EP1277751A1 - Phénylcéto-énols 2- et 2,5-substitués - Google Patents

Phénylcéto-énols 2- et 2,5-substitués Download PDF

Info

Publication number
EP1277751A1
EP1277751A1 EP02023659A EP02023659A EP1277751A1 EP 1277751 A1 EP1277751 A1 EP 1277751A1 EP 02023659 A EP02023659 A EP 02023659A EP 02023659 A EP02023659 A EP 02023659A EP 1277751 A1 EP1277751 A1 EP 1277751A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
oder
formula
alkoxy
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02023659A
Other languages
German (de)
English (en)
Other versions
EP1277751B1 (fr
Inventor
Folker Dr. Lieb
Reiner Dr. Fischer
Thomas Dr. Bretschneider
Michael Dr. Ruther
Alan Dr. Graff
Udo Dr. Schneider
Christoph Dr. Erdelen
Ulrike Dr. Wachendorff-Neumann
Wolfram Dr. Andersch
Andreas Dr. Turberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer CropScience AG filed Critical Bayer CropScience AG
Priority claimed from EP97934523A external-priority patent/EP0915846B1/fr
Publication of EP1277751A1 publication Critical patent/EP1277751A1/fr
Application granted granted Critical
Publication of EP1277751B1 publication Critical patent/EP1277751B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/382-Pyrrolones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/46Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom
    • C07C233/51Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by an acyclic carbon atom having the carbon atom of the carboxamide group bound to an acyclic carbon atom of a carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/45Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups
    • C07C233/52Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by carboxyl groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/36Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/24Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
    • C07C255/29Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups and acylated amino groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/34Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings containing more than one carboxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/52Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen
    • C07C57/58Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/76Unsaturated compounds containing keto groups
    • C07C59/88Unsaturated compounds containing keto groups containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/757Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/54Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings condensed with carbocyclic rings or ring systems
    • C07D231/56Benzopyrazoles; Hydrogenated benzopyrazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/94Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom spiro-condensed with carbocyclic rings or ring systems, e.g. griseofulvins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/08Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D309/14Nitrogen atoms not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/34Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D309/36Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
    • C07D309/38Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms one oxygen atom in position 2 or 4, e.g. pyrones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D313/00Heterocyclic compounds containing rings of more than six members having one oxygen atom as the only ring hetero atom
    • C07D313/02Seven-membered rings
    • C07D313/04Seven-membered rings not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the invention relates to new phenyl-substituted cyclic ketoenols, several processes and intermediates for their manufacture and their use as Pesticides.
  • 1H-Arylpyrrolidinedione derivatives are also known (EP-A-456 063, EP-A-521 334, EP-A-596 298, EP-A-613 884, EP-A-613 885, DE 44 40 594, WO 94/01 997, WO 95/01 358, WO 95/26 954, WO 95/20 572, EP-A-0 668 267, WO 96/25 395, WO 96/35 664, WO 97/01 535 and WO 97/02 243).
  • 3-aryl- ⁇ 3 -dihydrofuranone derivatives with herbicidal, acaricidal and insecticidal properties from EP-A-528 156, EP-A 0 647 637, WO 95/26345, WO 96/20 196, WO 96/25 395 , WO 96/35 664, WO 97/01 535 and WO 97/02 243.
  • Phenyl-pyrone derivatives substituted in the phenyl ring with herbicidal, acaricidal and insecticidal properties are described in EP-A-588 137, WO 96/25 395, WO 96/35 664, WO 97/01 535 and WO 97/02 243.
  • the compounds of formula (I) can, depending on the type of Substituents, as geometric and / or optical isomers or isomer mixtures, are present in different compositions, possibly in the usual Way can be separated. Both the pure isomers and the Mixtures of isomers, their preparation and use and those containing them Agents are the subject of the present invention. The following is the simplicity for the sake of however always spoken of compounds of formula (I), although both the pure compounds and optionally mixtures with different ones Shares in isomeric compounds are meant.
  • the compounds of the formula (I-4) can exist in the two isomeric forms of the formulas (I-4) a and (I-4) b , which is to be expressed by the dashed line in formula (I-4).
  • the compounds of the formulas (I-4) a and (I-4) b can be present both as mixtures and in the form of the pure isomers. Mixtures of the compounds of the formulas (I-4) a and (I-4) b can optionally be separated in a manner known per se by physical methods, for example by chromatographic methods.
  • the new compounds of formula (I) are very good effectiveness as a pesticide, preferably as an insecticide and have acaricides and, moreover, very well tolerated by plants, in particular towards crops.
  • Saturated or unsaturated hydrocarbon radicals such as alkyl or alkenyl can also in connection with heteroatoms, e.g. in alkoxy, if possible, each be straight or branched.
  • Optionally substituted radicals can be mono- or polysubstituted, in the case of multiple substitutions, the substituents are the same or different can.
  • the compounds of formula (XXIII) are new, except for methyl 2,5-dichlorophenylacetate (CAS 96129-66-7) and methyl 5-chloro-2-methoxyphenylacetate (CAS 26939-01-5), they can be made in principle Establish process.
  • the substituted cyclic aminocarboxylic acids of the formula (XXIa), in which A and B form a ring, are generally obtainable after the Bucherer-Bergs synthesis or after the Strecker synthesis and are obtained in different isomer forms.
  • the isomers
  • the isomers in which the amino group and the radicals R are equatorial.
  • benzylthio-carboxylic acid halides of the formula (XXX) are known and / or can be prepared by known processes (J. Antibiotics (1983), 26 , 1589).
  • Process (A) is characterized in that compounds of the formula (II), in which A, B, X, Z and R 8 have the meanings given above, are subjected to intramolecular condensation in the presence of a diluent and in the presence of a base.
  • organic solvents which are inert to the reactants become.
  • Hydrocarbons such as toluene and xylene are preferably usable, furthermore ethers, such as dibutyl ether, tetrahydrofuran, dioxane, glycol dimethyl ether and Diglycol dimethyl ether, also polar solvents, such as dimethyl sulfoxide, Sulfolane, dimethylformamide and N-methyl-pyrrolidone, and alcohols such as methanol, Ethanol, propanol, iso-propanol, butanol, iso-butanol and tert-butanol.
  • All the usual proton acceptors can be used as the base (deprotonating agent) when carrying out process (A) according to the invention.
  • Alkali metals such as sodium or potassium can also be used.
  • Alkali metal and alkaline earth metal amides and hydrides such as sodium amide, sodium hydride and calcium hydride, and also alkali metal alcoholates, such as sodium methylate, sodium ethylate and potassium tert-butoxide, can also be used.
  • the reaction temperature can be carried out when carrying out the process according to the invention (A) can be varied within a wide range. In general one works at temperatures between 0 ° C and 250 ° C, preferably between 50 ° C and 150 ° C.
  • Process (A) according to the invention is generally carried out under atmospheric pressure carried out.
  • reaction component is used of formula (II) and the deprotonating base in general in equimolar to about double equimolar amounts. However, it is also possible one or the other component in a large excess (up to 3 moles) use.
  • Process (B) is characterized in that compounds of the formula (III), in which A, B, X, Z and R 8 have the meanings given above, are condensed intramolecularly in the presence of a diluent and in the presence of a base.
  • organic solvents which are inert to the reactants become.
  • Hydrocarbons such as toluene and xylene are preferably usable, furthermore ethers, such as dibutyl ether, tetrahydrofuran, dioxane, glycol dimethyl ether and Diglycol dimethyl ether, also polar solvents, such as dimethyl sulfoxide, Sulfolane, dimethylformamide and N-methyl-pyrrolidone.
  • polar solvents such as dimethyl sulfoxide, Sulfolane, dimethylformamide and N-methyl-pyrrolidone.
  • alcohols such as methanol, ethanol, propanol, iso-propanol, butanol, iso-butanol and tert-butanol can be used.
  • All conventional proton acceptors can be used as the base (deprotonating agent) when carrying out process (B) according to the invention.
  • Alkali metals such as sodium or potassium can also be used.
  • Alkali metal and alkaline earth metal amides and hydrides such as sodium amide, sodium hydride and calcium hydride, and also alkali metal alcoholates, such as sodium methylate, sodium ethylate and potassium tert-butoxide, can also be used.
  • the reaction temperature can be carried out when carrying out the process according to the invention (B) can be varied within a wide range. In general one works at temperatures between 0 ° C and 250 ° C, preferably between 50 ° C and 150 ° C.
  • Process (B) according to the invention is generally carried out under normal pressure carried out.
  • reaction components are used of the formula (III) and the deprotonating bases in general in approximately equimolar amounts. However, it is also possible to use one or other component in a larger excess (up to 3 moles) to use.
  • Process (C) is characterized in that compounds of the formula (IV) in which A, B, W, X, Z and R 8 have the meaning given above are cyclized intramolecularly in the presence of an acid and, if appropriate, in the presence of a diluent.
  • organic solvents which are inert to the reactants become.
  • Hydrocarbons such as toluene and xylene are preferably usable, halogenated hydrocarbons such as dichloromethane, chloroform, ethylene chloride, Chlorobenzene, dichlorobenzene, also polar solvents, such as dimethyl sulfoxide, Sulfolane, dimethylformamide and N-methyl-pyrrolidone.
  • Farther alcohols such as methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol can be used.
  • the acid used can also serve as a diluent.
  • inorganic acids can be used as acid in process (C) according to the invention and organic acids are used, e.g. Hydrogen halides, Sulfuric acid, alkyl, aryl and haloalkyl sulfonic acids, in particular halogenated alkyl carboxylic acids such as e.g. Trifluoroacetic acid used.
  • organic acids e.g. Hydrogen halides, Sulfuric acid, alkyl, aryl and haloalkyl sulfonic acids, in particular halogenated alkyl carboxylic acids such as e.g. Trifluoroacetic acid used.
  • the reaction temperature can be carried out when carrying out the process according to the invention (C) can be varied within a wide range. In general one works at temperatures between 0 ° C and 250 ° C, preferably between 50 ° C and 150 ° C.
  • Process (C) according to the invention is generally carried out under atmospheric pressure carried out.
  • Process (D) is characterized in that carbonyl compounds of formula (V) or their silylenol ethers of formula (Va) with Ketonic acid halides of the formula (VI), if appropriate in the presence of a diluent and optionally in the presence of an acid acceptor.
  • organic solvents which are inert to the reactants become.
  • Hydrocarbons such as o-dichlorobenzene
  • Acid acceptors that can be used when carrying out the process according to the invention (D) all common acid acceptors can be used.
  • Tertiary amines such as triethylamine, pyridine, diazabicyclooctane can preferably be used (DABCO), diazabicycloundecene (DBU), diazabicyclonones (DBN), Hunig base or N, N-dimethyl-aniline.
  • DABCO diazabicycloundecene
  • DBN diazabicyclonones
  • Hunig base or N, N-dimethyl-aniline.
  • reaction temperature can be carried out when carrying out the process according to the invention
  • Process (D) can be varied within a wide range. Conveniently, one works at temperatures between 0 ° C and 250 ° C, preferably between 50 ° C and 220 ° C.
  • Process (D) according to the invention is preferably carried out under normal pressure carried out.
  • the process (E ⁇ ) is characterized in that compounds of Formulas (I-1-a) to (I-4-a) each with carboxylic acid halides of the formula (VII) optionally in the presence of a diluent and optionally in In the presence of an acid binder.
  • solvents inert to the acid halides are used.
  • Hydrocarbons such as gasoline, benzene, toluene, xylene and Tetralin, also halogenated hydrocarbons, such as methylene chloride, chloroform, Carbon tetrachloride, chlorobenzene and o-dichlorobenzene, also ketones, such as Acetone and methyl isopropyl ketone, furthermore ethers, such as diethyl ether, tetrahydrofuran and dioxane, moreover carboxylic acid esters, such as ethyl acetate, and also strongly polar solvents, such as dimethylformamide, dimethyl sulfoxide and Sulfolane. If the hydrolysis stability of the acid halide allows, the Implementation can also be carried out in the presence of water.
  • Acid binders used in the reaction according to the invention all usual acid acceptors into consideration.
  • tertiary amines such as triethylamine, pyridine, diazabicyclooctane (DABCO), Diazabicycloundecene (DBU), diazabicyclonones (DBN), Hünig base and N, N-dimethyl-aniline, also alkaline earth metal oxides, such as magnesium and calcium oxide, also alkali and alkaline earth metal carbonates, such as sodium carbonate, potassium carbonate and calcium carbonate and alkali hydroxides such as sodium hydroxide and Potassium hydroxide.
  • DABCO diazabicyclooctane
  • DBU Diazabicycloundecene
  • DBN diazabicyclonones
  • Hünig base and N N-dimethyl-aniline
  • alkaline earth metal oxides such as magnesium and calcium oxide
  • alkali and alkaline earth metal carbonates such as sodium carbonate
  • reaction temperature in the process (E ⁇ ) according to the invention can be varied within a wide range. Generally you work at temperatures between -20 ° C and + 150 ° C, preferably between 0 ° C and 100 ° C.
  • the starting materials of the formulas (I-1-a) to (I-4-a) and the carboxylic acid halide Formula (VII) is generally used in approximately equivalent amounts. However, it is also possible to enlarge the carboxylic acid halide Use excess (up to 5 moles). The processing takes place according to usual Methods.
  • the process (Eß) is characterized in that compounds of Formulas (I-1-a) to (I-4-a) each with carboxylic anhydrides of the formula (VIII) optionally in the presence of a diluent and optionally in the presence an acid binder.
  • Preferred diluents in the process according to the invention are (ESS) those diluents are used that are also in use of acid halides are preferred. Furthermore can also be used in excess as a carboxylic acid anhydride Thinners act.
  • Possible acid binders added in the process (Eß) preferably those acid binders in question that are also in use of acid halides are preferred.
  • the reaction temperature can be within the process (Eß) according to the invention can be varied over a wide range. Generally one works at Temperatures between -20 ° C and + 150 ° C, preferably between 0 ° C and 100 ° C.
  • the starting materials of the formulas (I-1-a) to (I-4-a) and the carboxylic anhydride of the formula (VIII) is generally used in approximately equivalent amounts. However, it is also possible to use a large excess of the carboxylic anhydride (up to 5 moles). The processing takes place according to usual methods.
  • the general procedure is to use diluents and in excess existing carboxylic acid anhydride and the resulting carboxylic acid by distillation or by washing with an organic solvent or with water away.
  • the process (F) is characterized in that compounds of the formulas (I-1-a) to (I-4-a) each with chloroformate or chloroformate thiolester of formula (IX) optionally in the presence of a diluent and if appropriate in the presence of an acid binder.
  • Acid binders in process (F) come as acid binders in process (F) according to the invention usual acid acceptors into consideration.
  • Tertiary are preferably used Amines, such as triethylamine, pyridine, DABCO, DBU, DBA, Hünig base and N, N-dimethyl-aniline, also alkaline earth metal oxides, such as magnesium and calcium oxide, also alkali and alkaline earth metal carbonates, such as sodium carbonate, potassium carbonate and calcium carbonate and alkali hydroxides such as sodium hydroxide and Potassium hydroxide.
  • Amines such as triethylamine, pyridine, DABCO, DBU, DBA, Hünig base and N, N-dimethyl-aniline
  • alkaline earth metal oxides such as magnesium and calcium oxide
  • alkali and alkaline earth metal carbonates such as sodium carbonate, potassium carbonate and calcium carbonate and alkali hydroxides such as sodium hydroxide and Potassium hydroxide.
  • Hydrocarbons are preferably usable, such as gasoline, benzene, toluene, xylene and tetralin, as well as halogenated hydrocarbons, such as methylene chloride, chloroform, carbon tetrachloride, chlorobenzene and o-dichlorobenzene, as well as ketones such as acetone and methyl isopropyl ketone Ethers, such as diethyl ether, tetrahydrofuran and dioxane, in addition carboxylic acid esters, such as ethyl acetate, also nitriles such as acetonitrile and also strongly polar Solvents such as dimethylformamide, dimethyl sulfoxide and sulfolane.
  • Hydrocarbons are preferably usable, such as gasoline, benzene, toluene, xylene and tetralin, as well as halogenated hydrocarbons, such as methylene chloride, chlor
  • the reaction temperature can be carried out when carrying out the process according to the invention (F) can be varied within a wide range.
  • the reaction temperature is generally between -20 ° C and + 100 ° C, preferably between 0 ° C and 50 ° C.
  • Process (F) according to the invention is generally carried out under normal pressure carried out.
  • the starting materials of the formulas (I-1-a) to (I-4-a) and the corresponding chloroformate or chloroformic acid thioester of the formula (IX) in general in each case used in approximately equivalent amounts. However, it is also possible one or the other component in a large excess (up to 2 moles) use.
  • the processing takes place according to usual methods. In general the procedure is such that one removes precipitated salts and the remaining reaction mixture by removing the diluent.
  • Process (G) is characterized in that Compounds of the formulas (I-1-a) to (I-4-a) each with compounds of the formula (X) in the presence of a diluent and optionally in the presence an acid binder.
  • inert polar come as optionally added diluents organic solvents in question, such as ethers, amides, sulfones, sulfoxides, but also halogen alkanes.
  • strong deprotonating agents such as.
  • Sodium hydride or potassium tert-butylate the enolate salt of the compounds (I-1-a) to (I-4-a) can be based on the further addition of acid binders to be dispensed with.
  • acid binders are used, the usual inorganic or organic ones are used Bases in question, examples include sodium hydroxide, sodium carbonate, Potassium carbonate, pyridine and triethylamine listed.
  • the reaction can be carried out at normal pressure or under elevated pressure are, preferably carried out at normal pressure.
  • the processing takes place according to usual methods.
  • Process (H) is characterized in that compounds of the formulas (I-1-a) to (I-4-a) each with sulfonic acid chlorides Formula (XII) if appropriate in the presence of a diluent and if appropriate reacted in the presence of an acid binder.
  • Process (H) is preferably carried out in the presence of a diluent carried out.
  • inert polar organic solvents can be used as diluents Question like ethers, amides, ketones, carboxylic acid esters, nitriles, sulfones, sulfoxides or halogenated hydrocarbons such as methylene chloride.
  • Enolate salt of the compounds (I-1-a) to (I-4-a) can be added to the further acid binders can be dispensed with.
  • strong Deprotonating agents such as sodium hydride or potassium tertiary butoxide
  • Enolate salt of the compounds (I-1-a) to (I-4-a) can be added to the further acid binders can be dispensed with.
  • acid binders are used, the usual inorganic or organic ones are used Bases in question, examples include sodium hydroxide, sodium carbonate, potassium carbonate, Pyridine and triethylamine listed.
  • the reaction can be carried out at normal pressure or under elevated pressure are, preferably carried out at normal pressure.
  • the processing takes place according to usual methods.
  • Process (I) is characterized in that Compounds of the formulas (I-1-a) to (I-4-a) each with phosphorus compounds of formula (XIII) optionally in the presence of a diluent and optionally reacted in the presence of an acid binder.
  • the manufacturing process (I) uses to obtain compounds Formulas (I-1-e) to (I-4-e) to 1 mol of the compounds (I-1-a) to (I-4-a), 1 to 2, preferably 1 to 1.3 mol of the phosphorus compound of the formula (XIII) at temperatures between -40 ° C and 150 ° C, preferably between -10 and 110 ° C.
  • Process (I) is preferably carried out in the presence of a diluent carried out.
  • Customary inorganic or organic bases in question such as hydroxides, carbonates or amines.
  • exemplary be sodium hydroxide, sodium carbonate, potassium carbonate, pyridine and triethylamine listed.
  • the reaction can be carried out at normal pressure or under elevated pressure are, preferably carried out at normal pressure.
  • the processing takes place according to the usual methods of organic chemistry.
  • the end products will be preferably by crystallization, chromatographic purification or by so-called “distillation", i.e. Removal of volatiles in vacuo cleaned.
  • Process (J) is characterized in that compounds of the formulas (I-1-a) to (I-4-a) each with metal hydroxides or metal alkoxides of the formula (XIV) or amines of the formula (XV), optionally in the presence of a diluent, implements.
  • Preferred diluents in process (J) according to the invention are Ethers such as tetrahydrofuran, dioxane, diethyl ether or alcohols such as Methanol, ethanol, isopropanol, but also water can be used.
  • the invention Process (J) is generally carried out under normal pressure.
  • the reaction temperature is generally between -20 ° C and 100 ° C, preferably between 0 ° C and 50 ° C.
  • Process (K) is characterized in that Compounds of formulas (I-1-a) to (I-4-a) each with (K ⁇ ) compounds of Formula (XVI) if appropriate in the presence of a diluent and if appropriate in the presence of a catalyst or (K ⁇ ) with compounds of the formula (XVII) if appropriate in the presence of a diluent and if appropriate reacted in the presence of an acid binder.
  • Process (K ⁇ ) is preferably carried out in the presence of a diluent carried out.
  • inert organic solvents are suitable as diluents, such as aromatic hydrocarbons, halogenated hydrocarbons, ethers, Amides, nitriles, sulfones or sulfoxides.
  • catalysts can be added to accelerate the reaction become.
  • organotin compounds such as. Dibutyltin dilaurate can be used.
  • inert polar come as optionally added diluents organic solvents in question such as ethers, carboxylic acid esters, nitriles, ketones, Amides, sulfones, sulfoxides or halogenated hydrocarbons.
  • Is made in a preferred embodiment by adding strong deprotonating agents (such as sodium hydride or potassium tertiary butoxide) the enolate salt of the compound (I-1-a) to (I-4-a), can be further added by Acid binders can be dispensed with.
  • strong deprotonating agents such as sodium hydride or potassium tertiary butoxide
  • acid binders are used, the usual inorganic or organic ones are used Bases in question, examples include sodium hydroxide, sodium carbonate, Potassium carbonate, triethylamine or pyridine called.
  • the reaction can be carried out at normal pressure or under elevated pressure are, preferably carried out at normal pressure.
  • the processing takes place according to usual methods.
  • the active ingredients are suitable for controlling animal pests, preferably Arthropods and nematodes, especially insects and arachnids, those in agriculture, in forestry, in the protection of stocks and materials and on occur in the hygiene sector. They are normally sensitive and resistant Species as well as against all or individual stages of development. To the above Pests mentioned include:
  • Isopoda e.g. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
  • Diplopoda for example, Blaniulus guttulatus
  • Chilopoda for example, Geophilus carpophagus and Scutigera spec.
  • Symphyla for example, Scutigerella immaculata.
  • Thysanura for example Lepisma saccharina.
  • Collembola for example Onychiurus armatus.
  • Orthoptera e.g. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.
  • Anoplura for example Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp ..
  • Mallophaga for example Trichodectes spp., Damalinea spp.
  • Thysanoptera for example Hercinothrips femoralis, Thrips tabaci.
  • the Heteroptera for example Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
  • Lepidoptera e.g. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp.
  • Hymenoptera e.g. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
  • Siphonaptera for example Xenopsylla cheopis, Ceratophyllus spp ..
  • Arachnida for example Scorpio maurus, Latrodectus mactans.
  • Acarina e.g. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp ..
  • the active compounds according to the invention are notable for high insecticidal and acaricidal effectiveness.
  • Insects such as against the larvae of the horseradish leaf beetle (Phaedon cochleariae) or against the larvae of the green rice leafhopper (Nephotettix cincticeps) or against the caterpillars of the cockroach (Plutella maculipennis) use (see also the application examples).
  • the active ingredients can be converted into the usual formulations, such as Solutions, emulsions, wettable powders, suspensions, powders, dusts, pastes, soluble powders, granules, suspension emulsion concentrates, impregnated with active ingredients Natural and synthetic substances as well as very fine encapsulation in polymers Substances.
  • formulations are made in a known manner, e.g. by mixing the active ingredients with extenders, i.e. liquid solvents and / or solid carriers, optionally using surface-active agents Agents, ie emulsifiers and / or dispersants and / or foam generators Means.
  • extenders i.e. liquid solvents and / or solid carriers
  • surface-active agents Agents ie emulsifiers and / or dispersants and / or foam generators Means.
  • organic Solvents are used as auxiliary solvents.
  • aromatics such as xylene, toluene, or alkylnaphthalenes
  • chlorinated aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylenes or methylene chloride
  • aliphatic hydrocarbons such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols, such as butanol or glycol, and their ethers and esters, Ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents, such as dimethylformamide and dimethyl sulfoxide, and Water.
  • solid carriers e.g. ammonium salts and natural rock powders, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock powders, such as highly disperse silica, aluminum oxide and silicates, as solid carriers for granulates are possible: e.g.
  • suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • suitable emulsifiers and / or foam-generating agents are: for example nonionic and anionic emulsifiers, such as polyoxyethylene fatty acid esters, polyoxyethylene fatty alcohol ethers, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates and protein hydrolyzates;
  • dispersants for example lignin sulfite waste liquor and methyl cellulose.
  • adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex-shaped polymers are used such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural Phospholipids such as cephalins and lecithins and synthetic phospholipids.
  • Other additives can be mineral and vegetable oils.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, Ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, Copper, cobalt, molybdenum and zinc can be used.
  • the formulations generally contain between 0.1 and 95% by weight Active ingredient, preferably between 0.5 and 90%.
  • the active ingredient according to the invention can be in its commercially available formulations and in the use forms prepared from these formulations in a mixture with other active ingredients, such as insecticides, attractants, sterilants, Acaricides, nematicides, fungicides, growth regulators or herbicides available.
  • Insecticides include, for example, phosphoric acid esters, Carbamates, carboxylic acid esters, chlorinated hydrocarbons, phenylureas, substances produced by microorganisms
  • anilides e.g. Diflufenican and Propanil
  • Aryl carboxylic acids such as e.g. Dichloropicolinic acid, dicamba and pidoram
  • Aryloxyalkanoic acids e.g. 2.4 D, 2.4 DB, 2.4 DP, fluroxypyr, MCPA, MCPP and tridopyr
  • Aryloxy phenoxyalkanoic such as. Diclofop-methyl, fenoxaprop-ethyl, fluazifop-butyl, Haloxyfop-methyl and quizalofop-ethyl
  • Azinones e.g.
  • Chloridazon and norflurazon Carbamates, e.g. Chlorpropham, desmedipham, phenmedipham and propham; Chloroacetanilides, e.g. Alachlor, acetochlor, butachlor, Metazachlor, metolachlor, pretilachlor and propachlor; Dinitroanilines, e.g. Oryzalin, pendimethalin and trifluralin; Diphenyl ethers, e.g. acifluorfen, Bifenox, fluoroglycofen, fomesafen, halosafen, lactofen and oxyfluorfen; Ureas, e.g.
  • Amidosulfuron bensulfuron-methyl, chlorimuron-ethyl, chlorsulfuron, Cinosulfuron, metsulfuron-methyl, nicosulfuron, primisulfuron, pyrazosulfuronethyl, Thifensulfuron-methyl, triasulfuron and tribenuron-methyl; thiocarbamates, such as. Butylates, Cycloates, Diallates, EPTC, Esprocarb, Molinates, Prosulfocarb, Thiobencarb and triallates; Triazines, e.g.
  • Atrazine cyanazine, simazine, Simetryne, Terbutryne and Terbutylazin
  • Triazinones e.g. hexazinone, Metamitron and metribuzin
  • Others such as Aminotriazole, benfuresate, Bentazone, cinmethylin, clomazone, clopyralid, difenzoquat, dithiopyr, Ethofumesate, fluorochloridone, glufosinate, glyphosate, isoxaben, pyridate, Quinchlorac, Quinmerac, Sulphosate and Tridiphane.
  • the active ingredient according to the invention can also be used in its commercially available formulations and in the use forms prepared from these formulations in a mixture with synergists.
  • Synergists are connections through which the effect of the active ingredients is increased without the added synergist must be actively active itself.
  • the active substance content of the use forms prepared from the commercially available formulations can vary widely.
  • the drug concentration the use forms can be from 0.0000001 to 95% by weight of active ingredient, preferably between 0.0001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms Wise.
  • the Active ingredient When used against hygiene and storage pests, the Active ingredient through an excellent residual effect on wood and clay as well due to good stability to alkali on limed substrates.
  • the active compounds according to the invention act not only against plant, hygiene and Pests, but also against the veterinary sector animal parasites (ectoparasites) such as tortoise ticks, leather ticks, mite mites, Running mites, flies (stinging and licking), parasitic fly larvae, lice, Hair lice, featherlings and fleas.
  • ectoparasites such as tortoise ticks, leather ticks, mite mites, Running mites, flies (stinging and licking), parasitic fly larvae, lice, Hair lice, featherlings and fleas.
  • Anoplurida e.g. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp ..
  • Nematocerina e.g. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Chrysomyia s
  • Siphonaptrida e.g. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp ..
  • Actinedida Prostigmata
  • Acaridida e.g. Acarapis spp., Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp ..
  • the active compounds of the formula (I) according to the invention are also suitable for combating of arthropods, farm animals such as Cattle, sheep, Goats, horses, pigs, donkeys, camels, buffaloes, rabbits, chickens, turkeys, ducks, Geese, bees, other pets such as Dogs, cats, house birds, aquarium fish as well as so-called experimental animals, e.g. Hamsters, guinea pigs, Infect rats and mice.
  • By fighting these arthropods are said to Deaths and reduced performance (for meat, milk, wool, skins, eggs, Honey, etc.) can be reduced, so that the use of the invention Active ingredients a more economical and easier animal husbandry is possible.
  • the active compounds according to the invention are used in the veterinary sector in a known manner by enteral administration in the form of, for example, tablets, Capsules, watering, drenching, granules, pastes, boluses, the feed-through process, of suppositories, by parenteral administration, such as by injections (intramuscular, subcutaneous, intravenous, intraperitoneal, etc.), implants, by nasal application, by dermal application in the form, for example of diving or bathing (dipping), spraying (spray), pouring on (pour-on and Spot-on), washing, powdering and with the help of active ingredients
  • Shaped bodies such as collars, ear tags, tail tags, limb straps, Halters, marking devices etc.
  • the active ingredients of the formula (I) When used for cattle, poultry, pets etc. you can use the active ingredients of the formula (I) as formulations (for example powders, emulsions, flowable. Agents), which contain the active ingredients in an amount of 1 to 80 wt .-%, directly or after 100 to 10,000-fold dilution, or as a chemical Use bath.
  • formulations for example powders, emulsions, flowable. Agents
  • Kalotermes flavicollis Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.
  • technical materials include non-living ones Understand materials, such as preferably plastics, adhesives, glues, papers and cardboard, leather, wood and woodworking products and paints.
  • the one to be protected against insect attack is very particularly preferably Material around wood and wood processing products.
  • wood and wood processing products which by the invention Agents or mixtures containing them can be protected is exemplary to understand: timber, wooden beams, railway sleepers, bridge parts, jetties, Wooden vehicles, boxes, pallets, containers, telephone poles, wooden panels, Wooden windows and doors, plywood, chipboard, carpentry or wood products, which are generally used in house construction or in carpentry Find.
  • the active ingredients can be used as such, in the form of concentrates or in general usual formulations such as powders, granules, solutions, suspensions, emulsions or pastes.
  • the formulations mentioned can be prepared in a manner known per se e.g. by mixing the active ingredients with at least one solution or diluents, emulsifiers, dispersants and / or binders or fixatives, Water repellants, optionally desiccants and UV stabilizers and if necessary Dyes and pigments and other processing aids.
  • the insecticidal agents used to protect wood and wood-based materials or concentrates contain the active ingredient according to the invention in a concentration from 0.0001 to 95% by weight, in particular 0.001 to 60% by weight.
  • the amount of the agents or concentrates used depends on the type and occurrence of the insects and depending on the medium.
  • the optimal amount to use can be determined by test series in the application. In general however, it is sufficient 0.0001 to 20% by weight, preferably 0.001 to 10 wt .-% of the active ingredient, based on the material to be protected.
  • An organic chemical solvent serves as the solvent and / or diluent or solvent mixture and / or an oily or oily heavy volatile organic chemical solvent or solvent mixture and / or a polar organic chemical solvent or solvent mixture and / or water and optionally an emulsifier and / or wetting agent.
  • the organic chemical solvents used are preferably oily or oily ones Solvents with an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C, used.
  • volatile, Water-insoluble, oily and oily solvents become corresponding mineral oils or their aromatic fractions or mineral oil-containing solvent mixtures, preferably white spirit, petroleum and / or alkylbenzene used.
  • Mineral oils with a boiling range of 170 to 220 ° C, white spirit, are advantageous with a boiling range of 170 to 220 ° C, spindle oil with a boiling range from 250 to 350 ° C, petroleum or aromatics with a boiling range of 160 up to 280 ° C, turpentine oil and the like.
  • organic non-volatile oily or oily solvents with a Evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C can be partly due to slightly or medium-volatile, organic-chemical Solvents are replaced, with the proviso that the solvent mixture also an evaporation number above 35 and a flash point above 30 ° C, preferably above 45 ° C, and that the insecticide-fungicide mixture is soluble or emulsifiable in this solvent mixture.
  • part of the organic chemical Solvent or solvent mixture by an aliphatic polar organic chemical Solvent or solvent mixture replaced.
  • aliphatic polar organic chemical Solvent or solvent mixture Preferably come aliphatic containing hydroxyl and / or ester and / or ether groups organic chemical solvents such as glycol ethers, esters or the like. for use.
  • organic-chemical binders in the context of the present invention the known water-dilutable and / or used organochemical solvents soluble or dispersible or emulsifiable Synthetic resins and / or binding drying oils, especially binders consisting of or containing an acrylic resin, a vinyl resin, e.g. polyvinyl acetate, Polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-coumarone resin, Silicone resin, drying vegetable and / or drying oils and / or physically drying binders based on a natural and / or Resin used.
  • binders consisting of or containing an acrylic resin, a vinyl resin, e.g. polyvinyl acetate, Polyester resin, polycondensation or polyaddition resin, polyurethane resin, alkyd resin or modified alkyd resin, phenolic resin, hydrocarbon resin such as indene-
  • the synthetic resin used as a binder can be in the form of an emulsion, dispersion or solution. Bitumen or bituminous substances up to 10 wt .-%, are used. In addition, you can dyes, pigments, water-repellants, odor correctors known per se and inhibitors or corrosion protection agents and the like are used.
  • alkyd resins with an oil content of more than 45 wt .-%, preferably 50 to 68 wt .-% used.
  • binder mentioned can be mixed with a fixative (mixture). or a plasticizer (mixture) can be replaced. These additions should volatilize the active ingredients and crystallize or precipitate prevent. They preferably replace 0.01 to 30% of the binder (based on 100% of the binder used).
  • the plasticizers come from the chemical classes of phthalic acid esters such as Dibutyl, dioctyl or benzyl butyl phthalate, phosphoric acid esters such as tributyl phosphate, Adipic acid esters such as di- (2-ethylhexyl) adipate, stearates such as butyl stearate or amyl stearate, oleates such as butyl oleate, glycerol ether or higher molecular weight glycol ether, Glycerol ester and p-toluenesulfonic acid ester.
  • phthalic acid esters such as Dibutyl, dioctyl or benzyl butyl phthalate
  • phosphoric acid esters such as tributyl phosphate
  • Adipic acid esters such as di- (2-ethylhexyl) adipate
  • stearates such as butyl stea
  • Fixing agents are chemically based on polyvinyl alkyl ethers such as e.g. polyvinyl methyl or ketones such as benzophenone, ethylene benzophenone.
  • Water is also particularly suitable as a solvent or diluent, optionally in a mixture with one or more of the above organic chemical solvents or diluents, emulsifiers and dispersants.
  • a particularly effective wood protection is achieved through industrial impregnation processes, e.g. Vacuum, double vacuum or pressure process.
  • the ready-to-use agents may also have one or more contain further insecticides and optionally one or more fungicides.
  • the additional mixing partners are preferably those in WO 94/29 268 Insecticides and fungicides mentioned in question.
  • the ones mentioned in this document Connections are an integral part of this application.
  • Insecticides such as chlorpyriphos
  • Example (I-1-a) The following compounds of the formula (I-1-a) are obtained analogously to Example (I-1-a-1) or according to the general information on the preparation: Example no.
  • X Z A B isomer Mp ° C I-1-a-2 CH 3 H - (CH 2 ) 2 -CHOCH 3 - (CH 2 ) 2 - ⁇ > 220 I-1-a-3 CH 3 CH 3 - (CH 2 ) 2 -CHCH 3 - (CH 2 ) 2 - ⁇ > 220 I-1-a-4 CH 3 CH 3 - (CH 2 ) 2 -CHOCH 3 - (CH 2 ) 2 - ⁇ > 220 I-1-a-5 OCH 3 H - (CH 2 ) 2 -CHCH 3 - (CH 2 ) 2 - ⁇ 181 I-1-a-6 iC 3 H 7 H - (CH 2 ) 2 -CHCH 3 - (CH 2 ) 2 - ⁇ 193 I-1-a-7 Cl NO 2
  • connection according to example no. I-1-a-4 (6 mmol) and 1.2 ml (1.5 eq) triethylamine are dissolved in 50 ml abs. Dissolved ethyl acetate and heated under reflux. For this, 0.91ml (1.1g; 1.3 eq) morpholine-N-carboxylic acid chloride in 5ml abs. Given ethyl acetate. The mixture is heated under reflux overnight, concentrated and the residue is taken up in CH 2 Cl 2 . It is washed twice with 40 ml of 0.5N NaOH, dried and concentrated. The residue (2.7 g) is stirred with petroleum ether and suction filtered. Yield: 0.90 g (36% of theory), mp: 132 ° C.
  • the compound is obtained analogously or according to the general information on the preparation
  • Cabbage leaves (Brassica oleracea) are dipped into the active ingredient preparation the desired concentration and treated with horseradish leaf beetle larvae (Phaedon cochleariae) occupied while the leaves are still moist.
  • the kill is determined in%. Here means 100% that all beetle larvae have been killed; 0% means that no beetle larvae were killed.
  • Cabbage leaves (Brassica oleracea) are dipped into the active ingredient preparation the desired concentration and treated with caterpillars (Plutella maculipennis) occupied while the leaves are still moist.
  • the kill is determined in%. Here means 100% that all caterpillars have been killed; 0% means that no caterpillars are killed were.
  • Cabbage leaves (Brassica oleracea) are dipped into the active ingredient preparation the desired concentration and treated with caterpillars of the owl butterfly Spodoptera frugiperda) occupied while the leaves are still moist.
  • the kill is determined in%. Here means 100% that all caterpillars have been killed; 0% means that no caterpillars are killed were.
  • Cabbage leaves (Brassica oleracea), heavily from the peach aphid (Myzus persicae) are infested by dipping into the active ingredient preparation desired concentration treated.
  • the kill is determined in%. Here means 100% that all aphids have been killed; 0% means no aphids were killed.
  • Rice seedlings (Oryzae sativa) are dipped into the active ingredient preparation the desired concentration and treated with green rice leafhopper larvae (Nephotettix cincticeps) occupied while the seedlings are still moist.
  • the kill is determined in%.
  • Bean plants Phaseolus vulgaris
  • Common spider mite Tetranychus urticae
  • the kill is determined in%. Here means 100% that all spider mites have been killed; 0% means that no spider mites were killed.
  • Bean plants Phaseolus vulgaris
  • Common spider mite Tetranychus urticae
  • the kill is determined in%. Here means 100% that all spider mites have been killed; 0% means that no spider mites were killed.
  • the effect is determined in%.
  • 30 to 50 larvae per concentration are placed on horse meat (1 cm 3 ) in glass tubes, onto which 500 ⁇ l of the dilution to be tested are pipetted.
  • the glass tubes are placed in plastic beakers, the bottom of which is covered with sea sand, and stored in an air-conditioned room (26 ° C ⁇ 1.5 ° C, 70% relative humidity ⁇ 10%). The effects are checked after 24 hours and 48 hours (larvicidal action). After the larvae have emigrated (approx. 72 h), the glass tubes are removed and perforated plastic lids are placed on the beakers. After 11 ⁇ 2 times the development period (hatching of the control flies), the hatched flies and the dolls / doll covers are counted.
  • the criterion for the effect is the occurrence of death in the treated Larvae after 48 h (larvicidal effect), or the inhibition of adult hatching the dolls or the inhibition of doll formation.
  • a criterion for the in vitro effect one substance is the inhibition of flea development or a development standstill before the adult stage. 100% means larvicide Effect that all larvae have died after 48 hours. 100% development inhibitory Effect means that no adult flies have hatched.
  • test animals adult sucked females solvent dimethyl sulfoxide
  • the test is carried out in 5-fold determination. 1 ⁇ l of the solutions is added to the Abdomen injected, the animals transferred into bowls and in an air-conditioned Saved space. The effect is determined by the inhibition of egg laying. 100% means that no tick has laid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Furan Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Indole Compounds (AREA)
EP02023659A 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués Expired - Lifetime EP1277751B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE19631586 1996-08-05
DE19631586 1996-08-05
DE19716591A DE19716591A1 (de) 1996-08-05 1997-04-21 2- und 2,5-substituierte Phenylketoenole
DE19716591 1997-04-21
EP97934523A EP0915846B1 (fr) 1996-08-05 1997-07-23 Phenylcetoenols substitues a la position 2 ou aux positions 2 et 5

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP97934523A Division EP0915846B1 (fr) 1996-08-05 1997-07-23 Phenylcetoenols substitues a la position 2 ou aux positions 2 et 5

Publications (2)

Publication Number Publication Date
EP1277751A1 true EP1277751A1 (fr) 2003-01-22
EP1277751B1 EP1277751B1 (fr) 2006-11-02

Family

ID=7801835

Family Applications (5)

Application Number Title Priority Date Filing Date
EP02023657A Expired - Lifetime EP1277749B1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023659A Expired - Lifetime EP1277751B1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023660A Expired - Lifetime EP1277734B1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023658A Ceased EP1277733A1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023661A Withdrawn EP1277735A1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP02023657A Expired - Lifetime EP1277749B1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP02023660A Expired - Lifetime EP1277734B1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023658A Ceased EP1277733A1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués
EP02023661A Withdrawn EP1277735A1 (fr) 1996-08-05 1997-07-23 Phénylcéto-énols 2- et 2,5-substitués

Country Status (13)

Country Link
EP (5) EP1277749B1 (fr)
JP (1) JP2009079035A (fr)
KR (1) KR100517636B1 (fr)
CN (4) CN101402554A (fr)
AR (1) AR009234A1 (fr)
BR (2) BR9715289B1 (fr)
CL (1) CL2004001108A1 (fr)
CO (1) CO4810308A1 (fr)
DE (2) DE19716591A1 (fr)
FR (1) FR11C0024I2 (fr)
IL (2) IL155070A (fr)
PT (3) PT1277749E (fr)
ZA (1) ZA976915B (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805265B (zh) * 2010-03-19 2013-02-06 宜兴市中宇药化技术有限公司 2-硝基-4-取代苯乙酸的合成方法
JP2011236130A (ja) * 2010-05-06 2011-11-24 Sumitomo Chemical Co Ltd イネが生育している水田におけるウンカ類の防除方法
CN107304181B (zh) * 2016-04-22 2020-08-14 湖南化工研究院有限公司 螺环季酮酸类化合物及其制备方法与应用
US20220061323A1 (en) * 2018-12-18 2022-03-03 Bayer Aktiengesellschaft Active compound combinations having insecticidal/acaricidal properties

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1945703A1 (de) * 1968-10-23 1970-07-02 Pfizer & Co C Verfahren zur Herstellung von Arylchlorcarbonylketenen
EP0588137A1 (fr) * 1992-09-10 1994-03-23 Bayer Ag Dérivés de la 3-aryl-pyrane-2-one
DE19543864A1 (de) * 1995-02-13 1996-08-14 Bayer Ag Phenylsubstituierte cyclische Ketoenole
WO1996025395A1 (fr) * 1995-02-13 1996-08-22 Bayer Aktiengesellschaft 1,3-cetoenols heterocycliques substitues en 2-phenyle utilises sous forme d'herbicides et de pesticides
DE19603332A1 (de) * 1995-06-30 1997-01-02 Bayer Ag Dialkyl-halogenphenylsubstituierte Ketoenole
DE19602524A1 (de) * 1995-06-28 1997-01-02 Bayer Ag 2,4,5-Trisubstituierte Phenylketoenole
WO1997001535A1 (fr) * 1995-06-28 1997-01-16 Bayer Aktiengesellschaft Phenylceto-enols 2,4,5-trisubstitues s'utilisant comme pesticides et herbicides
WO1997002243A1 (fr) * 1995-06-30 1997-01-23 Bayer Aktiengesellschaft Cetoenols a substitution dialkyle-halogenure de phenyle s'utilisant comme herbicides et comme pesticides

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2325650A1 (fr) * 1975-09-29 1977-04-22 Ciba Geigy Ag Agents de lutte contre les parasites
DE3314249A1 (de) * 1983-04-20 1984-10-25 Bayer Ag, 5090 Leverkusen Verfahren zur herstellung von fluorierten phenylessigsaeureestern und neue fluorierte trichlorethylbenzole
DE4014420A1 (de) * 1989-09-23 1991-04-04 Bayer Ag 5h-furan-2-on-derivate
DE4107394A1 (de) * 1990-05-10 1991-11-14 Bayer Ag 1-h-3-aryl-pyrrolidin-2,4-dion-derivate
EP0573460A4 (fr) * 1991-02-15 1994-03-17 Dunlena Pty Ltd Pyrones herbicides.
DE4121365A1 (de) * 1991-06-28 1993-01-14 Bayer Ag Substituierte 1-h-3-aryl-pyrrolidin-2,4-dion-derivate
DE4216814A1 (de) * 1991-07-16 1993-01-21 Bayer Ag 3-aryl-4-hydroxy-(delta)(pfeil hoch)3(pfeil hoch)-dihydrofuranon- und 3-aryl-4-hydroxy-(delta)(pfeil hoch)3(pfeil hoch)-dihydrothiophenon-derivate
DE4326909A1 (de) * 1992-10-28 1994-05-05 Bayer Ag Substituierte 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate
DE4236400A1 (de) * 1992-10-28 1994-05-05 Bayer Ag N-Phenylacetaminonitrile
AU666040B2 (en) * 1992-10-28 1996-01-25 Bayer Aktiengesellschaft Substituted 1-H-3-aryl-pyrrolidine-2,4-dione derivatives
DE4306257A1 (de) * 1993-03-01 1994-09-08 Bayer Ag Substituierte 1-H-3-Phenyl-5-cycloalkylpyrrolidin-2,4-dione, ihre Herstellung und ihre Verwendung
DE4415334A1 (de) * 1993-07-02 1995-01-12 Bayer Ag Substituierte spirocyclische 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate
AU7186494A (en) * 1993-07-02 1995-01-24 Bayer Aktiengesellschaft Substituted spiroheterocyclic 1h-3-arylpyrrolidine-2,4-dione derivatives, methods of preparing them and their use as pest-control agents
DE4337853A1 (de) * 1993-09-17 1995-03-23 Bayer Ag 3-Aryl-4-hydroxy-DELTA·3·-dihydrofuranon-Derivate
ES2127859T3 (es) * 1993-09-17 1999-05-01 Bayer Ag Derivados de la 3-aril-4-hidroxi-3-dihidrofuranona.
DE4425617A1 (de) * 1994-01-28 1995-08-03 Bayer Ag 1-H-3-Aryl-pyrrolidin-2,4-dion-Derivate
DE4431730A1 (de) * 1994-02-09 1995-08-10 Bayer Ag Substituierte 1H-3-Aryl-pyrrolidin-2,4-dion-Derivate
DE4410420A1 (de) * 1994-03-25 1995-09-28 Bayer Ag 3-Aryl-4-hydroxy- DELTA·3·-dihydrothiophenon-Derivate
EP0754175B1 (fr) * 1994-04-05 2003-01-29 Bayer CropScience AG 1-h-3-aryle-pyrrolidine-2,4-diones a substitution alcoxy-alkyle, utilises comme herbicides et pesticides
DE19540736A1 (de) * 1994-12-23 1996-06-27 Bayer Ag 3-Aryl-tetronsäure-Derivate
CA2208375A1 (fr) * 1994-12-23 1996-07-04 Bayer Ag Derives de l'acide 3-aryl-tetronique, leur fabrication et leur utilisation comme pesticides

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1945703A1 (de) * 1968-10-23 1970-07-02 Pfizer & Co C Verfahren zur Herstellung von Arylchlorcarbonylketenen
EP0588137A1 (fr) * 1992-09-10 1994-03-23 Bayer Ag Dérivés de la 3-aryl-pyrane-2-one
DE19543864A1 (de) * 1995-02-13 1996-08-14 Bayer Ag Phenylsubstituierte cyclische Ketoenole
WO1996025395A1 (fr) * 1995-02-13 1996-08-22 Bayer Aktiengesellschaft 1,3-cetoenols heterocycliques substitues en 2-phenyle utilises sous forme d'herbicides et de pesticides
DE19602524A1 (de) * 1995-06-28 1997-01-02 Bayer Ag 2,4,5-Trisubstituierte Phenylketoenole
WO1997001535A1 (fr) * 1995-06-28 1997-01-16 Bayer Aktiengesellschaft Phenylceto-enols 2,4,5-trisubstitues s'utilisant comme pesticides et herbicides
DE19603332A1 (de) * 1995-06-30 1997-01-02 Bayer Ag Dialkyl-halogenphenylsubstituierte Ketoenole
WO1997002243A1 (fr) * 1995-06-30 1997-01-23 Bayer Aktiengesellschaft Cetoenols a substitution dialkyle-halogenure de phenyle s'utilisant comme herbicides et comme pesticides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
E. BACIOCCHI ET AL., TETRAHEDRON LETTERS, vol. 27, no. 24, 1986, pages 2763 - 6, XP002052764 *
S. NAKANISHI ET AL., ORGANIC PREPARATIONS AND PROCEDURES INTERNATIONAL, vol. 7, no. 4, 1975, pages 155 - 8, XP002052763 *

Also Published As

Publication number Publication date
EP1277733A1 (fr) 2003-01-22
CN1896070A (zh) 2007-01-17
FR11C0024I2 (fr) 2013-08-16
AR009234A1 (es) 2000-04-12
EP1277749B1 (fr) 2006-09-27
KR20040091770A (ko) 2004-10-28
PT1277734E (pt) 2007-03-30
ZA976915B (en) 1998-02-10
CN101486675B (zh) 2012-08-08
FR11C0024I1 (fr) 2011-08-26
CN1865219A (zh) 2006-11-22
CN101402554A (zh) 2009-04-08
EP1277749A1 (fr) 2003-01-22
EP1277734A1 (fr) 2003-01-22
BR9715289B1 (pt) 2010-11-30
IL155069A (en) 2004-06-20
EP1277734B1 (fr) 2007-02-07
CN100591676C (zh) 2010-02-24
EP1277735A1 (fr) 2003-01-22
PT1277749E (pt) 2007-01-31
IL155069A0 (en) 2003-10-31
CN100564344C (zh) 2009-12-02
DE19716591A1 (de) 1998-03-05
CN101486675A (zh) 2009-07-22
CL2004001108A1 (es) 2005-04-29
EP1277751B1 (fr) 2006-11-02
DE59709923D1 (de) 2003-05-28
BR9715288B1 (pt) 2010-11-30
JP2009079035A (ja) 2009-04-16
KR100517636B1 (ko) 2005-09-28
IL155070A (en) 2005-07-25
PT1277751E (pt) 2007-02-28
CO4810308A1 (es) 1999-06-30
IL155070A0 (en) 2003-10-31

Similar Documents

Publication Publication Date Title
EP0915846B1 (fr) Phenylcetoenols substitues a la position 2 ou aux positions 2 et 5
EP1066258B1 (fr) Cetoenols cycliques a substitution arylphenyle
EP0837847B1 (fr) Phenylceto-enols 2,4,5-trisubstitues s'utilisant comme pesticides et herbicides
EP0825982B1 (fr) Enols cetoniques substitues par des phenyles dihalogenes d'alkyle servant de pesticides et herbicides
EP0835243B1 (fr) Cetoenols a substitution dialkyle-halogenure de phenyle s'utilisant comme herbicides et comme pesticides
EP0891330B1 (fr) Phenylceto-enols substitues utilises comme pesticides et herbicides
EP0944633B1 (fr) Phenylcetoenols substitues et leur utilisation comme pesticides et herbicides
EP0809629B1 (fr) 1,3-cetoenols heterocycliques substitues en 2-phenyle utilises sous forme d'herbicides et de pesticides
DE19818732A1 (de) Arylphenylsubstituierte cyclische Ketoenole
DE19603332A1 (de) Dialkyl-halogenphenylsubstituierte Ketoenole
EP1721522A2 (fr) Phénylkéto-énoles en tant que biocides et herbicides
EP1277734B1 (fr) Phénylcéto-énols 2- et 2,5-substitués
DE19602524A1 (de) 2,4,5-Trisubstituierte Phenylketoenole
DE19545467A1 (de) Alkyl-dihalogenphenylsubstituierte Ketoenole

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 915846

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL PT

17P Request for examination filed

Effective date: 20030722

AKX Designation fees paid

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL PT

17Q First examination report despatched

Effective date: 20040423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0915846

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB GR IT LI NL PT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59712761

Country of ref document: DE

Date of ref document: 20061214

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400175

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070129

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070402

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2275796

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BAYER CROPSCIENCE AG

Free format text: BAYER CROPSCIENCE AG#ALFRED-NOBEL-STRASSE 50#40789 MONHEIM (DE) -TRANSFER TO- BAYER CROPSCIENCE AG#ALFRED-NOBEL-STRASSE 50#40789 MONHEIM (DE)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110712

Year of fee payment: 15

Ref country code: DK

Payment date: 20110712

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20120622

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120626

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120718

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120718

Year of fee payment: 16

Ref country code: FR

Payment date: 20120719

Year of fee payment: 16

Ref country code: ES

Payment date: 20120731

Year of fee payment: 16

Ref country code: BE

Payment date: 20120713

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120123

Year of fee payment: 16

Ref country code: NL

Payment date: 20120714

Year of fee payment: 16

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140123

BERE Be: lapsed

Owner name: BAYER CROPSCIENCE A.G.

Effective date: 20130731

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140201

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20130731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130723

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20070400175

Country of ref document: GR

Effective date: 20140204

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130723

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712761

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130723

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140204

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140123

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130724