ist.
12. Verfahren nach einem der vorhergehenden Ansprüche d a d u rc h g e k e n n z e i c h n e t , dass der Fluss ein parabolisches Flussprofil aufweist.
13. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e ke n n z e i c h n et , dass der Durchmesser des Mikrokanals im Bereich von 1 bis 100 /m liegt.
14. Verfahren nach einem der vorhergehenden Ansprüche, d ad u rc h g e ke n n ze i c h n et , dass die Flussgeschwindigkeit durch den Mikrokanal im Maximum im Bereich von 1 bis 50 mm/sec liegt.
15. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e k e n n z e i c h n et , dass zusätzlich eine Konzentrierung der Analytmoleküle in einem elektrischen Feld erfolgt.
16. Verfahren nach Anspruch 15, d a d u rc h g e k e n n z e i c h n et, dass das elektrische Feld in einem Reaktionsraum angelegt wird, von dem die Analytmoleküle in einen Mikrokanal geleitet werden.
17. Verfahren nach Anspruch 16, d a d u rc h g e k e n n z e i c h n e t , dass der Reaktionsraum eine zylindrische oder kegelförmige Gestalt aufweist.
18. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e k e n n z e i c h n et , dass das Identifizieren des Analyten durch Fluoreszenz- Korrelationsspektroskopie erfolgt.
19. Verfahren nach einem der vorhergehenden Ansprüche, d a d u rc h g e k e n n z e i c h n e t, dass die Messung in einem oder mehreren konfokalen Raumelementen oder/und durch Time Gating erfolgt.
20. Vorrichtung zum direkten Nachweis eines Analyten in einer Probeflüssigkeit, umfassend:
(a) einen Reaktionsraum zum Inkontaktbringen der Probeflüssigkeit mit einem oder mehreren markierten Rezeptoren, wobei bei Vorhandensein des Analyten in der Probe ein Analyt-Rezeptor-Komplex gebildet wird, der eine im
Vergleich zu nicht an den Analyten gebundenen Rezeptoren höhere Anzahl von Markierungsgruppen enthält,
(b) Mittel zum Einbrigen von Probeflüssigkeit und Rezeptoren in den Reaktionsraum, (c) einen Mikrokanal, durch den die Probeflüssigkeit oder ein Teil davon mit einem vorgegebenen Flussprofil geleitet werden kann,
21 . Verwendung der Vorrichtung nach Anspruch 20 zur Durchführung dieses Verfahrens nach einem der Ansprüche 1 bis 1 9.
22. Vorrichtung zum Nachweis von fluoreszierenden Molekülen in einer einen Mikrokanal durchströmenden Probenflüssigkeit, mit einem Laser ( 1 06) als Fluoreszenz-Anregungslichtquelle für die Moleküle, einer optischen Anordnung ( 1 1 4, 1 1 6, 1 20, 1 22) zur Leitung und Fokussierung von Laserlicht des Lasers ( 106) auf einen Fokalbereich des Mikrokanals ( 1 00) und zur konfokalen Abbildung des Fokalbereichs auf eine Fotodetektoranordnung ( 1 1 8) zur Erfassung von Fluoreszenzlicht, welches im Fokalbereich von einem oder ggf. mehreren optisch angeregten Molekülen emittiert wurde, dadurch gekennzeichnet, dass die optische Anordnung ein Beugungselement ( 1 08) oder phasenmodulierendes Element ( 108) im Strahlengang des Lasers ( 1 06) aufweist, welches ggf. in Kombination mit einem oder mehreren optischen Abbildungselementen dazu eingerichtet ist, aus dem Laserstrahl des Lasers ( 106) ein Beugungsmuster in Form eines linearen oder zweidimensionalen Arrays von Fokalbereichen ( 1 1 2) in dem Mikrokanal zu erzeugen, wobei die optische Anordnung dazu eingerichtet ist, jeden Fokalbereich (1 1 2) konfokal für die Fluoreszenzdetektion durch die Fotodetektoranordnung ( 1 1 8) abzubilden.
23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, dass die Fotodetektoranordnung ( 1 1 8) an eine Auswerteeinrichtung ( 1 20) angeschlossen ist, die eine Korrelatoreinrichtung zur fluoreszenz- korrelationsspektroskopischen Auswertung der Fotodetektorsignale aufweist. korrelationsspektroskopischen Auswertung der Fotodetektorsignale aufweist.
24. Vorrichtung zum Nachweis von fluoreszierenden Molekülen in einer einen Mikrokanal (1 54) durchströmenden Probenflüssigkeit, gekennzeichnet durch zwei den Mikrokanal 1 54 an einander gegenüberliegenden Seiten begrenzenden Wänden ( 1 56, 1 62), von denen eine ein Array von vorzugsweise integrierten, in den Mikrokanal ( 1 54) emittierenden Laserelementen ( 1 52) als Fluoreszenz-Anregungslichtquellen aufweist und von denen die andere ein Array von vorzugsweise integrierten, den Laserelementen ( 1 52) jeweilsgegenüberliegend zugeordneten Fotodetektorelementen ( 1 64) als Fluoreszenzlichtdetektoren aufweisen.
25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, dass die Laserelemente ( 1 52) Potenzialtopf-Laserelemente (quantum well laser) sind.
26. Vorrichtung nach Anspruch 24 oder 25, dadurch gekennzeichnet, dass die Fotodetektorelemente ( 1 64) Avalanche-Dioden sind.
EP01945119A 2000-05-12 2001-05-11 Direkter nachweis von einzelmolekülen Withdrawn EP1281084A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10023423A DE10023423B4 (de) 2000-05-12 2000-05-12 Direkter Nachweis von Einzelmolekülen
DE10023423 2000-05-12
PCT/EP2001/005408 WO2001086285A2 (de) 2000-05-12 2001-05-11 Direkter nachweis von einzelmolekülen

Publications (1)

Publication Number Publication Date
EP1281084A2 true EP1281084A2 (de) 2003-02-05

Family

ID=7641878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01945119A Withdrawn EP1281084A2 (de) 2000-05-12 2001-05-11 Direkter nachweis von einzelmolekülen

Country Status (5)

Country Link
US (1) US20040023229A1 (de)
EP (1) EP1281084A2 (de)
AU (1) AU2001267428A1 (de)
DE (1) DE10023423B4 (de)
WO (1) WO2001086285A2 (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10031028B4 (de) * 2000-06-26 2008-09-04 Gnothis Holding Sa Verfahren zur Selektion von Partikeln
DE10212960A1 (de) * 2002-03-22 2003-10-23 Gnothis Holding Sa Ecublens Verwendung von Oxazin-Farbstoffen als Markierungsgruppen für die Einzelmolekülanalyse
US7122799B2 (en) * 2003-12-18 2006-10-17 Palo Alto Research Center Incorporated LED or laser enabled real-time PCR system and spectrophotometer
US9040305B2 (en) 2004-09-28 2015-05-26 Singulex, Inc. Method of analysis for determining a specific protein in blood samples using fluorescence spectrometry
US8685711B2 (en) 2004-09-28 2014-04-01 Singulex, Inc. Methods and compositions for highly sensitive detection of molecules
US8232091B2 (en) 2006-05-17 2012-07-31 California Institute Of Technology Thermal cycling system
US20090069743A1 (en) * 2007-09-11 2009-03-12 Baxter International Inc. Infusion therapy sensor system
US7914734B2 (en) 2007-12-19 2011-03-29 Singulex, Inc. Scanning analyzer for single molecule detection and methods of use
US9068947B2 (en) 2008-12-03 2015-06-30 Pcr Max Limited Optical system for multiple reactions
CN202830041U (zh) * 2009-04-03 2013-03-27 Illumina公司 用于加热生物样本的设备
WO2011031377A1 (en) * 2009-09-09 2011-03-17 Helixis, Inc. Optical system for multiple reactions
AT508806B1 (de) * 2009-10-07 2013-06-15 Onkotec Gmbh Analysegerät und verfahren
DE102010049212A1 (de) * 2010-10-21 2012-04-26 Rudolf Grosskopf Simultane Fluoreszenzkorrelationsspektroskopie (sFCS)
KR102560611B1 (ko) * 2016-08-25 2023-07-27 엘지전자 주식회사 디스플레이 디바이스
EP3330763A1 (de) * 2016-12-05 2018-06-06 Gnothis AB Vorrichtung zur charakterisierung lumineszierender entitäten

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5770029A (en) * 1996-07-30 1998-06-23 Soane Biosciences Integrated electrophoretic microdevices
US6060598A (en) * 1990-05-15 2000-05-09 Hyperion, Inc. Fluorescence immunoassays using fluorescent dyes free of aggregation and serum binding
JP2683172B2 (ja) * 1991-10-01 1997-11-26 キヤノン株式会社 検体測定方法及び検体測定装置
US5324633A (en) * 1991-11-22 1994-06-28 Affymax Technologies N.V. Method and apparatus for measuring binding affinity
FI925064A (fi) * 1992-11-09 1994-05-10 Erkki Juhani Soini Metod och apparatur foer bioaffinitetsbestaemningar
AU5884394A (en) * 1993-01-18 1994-08-15 Evotec Biosystems Gmbh Method and device for assessing the suitability of biopolymers
DE19508366C2 (de) * 1995-03-10 1998-01-29 Evotec Biosystems Gmbh Verfahren zum direkten Nachweisen weniger Nucleinsäurestränge
WO1997019193A2 (en) * 1995-11-21 1997-05-29 Yale University Unimolecular segment amplification and detection
US6255048B1 (en) * 1996-06-10 2001-07-03 Laboratory Of Molecular Biophotonics Highly sensitive fluoroassay
US5699157A (en) * 1996-07-16 1997-12-16 Caliper Technologies Corp. Fourier detection of species migrating in a microchannel
US6361944B1 (en) * 1996-07-29 2002-03-26 Nanosphere, Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US6120666A (en) * 1996-09-26 2000-09-19 Ut-Battelle, Llc Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
DE69825601T2 (de) * 1997-02-12 2005-04-28 Chan, Eugene Y, Brookline Verfahren zur analyse von polymeren
EP0953837A1 (de) * 1998-05-01 1999-11-03 F. Hoffmann-La Roche Ag Fluoreszenzlichtmessgerät und dieses verwendende Vorrichtung
WO1999064840A1 (en) * 1998-06-09 1999-12-16 Caliper Technologies Corp. Fluorescent polarization detection in microfluidic systems
US7097974B1 (en) * 1998-08-28 2006-08-29 Febit Biotech Gmbh Support for a method for determining an analyte and a method for producing the support
US6972198B2 (en) * 1999-02-26 2005-12-06 Cyclacel, Ltd. Methods and compositions using protein binding partners
US6106710A (en) * 1999-09-10 2000-08-22 Agilent Technologies, Inc. Fraction collection delay calibration for liquid chromatography
US6509161B1 (en) * 2000-02-29 2003-01-21 Gentronix Limited Green fluorescent protein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0186285A2 *

Also Published As

Publication number Publication date
DE10023423B4 (de) 2009-03-05
WO2001086285A3 (de) 2002-04-11
WO2001086285A2 (de) 2001-11-15
AU2001267428A1 (en) 2001-11-20
DE10023423A1 (de) 2001-11-15
US20040023229A1 (en) 2004-02-05

Similar Documents

Publication Publication Date Title
DE69736633T2 (de) Nachweis von sich in einem mikrokanal bewegenden substanzen mittels fourieranalyse
DE10031028B4 (de) Verfahren zur Selektion von Partikeln
DE69333502T2 (de) Up-converting Reporter-Molekül für biologische und andere Testverfahren unter Verwendung von Laseranregungstechniken
DE10023423B4 (de) Direkter Nachweis von Einzelmolekülen
DE60034315T2 (de) Chemisches und biochemisches nachweisverfahren und vorrichtung
EP0857300A1 (de) System zur unterscheidung fluoreszierender molekülgruppen durch zeitaufgelöste fluoreszenzmessung
DE10133844A1 (de) Verfahren und Vorrichtung zur Detektion von Analyten
WO2002056023A1 (de) Optischer sensor und sensorfeld
DE19725050A1 (de) Anordnung zur Detektion biochemischer oder chemischer Substanzen mittels Fluoreszenzlichtanregung und Verfahren zu dessen Herstellung
DE102004047953A1 (de) Selektion von Partikeln im laminaren Fluss
DE10142691A1 (de) Verfahren zum Nachweis biochemischer Reaktionen sowie eine Vorrichtung hierfür
EP0979402B1 (de) Verfahren zur optischen detektion von analytmolekülen in einem natürlichen biologischen medium
DE60224684T2 (de) Energiemessung von photonen von biologischen assays
DE4301005A1 (de) Verfahren und Vorrichtung zur Bewertung der Fitness von Biopolymeren
DE10111420A1 (de) Bestimmung von Analyten durch Fluoreszenz-Korrelationsspektroskopie
DE19822452C2 (de) Verfahren zur Bestimmung der Dichte lumineszierender Moleküle an einer Oberfläche, Verwendung des Verfahrens zur Bestimmung von Adsorptions- und Bindungskinetiken und Gleichgewichts- und Bindungskonstanten von Molekülen an einer Oberfläche durch Lumineszenz-Messungen und Vorrichtung zur Durchführung des Verfahrens
WO2006111325A1 (de) Mikrooptisches detektionssystem und verfahren zur bestimmung temperaturabhängiger parameter von analyten
DE112015005476B4 (de) Verfahren und system zur detektion und unterscheidung zwischen mindestens zwei farbstoffen
EP1216310A1 (de) Affinitätssensor zum nachweis biologischer und/oder chemischer spezies und dessen verwendung
DE19947616C2 (de) Verfahren zur Bestimmung von Substanzen, wie z.B. DNA-Sequenzen, in einer Probe und Vorrichtung zur Durchführung des Verfahrens
DE102005056639A1 (de) Verfahren, Vorrichtung und Kit zur Untersuchung von Makromolekülen in einer Probe
DE10221115B4 (de) Vorrichtung und Verfahren zur Bestimmung von in Proben enthaltenen chemischen oder biochemischen Partnern allgemeiner Rezeptor-Ligand-Systeme
WO2001025759A1 (de) Verfahren und einrichtung zur bestimmung von substanzen, wie z.b. dna-sequenzen, in einer probe
DE102019200929A1 (de) Verfahren und Vorrichtung zum optischen Erfassen einer Länge eines Makromoleküls
DE102020134261A1 (de) Vorrichtung und Verfahren zur Untersuchung von Desoxyribonukleinsäure-Fragmenten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021112

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20031209

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101201