DE19603332A1 - Dialkyl-halogenphenylsubstituierte Ketoenole - Google Patents

Dialkyl-halogenphenylsubstituierte Ketoenole

Info

Publication number
DE19603332A1
DE19603332A1 DE19603332A DE19603332A DE19603332A1 DE 19603332 A1 DE19603332 A1 DE 19603332A1 DE 19603332 A DE19603332 A DE 19603332A DE 19603332 A DE19603332 A DE 19603332A DE 19603332 A1 DE19603332 A1 DE 19603332A1
Authority
DE
Germany
Prior art keywords
alkyl
alkoxy
optionally substituted
chlorine
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19603332A
Other languages
English (en)
Inventor
Folker Dr Lieb
Hermann Dr Hagemann
Arno Dr Widdig
Michael Dr Ruther
Reiner Dr Fischer
Thomas Dr Bretschneider
Christoph Dr Erdelen
Ulrike Dr Wachendorff-Neumann
Peter Dr Dahmen
Markus Dr Dollinger
Hans-Joachim Dr Santel
Alan Dr Graff
Wolfram Dr Andersch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to DE19603332A priority Critical patent/DE19603332A1/de
Priority to US08/981,610 priority patent/US5994274A/en
Priority to DK96922817T priority patent/DK0835243T3/da
Priority to CNB961964561A priority patent/CN1152860C/zh
Priority to BR9609301A priority patent/BR9609301A/pt
Priority to KR1019970709769A priority patent/KR100473579B1/ko
Priority to CA002532743A priority patent/CA2532743C/en
Priority to EP96922817A priority patent/EP0835243B1/de
Priority to CA002225830A priority patent/CA2225830C/en
Priority to TR97/01740T priority patent/TR199701740T1/xx
Priority to HU9802279A priority patent/HUP9802279A3/hu
Priority to DE59610095T priority patent/DE59610095D1/de
Priority to ES96922817T priority patent/ES2189877T3/es
Priority to JP50475097A priority patent/JP4362149B2/ja
Priority to CN01138493.XA priority patent/CN1229323C/zh
Priority to AU63561/96A priority patent/AU707357B2/en
Priority to PCT/EP1996/002601 priority patent/WO1997002243A1/de
Priority to TW085107798A priority patent/TW410141B/zh
Publication of DE19603332A1 publication Critical patent/DE19603332A1/de
Priority to MX9710376A priority patent/MX9710376A/es
Priority to US09/360,510 priority patent/US6251830B1/en
Priority to US09/839,481 priority patent/US6469196B2/en
Priority to US10/197,720 priority patent/US6759548B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/34Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D207/36Oxygen or sulfur atoms
    • C07D207/382-Pyrrolones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/041,3-Thiazines; Hydrogenated 1,3-thiazines
    • C07D279/061,3-Thiazines; Hydrogenated 1,3-thiazines not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/56Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/60Two oxygen atoms, e.g. succinic anhydride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/32Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

Die Erfindung betrifft neue phenylsubstituierte cyclische Ketoenole, mehrere Ver­ fahren und Zwischenprodukte zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Herbizide.
Es ist bereits bekannt geworden, daß bestimmte phenylsubstituierte cyclische Keto­ enole als Insektizide, Akarizide und/oder Herbizide wirksam sind.
Von 3-Acyl-pyrrolidin-2,4-dionen sind pharmazeutische Eigenschaften vorbe­ schrieben (S. Suzuki et al. Chem. Pharm. Bull. 15, 1120 (1967)). Weiterhin wurden N-Phenylpyrrolidin-2,4-dione von R. Schmierer und H. Mildenberger (Liebigs Ann. Chem. 1985, 1095) synthetisiert. Eine biologische Wirksamkeit dieser Ver­ bindungen wurde nicht beschrieben.
In EP-A-0 262 399 und GB-A-2 266 888 werden ähnlich strukturierte Verbindun­ gen (3-Aryl-pyrrolidin-2,4-dione) offenbart, von denen jedoch keine herbizide, in­ sektizide oder akarizide Wirkung bekannt geworden ist. Bekannt mit herbizider, insektizider oder akarizider Wirkung sind unsubstituierte, bicyclische 3-Aryl-pyr­ rolidin-2,4-dion-Derivate (EP-A-355 599 und EP-A-415 211) sowie substituierte monocyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A-377 893 und EP-A-442 077).
Weiterhin bekannt sind polycyclische 3-Arylpyrrolidin-2,4-dion-Derivate (EP-A-442 073) sowie 1H-Arylpyrrolidin-dion-Derivate (EP-A-456 063, EP-A-521 334, EP-A-596 298, EP-A-613 884, DE 44 40 594, EP-A-613 885, WO 94/01 997 und WO 95/ 01 358).
Es ist bekannt, daß bestimmte substituierte Δ³-Dihydrofuran-2-on-Derivate herbizi­ de Eigenschaften besitzen (vgl. DE-A-40 14 420). Die Synthese der als Ausgangs­ verbindungen verwendeten Tetronsäurederivate (wie z. B. 3-(2-Methyl-phenyl)-4- hydroxy-5-(4-fluorphenyl)-Δ³-dihydrofuranon-(2)) ist ebenfalls in DE-A-40 14 420 beschrieben. Ähnlich strukturierte Verbindungen ohne Angabe einer insektiziden und/oder akariziden Wirksamkeit sind aus der Publikation Campbell et al., J. Chem. Soc., Perkin Trans. 1, 1985, (8) 1567-76 bekannt. Weiterhin sind 3-Aryl-Δ³-dihydrofuranon-Derivate mit herbiziden, akariziden und insektiziden Eigen­ schaften aus EP-A-528 156 bekannt, jedoch ist die dort beschriebene Wirkung nicht immer ausreichend. 3-Aryl-4-hydroxy-Δ³-dihydrofuranon-Derivate sind aus der EP-A-647 637 bekannt. Thiotetronsäuren sind aus der WO 95/26345 bekannt.
Aus der Literatur sind ferner bestimmte 3H-Pyrazol-3-on-Derivate, wie beispiels­ weise 1,2-Diethyl-1,2-dihydro-5-hydroxy-4-phenyl-3H-pyrazol-3-on oder {[5-Oxo- 1,2-diphenyl-4-(p-sulfophenyl)-3-pyrazolin-3-yl]-oxy}-dinatriumsalz oder p-(3-Hy­ droxy-5-oxo-1,2-diphenyl-3-pyrazolin-4-yl)-benzolsulfonsäure bekannt (vgl. J. He­ terocycl. Chem., 25(5), 1301-1305, 1988 oder J. Heterocycl. Chem., 25 (5), 1307-1310, 1988 oder Zh. Obshch. Khim., 34 (7), 2397-2402, 1964). Eine biologische Wirkung dieser Verbindungen wird aber nicht beschrieben.
Weiterhin ist bekannt, daß das Trinatriumsalz der 4,4′,4′′-(5-Hydroxy-3-oxo-1H- pyrazol-1,2,4(3H)-triyl)-tris-benzolsulfonsäure pharmakologische Eigenschaften be­ sitzt (vgl. Farmakol. Toksikol. (Moscow), 38(2), 180-186, 1976). Seine Verwen­ dung im Pflanzenschutz ist aber nicht bekannt.
Außerdem sind in EP-A-508 126 und in WO 92/16 510 4-Arylpyrazolidin-3,5- dion-Derivate mit herbiziden, akariziden und insektiziden Eigenschaften beschrie­ ben.
Bestimmte, im Phenylring unsubstituierte Phenyl-pyron-Derivate sind bereits bekannt geworden (vgl. A.M. Chirazi, T. Kappe und E. Ziegler, Arch. Pharm. 309, 558 (1976) und K.-H. Boltze und K. Heidenbluth, Chem. Ber. 91, 2849), wobei für diese Verbindungen eine mögliche Verwendbarkeit als Schädlingsbekämp­ fungsmittel nicht angegeben wird. Im Phenylring substituierte Phenyl-pyron-Deri­ vate mit herbiziden, akariziden und insektiziden Eigenschaften sind in EP-A-588 137 beschrieben.
Bestimmte, im Phenylring unsubstituierte 5-Phenyl-1,3-thiazin-Derivate sind be­ reits bekannt geworden (vgl. E. Ziegler und E. Steiner, Monatsh. 95 147 (1964), R. Ketcham, T. Kappe und E. Ziegler, J. Heterocycl. Chem. 10 223 (1973)), wo­ bei für diese Verbindungen eine mögliche Anwendung als Schädlingsbekämp­ fungsmittel nicht angegeben wird. Im Phenylring substituierte 5-Phenyl-1,3-thiazin- Derivate mit herbizider, akarizider und insektizider Wirkung sind in WO 94/14 785 beschrieben.
Die Wirksamkeit und Wirkungsbreite dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht immer voll zufrieden­ stellend.
Es wurden nun neue Verbindungen der Formel (I)
gefunden,
in welcher
X für Alkyl steht,
Y für Halogen oder Alkyl steht und
Z für Halogen oder Alkyl steht,
mit der Maßgabe, daß immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht,
Het für eine der Gruppen
worin
A für Wasserstoff, für jeweils gegebenenfalls durch Halogen substitu­ iertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder Alkyl­ thioalkyl, für jeweils gesättigtes oder ungesättigtes und gegebenen­ falls substituiertes Cycloalkyl oder Heterocyclyl oder für jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halo­ genalkoxy, Cyano oder Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder
A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten, gegebenenfalls substituier­ ten Carbocyclus oder Heterocyclus stehen,
D für Wasserstoff oder für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gesättigtes oder ungesättigtes Cycloalkyl, gesättigte oder ungesättigtes Heterocyclyl, Arylalkyl, Aryl, Hetarylalkyl oder Hetaryl steht oder
A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls substituierten Carbocyclus oder Heterocyclus stehen,
G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen
steht,
worin
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht,
M für Sauerstoff oder Schwefel steht,
R¹ für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alke­ nyl, Alkoxyalkyl, Alkylthioalkyl oder Polyalkoxyalkyl oder für jeweils gegebenenfalls durch Halogen, Alkyl oder Alkoxy substitu­ iertes Cycloalkyl oder Heterocyclyl oder für jeweils gegebenenfalls substituiertes Phenyl, Phenylalkyl, Hetaryl, Phenoxyalkyl oder Het­ aryloxyalkyl steht,
R² für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alke­ nyl, Alkoxyalkyl oder Polyalkoxyalkyl oder für jeweils gegebenen­ falls substituiertes Cycloalkyl, Phenyl oder Benzyl steht,
R³, R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes Alkyl, Alkoxy, Alkylamino, Dialkylamino, Alkylthio, Alkenylthio oder Cycloalkylthio oder für jeweils gegebe­ nenfalls substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebe­ nenfalls durch Halogen substituiertes Alkyl, Cycloalkyl, Alkenyl, Alkoxy, Alkoxyalkyl, für jeweils gegebenenfalls substituiertes Phe­ nyl oder Benzyl stehen, oder gemeinsam mit dem N-Atom, an das sie gebunden sind, einen gegebenenfalls Sauerstoff oder Schwefel enthaltenden gegebenenfalls substituierten Cyclus bilden.
Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im folgenden wird der Ein­ fachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unter­ schiedlichen Anteilen an isomeren Verbindungen gemeint sind.
Unter Einbeziehung der Bedeutungen (1) bis (6) der Gruppe Het ergeben sich folgende hauptsächliche Strukturen (I-1) bis (I-6):
worin
in welchen
A, B, D, G, X, Y und Z die oben angegebene Bedeutung haben.
Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-1-a) bis (I-1-g), wenn Het für die Gruppe (1) steht,
worin
A, B, D, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.
Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-2-a) bis (I-2-g), wenn Het für die Gruppe (2) steht,
worin
A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebene Bedeutung haben.
Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-3-a) bis (I-3-g), wenn Het für die Gruppe (3) steht,
worin
A, B, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutung besitzen.
Die Verbindungen der Formel (I-4) können in Abhängigkeit von der Stellung des Substituenten G in den zwei isomeren Formeln (I-4)a und (I-4)b vorliegen,
was durch die gestrichelte Linie in der Formel (I-4) zum Ausdruck gebracht werden soll:
Die Verbindungen der Formeln (I-4)a und (I-4)b können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formel (I-4)a und (I-4)b lassen sich gegebenenfalls in an sich bekannter Weise durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.
Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur eines der möglichen Isomeren aufgeführt. Das schließt nicht aus, daß die Verbindungen gegebenenfalls in Form der Isomerengemische oder in der jeweils anderen isomeren Form vorliegen können.
Unter Einbeziehung der verschiedenen Bedeutungen (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-4-b) bis (I-4-g), wenn Het für die Gruppe (4) steht,
worin
A, D, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.
Die Verbindungen der Formel (I-5) können in Abhängigkeit von der Stellung des Substituenten G in den zwei isomeren Formen der Formeln (I-5)a und (I-5)b vor­ liegen,
was durch die gestrichelte Linie in der Formel (I-5) zum Ausdruck gebracht wer­ den soll.
Die Verbindungen der Formeln (I-5)a und (I-5)b können sowohl als Gemische als auch in Form ihrer reinen Isomeren vorliegen. Gemische der Verbindungen der Formeln (I-5)a und (I-5)b lassen sich gegebenenfalls in an sich bekannter Weise durch physikalische Methoden trennen, beispielsweise durch chromatographische Methoden.
Aus Gründen der besseren Übersichtlichkeit wird im folgenden jeweils nur eines der möglichen Isomeren aufgeführt. Das schließt nicht aus, daß die Verbindungen gegebenenfalls in Form der Isomerengemische oder in der jeweils anderen isomeren Form vorliegen können.
Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-5-a) bis (I-5-g), wenn Het für die Gruppe (5) steht,
worin
A, D, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.
Unter Einbeziehung der verschiedenen Bedeutungen (a), (b), (c), (d), (e), (f) und (g) der Gruppe G ergeben sich folgende hauptsächliche Strukturen (I-6-a) bis (I-6-g), wenn Het für die Gruppe (6) steht,
worin
A, E, L, M, X, Y, Z, R¹, R², R³, R⁴, R⁵, R⁶ und R⁷ die oben angegebenen Bedeutungen besitzen.
Weiterhin wurde gefunden, daß man die neuen Verbindungen der Formel (I) nach einem der im folgenden beschriebenen Verfahren erhält:
  • (A) Man erhält Verbindungen der Formel (I-1-a) in welcher
    A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    wenn man
    Verbindungen der Formel (II) in welcher
    A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    und
    R⁸ für Alkyl (bevorzugt C₁-C₆-Alkyl) steht,
    in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intra­ molekular kondensiert.
  • (B) Außerdem wurde gefunden, daß man Verbindungen der Formel (I-2-a) in welcher
    A, B, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (III) in welcher
    A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,
    in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intra­ molekular kondensiert.
  • (C) Weiterhin wurde gefunden, daß man Verbindungen der Formel (I-3-a) in welcher
    A, B, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (IV) in welcher
    A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben und
    W für Wasserstoff, Halogen, Alkyl (bevorzugt C₁-C₆-Alkyl) oder Alk­ oxy (bevorzugt C₁-C₈-Alkoxy) steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Säure intramolekular cyclisiert.
  • (E) Weiterhin wurde gefunden, daß man die Verbindungen der Formel (I-5-a) in welcher
    A, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (VIII) in welcher
    A und D die oben angegebenen Bedeutungen haben,
    oder deren Silylenolether der Formel (VIIIa) in welcher
    A und D die oben genannte Bedeutung haben und R8′ für Alkyl (bevorzugt Methyl) steht,
    mit Verbindungen der Formel (V) in welcher
    X, Y und Z die oben angegebenen Bedeutungen haben und
    Hal für Halogen (vorzugsweise für Chlor oder Brom) steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.
  • (F) Weiterhin wurde gefunden, daß man die Verbindungen der Formel (I-6-a) in welcher
    A, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man Verbindungen der Formel (IX) in welcher
    A die oben angegebene Bedeutung hat,
    mit Verbindungen der Formel (V) in welcher
    Hal, X, Y und Z die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.
Außerdem wurde gefunden,
  • (G) daß man die Verbindungen der oben gezeigten Formeln (I-1-b) bis (I-3-b), (I-5-b) und (I-6-b), in welchen A, B, D, R¹, X, Y und Z die oben angebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-3-a), (I-5-a) und (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, und daß man Verbindungen der oben gezeigten Formel (I-4-b), in welcher A, D, R¹, X, Y und Z die oben angegebene Bedeutung haben, erhält, wenn man Verbindungen der Formel (I-4-a) in welcher
    A, D, X, Y und Z die oben angegebene Bedeutung haben, jeweils
  • α) mit Säurehalogeniden der Formel (X) in welcher
    R¹ die oben angegebene Bedeutung hat und
    Hal für Halogen (insbesondere Chlor oder Brom) steht
    oder
  • β) mit Carbonsäureanhydriden der Formel (XI) R¹-CO-O-CO-R¹ (XI)in welcher
    R¹ die oben angegebene Bedeutung hat,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;
  • (H) daß man die Verbindungen der oben gezeigten Formeln (I-1-c) bis (I-6-c), in welchen A, B, D, R², M, X, Y und Z die oben angegebenen Bedeu­ tungen haben und L für Sauerstoff steht, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
    mit Chlorameisensäureestern oder Chlorameisensäurethioestern der Formel (XII) R²-M-CO-Cl (XII)in welcher
    R² und M die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt;
  • (I) daß man Verbindungen der oben gezeigten Formeln (I-1-c) bis (I-6-c), in welchen A, B, D, R², M, X, Y und Z die oben angegebenen Bedeutungen haben und L für Schwefel steht, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
  • α) mit Chlormonothioameisensäureestern oder Chlordithioameisensäureestern der Formel (XIII) in welcher
    M und R² die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt
    oder
  • β) mit Schwefelkohlenstoff und anschließend mit Verbindungen der Formel (XIV) R²-Hal (XIV)in welcher
    R² die oben angegebene Bedeutung hat und
    Hal für Chlor, Brom oder Iod steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt,
  • (J) daß man Verbindungen der oben gezeigten Formeln (I-1-d) bis (I-6-d), in welchen A, B, D, R³, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
    mit Sulfonsäurechloriden der Formel (XV) R³-SO₂-Cl (XV)in welcher
    R³ die oben angegebene Bedeutung hat,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,
  • (K) daß man Verbindungen der oben gezeigten Formeln (I-1-e) bis (I-6-e), in welchen A, B, D, L, R⁴, R⁵, X, Y und Z die oben angegebenen Bedeu­ tungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
    mit Phosphorverbindungen der Formel (XVI) in welcher
    L, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und
    Hal für Halogen (insbesondere Chlor oder Brom) steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt,
  • (L) daß man Verbindungen der oben gezeigten Formeln (I-1-f) bis (I-6-f), in welchen A, B, D, E, X, Y und Z die oben angegebenen Bedeutungen haben, erhält, wenn man Verbindungen der Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    jeweils
    mit Metallverbindungen oder Aminen der Formeln (XVII) oder (XVIII) Me(Or¹⁰)t (XVII) in welchen
    Me für ein ein- oder zweiwertiges Metall (bevorzugt ein Alkali- oder Erdalkalimetall wie Lithium, Natrium, Kalium, Magnesium oder Calcium),
    t für die Zahl 1 oder 2 und
    R¹⁰, R¹¹, R¹² unabhängig voneinander für Wasserstoff oder Alkyl (bevorzugt C₁-C₈-Alkyl) stehen,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt,
  • (M) daß man Verbindungen der oben gezeigten Formeln (I-1-g) bis (I-6-g), in welchen A, B, D, L, R⁶, R⁷, X, Y und Z die oben angegebenen Bedeu­ tungen haben, erhält, wenn man Verbindungen der oben gezeigten Formeln (I-1-a) bis (I-6-a), in welchen A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben, jeweils
  • α) mit Isocyanaten oder Isothiocyanaten der Formel (XIX) R⁶-N=C=L (XIX)in welcher
    R⁶ und L die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Katalysators umsetzt oder
  • β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XX) in welcher
    L, R⁶ und R⁷ die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels, umsetzt.
Weiterhin wurde gefunden, daß die neuen Verbindungen der Formel (I) eine sehr gute Wirksamkeit als Schädlingsbekämpfungsmittel, vorzugsweise als Insektizide, Akarizide und Herbizide aufweisen.
Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein defi­ niert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im folgenden erläutert:
X steht bevorzugt für C₁-C₆-Alkyl.
Y steht bevorzugt für Halogen oder C₁-C₆-Alkyl.
Z steht bevorzugt für Halogen oder C₁-C₆-Alkyl.
Dabei gilt, daß immer einer der Substituenten Y und Z für Halogen und der andere für Alkyl steht.
Het steht bevorzugt für eine der Gruppen
A steht bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₁ -C₁₀-Alkoxy-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl oder C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, Naphthyl-C₁-C₆-alkyl oder Hetaryl mit 5 oder 6 Ringatomen und ein bis drei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff.
B steht bevorzugt für Wasserstoff C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl oder
A, B und das Kohlenstoffatom an das sie gebunden sind, stehen bevorzugt für C₃-C₁₀-Cycloalkyl oder C₅-C₁₀-Cycloalkenyl, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls durch C₁-C₈-Alkyl, C₃-C₁₀-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylthio, Halogen oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen bevorzugt für C₅-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein oder zwei Sauer­ stoff- und/oder Schwefelatome enthaltende Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind stehen bevorzugt für C₃-C₈-Cycloalkyl oder C₅-C₈-Cycloalkenyl, in welchen zwei Substituenten gemeinsam mit Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituier­ tes C₃-C₆-Alkandiyl, C₃-C₆-Alkendiyl oder C₄-C₆-Alkandiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
D steht bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₈-Alkinyl, C₁-C₁₀-Alkoxy- C₂-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl oder C₁-C₁₀-Alkylthio-C₂-C₈-al­ kyl, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₄-Halogenalkyl substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Al­ koxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Hetaryl mit 5 bis 6 Ringatomen und ein oder zwei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff, Phenyl-C₁-C₆-alkyl oder Hetaryl-C₁-C₆-alkyl mit 5 bis 6 Ringatomen und ein oder zwei Hetero­ atomen aus der Reihe Sauerstoff, Schwefel und Stickstoff oder
A und D stehen gemeinsam bevorzugt für eine C₃-C₆-Alkandiyl-, C₃-C₆-Alken­ diyl- oder C₄-C₆-Alkadiendiylgruppe, in welchen jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche jeweils gegebenenfalls substituiert sind durch Halogen, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₇-Cycloalkyl, Phenyl oder Benzyloxy oder durch eine weitere, einen ankondensierten Ring bildende C₃-C₆-Al­ kandiyl-, C₃-C₆-Alkendiyl- oder C₄-C₆-Alkadiendiylgruppe, in welchen gegebenenfalls jeweils eine Methylengruppe durch Sauerstoff oder Schwe­ fel ersetzt ist und welche gegebenenfalls durch C₁-C₆-Alkyl substituiert sind oder in welchen gegebenenfalls zwei benachbarte Substituenten ge­ meinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen weiteren gesättigten oder ungesättigten Carbocyclus mit 5 oder 6 Ring­ atomen bilden oder
A und D stehen gemeinsam für eine C₃-C₆-Alkandiyl- oder C₃-C₆-Alkendiyl­ gruppe, worin jeweils gegebenenfalls eine der folgenden Gruppen
enthalten ist.
G steht bevorzugt im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen
in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht.
R¹ steht bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio- C₁-C₈-alkyl oder Poly-C₁-C₅-alkoxy-C₁-C₅-alkyl oder für gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₅-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Halogen, Cyano, Nitro, C₁-C₆-Alkyl, C₁-C₆-Al­ koxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkylsulfonyl substituiertes Phenyl,
für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Al­ koxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes Phenyl-C₁-C₆-alkyl,
für gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes 5- oder 6gliedriges Hetaryl mit ein oder zwei Heteroatomen aus der Reihe Sauer­ stoff, Schwefel und Stickstoff,
für gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes Phenoxy-C₁-C₆-alkyl oder
für gegebenenfalls durch Halogen, Amino oder C₁-C₆-Alkyl substituiertes 5- oder 6gliedriges Hetaryloxy-C₁-C₆-alkyl mit ein oder zwei Hetero­ atomen aus der Reihe Sauerstoff, Schwefel und Stickstoff.
R² steht bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl,
für gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substi­ tuiertes C₃-C₈-Cycloalkyl oder
für jeweils gegebenenfalls durch Halogen, Cyano, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substituiertes Phenyl oder Benzyl.
R³ steht bevorzugt für gegebenenfalls durch Halogen substituiertes C₁-C₈-Al­ kyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Al­ koxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro sub­ stituiertes Phenyl oder Benzyl.
R⁴ und R⁵ stehen unabhängig voneinander bevorzugt für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkyl­ amino, Di-(C₁-C₈-alkyl)amino, C₁-C₈-Alkylthio oder C₂-C₈-Alkenylthio oder für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Al­ koxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio.
R⁶ und R⁷ stehen unabhängig voneinander bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₃-C₈-Cyclo­ alkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl oder C₁-C₈-Alkoxy-C₂-C₈-alkyl, für jeweils gegebenenfalls durch Halogen, C₁-C₈-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Phenyl oder Benzyl oder zusammen für einen gegebenenfalls durch C₁-C₆-Alkyl substituierten C₃-C₆-Alkylenrest, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
R¹³ steht bevorzugt für Wasserstoff oder für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder C₁-C₈-Alkoxy, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cyclo­ alkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist, oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₄-alkyl oder Phenyl-C₁-C₄-alkoxy.
R¹⁴ steht bevorzugt für Wasserstoff oder C₁-C₈-Alkyl oder
R¹³ und R¹⁴ stehen gemeinsam bevorzugt für C₄-C₆-Alkandiyl.
R¹⁵ und R¹⁶ sind gleich oder verschieden und stehen bevorzugt für C₁-C₆-Alkyl oder
R¹⁵ und R¹⁶ stehen gemeinsam bevorzugt für einen C₂-C₄-Alkandiylrest, der gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder durch gegebe­ nenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.
R¹⁷ und R¹⁸ stehen unabhängig voneinander bevorzugt für Wasserstoff, für gege­ benenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für gege­ benenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogen­ alkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder
R¹⁷ und R¹⁸ stehen gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für eine Carbonylgruppe, für gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₅-C₇-Cycloalkyl, in dem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
R¹⁹ und R²⁰ stehen unabhängig voneinander bevorzugt für C₁-C₁₀-Alkyl, C₂-C₁₀-Al­ kenyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkylamino, C₃-C £¢-Alkenylamino, Di-(C₁-C₁₀-alkyl)amino oder Di-(C₃-C₁₀-alkenyl)amino.
X steht besonders bevorzugt für C₁-C₄-Alkyl.
Y steht besonders bevorzugt für Fluor, Chlor, Brom oder C₁-C₄-Alkyl.
Z steht besonders bevorzugt für Fluor, Chlor, Brom oder C₁-C₄-Alkyl.
Dabei gilt, daß immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht.
Het steht besonders bevorzugt für eine der Gruppen
A steht besonders bevorzugt für Wasserstoff für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₁-C₈-Al­ koxy-C₁-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder C₁-C₈-Alkylthio- C₁-C₆-alkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C₁-C₄-alkyl.
B steht besonders bevorzugt für Wasserstoff C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl oder
A, B und das Kohlenstoffatom an das sie gebunden sind, stehen besonders be­ vorzugt für C₃-C₈-Cycloalkyl oder C₅-C₈-Cycloalkenyl, worin jeweils gege­ benenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls durch C₁-C₆-Alkyl, C₃-C₈-Cycloalkyl, C₁-C₃-Ha­ logenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen besonders bevorzugt für C₅-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- oder Schwefelatome enthaltende Alkylendiyl oder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substitu­ iert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen besonders be­ vorzugt für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, in welchen zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₅-Alkyl, C₁-C₅-Alkoxy, Fluor, Chlor oder Brom substituiertes C₃-C₅-Alkandiyl, C₃-C₅-Alkendiyl oder Butadiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
D steht besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Al­ kinyl, C₁-C₈-Alkoxy-C₂-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl oder C₁-C₈-Alkylthio-C₂-C₆-alkyl, für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiertes C₃-C₇-Cyclo­ alkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Ha­ logenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substi­ tuiertes Phenyl, Furanyl, Imidazolyl, Pyridyl, Thiazolyl, Pyrazolyl, Pyrimidyl, Pyrrolyl, Thienyl, Triazolyl oder Phenyl-C₁-C₄-alkyl oder
A und D stehen gemeinsam besonders bevorzugt für eine C₃-C₅-Alkandiyl- oder C₃-C₅-Alkendiylgruppe, worin jeweils gegebenenfalls ein Kohlenstoffatom durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls substituiert sind durch Fluor, Chlor, Hydroxy, Mercapto oder durch jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy oder
worin jeweils gegebenenfalls eine der folgenden Gruppen:
enthalten ist;
oder A und D stehen (im Fall der Verbindungen der Formel (I-1)) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der Grup­ pen AD-1 bis AD-27
G steht besonders bevorzugt im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen
in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht.
R¹ steht besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-al­ kyl, C₁-C₆-Alkylthio-C₁-C₆-alkyl oder Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₅-Alkyl oder C₁-C₅-Al­ koxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, C₁-C₄-Alkyl­ thio oder C₁-C₄-Alkylsulfonyl substituiertes Phenyl,
für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl oder C₁-C₃-Halogenalkoxy substituiertes Phenyl-C₁-C₄-alkyl,
für jeweils gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl sub­ stituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl, für gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substi­ tuiertes Phenoxy-C₁-C₅-alkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Amino oder C₁-C₄-Alkyl substituiertes Pyridyloxy-C₁-C₅-alkyl, Pyrimidyloxy-C₁-C₅-alkyl oder Thiazolyloxy-C₁-C₅-alkyl.
R² steht besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl oder Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl,
für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₇-Cycloalkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkyl oder C₁-C₃-Halogenalkoxy sub­ stituiertes Phenyl oder Benzyl.
R³ steht besonders bevorzugt für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,
R⁴ und R⁵ stehen unabhängig voneinander besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, Di-(C₁-C₆-alkyl)amino, C₁-C₆-Alkylthio oder C₃-C₄-Alkenylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkyl­ thio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substi­ tuiertes Phenyl, Phenoxy oder Phenylthio.
R⁶ und R⁷ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆- Alkyl, C₃-C₆-Cycloalkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl oder C₁-C₆-Alk­ oxy-C₂-C₆-alkyl, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Halogenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl oder Benzyl, oder zusammen für einen gegebenenfalls durch C₁-C₄-Alkyl substituierten C₃-C₆-Alkylenrest, in welchem gegebenenfalls eine Methy­ lengruppe durch Sauerstoff oder Schwefel ersetzt ist.
R¹³ steht besonders bevorzugt für Wasserstoff oder für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, für gegebenenfalls durch Fluor, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₃-alkyl oder Phenyl-C₁-C₂-alkyloxy.
R¹⁴ steht besonders bevorzugt für Wasserstoff oder C₁-C₆-Alkyl oder
R¹³ und R¹⁴ stehen gemeinsam besonders bevorzugt für C₄-C₆-Alkandiyl.
R¹⁵ und R¹⁶ sind gleich oder verschieden und stehen besonders bevorzugt für C₁-C₄-Alkyl oder
R¹⁵ und R¹⁶ stehen zusammen besonders bevorzugt für einen C₂-C₃-Alkandiylrest, der gegebenenfalls durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder durch gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogen­ alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.
R¹⁷ und R¹⁸ stehen unabhängig voneinander besonders bevorzugt für Wasserstoff, für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Ha­ logenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phe­ nyl oder
R¹⁷ und R¹⁸ stehen gemeinsam besonders bevorzugt mit dem Kohlenstoffatom, an das sie gebunden sind, für gegebenenfalls durch C₁-C₃-Alkyl oder C₁-C₃-Al­ koxy substituiertes C₅-C₆-Cycloalkyl, in dem gegebenenfalls eine Methy­ lengruppe durch Sauerstoff oder Schwefel ersetzt ist.
R¹⁹ und R²⁰ stehen unabhängig voneinander besonders bevorzugt für C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, C₃-C₆-Alkenylamino, Di-(C₁-C₆-alkyl)amino oder Di-(C₃-C₆-alkenyl)amino.
X steht ganz besonders bevorzugt für Methyl, Ethyl, n-Propyl oder iso-Propyl.
Y steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl oder iso-Propyl.
Z steht ganz besonders bevorzugt für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl oder iso-Propyl.
Dabei gilt, daß immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht.
Het steht ganz besonders bevorzugt für eine der Gruppen
A steht ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₄-Alkenyl, C₁-C₆-Al­ koxy-C₁-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder C₁-C₆-Alkylthio- C₁-C₄-alkyl, oder für gegebenenfalls durch Fluor, Chlor, Methyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluor­ methoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Thienyl, Pyridyl oder Benzyl.
B steht ganz besonders bevorzugt für Wasserstoff, C₁-C₅-Alkyl oder C₁-C₄-Alkoxy-C₁-C₂-alkyl oder
A, B und das Kohlenstoffatom an das sie gebunden sind, stehen ganz besonders bevorzugt für C₃-C₈-Cycloalkyl oder C₅-C₈-Cycloalkenyl, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls durch Methyl, Ethyl, n-Propyl, iso-Ppropyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für C₅-C₆-Cycloalkyl, welches durch eine gegebenenfalls ein Sauerstoff- oder Schwefelatom enthaltende Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- oder sechsgliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, stehen ganz besonders bevorzugt für C₃-C₆-Cycloalkyl oder C₅-C₆-Cycloalkenyl, in dem zwei Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für C₃-C₄-Alkandiyl, C₃-C₄-Alkendiyl oder Butadiendiyl stehen, wo­ rin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist.
D steht ganz besonders bevorzugt für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Al­ kinyl, C₁-C₆-Alkoxy-C₂-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₂-C₄-alkyl, C₁-C₄-Al­ kylthio-C₂-C₄-alkyl oder C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Thienyl oder Benzyl,
oder
A und D stehen gemeinsam ganz besonders bevorzugt für eine C₃-C₅-Alkandiyl- oder C₃-C₅-Alkendiylgruppe, worin jeweils gegebenenfalls eine Methylen­ gruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenen­ falls durch Fluor, Chlor, Hydroxy, Mercapto oder durch jeweils gegebe­ nenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy substituiert sind oder
worin gegebenenfalls eine der folgenden Gruppen
enthalten ist,
oder A und D stehen im Fall der Verbindungen der Formel (I-1) ge­ meinsam mit den Atomen, an die sie gebunden sind, für eine der folgenden Gruppen:
G steht ganz besonders bevorzugt, im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen
in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht.
R¹ steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-al­ kyl, C₁-C₄-Alkylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Methoxy, Ethoxy, n-Propoxy oder iso-Propoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethylsulfonyl substituiertes Phenyl,
für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substitu­ iertes Benzyl,
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, Thienyl oder Pyridyl,
für gegebenenfalls durch Fluor, Chlor, Methyl oder Ethyl substituiertes Phenoxy-C₁-C₄-alkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-alkyl oder Thiazolyloxy-C₁-C₄-alkyl.
R² steht ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-al­ kyl oder Poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,
für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl,
oder für jeweils gegebenenfalls durch Fluor, Chlor, Cyano, Nitro, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluor­ methoxy substituiertes Phenyl oder Benzyl.
R³ steht ganz besonders bevorzugt für gegebenenfalls durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluormeth­ oxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl,
R⁴ und R⁵ stehen unabhängig voneinander ganz besonders bevorzugt für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Al­ koxy, C₁-C₄-Alkylamino, Di-(C₁-C₄-alkyl)amino oder C₁-C₄-Alkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl, Phenoxy oder Phenylthio.
R⁶ und R⁷ stehen unabhängig voneinander ganz besonders bevorzugt für Wasser­ stoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl oder C₁-C₄-Al­ koxy-C₂-C₄-alkyl, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl, oder zusammen für einen gegebenenfalls durch Methyl oder Ethyl substituierten C₅-C₆-Alkylenrest, in welchem gegebenenfalls eine Methy­ lengruppe durch Sauerstoff oder Schwefel ersetzt ist.
R¹³ steht ganz besonders bevorzugt für Wasserstoff oder für jeweils gegebe­ nenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Al­ koxy, für C₃-C₆-Cycloalkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, iso-Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₂-alkyl oder Benzyloxy.
R¹⁴ steht ganz besonders bevorzugt für Wasserstoff oder C₁-C₄-Alkyl oder
R¹³ und R¹⁴ stehen gemeinsam ganz besonders bevorzugt für C₄-C₆-Alkandiyl.
R¹⁵ und R¹⁶ sind gleich oder verschieden ganz besonders bevorzugt für Methyl oder Ethyl oder
R¹⁵ und R¹⁶ stehen zusammen ganz besonders bevorzugt für einen C₂-C₃-Al­ kandiylrest, der gegebenenfalls durch Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl oder durch gegebenenfalls durch Fluor, Chlor, Methoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist.
Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Reste­ definitionen bzw. Erläuterungen können untereinander, also auch zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Si 99999 00070 552 001000280000000200012000285919988800040 0002019603332 00004 99880e gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.
Erfindungsgemäß bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Erfindungsgemäß ganz besonders bevorzugt werden die Verbindungen der Formel (I), in welchen eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen vorliegt.
Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl kön­ nen, auch in Verbindung mit Heteroatomen, wie z. B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.
Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.
Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbin­ dungen die folgenden Verbindungen der Formel (I-1-a) genannt:
Tabelle 1
Tabelle 2
Tabelle 3
Tabelle 4
Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbin­ dungen die folgenden Verbindungen der Formel (I-2-a) genannt:
Tabelle 5
Tabelle 6
Tabelle 7
Tabelle 8
Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (I-3-a) genannt:
Tabelle 9
Tabelle 10
A, B wie in Tabelle 9 angegeben
X = CH₃; Y = Cl; Z = CH₃
Tabelle 11
A, B wie in Tabelle 9 angegeben
X = CH₃; Y = CH₃; Z = Br
Tabelle 12
A, B wie in Tabelle 9 angegeben
X = CH₃; Y = Br; Z = CH₃
Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbindungen die folgenden Verbindungen der Formel (I-5-a) genannt:
Tabelle 13
Tabelle 14
A und D wie in Tabelle 13 angegeben
X = CH₃; Y = Cl; Z = CH₃
Tabelle 15
A und D wie in Tabelle 13 angegeben
X = CH₃; Y = CH₃; Z = Br
Tabelle 16
A und D wie in Tabelle 13 angegeben
X = CH₃; Y = Br; Z = CH₃
Im einzelnen seien außer den bei den Herstellungsbeispielen genannten Verbin­ dungen die folgenden Verbindungen der Formel (I-6-a) genannt:
Tabelle 17
Tabelle 18
A wie in Tabelle 17 angegeben
X = CH₃; Y = Cl; Z = CH₃
Tabelle 19
A wie in Tabelle 17 angegeben
X = CH₃; Y = CH₃; Z = Br
Tabelle 20
A wie in Tabelle 17 angegeben
X = CH₃; Y = Br; Z = CH₃
Verwendet man gemäß Verfahren (A) N-[(2-Chlor-4,6-dimethyl)-phenylacetyl]-1- amino-4-ethyl-cyclohexan-carbonsäureethylester als Ausgangsstoff, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wie­ dergegeben werden:
Verwendet man gemäß Verfahren (B) O-[(2-Chlor-4,6-dimethyl)-phenylacetyl]- hydroxyessigsäureethylester, so kann der Verlauf des erfindungsgemäßen Verfah­ rens durch folgendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (C) 2-[(2-Brom-4,6-dimethyl)-phenyl]-4-(4-meth­ oxy)-benzylmercapto-4-methyl-3-oxo-valeriansäure-ethylester, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wieder­ gegeben werden:
Verwendet man beispielsweise gemäß Verfahren (E) (Chlorcarbonyl)-2-[(2-brom- 4,6-dimethyl)-phenyl]-keten und Aceton als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Reaktionsschema wiedergegeben werden:
Verwendet man beispielsweise gemäß Verfahren (F) (Chlorcarbonyl)-2-[(4-brom- 2,6-dimethyl)-phenyl]-keten und Thiobenzamid als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch das folgende Reak­ tionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (Gα) 3-[(2-Chlor-4,6-dimethyl)-phenyl]-5,5-di­ methyl-pyrrolidin-2,4-dion und Pivaloylchlorid als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (G) (Variante β) 3-[(4-Chlor-2,6-dimethyl)-phe­ nyl]-4-hydroxy-5-phenyl-Δ³-dihydrofuran-2-on und Acetanhydrid als Ausgangsver­ bindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgen­ des Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (H) 8-[(4-Brom-2-ethyl-6-methyl)-phenyl]-1,6- diaza-bicyclo-(4,3,01,6)-nonan-7,9-dion und Chlorameisensäureethoxyethylester als Ausgangsverbindungen, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (I), (Variante α) 3-[(2-Chlor-4,6-dimethyl)-phe­ nyl]-4-hydroxy-6-(3-pyridyl)-pyron und Chlormonothioameisensäuremethylester als Ausgangsprodukte, so kann der Reaktionsverlauf folgendermaßen wiedergegeben werden:
Verwendet man gemäß Verfahren (1), (Variante β) 5-[(2-Brom-4-methyl-6-methyl)- phenyl]-6-hydroxy-2-(4-chlorphenyl)-thiazin-4-on, Schwefelkohlenstoff und Me­ thyliodid als Ausgangskomponenten, so kann der Reaktionsverlauf wie folgt wie­ dergegeben werden:
Verwendet man gemäß Verfahren (J) 2-[(2-Chlor-4,6-dimethyl)-phenyl]-1,5-trime­ thylen-pyrrolidin-2,4-dion und Methansulfonsäurechlorid als Ausgangsprodukt, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (K) 2-[(2-Chlor-6-ethyl-4-methyl)-phenyl]-4-hy­ droxy-5-methyl-6-(2-pyridyl)-pyron und Methanthio-phosphonsäurechlorid-(2,2,2-tri­ fluorethylester) als Ausgangsprodukte, so kann der Reaktionsverlauf durch fol­ gendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (L) 3-[(4-Brom-2,6-diethyl)-phenyl]-5-cyclopro­ pyl-5-methyl-pyrrolidin-2,4-dion und NaOH als Komponenten, so kann der Verlauf des erfindungsgemäßen Verfahrens durch folgendes Reaktionsschema wiedergege­ ben werden:
Verwendet man gemäß Verfahren (M) (Variante α) 3-[(2-Brom-4,6-dimethyl)-phe­ nyl]-4-hydroxy-5,5-tetramethylen-Δ³-dihydro-furan-2-on und Ethylisocyanat als Ausgangsprodukte, so kann der Reaktionsverlauf durch folgendes Reaktionsschema wiedergegeben werden:
Verwendet man gemäß Verfahren (M) (Variante β) 3-[(2-Chlor-4,6-dimethyl)-phe­ nyl]-5-methyl-pyrrolidin-2,4-dion und Dimethylcarbamidsäurechlorid als Ausgangs­ produkte, so kann der Reaktionsverlauf durch folgendes Schema wiedergegeben werden:
Die beim erfindungsgemäßen Verfahren (A) als Ausgangsstoffe benötigten Verbin­ dungen der Formel (II)
in welcher
A, B, D, X, Y, Z und R⁸ die oben angegebene Bedeutungen haben,
sind neu.
Man erhält die Acylaminosäureester der Formel (II) beispielsweise, wenn man Aminosäurederivate der Formel (XXI)
in welcher
A, B, R⁸ und D die oben angegebenen Bedeutungen haben,
mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht,
acyliert (Chem. Reviews 52, 237-416 (1953); Bhattacharya, Indian J. Chem. 6, 341-5, 1968)
oder wenn man Acylaminosäuren der Formel (XXIII)
in welcher
A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
verestert (Chem. Ind. (London) 1568 (1968)).
Die Verbindungen der, Formel (XXIII)
in welcher
A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
sind neu.
Man erhält die Verbindungen der Formel (XXIII), wenn man Aminosäuren der Formel (XXIV)
in welcher
A, B und D die oben angegebenen Bedeutungen haben,
mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht,
nach Schotten-Baumann acyliert (Organikum, VEB Deutscher Verlag der Wissen­ schaften, Berlin 1977, S. 505).
Die Verbindungen der Formel (XXII) sind neu.
Man erhält die Verbindungen der Formel (XXII) beispielsweise, indem man sub­ stituierte Phenylessigsäuren der Formel (XXV)
in welcher
X, Y und Z die oben angegebene Bedeutung haben,
mit Halogenierungsmitteln (z. B. Thionylchlorid, Thionylbromid, Oxalylchlorid, Phosgen, Phosphortrichlorid, Phosphortribromid oder Phosphorpentachlorid) gege­ benenfalls in Gegenwart eines Verdünnungsmittels (z. B. gegebenenfalls chlorierten aliphatischen oder aromatischen Kohlenwasserstoffen wie Toluol oder Methylen­ chlorid) bei Temperaturen von -20°C bis 150°C, bevorzugt von -10°C bis 100°C, umsetzt.
Die Verbindungen der Formel (XXV) sind neu.
Man erhält die Verbindungen der Formel (XXV) beispielsweise, indem man sub­ stituierte Phenylessigsäureester der Formel (XXVI)
in welcher
X, Y, Z und R⁸ die oben angegebene Bedeutung haben,
in Gegenwart einer Säure (z. B. einer anorganischen Säure wie Chlorwasserstoff­ säure) oder einer Base (z. B. eines Alkalihydroxids wie Natrium- oder Kaliumhy­ droxid) und gegebenenfalls eines Verdünnungsmittels (z. B. eines wäßrigen Alko­ hols wie Methanol oder Ethanol) bei Temperaturen zwischen 0°C und 150°C, bevorzugt zwischen 20°C und 100°C, hydrolysiert.
Die Verbindungen der Formel (XXVI) sind neu.
Man erhält die Verbindungen der Formel (XXVI) beispielsweise, indem man sub­ stituierte 1,1,1-Trichlor-2-phenylethane der Formel (XXVII)
in welcher
X, Y und Z die oben angegebene Bedeutung haben,
zunächst mit Alkoholaten (z. B. Alkalimetallalkoholaten wie Natriummethylat oder Natriumethylat) in Gegenwart eines Verdünnungsmittels (z. B. dem vom Alkoholat abgeleiteten Alkohol) bei Temperaturen zwischen 0°C und 150°C, bevorzugt zwi­ schen 20°C und 120°C, und anschließend mit einer Säure (bevorzugt eine anorganische Säure wie z. B. Schwefelsäure) bei Temperaturen zwischen -20°C und 150°C, bevorzugt 0°C und 100°C, umsetzt (vgl. DE-33 14 249).
Die Verbindungen der Formel (XXVII) sind neu.
Man erhält die Verbindungen der Formel (XXVII) beispielsweise, wenn man Aniline der Formel (XXVIII)
in welcher
X, Y und Z die oben angegebene Bedeutung haben,
in Gegenwart eines Alkylnitrits der Formel (XXIX)
R²¹-ONO (XXIX)
in welcher
R²¹ für Alkyl, bevorzugt C₁-C₆-Alkyl steht,
in Gegenwart von Kupfer(II)-chlorid und gegebenenfalls in Gegenwart eines Verdünnungsmittels (z. B. eines aliphatischen Nitrils wie Acetonitril) bei einer Temperatur von -20°C bis 80°C, bevorzugt 0°C bis 60°C, mit Vinylidenchlorid (CH₂=CCl₂) umsetzt (vgl. J. Org. Chem. 53 (1988), 3637).
Die Verbindungen der Formel (XXVIII) und (XXIX) sind bekannte Verbindungen der Organischen Chemie. Kupfer(II)-chlorid und Vinylidenchlorid sind lange bekannt und käuflich.
Die Verbindungen der Formel (XXI) und (XXIV) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren darstellen (siehe z. B. Compagnon, Miocque Ann. Chim. (Paris) [14] 5, S. 11-22, 23-27 (1970)).
Die substituierten cyclischen Aminocarbonsäuren der Formel (XXIVa), in der A und B einen Ring bilden, sind im allgemeinen nach der Bucherer-Bergs-Synthese oder nach der Strecker-Synthese erhältlich und fallen dabei jeweils in unter­ schiedlichen Isomerenformen an. So erhält man nach den Bedingungen der Bucherer-Bergs-Synthese vorwiegend die Isomeren (im folgenden der Einfachheit halber als β bezeichnet), in welchen die Reste R und die Carboxylgruppe äquatorial stehen, während nach den Bedingungen der Strecker-Synthese vorwie­ gend die Isomeren (im folgenden der Einfachheit halber als α bezeichnet) anfallen, bei denen die Aminogruppe und die Reste R äquatorial stehen.
(L. Munday, J. Chem. Soc. 4372 (1961); J.T. Eward, C. Jitrangeri, Can. J. Chem. 53, 3339 (1975).
Weiterhin lassen sich die bei dem obigen Verfahren (A) verwendeten Ausgangs­ stoffe der Formel (II)
in welcher
A, B, D, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,
herstellen, wenn man Aminonitrile der Formel (XXX)
in welcher
A, B und D die oben angegebenen Bedeutungen haben,
mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)
in welcher
X, Y, Z und Hal die oben angegebenen Bedeutungen haben,
zu Verbindungen der Formel (XXXI)
in welcher
A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
umsetzt,
und diese anschließend einer sauren Alkoholyse unterwirft.
Die Verbindungen der Formel (XXXI) sind ebenfalls neu.
Die bei dem erfindungsgemäßen Verfahren (B) als Ausgangsstoffe benötigten Verbindungen der Formel (III)
in welcher
A, B, X, Y, Z und R⁸ wie oben angegebenen Bedeutungen haben,
sind neu.
Sie lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen.
Man erhält die Verbindungen der Formel (III) beispielsweise, wenn man 2-Hydroxycarbonsäureester der Formel (XXXII)
in welcher
A, B und R⁸ die oben angegebenen Bedeutungen haben,
mit substituierten Phenylessigsäurehalogeniden der Formel (XXII)
in welcher
X, Y, Z und Hal die oben angegebenen Bedeutungen haben,
acyliert (Chem. Reviews 52, 237-416 (1953)).
Weiterhin erhält man Verbindungen der Formel (III), wenn man
substituierte Phenylessigsäuren der Formel (XXV)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben,
mit α-Halogencarbonsäureestern der Formel (XXXIII)
in welcher
A, B und R⁸ die oben angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht,
alkyliert.
Die Verbindungen der Formel (XXXIII) sind käuflich.
Die bei dem obigen Verfahren (C) als Ausgangsstoffe benötigten Verbindungen der Formel (IV)
in welcher
A, B, W, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,
sind neu.
Sie lassen sich nach im Prinzip bekannten Methoden herstellen.
Man erhält die Verbindungen der Formel (IV) beispielsweise, wenn man substituierte Phenylessigsäureester der Formel (XXVI)
in welcher
X, Y, R⁸ und Z die oben angegebenen Bedeutungen haben,
mit 2-Benzylthio-carbonsäurehalogeniden der Formel (XXXIV)
in welcher
A, B und W die oben angegebenen Bedeutungen haben und
Hal für Halogen (insbesondere Chlor oder Brom) steht,
in Gegenwart von starken Basen acyliert (siehe z. B. M.S. Chambers, E.J. Thomas, D.J. Williams, J. Chem. Soc. Chem. Commun., (1987), 1228).
Die Benzylthio-carbonsäurehalogenide der Formel (XXXIV) sind teilweise bekannt und/oder lassen sich nach bekannten Verfahren herstellen (J. Antibiotics (1983), 26, 1589).
Die beim Verfahren (E) als Ausgangsstoffe benötigten Halogencarbonylketene der Formel (V) sind neu. Sie lassen sich nach im Prinzip bekannten Methoden in einfacher Weise herstellen (vgl. beispielsweise Org. Prep. Proced Int., 7, (4), 155-158, 1975 und DE 19 45 703). Man erhält die Verbindungen der Formel (V)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht,
wenn man
substituierte Phenylmalonsäuren der Formel (XXXV)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben,
mit Säurehalogeniden, wie beispielsweise Thionylchlorid, Phosphor(V)chlorid, Phosphor(III)chlorid, Oxalylchlorid, Phosgen oder Thionylbromid gegebenenfalls in Gegenwart von Katalysatoren, wie beispielsweise Diethylformamid, Methyl­ sterylformamid oder Triphenylphosphin und gegebenenfalls in Gegenwart von Basen wie z. B. Pyridin oder Triethylamin, bei einer Temperatur zwischen -20°C und 200°C, bevorzugt zwischen 0°C und 150°C, umsetzt.
Die substituierten Phenylmalonsäuren der Formel (XXXV) sind neu. Sie lassen sich aber in einfacher Weise nach bekannten Verfahren herstellen (vgl. z. B. Orga­ nikum, VEB Deutscher Verlag der Wissenschaften, Berlin 1977, S. 517 ff.).
Die für das erfindungsgemäße Verfahren (E) als Ausgangsstoffe benötigten Carb­ onylverbindungen der Formel (VIII) oder deren Silylenolether der Formel (VIIIa)
in welchen
A, D und R8′ die oben angegebenen Bedeutungen haben,
sind käufliche, allgemeine bekannte oder nach bekannten Verfahren zugängliche Verbindungen.
Die Herstellung der zur Durchführung des erfindungsgemäßen Verfahrens (F) als Ausgangsstoffe benötigten Ketensäurechloride der Formel (V) wurden bereits beim erfindungsgemäßen Verfahren (E) beschrieben. Die zur Durchführung des erfin­ dungsgemäßen Verfahrens (F) benötigten Thioamide der Formel (IX)
in welcher
A die oben angegebene Bedeutung hat,
sind allgemein in der Organischen Chemie bekannte Verbindungen.
Die beim Verfahren (G) als Ausgangsstoffe benötigten Verbindungen der Formel (I-4-a) sind bekannt und/oder lassen sich in einfacher Weise nach bekannten Methoden herstellen (vgl. and WO 92/16510).
Man erhält die Verbindungen der Formel (I-4-a) beispielsweise, wenn man
Verbindungen der Formel (V)
in welcher
X, Y und Z die oben angegebenen Bedeutungen haben
und
Hal für Halogen (insbesondere Chlor oder Brom) steht,
oder
Verbindungen der Formel (VI)
in welcher
R⁸, X, Y und Z die oben angegebenen Bedeutungen haben,
mit Hydrazinen der Formel (VII)
A-NH-NH-D (VII)
in welcher
A und D die oben angegebenen Bedeutungen haben,
gegebenenfalls in Gegenwart eines Verdünnungsmittels,
wobei verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldi­ methylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie, nur im Fall, daß Verbindun­ gen der Formel (VI) eingesetzt werden, Alkohole wie Methanol, Ethanol, Propa­ nol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol, und gegebenenfalls in Gegenwart einer Base, wobei in dem Fall, daß Verbindungen der Formel (V) eingesetzt werden, anorganische Basen, insbesondere Alkali- oder Erdalkali­ carbonate wie Natriumcarbonat, Kaliumcarbonat oder Calciumcarbonat sowie orga­ nische Basen wie beispielsweise Pyridin oder Triethylamin in Betracht kommen und in dem Fall, daß Verbindungen der Formel (VI) eingesetzt werden, Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natrium­ hydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentrans­ ferkatalysatoren wie z. B. Triethylbenzylammoniumchlorid, Tetrabutylammonium­ bromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können, Alkalimetalle wie Natrium oder Kalium, Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalime­ tallalkoholate, wie Natriummethylat, Natriumethylat und Kalium-tert.-butylat in Betracht kommen, bei Temperaturen zwischen -20°C und 250°C, vorzugsweise zwischen 0°C und 150°C umsetzt.
Die Malonsäureester der Formel (VI)
in welcher
R⁸, X, Y und Z die oben angegebenen Bedeutungen haben, sind neu.
Sie lassen sich nach allgemein bekannten Methoden der Organischen Chemie darstellen (vgl. z. B. Tetrahedron Lett. 27, 2763 (1986) und Organikum VEB Deutscher Verlag der Wissenschaften, Berlin 1977, S. 587 ff.).
Die Hydrazine der Formel (VII)
A-NH-NH-D (VII),
in welcher
A und D die oben angegebenen Bedeutungen haben,
sind teilweise bekannt und/oder nach literaturbekannten Methoden herstellbar (vgl. beispielsweise Liebigs Ann. Chem. 585 6 (1954); Reaktionen der organischen Synthese, C. Ferri, Seite 212, 513; Georg Thieme Verlag Stuttgart, 1978; Liebigs Ann. Chem. 443, 242 (1925); Chem. Ber. 98, 2551 (1965), Ep 508 126).
Die zur Durchführung der erfindungsgemäßen Verfahren (G), (H), (I), (J), (K), (L) und (M) außerdem als Ausgangsstoffe benötigten Säurehalogenide der Formel (X), Carbonsäureanhydride der Formel (XI), Chlorameisensäureester oder Chloramei­ sensäurethioester der Formel (XII), Chlormonothioameisensäureester oder Chlordi­ thioameisensäureester der Formel (XIII), Alkylhalogenide der Formel (XIV), Sulfonsäurechloride der Formel (XV), Phosphorverbindungen der Formel (XVI) und Metallhydroxide, Metallalkoxide oder Amine der Formel (XVII) und (XVIII) und Isocyanate der Formel (XIX) und Carbamidsäurechloride der Formel (XX) sind allgemein bekannte Verbindungen der organischen bzw. anorganischen Che­ mie.
Die Verbindungen der Formeln (VII), (VIII), (IX) bis (XXI), (XXIV) und (XXXII) bis (XXXIV) sind darüber hinaus aus den eingangs zitierten Patentanmeldungen bekannt und/oder lassen sich nach den dort angegebenen Methoden herstellen.
Das Verfahren (A) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (II), in welcher A, B, D, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben, in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base einer intramolekularen Kondensation unterwirft.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (A) alle gegenüber den Reaktionsteilnehmern inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon, sowie Alkohole wie Me­ thanol, Ethanol, Propanol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol.
Als Base (Deprotonierungsmittel) können bei der Durchführung des erfindungsge­ mäßen Verfahrens (A) alle üblichen Protonenakzeptoren eingesetzt werden. Vor­ zugsweise verwendbar sind Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calciumoxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegenwart von Phasentransferkatalysatoren wie z. B. Triethylbenzylammoniumchlorid, Tetra­ butylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammoniumchlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden können. Wei­ terhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natriumamid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoholate, wie Natriummethylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Ver­ fahrens (A) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.
Das erfindungsgemäße Verfahren (A) wird im allgemeinen unter Normaldruck durchgeführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (A) setzt man die Reak­ tionskomponente der Formel (II) und die deprotonierende Base im allgemeinen in äquimolaren bis etwa doppeltäquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwenden.
Das Verfahren (B) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (III), in welcher A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben, in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramole­ kular kondensiert.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (B) alle gegenüber den Reaktionsteilnehmern inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner Ether, wie Dibutylether, Tetrahydrofuran, Dioxan, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alko­ hole wie Methanol, Ethanol, Propanol, Iso-Propanol, Butanol, Iso-Butanol und tert.-Butanol eingesetzt werden.
Als Base (Deprotonierungsmittel) können bei der Durchführung des erfindungs­ gemäßen Verfahrens (B) alle üblichen Protonenakzeptoren eingesetzt werden. Vorzugsweise verwendbar sind Alkalimetall- und Erdalkalimetalloxide, -hydroxide und -carbonate, wie Natriumhydroxid, Kaliumhydroxid, Magnesiumoxid, Calcium­ oxid, Natriumcarbonat, Kaliumcarbonat und Calciumcarbonat, die auch in Gegen­ wart von Phasentransferkatalysatoren wie z. B. Triethylbenzylammoniumchlorid, Tetrabutylammoniumbromid, Adogen 464 (= Methyltrialkyl(C₈-C₁₀)ammonium­ chlorid) oder TDA 1 (= Tris-(methoxyethoxyethyl)-amin) eingesetzt werden kön­ nen. Weiterhin können Alkalimetalle wie Natrium oder Kalium verwendet werden. Ferner sind Alkalimetall- und Erdalkalimetallamide und -hydride, wie Natrium­ amid, Natriumhydrid und Calciumhydrid, und außerdem auch Alkalimetallalkoho­ late, wie Natriummethylat, Natriumethylat und Kalium-tert.-butylat einsetzbar.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Ver­ fahrens (B) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.
Das erfindungsgemäße Verfahren (B) wird im allgemeinen unter Normaldruck durchgeführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (B) setzt man die Reak­ tionskomponenten der Formel (III) und die deprotonierenden Basen im allge­ meinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 3 Mol) zu verwen­ den.
Das Verfahren (C) ist dadurch gekennzeichnet, daß man Verbindungen der Formel (IV) in welcher A, B, W, X, Y, Z und R⁸ die oben angegebene Bedeutung haben, in Gegenwart einer Säure und gegebenenfalls in Gegenwart eines Verdünnungsmit­ tels intramolekular cyclisiert.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (C) alle gegenüber den Reaktionsteilnehmern inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Toluol und Xylol, ferner halogenierte Kohlenwasserstoffe wie Dichlormethan, Chloroform, Ethylen­ chlorid, Chlorbenzol, Dichlorbenzol, außerdem polare Lösungsmittel, wie Dime­ thylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon. Weiterhin können Alkohole wie Methanol, Ethanol, Propanol, iso-Propanol, Butanol, Iso­ butanol, tert.-Butanol eingesetzt werden.
Gegebenenfalls kann auch die eingesetzte Säure als Verdünnungsmittel dienen.
Als Säure können bei dem erfindungsgemäßen Verfahren (C) alle üblichen anor­ ganischen und organischen Säuren eingesetzt werden, wie z. B. Halogenwasser­ stoffsäuren, Schwefelsäure, Alkyl-, Aryl- und Haloalkylsulfonsäuren, insbesondere werden halogenierte Alkylcarbonsäuren wie z. B. Trifluoressigsäure verwendet.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Ver­ fahrens (C) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 150°C.
Das erfindungsgemäße Verfahren (C) wird im allgemeinen unter Normaldruck durchgeführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (C) setzt man die Reaktionskomponenten der Formeln (IV) und die Säure z. B. in äquimolaren Men­ gen ein. Es ist jedoch gegebenenfalls auch möglich, die Säure in katalytischen Mengen einzusetzen.
Das erfindungsgemäße Verfahren (E) ist dadurch gekennzeichnet, daß man Carbo­ nylverbindungen der Formel (VIII) oder deren Silylenolether der Formel (VIIIa) mit Ketensäurehalogeniden der Formel (V) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors um­ setzt.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (E) alle gegenüber den Reaktionsteilnehmern inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie o-Dichlorbenzol, Tetralin, Toluol und Xylol, ferner Ether, wie Dibutylether, Glykoldimethylether und Diglykoldimethylether, außerdem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid oder N-Methyl-pyrrolidon.
Als Säureakzeptoren können bei der Durchführung des erfindungsgemäßen Ver­ fahrens (E) alle üblichen Säureakzeptoren verwendet werden.
Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diaza­ bicyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hünig-Base oder N,N-Dimethyl-anilin.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Verfahrens (E) innerhalb eines größeren Bereiches variiert werden. Zweckmäßiger­ weise arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 50°C und 220°C.
Das erfindungsgemäße Verfahren (E) wird vorzugsweise unter Normaldruck durch­ geführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (B) setzt man die Reaktionskomponenten der Formeln (VIII) und (V) und gegebenenfalls den Säure­ akzeptor im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 5 Mol) zu verwenden.
Das erfindungsgemäße Verfahren (F) ist dadurch gekennzeichnet, daß man Thio­ amide der Formel (IX) mit Ketensäurehalogeniden der Formel (V) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säureakzeptors umsetzt.
Als Verdünnungsmittel können bei der erfindungsgemäßen Verfahrensvariante (F) alle inerten organischen Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie o-Dichlorbenzol, Tetralin, Toluol und Xylol, ferner Ether, wie Dibutylether, Glykoldimethylether und Diglykoldimethylether, außer­ dem polare Lösungsmittel, wie Dimethylsulfoxid, Sulfolan, Dimethylformamid und N-Methyl-pyrrolidon.
Als Säureakzeptoren können bei der Durchführung des erfindungsgemäßen Ver­ fahrens (F) alle üblichen Säureakzeptoren verwendet werden.
Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, Diaza­ bicyclooctan (DABCO), Diazabicycloundecan (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Dimethyl-anilin.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Verfahrens (F) innerhalb eines größeren Bereiches variiert werden. Zweckmäßiger­ weise arbeitet man bei Temperaturen zwischen 0°C und 250°C, vorzugsweise zwischen 20°C und 220°C.
Das erfindungsgemäße Verfahren (F) wird zweckmäßigerweise unter Normaldruck durchgeführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (F) setzt man die Reaktionskomponenten der Formeln (IX) und (V) und gegebenenfalls die Säure­ akzeptoren im allgemeinen in etwa äquimolaren Mengen ein. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 5 Mol) zu verwenden.
Das Verfahren (Gα) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Carbonsäurehalogeniden der Formel (X) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Gα) alle gegenüber den Säurehalogeniden inerten Solventien eingesetzt werden. Vorzugs­ weise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiterhin Ether, wie Diethylether, Tetra­ hydrofuran und Dioxan, darüberhinaus Carbonsäureester, wie Ethylacetat, Nitrile wie Acetonitril und auch stark polare Solventien, wie Dimethylformamid, Di­ methylsulfoxid und Sulfolan. Wenn die Hydrolysestabilität des Säurehalogenids es zuläßt, kann die Umsetzung auch in Gegenwart von Wasser durchgeführt werden.
Als Säurebindemittel kommen bei der Umsetzung nach dem erfindungsgemäßen Verfahren (Gα) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwend­ bar sind tertiäre Amine, wie Triethylamin, Pyridin, Diazabicyclooctan (DABCO), Diazabicycloundecen (DBU), Diazabicyclononen (DBN), Hünig-Base und N,N-Di­ methyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkali-metall-carbonate, wie Natriumcarbonat, Kalium­ carbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.
Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (Gα) innerhalb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und 100°C.
Bei der Durchführung des erfindungsgemäßen Verfahrens (Gα) werden die Aus­ gangsstoffe der Formeln (I-1-a) bis (I-6-a) und das Carbonsäurehalogenid der Formel (X) im allgemeinen jeweils in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, das Carbonsäurehalogenid in einem größeren Überschuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden.
Das Verfahren (Gβ) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Carbonsäureanhydriden der Formel (XI) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (Gβ) vor­ zugsweise diejenigen Verdünnungsmittel verwendet werden, die auch bei der Ver­ wendung von Säurehalogeniden vorzugsweise in Betracht kommen. Im übrigen kann auch ein im Überschuß eingesetztes Carbonsäureanhydrid gleichzeitig als Verdünnungsmittel fungieren.
Als gegebenenfalls zugesetzte Säurebindemittel kommen beim Verfahren (Gβ) vorzugsweise diejenigen Säurebindemittel in Frage, die auch bei der Verwendung von Säurehalogeniden vorzugsweise in Betracht kommen.
Die Reaktionstemperatur kann bei dem erfindungsgemäßen Verfahren (Gβ) inner­ halb eines größeren Bereiches variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen -20°C und +150°C, vorzugsweise zwischen 0°C und -100°C.
Bei der Durchführung des erfindungsgemäßen Verfahrens (Gβ) werden die Ausgangsstoffe der Formeln (I-1-a) bis (I-6-a) und das Carbonsäureanhydrid der Formel (XI) im allgemeinen in jeweils angenähert äquivalenten Mengen verwen­ det. Es ist jedoch auch möglich, das Carbonsäureanhydrid in einem größeren Über­ schuß (bis zu 5 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Metho­ den.
Im allgemeinen geht man so vor, daß man Verdünnungsmittel und im Überschuß vorhandenes Carbonsäureanhydrid sowie die entstehende Carbonsäure durch Destillation oder durch Waschen mit einem organischen Lösungsmittel oder mit Wasser entfernt.
Das Verfahren (H) ist dadurch gekennzeichnet, daß man Verbindungen der For­ meln (I-1-a) bis (I-6-a) jeweils mit Chlorameisensäureestern oder Chlorameisen­ säurethiolestern der Formel (XII) gegebenenfalls in Gegenwart eines Verdünnungs­ mittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.
Als Säurebindemittel kommen bei dem erfindungsgemäßen Verfahren (H) alle üblichen Säureakzeptoren in Betracht. Vorzugsweise verwendbar sind tertiäre Amine, wie Triethylamin, Pyridin, DABCO, DBU, DBA, Hünig-Base und N,N-Di­ methyl-anilin, ferner Erdalkalimetalloxide, wie Magnesium- und Calciumoxid, außerdem Alkali- und Erdalkalimetallcarbonate, wie Natriumcarbonat, Kalium­ carbonat und Calciumcarbonat sowie Alkalihydroxide wie Natriumhydroxid und Kaliumhydroxid.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (H) alle gegenüber den Chlorameisensäureestern bzw. Chlorameisensäurethiolestern inerten Solventien eingesetzt werden. Vorzugsweise verwendbar sind Kohlenwasserstoffe, wie Benzin, Benzol, Toluol, Xylol und Tetralin, ferner Halogenkohlenwasserstoffe, wie Methylenchlorid, Chloroform, Tetrachlorkohlenwasserstoff, Chlorbenzol und o-Dichlorbenzol, außerdem Ketone, wie Aceton und Methylisopropylketon, weiter­ hin Ether, wie Diethylether, Tetrahydrofuran und Dioxan, Nitrile wie Acetonitril, darüber hinaus Carbonsäureester, wie Ethylacetat, und auch stark polare Solventien, wie Dimethylformamid, Dimethylsulfoxid und Sulfolan.
Die Reaktionstemperatur kann bei der Durchführung des erfindungsgemäßen Ver­ fahrens (H) innerhalb eines größeren Bereiches variiert werden. Die Reaktionstem­ peratur liegt im allgemeinen zwischen -20°C und +100°C, vorzugsweise zwischen 0°C und 50°C.
Das erfindungsgemäße Verfahren (H) wird im allgemeinen unter Normaldruck durchgeführt.
Bei der Durchführung des erfindungsgemäßen Verfahrens (H) werden die Aus­ gangsstoffe der Formeln (I-1-a) bis (I-6-a) und der entsprechende Chlorameisen­ säureester bzw. Chlorameisensäurethiolester der Formel (XII) im allgemeinen jeweils in angenähert äquivalenten Mengen verwendet. Es ist jedoch auch möglich, die eine oder andere Komponente in einem größeren Überschuß (bis zu 2 Mol) einzusetzen. Die Aufarbeitung erfolgt nach üblichen Methoden. Im allgemeinen geht man so vor, daß man ausgefallene Salze entfernt und das verbleibende Reak­ tionsgemisch durch Abziehen des Verdünnungsmittels einengt.
Das erfindungsgemäße Verfahren (I) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit (Iα) Verbindungen der Formel (XIII) in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels oder (Iβ) Schwefelkohlenstoff und anschlie­ ßend mit Alkylhalogeniden der Formel (XIV) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart einer Base umsetzt.
Beim Herstellungsverfahren (Iα) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Chlormonothioameisensäureester bzw. Chlordithioameisensäureester der Formel (XIII) bei 0 bis 120°C, vorzugsweise bei 20 bis 60°C um.
Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage, wie Ether, Amide, Carbonsäureester, Nitrile, Sulfone, Sulfoxide, aber auch Halogenalkane.
Vorzugsweise werden Dimethylsulfoxid, Ethylacetat, Acetonitril, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.
Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Depro­ tonierungsmitteln wie z. B. Natriumhydrid oder Kaliumtertiärbutylat das Enolatsalz der Verbindungen (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säu­ rebindemitteln verzichtet werden.
Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder orga­ nische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin und Triethylamin aufgeführt.
Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung ge­ schieht nach üblichen Methoden.
Beim Herstellungsverfahren (Iβ) setzt man pro Mol Ausgangsverbindungen der Formeln (I-1-a) bis (I-6-a) jeweils die äquimolare Menge bzw. einen Überschuß Schwefelkohlenstoff zu. Man arbeitet hierbei vorzugsweise bei Temperaturen von 0 bis 50°C und insbesondere bei 20 bis 30°C.
Oft ist es zweckmäßig zunächst aus den Verbindungen der Formeln (I-1-a) bis (I-6-a) durch Zusatz einer Base (wie z. B. Kaliumtertiärbutylat oder Natriumhydrid) das entsprechende Salz herzustellen. Man setzt die Verbindungen (I-1-a) bis (I-6-a) jeweils so lange mit Schwefelkohlenstoff um, bis die Bildung der Zwischen­ verbindung abgeschlossen ist, z. B. nach mehrstündigem Rühren bei Raumtempe­ ratur.
Als Basen können beim Verfahren (Iβ) alle üblichen Protonenakzeptoren einge­ setzt werden. Vorzugsweise verwendbar sind Alkalimetallhydride, Alkalimetall­ alkoholate, Alkali- oder Erdalkalimetallcarbonate oder -hydrogencarbonate oder Stickstoffbasen. Genannt seien beispielsweise Natriumhydrid, Natriummethanolat, Natriumhydroxid, Calciumhydroxid, Kaliumcarbonat, Natriumhydrogencarbonat, Triethylamin, Dibenzylamin, Diisopropylamin, Pyridin, Chinolin, Diazabicyclo­ octan (DABCO), Diazabicyclononen (DBN) und Diazabicycloundecen (DBU).
Als Verdünnungsmittel können bei diesem Verfahren alle üblichen Lösungsmittel verwendet werden.
Vorzugsweise sind verwendbar aromatische Kohlenwasserstoffe wie Benzol oder Toluol, Alkohole wie Methanol, Ethanol, Isopropanol oder Ethylenglykol, Nitrile wie Acetonitril, Ether wie Tetrahydrofuran oder Dioxan, Amide wie Dimethyl­ formamid oder andere polare Lösungsmittel wie Dimethylsulfoxid oder Sulfolan.
Die weitere Umsetzung mit dem Alkylhalogenid der Formel (XIV) erfolgt vor­ zugsweise bei 0 bis 70°C und insbesondere bei 20 bis 50°C. Hierbei wird mindestens die äquimolare Menge Alkylhalogenid eingesetzt.
Man arbeitet bei Normaldruck oder unter erhöhtem Druck, vorzugsweise bei Normaldruck.
Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.
Das erfindungsgemäße Verfahren (J) ist dadurch gekennzeichnet, daß man Ver­ bindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Sulfonsäurechloriden der Formel (XV) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt.
Beim Herstellungsverfahren (J) setzt man pro Mol Ausgangsverbindung der Formel (I-1-a bis I-6-a) ca. 1 Mol Sulfonsäurechlorid der Formel (XV) bei -20 bis 150°C, vorzugsweise bei 20 bis 70°C um.
Das Verfahren (J) wird vorzugsweise in Gegenwart eines Verdünnungsmittels durchgeführt.
Als Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Amide, Nitrile, Sulfone, Sulfoxide oder halogenierte Kohlenwas­ serstoffe wie Methylenchlorid.
Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid, Methylenchlorid eingesetzt.
Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Deprotonierungsmitteln (wie z. B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolatsalz der Verbindungen (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.
Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder organi­ sche Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kalium­ carbonat, Pyridin und Triethylamin aufgeführt.
Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung ge­ schieht nach üblichen Methoden.
Das erfindungsgemäße Verfahren (K) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Phosphorverbindungen der Formel (XVI) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt.
Beim Herstellungsverfahren (K) setzt man zum Erhalt von Verbindungen der Formeln (I-1-e) bis (I-6-e) auf 1 Mol der Verbindungen (I-1-a) bis (I-6-a), 1 bis 2, vorzugsweise 1 bis 1,3 Mol der Phosphorverbindung der Formel (XVI) bei Tempe­ raturen zwischen -40°C und 150°C, vorzugsweise zwischen -10 und 110°C um.
Das Verfahren (K) wird vorzugsweise in Gegenwart eines Verdünnungsmittels durchgeführt.
Als Verdünnungsmittel kommen alle inerten, polaren organischen Lösungsmittel in Frage wie Halogenkohlenwasserstoffe, Carbonsäureester, Ether, Amide, Nitrile, Sulfone, Sulfoxide etc.
Vorzugsweise werden Acetonitril, Dimethylsulfoxid, Tetrahydrofuran, Dimethyl­ formamid, Methylenchlorid eingesetzt.
Als gegebenenfalls zugesetzte Säurebindemittel kommen übliche anorganische oder organische Basen in Frage wie Hydroxide, Carbonate oder Amine. Beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Pyridin und Triethylamin aufgeführt.
Die Umsetzung kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung ge­ schieht nach üblichen Methoden der Organischen Chemie. Die Endprodukte wer­ den vorzugsweise durch Kristallisation, chromatographische Reinigung oder durch sogenanntes "Andestillieren", d. h. Entfernung der flüchtigen Bestandteile im Va­ kuum gereinigt.
Das Verfahren (L) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit Metallhydroxiden bzw. Metallalkoxiden der Formel (XVII) oder Aminen der Formel (XVIII), gegebenenfalls in Gegenwart eines Verdünnungsmittels, umsetzt.
Als Verdünnungsmittel können bei dem erfindungsgemäßen Verfahren (L) vor­ zugsweise Ether wie Tetrahydrofuran, Dioxan, Diethylether oder aber Alkohole wie Methanol, Ethanol, Isopropanol, aber auch Wasser eingesetzt werden. Das erfindungsgemäße Verfahren (L) wird im allgemeinen unter Normaldruck durch­ geführt. Die Reaktionstemperatur liegt im allgemeinen zwischen -20°C und 100°C, vorzugsweise zwischen 0°C und 50°C.
Das erfindungsgemäße Verfahren (M) ist dadurch gekennzeichnet, daß man Verbindungen der Formeln (I-1-a) bis (I-6-a) jeweils mit (Mα) Verbindungen der Formel (XIX) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gege­ benenfalls in Gegenwart eines Katalysators oder (Mβ) mit Verbindungen der Formel (XX) gegebenenfalls in Gegenwart eines Verdünnungsmittels und gege­ benenfalls in Gegenwart eines Säurebindemittels umsetzt.
Bei Herstellungsverfahren (Mα) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Isocyanat der Formel (XIX) bei 0 bis 100°C, vorzugsweise bei 20 bis 50°C um.
Das Verfahren (Mα) wird vorzugsweise in Gegenwart eines Verdünnungsmittels durchgeführt.
Als Verdünnungsmittel kommen alle inerten organischen Lösungsmittel in Frage, wie Ether, Amide, Nitrile, Sulfone oder Sulfoxide.
Gegebenenfalls können Katalysatoren zur Beschleunigung der Reaktion zugesetzt werden. Als Katalysatoren können sehr vorteilhaft zinnorganische Verbindungen, wie z. B. Dibutylzinndilaurat eingesetzt werden.
Es wird vorzugsweise bei Normaldruck gearbeitet.
Beim Herstellungsverfahren (Mβ) setzt man pro Mol Ausgangsverbindung der Formeln (I-1-a) bis (I-6-a) ca. 1 Mol Carbamidsäurechlorid der Formel (XX) bei 0 bis 150°C, vorzugsweise bei 20 bis 70°C um.
Als gegebenenfalls zugesetzte Verdünnungsmittel kommen alle inerten polaren organischen Lösungsmittel in Frage wie Ether, Carbonsäureester, Nitrile, Amide, Sulfone, Sulfoxide oder halogenierte Kohlenwasserstoffe.
Vorzugsweise werden Dimethylsulfoxid, Tetrahydrofuran, Dimethylformamid oder Methylenchlorid eingesetzt.
Stellt man in einer bevorzugten Ausführungsform durch Zusatz von starken Depro­ tonierungsmitteln (wie z. B. Natriumhydrid oder Kaliumtertiärbutylat) das Enolat­ salz der Verbindung (I-1-a) bis (I-6-a) dar, kann auf den weiteren Zusatz von Säurebindemitteln verzichtet werden.
Werden Säurebindemittel eingesetzt, so kommen übliche anorganische oder orga­ nische Basen in Frage, beispielhaft seien Natriumhydroxid, Natriumcarbonat, Kaliumcarbonat, Triethylamin oder Pyridin genannt.
Die Reaktion kann bei Normaldruck oder unter erhöhtem Druck durchgeführt werden, vorzugsweise wird bei Normaldruck gearbeitet. Die Aufarbeitung ge­ schieht nach üblichen Methoden.
Die Wirkstoffe eignen sich zur Bekämpfung von tierischen Schädlingen, vor­ zugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Aus der Ordnung der Isopoda z. B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.
Aus der Ordnung der Diplopoda z. B. Blaniulus guttulatus
Aus der Ordnung der Chilopoda z. B. Geophilus carpophagus, Scutigera spec.
Aus der Ordnung der Symphyla z. B. Scutigerella immaculata.
Aus der Ordnung der Thysanura z. B. Lepisma saccharina.
Aus der Ordnung der Collembola z. B. Onychiurus armatus.
Aus der Ordnung der Orthoptera z. B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis, Schistocerca gregaria.
Aus der Ordnung der Dermaptera z. B. Forficula auricularia.
Aus der Ordnung der Isoptera z. B. Reticulitermes spp.
Aus der Ordnung der Anoplura z. B. Phylloxera vastatrix, Pemphigus spp., Pediculus humanus corporis, Haematopinus spp., Linognathus spp.
Aus der Ordnung der Mallophaga z. B. Trichodectes spp., Damalinea spp.
Aus der Ordnung der Thysanoptera z. B. Hercinothrips femoralis, Thrips tabaci.
Aus der Ordnung der Heteroptera z. B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.
Aus der Ordnung der Homoptera z. B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium corni, Sais­ setia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp. Psylla spp.
Aus der Ordnung der Lepidoptera z. B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp. Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Spodoptera exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
Aus der Ordnung der Coleoptera z. B. Anobium punctatum, Rhizopertha dominica, Acanthoscelides obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varive stis, Atomaria spp., Oryzaephilus surinamensis, Antho nomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Cono derus spp., Melolontha melolontha, Amphimallon solsti tialis, Costelytra zealandica.
Aus der Ordnung der Hymenoptera z. B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.
Aus der Ordnung der Diptera z. B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.
Aus der Ordnung der Siphonaptera z. B. Xenopsylla cheopis, Ceratophyllus spp.
Aus der Ordnung der Arachnida z. B. Scorpio maurus, Latrodectus mactans.
Aus der Ordnung der Acarina z. B. Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp.
Die erfindungsgemäßen Wirkstoffe zeichnen sich durch eine hohe insektizide und akarizide Wirksamkeit aus.
Sie lassen sich mit besonders gutem Erfolg zur Bekämpfung von pflanzen­ schädigenden Insekten, wie beispielsweise gegen die Larven des Meerettich­ blattkäfers (Phaedon cochleariae) oder gegen die Larven der grünen Reiszikade (Nephotettix cincticeps) gegen die Raupen der Kohlschabe (Plutella maculipennis).
Die erfindungsgemäßen Wirkstoffe können weiterhin als Defoliants, Desiccants, Krautabtötungsmittel und insbesondere als Unkrautvernichtungsmittel verwendet werden. Unter Unkraut im weitesten Sinne sind alle Pflanzen zu verstehen, die an Orten aufwachsen, wo sie unerwünscht sind. Ob die erfindungsgemäßen Stoffe als totale oder selektive Herbizide wirken, hängt im wesentlichen von der ange­ wendeten Menge ab.
Die zur Unkrautbekämpfung notwendigen Dosierungen der erfindungsgemäßen Wirkstoffe liegen zwischen 0,001 und 10 kg/ha, vorzugsweise zwischen 0,005 und 5 kg/ha.
Die erfindungsgemäßen Wirkstoffe können z. B. bei den folgenden Pflanzen ver­ wendet werden:
Dikotyle Unkräuter der Gattungen: Sinapis, Lepidium, Galium, Stellaria, Matricaria, Anthemis, Galinsoga, Chenopodium, Urtica, Senecio, Amaranthus, Portulaca, Xanthium, Convolvulus, Ipomoea, Polygonum, Sesbania, Ambrosia, Cirsium, Carduus, Sonchus, Solanum, Rorippa, Rotola, Lindernia, Lamium, Veronica, Abutilon, Emex, Datura, Viola, Galeopsis, Papaver, Centaurea, Trifolium, Ranunculus, Taraxacum.
Dikotyle Kulturen der Gattungen: Gossypium, Glycine, Beta, Daucus, Phaseolus, Pisum, Solanum, Linum, Ipomoea, Vicia, Nicotiana, Lycopersicon, Arachis, Brassica, Lactuca, Cucumis, Cucurbita.
Monokotyle Unkräuter der Gattungen: Echinochloa, Setaria, Panicum, Digitaria, Phleum, Poa, Festuca, Eleusine, Brachiaria, Lolium, Bromus, Avena, Cyperus, Sorghum, Agropyron, Cycnodon, Monochoria, Fimbristylis, Sagittaria, Eleocharis, Scirpus, Paspalum, Ischaemum, Sphenoclea, Dactyloctenium, Agrostis, Alo­ pecurus, Apera.
Monokotyle Kulturen der Gattungen: Oryza, Zea, Triticum, Hordeum, Avena, Secale, Sorghum, Panicum, Sachharum, Ananas, Asparagus, Allium.
Die Verwendung der erfindungsgemäßen Wirkstoffe ist jedoch keineswegs auf diese Gattungen beschränkt, sondern erstreckt sich in gleicher Weise auch auf andere Pflanzen.
Die Verbindungen eignen sich in Abhängigkeit von der Konzentration zur Totalunkrautbekämpfung z. B. auf Industrie- und Gleisanlagen und auf Wegen und Plätzen mit und ohne Baumbewuchs. Ebenso können die Verbindungen zur Unkrautbekämpfung in Dauerkulturen, z. B. Forst, Ziergehölz-, Obst, Wein-, Citrus-, Nuß-, Bananen-, Kaffee-, Tee-, Gummi-, Ölpalm-, Kakao-, Beerenfrucht- und Hopfenanlagen, auf Zier- und Sportrasen und Weideflächen und zur selektiven Unkrautbekämpfung in einjährigen Kulturen eingesetzt werden.
Die erfindungsgemäßen Wirkstoffe eignen sich sehr gut zur selektiven Bekämp­ fung monokotyler Unkräuter in dikotylen Kulturen im Vor- und Nachlaufverfah­ ren. Sie können beispielsweise in Baumwolle oder Zuckerrüben mit sehr gutem Erfolg zur Bekämpfung von Schadgräser eingesetzt werden.
Die Wirkstoffe können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-impräg­ nierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.
Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Ver­ mischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeu­ genden Mitteln.
Im Falle der Benutzung von Wasser als Streckmittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkyl­ naphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwas­ serstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.
Als feste Trägerstoffe kommen in Frage:
z. B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen- Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z. B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Einweißhydrolysate; als Disper­ giermittel kommen in Frage: z. B. Lignin-Sulfitablaugen und Methylcellulose.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere ver­ wendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie na­ türliche Phospholipide, wie Kephaline und Lecithine und synthetische Phos­ pholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall­ phthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90%.
Der erfindungsgemäße Wirkstoff kann in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mi­ schung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbi­ ziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylharnstoffe, durch Mikroorganismen hergestellte Stoffe u. a.
Besonders günstige Mischpartner sind z. B. die folgenden:
Fungizide
2-Aminobutan; 2-Anilino-4-methyl-6-cyclopropyl-pyrimidin; 2′,6′-Dibromo-2-me­ thyl-4′-trifluoromethoxy-4′-trifluoro-methyl-1,3-thiazol-5-carboxani-lid; 2,6-Di­ chloro-N-(4-trifluoromethylbenzyl)-benzamid; (E)-2-Methoxyimino-N-methyl-2-(2- phenoxyphenyl)-acetamid; 8-Hydroxyquinolinsulfat; Methyl-(E)-2-{2-[6-(2-cyano­ phenoxy)-pyrimidin-4-yloxy]-phenyl}-3-methoxyacrylat; Methyl-(E)-methoximino- [alpha-(o-tolyloxy)-o-tolyl]acetat; 2-Phenylphenol (OPP), Aldimorph, Ampropylfos, Anilazin, Azaconazol,
Benalaxyl, Benodanil, Benomyl, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazole, Bupirimate, Buthiobate,
Calciumpolysulfid, Captafol, Captan, Carbendazim, Carboxin, Chinomethionat (Quinomethionat), Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Cufraneb, Cymoxanil, Cyproconazole, Cyprofuram,
Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol, Dinocap, Diphenyl­ amin, Dipyrithion, Ditalimfos, Dithianon, Dodine, Drazoxolon,
Edifenphos, Epoxyconazole, Ethirimol, Etridiazol,
Fenarimol, Fenbuconazole, Fenfuram, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzone, Fluazinam, Fludioxonil, Fluoromide, Fluquinconazole, Flusilazole, Flusulfamide, Flutolanil, Flutriafol, Folpet, Fosetyl-Aluminium, Fthalide, Fuberidazol, Furalaxyl, Furmecyc­ lox,
Guazatine,
Hexachlorobenzol, Hexaconazol, Hymexazol,
Imazalil, Imibenconazol, Iminoctadin, Iprobenfos (IBP), Iprodion, Isoprothiolan,
Kasugamycin, Kupfer-Zubereitungen, wie: Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mi­ schung,
Mancopper, Mancozeb, Maneb, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metsulfovax, Myclobutanil,
Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol,
Ofurace, Oxadixyl, Oxamocarb, Oxycarboxin,
Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Phthalid, Pimaricin, Piperalin, Polycarbamate, Polyoxin, Probenazol, Prochloraz, Procymidon, Propamocarb, Propiconazole, Propineb, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon,
Quintozen (PCNB),
Schwefel und Schwefel-Zubereitungen,
Tebuconazol, Tecloftalam, Tecnazen, Tetraconazol, Thiabendazol, Thicyofen, Thiophanat-methyl, Thiram, Tolclophos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Triflumizol, Triforin, Triticonazol,
Validamycin A, Vinclozolin,
Zineb, Ziram
Bakterizide
Bronopol, Dichlorophen, Nitrapyrin, Nickel-Dimethyldithiocarbamat, Kasugamy­ cin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.
Insektizide/Akarizide/Nematizide
Abamectin, Abamectin, AC 303 630, Acephat, Acrinathrin, Alanycarb, Aldicarb, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azinphos A, Azinphos M, Azocyclotin,
Bacillus thuringiensis, Bendiocarb, Benfuracarb, Bensultap, Betacyluthrin, Bifen­ thrin, BPMC, Brofenprox, Bromophos A, Bufencarb, Buprofezin, Butocarboxin, Butylpyridaben,
Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, CGA 157 419, CGA 184699, Chloethocarb, Chlorethoxyfos, Chlorfenvinphos, Chlor­ fluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Cis-Resmethrin, Clocy­ thrin, Clofentezin, Cyanophos, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazin,
Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlofenthion, Dichlorvos, Dicliphos, Dicrotophos, Diethion, Diflubenzuron, Dimethoat, Dimethylvinphos, Dioxathion, Disulfoton,
Edifenphos, Emamectin, Esfenvalerat, Ethiofencarb, Ethion, Ethofenprox, Etho­ prophos, Etrimphos,
Fenamiphos, Fenazaquin, Fenbutatinoxid, Fenitrothion, Fenobucarb, Fenothiocarb, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyroximat, Fenthion, Fenvalerate, Fipronil, Fluazinam, Flucycloxuron, Flucythrinat, Flufenoxuron, Flufenprox, Fluva­ linate, Fonophos, Formothion, Fosthiazat, Fubfenprox, Furathiocarb,
HCH, Heptenophos, Hexaflumuron, Hexythiazox,
Imidacloprid, Iprobenfos, Isazophos, Isofenphos, Isoprocarb, Isoxathion, Ivemectin,
Lamda-cyhalothrin, Lufenuron,
Malathion, Mecarbam, Mervinphos, Mesulfenphos, Metaldehyd, Methacrifos, Methamidophos, Methidathion, Methiocarb, Methomyl, Metolcarb, Milbemectin, Monocrotophos, Moxidectin,
Naled, NC 184, NI 25, Nitenpyram
Omethoat, Oxamyl, Okydemethon M, Oxydeprofos,
Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalon, Phosmet, Phosphamdon, Phoxim, Pirimicarb, Pirimiphos M, Primiphos A, Profenofos, Promecarb, Propaphos, Propoxur, Prothiofos, Prothoat, Pymetrozin, Pyrachlophos, Pyradaphenthion, Pyresmethrin, Pyrethrum, Pyridaben, Pyrimidifen, Pyriproxifen,
Quinalphos,
RH 5992,
Salithion, Sebufos, Silafluofen, Sulfotep, Sulprofos,
Tebufenozid, Tebufenpyrad, Tebupirimphos, Teflubenzuron, Tefluthrin, Temephos, Terbam, Terbufos, Tetrachlorvinphos, Thiafenox, Thiodicarb, Thiofanox, Thio­ methon, Thionazin, Thuringiensin, Tralomethrin, Triarathen, Triazophos, Tri­ azuron, Trichlorfon, Triflumuron, Trimethacarb,
Vamidothion, XMC, Xylylcarb, YI 5301/5302, Zetamethrin.
Herbizide
Beispielsweise Anilide, wie z. B. Diflufenican und Propanil; Arylcarbonsäuren, wie z. B. Dichlorpicolinsäure, Dicamba und Picloram; Aryloxyalkansäuren, wie z. B. 2,4 D, 2,4 DB, 2,4 DP, Fluroxypyr, MCPA, MCPP und Triclopyr; Aryloxy-phenoxy­ alkansäureester, wie z. B. Diclofop-methyl, Fenoxaprop-ethyl, Fluazifop-butyl, Haloxyfop-methyl und Quizalofop-ethyl; Azinone, wie z. B. Chloridazon und Norflurazon; Carbamate, wie z. B. Chlorpropham, Desmedipham, Phenmedipham und Propham; Chloracetanilide, wie z. B. Alachlor, Acetochlor, Butachlor, Metazachlor, Metolachlor, Pretilachlor und Propachlor; Dinitroaniline, wie z. B. Oryzalin, Pendimethalin und Trifluralin; Diphenylether, wie z. B. Acifluorfen, Bifenox, Fluoroglycofen, Fomesafen, Halosafen, Lactofen und Oxyfluorfen; Harnstoffe, wie z. B. Chlortoluron, Diuron, Fluometuron, Isoproturon, Linuron und Methabenzthiazuron; Hydroxylamine, wie z. B. Alloxydim, Clethodim, Cyclo­ xydim, Sethoxydim und Tralkoxydim; Imidazolinone, wie z. B. Imazethapyr, Imazamethabenz, Imazapyr und Imazaquin; Nitrile, wie z. B. Bromoxynil, Dichlobenil und Ioxynil; Oxyacetamide, wie z. B. Mefenacet; Sulfonylharnstoffe, wie z. B. Amidosulfuron, Bensulfuron-methyl, Chlorimuron-ethyl, Chlorsulfuron, Cinosulfuron, Metsulfuron-methyl, Nicosulfuron, Primisulfuron, Pyrazosulfuron­ ethyl, Thifensulfuron-methyl, Triasulfuron und Tribenuron-methyl; Thiolcarbamate, wie z. B. Butylate, Cycloate, Diallate, EPTC, Esprocarb, Molinate, Prosulfocarb, Thiobencarb und Triallate; Triazine, wie z. B. Atrazin, Cyanazin, Simazin, Simetryne, Terbutryne und Terbutylazin; Triazinone, wie z. B. Hexazinon, Metamitron und Metribuzin; Sonstige, wie z. B. Aminotriazol, Benfuresate, Bentazone, Cinmethylin, Clomazone, Clopyralid, Difenzoquat, Dithiopyr, Ethofumesate, Fluorochloridone, Glufosinate, Glyphosate, Isoxaben, Pyridate, Quinchlorac, Quinmerac, Sulphosate und Tridiphane.
Der erfindungsgemäße Wirkstoff kann ferner in seinen handelsüblichen Formu­ lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muß.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten An­ wendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.
Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnet sich der Wirkstoff durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekalkten Unterlagen aus.
Die erfindungsgemäßen Wirkstoffe wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:
Aus der Ordnung der Anoplurida z. B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp.
Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z. B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp.
Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z. B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp.
Aus der Ordnung der Siphonapterida z. B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.
Aus der Ordnung der Heteropterida z. B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp.
Aus der Ordnung der Blattarida z. B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp.
Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z. B. Argas spp., Ornithodorus spp., Otabius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemaphysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneu­ monyssus spp., Sternostoma spp., Varroa spp.
Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z. B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp.
Beispielsweise zeigen sie eine hervorragende Wirksamkeit gegen Boophilus microplus und Lucilia cuprina.
Die erfindungsgemäßen Wirkstoffe der Formel (I) eignen sich auch zur Bekämp­ fung von Arthropoden, die landwirtschaftliche Nutztiere, wie z. B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z. B. Hunde, Katzen, Stubenvögel, Aqua­ rienfische sowie sogenannte Versuchstiere, wie z. B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfindungsgemäßen Wirkstoffe eine wirtschaftlichere und einfachere Tierhaltung möglich ist.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tab­ letten, Kapseln, Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Ver­ fahrens, von Zäpfchen, durch parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös, intraperitonal u. a.), Implan­ tate, durch nasale Applikation, durch dermale Anwendung in Form beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.
Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffe der Formel (I) als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000facher Verdünnung anwenden oder sie als chemisches Bad verwenden.
Außerdem wurde gefunden, daß die erfindungsgemäßen Verbindungen der Formel 1 eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.
Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt:
Käfer wie
Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.
Hautflügler wie
Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.
Termiten wie
Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes dar­ winiensis, Zootermopsis nevadensis, Coptotermes formosanus.
Borstenschwänze wie
Lepisma saccharina.
Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Pa­ piere und Kartone, Leder, Holz und Holzverarbeitungsprodukte und Anstrichmittel.
Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schüt­ zenden Material um Holz und Holzverarbeitungsprodukte.
Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen: Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzpro­ dukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.
Die Wirkstoffe können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emul­ sionen oder Pasten angewendet werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z. B. durch Vermischen der Wirkstoffe mit mindestens einem Lösungs- bzw. Verdünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermit­ tels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gege­ benenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.
Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzen­ tration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vor­ kommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allge­ meinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lö­ sungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.
Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt ober­ halb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerflüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mine­ ralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemi­ sche, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.
Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Test­ benzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siede­ bereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.
In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasser­ stoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugswei­ se α-Monochlornaphthalin, verwendet.
Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemi­ sche Lösungsmittel ersetzt werden, mit der Maßgabe, daß das Lösungsmittel­ gemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und daß das Insektizid-Fungizid-Ge­ misch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.
Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares orga­ nisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende alipha­ tische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.
Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Er­ findung die an sich bekannten wasserverdünnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emul­ gierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z. B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkyd­ harz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.
Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Disper­ sion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigen­ tien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.
Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel minde­ stens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugs­ weise 50 bis 68 Gew.-%, verwendet.
Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungs­ mittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Aus­ fällen vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30% des Bindemittels (bezogen auf 100% des eingesetzten Bindemittels).
Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyl- oder Benzylbutylphthalat, Phosphorsäureester wie Tributyl­ phosphat, Adipinsäureester wie Di-(2-ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether oder höhermolekulare Gly­ kolether, Glycerinester sowie p-Toluolsulfonsäureester.
Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z. B. Polyvinyl­ methylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.
Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Disper­ gatoren.
Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierver­ fahren, z. B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.
Die anwendungsfertigen Mittel können gegebenenfalls noch weitere Insektizide und gegebenenfalls noch ein oder mehrere Fungizide enthalten.
Als zusätzliche Zumischpartner kommen vorzugsweise die in der WO 94/29 268 genannten Insektizide und Fungizide in Frage. Die in diesem Dokument genannten Verbindungen sind ausdrücklicher Bestandteil der vorliegenden Anmeldung.
Als ganz besonders bevorzugte Zumischpartner können Insektizide, wie Chlor­ pyriphos, Phoxim, Silafluofin, Alphamethrin, Cyfluthrin, Cypermethrin, Delta­ methrin, Permethrin, Imidacloprid, M-25, Flufenoxuron, Hexaflumuron und Tri­ flumuron,
sowie Fungizide wie Epoxyconazole, Hexaconazole, Azaconazole, Propiconazole, Tebuconazole, Cyproconazole, Metconazole, Imazalil, Dichlorfluanid, Tolylfluanid, 3-Iod-2-propinyl-butylcarbamat, N-Octyl-isothiazolin-3-on und 4,5-Dichlor-N-octylisothiazolin-3-on, sein.
Die Herstellung und die Verwendung der erfindungsgemäßen Wirkstoffe gehen aus den nachfolgenden Beispielen hervor.
Herstellungsbeispiele Beispiel (I-1-a-1)
Zu 20,42 g (0,181 Mol) Kalium-tert.-butylat in 70 ml absolutem Tetrahydrofuran (THF) tropft man bei Rückflußtemperatur 32,6 g der Verbindung gemäß Beispiel (II-1), gelöst in 200 ml absolutem Toluol, und rührt noch 1,5 Stunden bei dieser Temperatur.
Zur Aufarbeitung verdünnt man mit Wasser, trennt die Phasen, extrahiert die Toluolphase mit Wasser und säuert die vereinten wäßrigen Phasen mit konz. HCl an. Das Produkt wird abgesaugt, gewaschen und getrocknet und schließlich in Methyl-tert.-butyl-(MTB)-ether/n-Hexan verrührt, abgesaugt und getrocknet.
Ausbeute: 20,6 g (68% der Theorie); Fp.: < 220°C.
Analog zu Beispiel (I-1-a-1) bzw. gemäß den allgemeinen Angaben zur Herstel­ lung wurden die in der nachfolgenden Tabelle 21 aufgeführten Verbindungen der Formel (I-1-a) erhalten.
Tabelle 21
Beispiel (I-1-b-1)
Zu 4,37 g der Verbindung gemäß Beispiel (I-1-a-1) in 70 ml absolutem Methylenchlorid und 2,52 ml (18 mMol) Triethylamin tropft man bei 0°C bis 10°C 1,9 ml (18 mMol) Isobuttersäurechlorid, gelöst in 5 ml absolutem Methylen­ chlorid. Man rührt bei Raumtemperatur, bis nach dünnschichtchromatographischer (DC) Kontrolle die Umsetzung beendet ist.
Zur Aufarbeitung wäscht man 2 mal mit 0.5 N NaOH, trocknet und dampft ein. Das Rohprodukt wird aus MTB-Ether/n-Hexan umkristallisiert.
Ausbeute: 1,70 g (32% der Theorie); Fp.: 208°C.
Analog zu Beispiel (I-1-b-1) bzw. gemäß den allgemeinen Angaben zur Her­ stellung wurden die in der nachfolgenden Tabelle 22 aufgeführten Beispiele der Formel (I-1-b) erhalten.
Tabelle 22
Beispiel (I-1-c-1)
Zu 4,37 g der Verbindung gemäß Beispiel (I-1-a-1) in 70 ml absolutem Methylenchlorid und 1,7 ml (12 mMol) Triethylamin tropft man bei 0°C bis 10°C 1,2 ml Chlorameisensäureethylester in 3 ml absolutem Methylenchlorid. Man rührt bei Raumtemperatur, bis nach DC-Kontrolle die Umsetzung beendet ist.
Zur Aufarbeitung wäscht man 2 mal mit 0.5 N NaOH, trocknet und dampft ein. Das Rohprodukt wird aus MTB-Ether/n-Hexan umkristallisiert.
Ausbeute: 3,60 g (68% der Theorie); Fp.: < 220°C.
Analog zu Beispiel (I-1-c-1) bzw. gemäß den allgemeinen Angaben zur Herstel­ lung wurden die in der nachfolgenden Tabelle 23 aufgeführten Verbindungen der Formel (I-1-c) hergestellt.
Tabelle 23
Beispiel I-1-d-1
3,64 g der Verbindung gemäß Beispiel I-1-a-5 und 1,4 ml Triethylamin in 50 ml Abs. Methylenchlorid werden bei 0 bis 10°C mit 0,8 ml Methansulfonsäurechlorid in 5 ml abs. Methylenchlorid versetzt und anschließend bei Raumtemperatur ge­ rührt. Nach beendeter Reaktion (Kontrolle mittels Dünnschichtchromatographie (DC)) wird 2 mal mit 50 ml 0,5 N NaOH gewaschen, über Magnesiumsulfat ge­ trocknet, eingeengt und der Rückstand aus MTB-Ether/n-Hexan umkristallisiert. Ausbeute 2,90 g (65% der Theorie), Fp. < 220°C.
Beispiel (II-1)
23,1 g 2,6-Dimethyl-4-brom-phenylessigsäure gemäß Beispiel (XXV-1) und 17,7 ml (0,24 Mol) Thionylchlorid werden bei 80°C bis zum Ende der Gasent­ wicklung gerührt. Bei 50°C wird überschüssiges Thionylchlorid abdestilliert und der Rückstand in 100 ml absolutem THF aufgenommen. Diese Lösung tropft man bei 0°C bis 10°C zum Gemisch von 20,9 g 1-Amino-3-methyl-cyclohexancarbon­ säuremethylester in 200 ml absolutem THF und 30,8 ml (0,22 Mol) Triethylamin.
Zur Aufarbeitung wird abgesaugt, mit THF gewaschen, eingedampft und der Rückstand in Methylenchlorid aufgenommen. Man wäscht mit 0.5 N HCl, trock­ net, dampft ein und kristallisiert den Rückstand aus MTB-Ether/n-Hexan um.
Ausbeute: 32,60 g (80% der Theorie); Fp.: 137°C.
Beispiel (II-2)
Zu 42 g (0,428 Mol) konz. Schwefelsäure gibt man bei 30 bis 40°C 28,8 g der Verbindung gemäß Beispiel (XXXI-1) in 170 ml Methylenchlorid und rührt noch 2 Stunden bei dieser Temperatur. Dann tropft man 57 ml absolutes Methanol so zu, daß sich eine Temperatur von 40°C einstellt. Nach beendeter Zugabe rührt man noch 6 Stunden bei 40 bis 70°C.
Zur Aufarbeitung gießt man auf Eis, extrahiert mit Methylenchlorid, wäscht mit NaHCO₃-Lösung, trocknet und dampft ein. Das Rohprodukt wird aus MTB-Ether/n-Hexan umkristallisiert.
Ausbeute: 20,7 g (65% der Theorie); Fp.: 172°C.
Analog zu den Beispielen (II-1) und (II-2) bzw. gemäß den allgemeinen Angaben zur Herstellung wurden die in der nachfolgenden Tabelle 24 aufgeführten Verbin­ dungen der Formel (II) hergestellt.
Tabelle 24
Beispiel (XXXI-1)
23,1 g 2,6-Dimethyl-4-bromphenylessigsäure gemäß Beispiel (XXV-1) und 17,7 ml Thionylchlorid werden bei 80°C gerührt, bis die Gasentwicklung beendet ist. Dann wird überschüssiges Thionylchlorid bei 50°C im Vakuum entfernt. Der Rückstand wird in 100 ml absolutem THF aufgenommen und bei 0 bis 10°C zu einer Mischung von 11,2 g des Amins der Formel (CH₃)₂CHC(CH₂)(CN)NH₂ und 14,4 ml (0,11 Mol) Triethylamin in 100 ml absolutem THF getropft. Anschließend wird noch eine Stunde bei Raumtemperatur gerührt.
Zur Aufarbeitung wird abgesaugt, eingeengt, der Rückstand in Methylenchlorid aufgenommen, in 0.5 N HCl gewaschen, getrocknet und eingeengt. Das Rohpro­ dukt wird aus MTB-Ether/n-Hexan umkristallisiert.
Ausbeute: 28,8 g (85% der Theorie); Fp.: 169°C.
Analog zu Beispiel (XXXI-1) wurden die in der nachfolgenden Tabelle 25 aufgeführten Verbindungen der Formel (XXXI) hergestellt.
Tabelle 25
Beispiel (I-2-a-1)
Zu 8,42 g (75 mMol) Kalium-tert.-butylat in 50 ml Dimethylformamid (DMF) tropft man bei 0 bis 10°C eine Lösung von 19,8 g (50 mMol) der Verbindung gemäß Beispiel (III-1) in 50 ml DMF und rührt über Nacht bei Raumtemperatur.
Zur Aufarbeitung tropft man das Reaktionsgemisch in 500 ml eiskalte 1N HCl, saugt das ausgefallene Rohprodukt ab, wäscht mit Wasser und trocknet im Vakuumtrockenschrank. Zur weiteren Reinigung wird das Rohprodukt noch mit n-Hexan/Aceton ausgekocht.
Ausbeute: 13,6 g (77% der Theorie); Fp.: < 250°C.
Analog zu Beispiel (I-2-a-1) wurden die in der nachfolgenden Tabelle 26 aufge­ führten Verbindungen der Formel (I-2-a) hergestellt.
Tabelle 26
Beispiel (I-2-b-1)
Zum Gemisch von 3,52 g (10 mMol) der Verbindung gemäß Beispiel (I-2-a-1) und 1,52 g (15 mMol) Triethylamin in 40 ml Methylenchlorid tropft man unter Eis­ kühlung eine Lösung von 1,57 g (13 mMol) Pivaloylchlorid in 40 ml Methylen­ chlorid und rührt 2 Stunden bei Raumtemperatur.
Zur Aufarbeitung wäscht man nacheinander mit 10%iger Citronensäure, 1N NaOH und NaCl-Lösung, trocknet und dampft ein. Zur weiteren Reinigung wird das Rohprodukt noch mit wenig Petrolether verrührt.
Ausbeute: 1,95 g (45% der Theorie); Fp.: 107-109°C.
Analog zu Beispiel (I-2-b-1) wurden die in der nachfolgenden Tabelle 27 aufgeführten Verbindungen der Formel (I-2-b) hergestellt.
Tabelle 27
Analog zur Beispiel I-1-c-1 wurden die in der Tabelle 28 aufgeführten Verbindungen der Formel I-2-c erhalten.
Tabelle 28
Beispiel (III-1)
12,15 g (50 mMol) der Verbindung gemäß Beispiel (XXV-2) und 11,9 g (100 mMol) Thionylchlorid werden in 50 ml Toluol bei 80°C bis zum Ende der Gasentwicklung gerührt. Dann wird zur Trockne eingedampft und das so erhaltene rohe Säurechlorid zusammen mit 8,6 g (50 mMol) 1-Hydroxycyclohexancarbon­ säureethylester über Nacht in 50 ml Toluol unter Rückfluß erhitzt. Anschließend wird eingeengt.
Ausbeute: 19,8 g (quantitativ); farbloses Öl.
¹H-NMR: δ = 1.20 (t, 3H); 1.40-1.80 (m, 8H); 2.15 (m, 2H); 2.25 (s, 3H); 2.35 (s, 3H); 3.90 (s, 2H); 4.15 (g, 2H); 6.95 (m, 1H); 7.25 (m, 1H).
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die in der Tabelle 28 aufgeführten Verbindungen der Formel (III).
Tabelle 29
Beispiel I-3-a-1
34,0 g (69 mmol) der Verbindung gemäß Beispiel (IV-1) werden in 70 ml Trifluoressigsäure und 140 ml Toluol 3 Stunden unter Rückfluß erhitzt. Anschließend wird die Trifluoressigsäure in Vakuum entfernt und der Rückstand mit 400 ml Wasser und 120 ml MTB-Ether versetzt. Durch Zugabe von NaOH wird pH 14 eingestellt, dann 2 mal mit MTB-Ether extrahiert. Die wäßrige Phase wird mit HCl angesäuert und 3 mal mit MTB-Ether extrahiert. Nach dem Trocknen wird die organische Phase eingeengt. Ausbeute 13,0 g (55% der Theorie), Fp. 235-238°C.
Analog zu Beispiel I-3-a-1 wurden die in der Tabelle 30 aufgeführten Verbin­ dungen der 22120 00070 552 001000280000000200012000285912200900040 0002019603332 00004 22001 Formel I-3-a hergestellt.
Beispiel I-3-b-1
Unter Eiskühlung tropft man eine Lösung von 0,74 ml (0,89 g; 5,72 mmol) 3-Chlor-2,2-dimethylpropionsäurechlorid in 3 ml Methylenchlorid zum Gemisch von 1,5 g (4,4 mmol) der Verbindung gemäß Beispiel (I-3-a-1), 0,92 ml Triethylamin und 20 ml Methylenchlorid und rührt anschließend 2 Stunden bei Raumtemperatur.
Dann wäscht man 2 mal mit 10%iger Citronensäure und extrahiert die sauren wäßrigen Phasen mit Methylenchlorid. Die vereinigten organischen Phasen werden 2 mal mit 1N NaOH gewaschen, die wäßrigen alkalischen Phasen mit Methylenchlorid extrahiert. Die vereinigten organischen Phasen werden getrocknet und eingeengt. Ausbeute 1,65 g (81% der Theorie), Öl.
¹H-NMR in CDCl₃, ppm
δ = 1,05 (t, 3H, CH₂CH₃)
1,18 (s, 6H, C(CH₃)₂)
1,62 (s, 3H, CCH₃)
1,95-2,05 (m, 2H, CH₂CH₃)
2,08 (s, 3H, ArCH₃)
2,10 (s, 3H, ArCH₃)
3,38 (s, 2H, CH₂Cl)
7,20 (s, 2H, ARH)
Analog zu Beispiel I-3-b-1 wurden die in der Tabelle 31 aufgeführten Verbin­ dungen der Formel I-3-b hergestellt.
Tabelle 31
Beispiel I-3-c-1
Unter Eiskühlung tropft man eine Lösung von 0,74 ml (5,72 mmol) Chlorameisensaureisobutylester in 3 ml Methylenchlorid zum Gemisch von 1,5 g (4,4 mmol) der Verbindung gemäß Beispiel (I-3-a-1), 0,92 ml Triethylamin und 20 ml Methylenchlorid. Man rührt 2 Stunden bei Raumtemperatur und arbeitet wie bei Beispiel I-3-b-1 beschrieben auf. Der am Ende verbleibende Rückstand wird mit Petrolether verrührt. Ausbeute 2,0 g (100% der Theorie)
¹H-NMR, CDCl₃, [ppm],
δ = 0,68 (d, 6H, CH(CH₃)₂)
1,04 (t, 3H, CH₂CH₃)
1,5-1,6 (m, 1H, CH(CH₃)₂)
1,71 (m, 2H, CCH₃)
1,9-2,0 (m, 2H, CH₂CH₃)
2,08 (s, 3H, ArCH₃)
2,12 (s, 3H, ArCH₃)
3,61 (d, 2H, OCH₂)
7,12 (s, 2H, ArH)
Analog zu Beispiel I-3-c-1 wurden die in der Tabelle 32 aufgeführten Verbin­ dungen der Formel I-3-c hergestellt.
Tabelle 32
Beispiel IV-1
A: Das Gemisch von 25,0 g (98 mmol) der Verbindung der Formel
1 Tropfen DMF und 17,5 g (147 mmol) Thionylchlorid in 70 ml Toluol wird 5 Minuten bei Raumtemperatur und anschließend bei 100°C bis zum Ende der Gasentwicklung gerührt. Überschüssiges Thionylchlorid wird im Vakuum entfernt.
B: Zum Gemisch von 13,0 g (129 mmol) Diisopropylamin und 71,6 ml (118 mmol) Butyllithium (1,6 M in n-Hexan) in 100 ml THF tropft man bei 0°C 27,7 g der Verbindung gemäß Beispiel (XXVI-1) in 40 ml THF und rührt 30 Minuten. Dann tropft man das unter A hergestellte Säurechlorid gelöst in 40 ml THF bei 0°C zu und rührt 1 Stunde bei Raumtemperatur.
Man gibt 350 ml MTB-Ether und einige Tropfen Wasser zu, wäscht 2 mal mit 10%iger Ammoniumchloridlösung, trocknet die organische Phase und engt ein. Das Rohprodukt wird an Kieselgel chromatographiert (Laufmittel Cyclohexan/Essigester 20/1 bis 5/1). Ausbeute 35,0 g (72% der Theorie).
¹H-NMR, CDCl₃, [ppm]; δ = 0,9 bis 1,0 (m, 3H), 1,43 (s, 3H), 1,7 bis 2,0 (m, 2H), 2,3 bis 2,4 (s, 6H), 3,6 bis 3,8 (m, 8H), 6,7 bis 7,2 (m, 6H)
Analog zu Beispiel IV-1 und gemäß der allgemeinen Beschreibung wurden die in der nachfolgenden Tabelle aufgeführten Verbindungen der Formel IV erhalten.
Tabelle 33
Beispiel (I-5a-1)
5,7 (20 mmol) 2-(4-Brom-2,6-dimethylphenyl)-chlorcarbonylketen werden mit 2,0 g (20 mmol) Cyclohexanon in 60 ml Xylol 8 h unter Rückfluß erhitzt. Der ausfallende Niederschlag wird abgetrennt, mit Cyclohexan gewaschen und getrocknet. Man erhält 5,0 g (72% der Theorie) vom Schmelzpunkt 244 bis 245°C.
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die folgenden Verbindungen der Formel (I-5a):
Tabelle 34
Beispiel (I-5-b-1)
1,9 g (5 mmol) der Verbindung (I-5-a-6) werden in 20 ml Essigester vorgelegt, mit 0,5 g (5 mmol) Triethylamin versetzt und bei 0°C 0,4 g (5 mmol) Acetylchlorid in 5 ml Essigester zugetropft. Man rührt 20 h bei Raumtemperatur, trennt den Niederschlag ab, wäscht zweimal mit 50 ml halbkonzentrierter Natriumchloridlösung, trocknet über Natriumsulfat und dampft im Vakuum ein. Der Rückstand wird an Kieselgel mit Toluol/Aceton 30 : 1 chromatographiert. Ausbeute 1,2 g (56% der Theorie) vom Schmelzpunkt 130 bis 132°C.
Beispiel (I-6-a-1)
2,8 g (10 mmol) 2-(4-Brom-2,6-dimethylphenyl)-chlorcarbonylketen werden mit 1,6 g (10 mmol) 4-Fluorthiobenzamid in 80 ml Toluol 6 h auf 50°C erwärmt. Der Niederschlag wird abgetrennt, mit Cyclohexan gewaschen und getrocknet. Man erhält 3,0 g (74% der Theorie) vom Schmelzpunkt 275 bis 276°C.
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die folgende Verbindung der Formel (I-6-a-2) vom Schmelzpunkt 235 bis 236°C.
Beispiel (XXII-1)
8 g der Verbindung gemäß Beispiel (XXV-1) werden mit 8,7 ml Thionylchlorid bis zum Ende der Gasentwicklung auf 80°C erhitzt. Überschüssiges Thionylchlorid wird im Vakuum entfernt und der Rückstand destilliert.
Ausbeute: 87% der Theorie; Fp.: 69-71°C.
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die folgenden Verbindungen der Formel (XXII).
Tabelle 35
Beispiel (XXV-1)
222,4 g (0,865 Mol) der Verbindung gemäß Beispiel (XXVI-1) und 80,56 g (1,438 Mol) Kaliumhydroxid in 210 ml Methanol und 105 ml Wasser werden 5 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen engt man ein und löst den Rückstand in Wasser. Die wäßrige Phase wird mit Essigsäureethylester gewaschen und dann mit verdünnter Salzsäure gewaschen. Das ausgefallene Produkt wird abgesaugt, mit Wasser gewaschen und getrocknet.
Ausbeute: 197,5 g (94% der Theorie); Fp.: 185-187°C.
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung erhält man die in der Tabelle 36 aufgeführten Verbindungen der Formel (XXV).
Tabelle 36
Beispiel (XXVI-1)
349,3 g (1,044 Mol) der Verbindung gemäß Beispiel (XXVII-1) (94,57%ig), 475 ml Methanol und 842 ml 30%ige Natriummethanolatlösung in Methanol werden 5 Stunden unter Rückfluß erhitzt. Dann fügt man bei Raumtemperatur 126 ml konz. Schwefelsäure zu und erhitzt 1 Stunde unter Rückfluß. Das Lösungs­ mittel wird abdestilliert, der Rückstand mit Wasser versetzt und mit Methylen­ chlorid extrahiert. Nach dem Trocknen wird filtriert, eingeengt und schließlich destilliert.
Ausbeute: 222,4 g (82,9% der Theorie); Kp0.2 98-100°C.
Analog bzw. gemäß den allgemeinen Vorschriften zur Herstellung erhält man die folgenden Verbindungen der Formel (XXVI).
Tabelle 37
Beispiel (XXVII-1)
In eine Lösung von 326 g (3,175 Mol) tert.-Butylnitrit in 1270 ml tr. Acetonitril gibt man 326 g (2,673 Mol) wasserfreies Kupfer-II-chlorid. Zu der gut gekühlten Mischung tropft man 3130 g (32,27 m 2580 ml) 1,1-Dichlorethan, wobei man mittels Eiskühlung auf unter 30°C hält. Bei unter 30°C tropft man dann eine Lösung von 424 g (2,12 Mol) 4-Brom-2,6-dimethylanilin in 2120 ml Acetonitril zu. Man rührt bei Raumtemperatur so lange nach, bis die Gasentwicklung (N₂) beendet ist (ca. 3 Stunden). Die fast schwarze Lösung wird vorsichtig in 9 l 20%ige Salzsäure gegossen und mehrfach, insgesamt mit 9 l, Methyl-tert.-butyl­ ether extrahiert. Die vereinigten organischen Phasen werden mit 20%iger Salzsäure gewaschen und über Magnesiumsulfat wasserfrei getrocknet. Abfil­ trieren, einengen. Das zurückbleibende Öl wird im Hochvakuum fraktioniert.
Ausbeute: 349,3 g (49% der Theorie); Kp0.1 130-137°C.
Analog bzw. gemäß den allgemeinen Angaben zur Herstellung wurden die folgen­ den Verbindungen der Formel (XXVII) hergestellt:
Tabelle 38
Beispiel VI-1
Es wurden 7,1 g NaH (80%ig) in 278 ml Dimethylcarbonat vorgelegt und auf 80 bis 90°C erwärmt. Anschließend wurden 39 g 2-Chlor-4,6-dimethylphenylessig­ säuremethylester zugetropft und 20 h zum Rückfluß erhitzt. Es wurden weitere 3,4 g NaH (80%ig) zugegeben und nochmals 8 h zum Rückfluß erwärmt. Die Mischung wurde abgekühlt, noch vorhandenes NaH mit wenig Methanol zerstört und dann auf Eis gegossen. Nach dem Ansäuern mit halbkonzentrierter HCl wurde die organische Phase abgetrennt und die wäßrige Phase mehrfach mit Dichlor­ methan extrahiert. Die vereinigte organische Phase wurde getrocknet und einge­ engt. Ausbeute: 35,1 g eines Feststoffs mit einem Schmelzpunkt von 67 bis 70°C.
¹H-NMR (CDCl₃): δ: 7,12 (s, 1H), 6,94 (s, 1H), 5,36 (s, 1H), 3,78 (s, 6H), 2,31 (s, 3H), 2,28 ppm (s, 3H).
Beispiel XXXV-1
Es wurden 10 g 2-Chlor-4,6-dimethylphenylmalonsäuredimethylester gemäß Beispiel (VI-1) vorgelegt und nacheinander mit 20 ml Methanol und 6,8 g KOH gelöst und 9,1 ml Wasser versetzt. Nach einer Stunde wurde mit weiteren 20 ml Lösungsmittel (MeOH/Wasser 1 : 1) verdünnt. Die Mischung wurde 10 h zum Rückfluß erhitzt, dann abgekühlt und eingeengt. Der verbleibende Rückstand wurde in wenig Wasser aufgenommen und einmal mit Toluol gewaschen. Anschließend wurde die wäßrige Phase weiter mit Wasser verdünnt, der gleiche Anteil Ether zugesetzt und auf ca. -10°C abgekühlt. Es wurde mit konzentrierter HCl angesäuert (pH 1), die organische Phase abgetrennt und noch 1 bis 2 mal nachextrahiert. Die vereinigten organischen Phasen wurden getrocknet und eingeengt. Der Rückstand wurde aus Toluol kristallisiert und ergab 7,6 g 2-Chlor- 4,6-dimethylphenylmalonsäure mit einem Schmelzpunkt von 174 bis 176°C (Zersetzung).
¹H-NMR (CDCl₃) δ: 7,10 (s, 1H), 6,95 (s, 1H), 5,00 (s, 1H), 2,36 (s, 3H), 2,30 ppm (s, 3H).
Beispiel V-1
Es wurden 7,6 g (2-Chlor-4,6-dimethylphenylmalonsäure gemäß Beispiel (XXXV-1) in 22 ml Toluol suspendiert und mit 19,5 ml Thionylchlorid tropfenweise versetzt. Die Mischung wurde 9,5 h auf 95°C erhitzt, abgekühlt und durch Überleiten von Argon von den flüchtigen Bestandteilen befreit. Die Reste an Thionylchlorid und das Lösungsmittel wurden bei 45°C im Hochvakuum ab­ destilliert. Man erhielt 6,6 g 2-Chlor-4,6-dimethylphenylchlorcarbonylketen als ein Öl, das leicht verunreinigt war mit 2-Chlor-4,6-dimethylphenylessigsäurechlorid.
¹H-NMR (CDCl₃) δ: 7,16 (s, 1H), 7,02 (s, 1H), 2,33 (s, 3H), 2,30 ppm (s, 3H).
Beispiel (VI-2)
Es wurden in analoger Weise 70 g 4-Brom-2,6-dimethylphenylessigsäuremethyl­ ester mit 26,8 g NaH und 7,39 ml Dimethylcarbonat umgesetzt. Nach der Aufarbeitung wurden 95,4 g Rohprodukt (86,5%ig) erhalten.
¹H-NMR (CDCl₃) δ: 7,22 (s, 2H), 5,00 (s, 4H), 3,75 (s, 6H), 2,33 ppm (s, 6H).
Beispiel (XXXV-2)
Es wurden in analoger Weise 85 g 4-Brom-2,6-dimethylphenylmalonsäuredi­ methylester gemäß Beispiel (VI-2) in 158 ml Methanol mit 49,6 g KOH in 66 ml H₂O eingesetzt. Nach der Aufarbeitung wurden 59,7 g der Malonsäure erhalten. Schmelzpunkt 164 bis 167°C (Zersetzung).
¹H-NMR (CDCl₃) δ: 7,20 (s, 2H), 7,00-6,00 (OH), 4,83 (s, 1H), 2,30 ppm (s, 6H).
Beispiel (V-2)
Es wurden in analoger Weise 59 g 4-Brom-2,6-dimethylphenylmalonsäure in 143 ml Toluol mit 128 ml Thionylchlorid umgesetzt und 49,5 g als Rohprodukt isoliert.
¹H-NMR (CDCl₃) δ : 7,31 (s, 2H), 2,33 ppm (s, 6H).
Beispiel (VI-3)
Es wurden in analoger Weise 23 g 2-Brom-4,6-dimethylphenylessigsäuremethyl­ ester mit 9,5 g NaH (80%ig) und 242 ml Dimethylcarbonat umgesetzt. Nach der Aufarbeitung wurden 31,2 g Rohprodukt (82%ig) erhalten.
¹H-NMR (CDCl₃) δ: 7,31 (s, 1H), 6,98 (s, 1H), 5,45 (s, 1H), 3,88 (s, 6H), 2,32 (s, 3H), 2,28 ppm (s, 3H).
Beispiel (XXXV-3)
Es wurden in analoger Weise 27 g 2-Brom-4,6-dimethylphenylmalonsäuredime­ thylester gemäß Beispiel (VI-3) in 50 ml Methanol mit 15,7 g KOH in 21 ml Wasser umgesetzt. Nach der Aufarbeitung wurden 17,4 g Malonsäure erhalten. Schmelzpunkt 167 bis 169°C (Zersetzung).
¹H-NMR (CDCl₃) δ: 8,20-7,00 (OH), 7,26 (s, 1H), 6,98 (s, 1H), 5,07 (s, 1H), 2,35 (s, 3H), 2,28 ppm (s, 3H).
Beispiel (V-3)
Es wurden in analoger Weise 17 g 2-Brom-4,6-dimethylphenylmalonsäure gemäß Beispiel (XXXV-3) in 41 ml Toluol mit 36,8 ml Thionylchlorid umgesetzt und 15,1 g als Rohprodukt isoliert.
IR: = 2130 (Keten)
¹H-NMR (CDCl₃) δ: 7,28 (s, 1H), 7,00 (s, 1H), 2,35 (s, 3H), 2,29 ppm (s, 3H).
Anwendungsbeispiele Beispiel A Phaedon-Larven-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angege­ benen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die ge­ wünschte Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit werden die Pflanzen mit Meerrettichblattkäfer-Larven (Phaedon cochleariae) besetzt. Nach jeweils 3 Tagen wird die Abtötung in % be­ stimmt. Dabei bedeutet 100%, daß alle Käfer-Larven abgetötet wurden; 0% be­ deutet, daß keine Käfer-Larven abgetötet wurden.
In diesem Test bewirkten z. B. die Verbindungen gemäß den Herstellungsbeispielen (I-2-a-2), (I-2-b-2), (I-2-a-1), (I-2-b-1), (I-2-b-4), (I-1-a-2), (I-1-a-1), (I-1-b-2) und (I-1-b-4) bei einer beispielhaften Wirkstoffkonzentration von 0,1% eine Abtötung von 100% nach 7 Tagen.
Beispiel B Plutella-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angege­ benen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die ge­ wünschte Konzentration.
Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen der Kohlschabe (Plutella xylostella) besetzt, solange die Blätter noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Raupen abgetötet wurden; 0% bedeutet; daß keine Raupen abge­ tötet wurden.
In diesem Test bewirkten z. B. die Verbindungen gemäß den Herstellungsbeispielen (I-2-b-2), (I-2-b-1), (I-1-b-2), (I-1-b-4), (I-1-c-2), (I-1-a-5) und (I-1-a-6) bei einer beispielhaften Wirkstoffkonzentration von 0,1% eine Abtötung von 100% nach 7 Tagen.
Beispiel C Nephotettix-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angege­ benen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die ge­ wünschte Konzentration.
Reiskeimlinge (Oryza sativa) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit der Grünen Reiszikade (Nephotettix cincticeps) besetzt, solange die Keimlinge noch feucht sind.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Zikaden abgetötet wurden; 0% bedeutet; daß keine Zikaden abge­ tötet wurden.
In diesem Test bewirkten z. B. die Verbindungen gemäß den Herstellungsbeispielen (I-2-a-2), (I-2-a-1), (I-2-b-1), (I-1-a-2), (I-1-a-1), (I-1-b-2), (I-1-b-3), (I-1-b-4), (I-1-c-2), (I-1-a-5) und (I-1-a-6) bei einer beispielhaften Wirkstoffkonzentration von 0,1% eine Abtötung von 100% nach 6 Tagen.
Beispiel D Myzus-Test
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angege­ benen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die ge­ wünschte Konzentration.
Kohlblätter (Brassica oleracea), die stark von der Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Blattläuse abgetötet wurden; 0% bedeutet, daß keine Blattläuse abgetötet wurden.
In diesem Test bewirkten z. B. die Verbindungen gemäß den Herstellungsbeispielen (I-2-a-1), (I-2-a-2), (I-2-b-2), (I-1-b-3), (I-1-c-2) und (I-1-a-6) bei einer beispielhaf­ ten Wirkstoffkonzentration von 0,1% eine Abtötung von 100% nach 6 Tagen.
Beispiel E Tetranychus-Test (OP-resistent/Tauchbehandlung)
Lösungsmittel: 7 Gewichtsteile Dimethylformamid
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel und der angege­ benen Menge Emulgator und verdünnt das Konzentrat mit Wasser auf die ge­ wünschten Konzentrationen.
Bohnenpflanzen (Phaseolus vulgaris), die stark von allen Entwicklungsstadien der gemeinen Spinnmilbe oder Bohnenspinnmilbe (Tetranychus urticae) befallen sind, werden in eine Wirkstoffzubereitung der gewünschten Konzentration getaucht.
Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100%, daß alle Spinnmilben abgetötet wurden; 0% bedeutet, daß keine Spinn­ milben abgetötet wurden.
In diesem Test hatten z. B. die Verbindungen gemäß den Herstellungsbeispielen (I-2-a-2), (I-2-b-2), (I-2-b-3), (I-2-a-1) und (I-2-b-4) bei einer beispielhaften Wirk­ stoffkonzentration von 0,01% eine Wirkung von 100% nach 13 Tagen.
Beispiel F Pre-emergence-Test
Lösungsmittel: 5 Gewichtsteile Aceton
Emulgator: 1 Gewichtsteil Alkylarylpolyglykolether
Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Ge­ wichtsteil Wirkstoff mit der angegebenen Menge Lösungsmittel, gibt die angege­ bene Menge Emulgator zu und verdünnt das Konzentrat mit Wasser auf die ge­ wünschte Konzentration.
Samen der Testpflanzen werden im normalen Boden ausgesät und nach 24 Stunden mit der Wirkstoffzubereitung begossen. Dabei hält man die Wassermenge pro Flächeneinheit zweckmäßigerweise konstant. Die Wirkstoffkonzentration in der Zubereitung spielt keine Rolle, entscheidend ist nur die Aufwandmenge des Wirkstoffs pro Flächeneinheit. Nach drei Wochen wird der Schädigungsgrad der Pflanzen bonitiert in % Schädigung im Vergleich zur Entwicklung der unbehandel­ ten Kontrolle. Es bedeuten:
0% = keine Wirkung (wie unbehandelte Kontrolle)
100% = totale Vernichtung
Pre emergence Test/Gewächshaus

Claims (22)

1. Verbindungen der Formel (I) in welcher
X für Alkyl steht,
Y für Halogen oder Alkyl steht und
Z für Halogen oder Alkyl steht,
mit der Maßgabe, daß immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht,
Het für eine der Gruppen worin
A für Wasserstoff, für jeweils gegebenenfalls durch Halogen substitu­ iertes Alkyl, Alkenyl, Alkoxyalkyl, Polyalkoxyalkyl oder Alkyl­ thioalkyl, für jeweils gesättigtes oder ungesättigtes und gegebenen­ falls substituiertes Cycloalkyl oder Heterocyclyl oder für jeweils gegebenenfalls durch Halogen, Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Cyano oder Nitro substituiertes Aryl, Arylalkyl oder Hetaryl steht,
B für Wasserstoff, Alkyl oder Alkoxyalkyl steht, oder
A und B gemeinsam mit dem Kohlenstoffatom an das sie gebunden sind für einen gesättigten oder ungesättigten, gegebenenfalls substituier­ ten Carbocyclus oder Heterocyclus stehen,
D für Wasserstoff oder für einen gegebenenfalls substituierten Rest aus der Reihe Alkyl, Alkenyl, Alkinyl, Alkoxyalkyl, Polyalkoxyalkyl, Alkylthioalkyl, gesättigtes oder ungesättigtes Cycloalkyl, gesättigte oder ungesättigtes Heterocyclyl, Arylalkyl, Aryl, Hetarylalkyl oder Hetaryl steht oder
A und D gemeinsam mit den Atomen an die sie gebunden sind für einen gesättigten oder ungesättigten und gegebenenfalls substituierten Carbocyclus oder Heterocyclus stehen,
G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen steht.
2. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher
X für C₁-C₆-Alkyl steht,
Y für Halogen oder C₁-C₆-Alkyl steht,
Z für Halogen oder C₁-C₆-Alkyl steht,
wobei immer einer der Substituenten Y und Z für Halogen und der andere für Alkyl steht,
Het für eine der Gruppen A für Wasserstoff, für jeweils gegebenenfalls durch Halogen substi­ tuiertes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl oder C₁-C₁₀-Alkylthio-C₁-C₆-alkyl, für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwe­ fel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalk­ oxy, Cyano oder Nitro substituiertes Phenyl, Naphthyl, Phenyl-C₁-C₆-alkyl, Naphthyl-C₁-C₆-alkyl oder Hetaryl mit 5 oder 6 Ringatomen und ein bis drei Heteroatomen aus der Reihe Sauer­ stoff, Schwefel und Stickstoff steht,
B für Wasserstoff, C₁-C₁₂-Alkyl oder C₁-C₈-Alkoxy-C₁-C₆-alkyl steht oder
A, B und das Kohlenstoffatom an das sie gebunden sind, für C₃-C₁₀-Cyclo­ alkyl oder C₅-C₁₀-Cycloalkenyl stehen, worin gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls durch C₁-C₈-Alkyl, C₃-C₁₀-Cycloalkyl, C₁-C₈-Halogenalkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylthio, Halogen oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₅-C₆-Cyclo­ alkyl stehen, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- und/oder Schwefelatome enthaltende Alkylendiyl-, oder durch eine Alkylendioxyl- oder durch eine Alkylendithioyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis achtgliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind für C₃-C₈-Cyclo­ alkyl oder C₅-C₈-Cycloalkenyl stehen, in welchen zwei Sub­ stituenten gemeinsam mit Kohlenstoffatomen, an die sie gebunden sind, für jeweils gegebenenfalls durch C₁-C₆-Alkyl, C₁-C₆-Alkoxy oder Halogen substituiertes C₃-C₆-Alkandiyl, C₃-C₆-Alkendiyl oder C₄-C₆-Alkandiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
D für Wasserstoff, für jeweils gegebenenfalls durch Halogen substitu­ iertes C₁-C₁₂-Alkyl, C₃-C₈-Alkenyl, C₃-C₅-Alkinyl, C₁-C₁₀-Alkoxy- C₂-C₈-alkyl, Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl oder C₁-C₁₀-Alkylthio- C₂-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl, C₁-C₄-Al­ koxy oder C₁-C₄-Halogenalkyl substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Ha­ logenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Hetaryl mit 5 bis 6 Ringatomen und ein oder zwei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff, Phenyl-C₁-C₆-alkyl oder Hetaryl-C₁-C₆-alkyl mit 5 bis 6 Ringatomen und ein oder zwei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff steht oder
A und D gemeinsam für eine C₃-C₆-Alkandiyl-, C₃-C₆-Alkendiyl- oder C₄-C₆-Alkadiendiylgruppe stehen, in welchen jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche jeweils gegebenenfalls substituiert sind durch Halogen, Hydroxy, Mercapto oder jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, C₃-C₇-Cyclo­ alkyl, Phenyl oder Benzyloxy oder durch eine weitere, einen ankondensierten Ring bildende C₃-C₆-Alkandiyl-, C₃-C₆-Alkendiyl- oder C₄-C₆-Alkadiendiylgruppe, in welchen gegebenenfalls jeweils eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenenfalls durch C₁-C₆-Alkyl substituiert sind oder in welchen gegebenenfalls zwei benachbarte Substituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, einen weiteren gesättigten oder ungesättigten Carbocyclus mit 5 oder 6 Ringatomen bilden oder
A und D gemeinsam für eine C₃-C₆-Alkandiyl- oder C₃-C₆-Alkendiyl­ gruppe stehen, worin jeweils gegebenenfalls eine der folgenden Gruppen enthalten ist,
G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht,
R¹ für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio- C₁-C₈-alkyl oder Poly-C₁-C₈-alkoxy-C₁-C₈-alkyl oder für gegebe­ nenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substi­ tuiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Halogen, Cyano, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl, C₁-C₆-Halogenalkoxy, C₁-C₆-Alkylthio oder C₁-C₆-Alkylsulfonyl substituiertes Phenyl,
für gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogenalkoxy substitu­ iertes Phenyl-C₁-C₆-alkyl,
für gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes 5- oder 6gliedriges Hetaryl mit ein oder zwei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff,
für gegebenenfalls durch Halogen oder C₁-C₆-Alkyl substituiertes Phenoxy-C₁-C₆-alkyl oder
für gegebenenfalls durch Halogen, Amino oder C₁-C₆-Alkyl substi­ tuiertes 5- oder 6gliedriges Hetaryloxy-C₁-C₆-alkyl mit ein oder zwei Heteroatomen aus der Reihe Sauerstoff, Schwefel und Stickstoff steht,
R² für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder Poly-C₁-C₈-alkoxy-C₂-C₈-alkyl,
für gegebenenfalls durch Halogen, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes C₃-C₈-Cycloalkyl oder
für jeweils gegebenenfalls durch Halogen, Cyano, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl oder C₁-C₆-Halogen­ alkoxy substituiertes Phenyl oder Benzyl steht,
R³ für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Al­ koxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₅-Alkoxy, C₁-C₈-Alkyl­ amino, Di-(C₁-C₈-alkyl)amino, C₁-C₈-Alkylthio oder C₂-C₈-Alkenyl­ thio oder für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halo­ genalkylthio, C₁-C₄-Alkyl oder C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gege­ benenfalls durch Halogen substituiertes C₁-C₅-Alkyl, C₃-C₈-Cyclo­ alkyl, C₁-C₈-Alkoxy, C₃-C₈-Alkenyl oder C₁-C₈-Alkoxy-C₂-C₈-alkyl, für jeweils gegebenenfalls durch Halogen, C₁-C₅-Alkyl, C₁-C₈-Halogenalkyl oder C₁-C₈-Alkoxy substituiertes Phenyl oder Benzyl oder zusammen für einen gegebenenfalls durch C₁-C₆-Alkyl substituierten C₃-C₆-Alkylenrest stehen, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
R¹³ für Wasserstoff oder für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder C₁-C₈-Alkoxy, für gegebenenfalls durch Halogen, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₈-Cycloalkyl, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist, oder für jeweils gege­ benenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Ha­ logenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₄-alkyl oder Phenyl-C₁-C₄-alkoxy steht,
R¹⁴ für Wasserstoff oder C₁-C₈-Alkyl steht oder
R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,
R¹⁵ und R¹⁶ gleich oder verschieden sind und für C₁-C₆-Alkyl stehen oder
R¹⁵ und R¹⁶ gemeinsam für einen C₂-C₄-Alkandiylrest stehen, der gege­ benenfalls durch C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder durch gege­ benenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₆-Al­ koxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist,
R¹⁷ und R¹⁸ unabhängig voneinander für Wasserstoff, für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl oder für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder
R¹⁷ und R¹⁸ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für eine Carbonylgruppe, für gegebenenfalls durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₅-C₇-Cycloalkyl, in dem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
R¹⁹ und R²⁰ unabhängig voneinander für C₁-C₁₀-Alkyl, C₂-C₁₀-Alkenyl, C₁-C₁₀-Alkoxy, C₁-C₁₀-Alkylamino, C₃-C₁₀-Alkenylamino, Di-(C₁-C₁₀-alkyl)amino oder Di-(C₃-C₁₀-alkenyl)amino stehen.
3. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher
X für C₁-C₄-Alkyl steht,
Y für Fluor, Chlor, Brom oder C₁-C₄-Alkyl steht,
Z für Fluor, Chlor, Brom oder C₁-C₄-Alkyl steht,
wobei immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht,
Het für eine der Gruppen A für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₁-C₈-Alkoxy-C₁-C₆-al­ kyl, Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder C₁-C₈-Alkylthio-C₁-C₆-alkyl oder für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebe­ nenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Imidazolyl, Triazolyl, Pyrazolyl, Indolyl, Thiazolyl, Thienyl oder Phenyl-C₁-C₄-alkyl steht,
B für Wasserstoff, C₁-C₁₀-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl steht oder
A, B und das Kohlenstoffatom an das sie gebunden sind, für C₃-C₈-Cyclo­ alkyl oder C₅-C₈-Cycloalkenyl stehen, worin jeweils gegebe­ nenfalls eine Methylengruppe durch Sauerstoff oder Schwefel er­ setzt ist und welche gegebenenfalls durch C₁-C₆-Alkyl, C₃-C₈-Cyclo­ alkyl, C₁-C₃-Halogenalkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylthio, Fluor, Chlor oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₅-C₆-Cyclo­ alkyl stehen, welches durch eine gegebenenfalls ein oder zwei Sauerstoff- oder Schwefelatome enthaltende Alkylendiyl- oder durch eine Alkylendioxyl- oder durch eine Alkylendithiol-Gruppe substitu­ iert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- bis siebengliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₆-Cyclo­ alkyl oder C₅-C₆-Cycloalkenyl stehen, in welchen zwei Sub­ stituenten gemeinsam mit den Kohlenstoffatomen, an die sie gebun­ den sind, für jeweils gegebenenfalls durch C₁-C₅-Alkyl, C₁-C₅-Alk­ oxy, Fluor, Chlor oder Brom substituiertes C₃-C₅-Alkandiyl, C₃-C₅-Al­ kendiyl oder Butadiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
D für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₀-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₁-C₈-Al­ koxy-C₂-C₆-alkyl, Poly-C₁-C₆-alkoxy-C₂-C₆-alkyl oder C₁-C₈-Al­ kylthio-C₂-C₆-alkyl, für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Al­ kyl, C₁-C₄-Alkoxy oder C₁-C₂-Halogenalkyl substituiertes C₃-C₇-Cyclo­ alkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Imidazolyl, Pyridyl, Thiazolyl, Pyrazolyl, Pyrimidyl, Pyrrolyl, Thienyl, Triazolyl oder Phenyl-C₁-C₄-alkyl stehen oder
A und D gemeinsam für eine C₃-C₅-Alkandiyl- oder C₃-C₅-Alken­ diylgruppe stehen, worin jeweils gegebenenfalls ein Kohlenstoff­ atom durch Sauerstoff oder Schwefel ersetzt ist und welche gege­ benenfalls substituiert sind durch Fluor, Chlor, Hydroxy, Mercapto oder durch jeweils gegebenenfalls durch Fluor oder Chlor sub­ stituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy oder
worin jeweils gegebenenfalls eine der folgenden Gruppen: enthalten ist;
oder A und D (im Fall der Verbindungen der Formel (I-1)) gemeinsam mit den Atomen, an die sie gebunden sind, für eine der Gruppen AD-1 bis AD-27 G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht,
R¹ für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₁-C₆-alkyl, C₁-C₆-Al­ kylthio-C₁-C₆-alkyl oder Poly-C₁-C₆-alkoxy-C₁-C₆-alkyl oder für gegebenenfalls durch Fluor, Chlor, C₁ C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes C₃-C₇-Cycloalkyl, in welchem gegebenenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Al­ kyl, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalkoxy, C₁-C₄-Alkylthio oder C₁-C₄-Alkylsulfonyl substituiertes Phenyl, für gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Al­ koxy, C₁-C₃-Halogenalkyl oder C₁-C₃-Halogenalkoxy substitu­ iertes Phenyl-C₁-C₄-alkyl,
für jeweils gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl substituiertes Pyrazolyl, Thiazolyl, Pyridyl, Pyrimidyl, Furanyl oder Thienyl,
für gegebenenfalls durch Fluor, Chlor, Brom oder C₁-C₄-Alkyl sub­ stituiertes Phenoxy-C₁-C₅-alkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Amino oder C₁-C₄-Alkyl substituiertes Pyridyloxy-C₁-C₅-alkyl, Pyrimidyloxy- C₁-C₅-alkyl oder Thiazolyloxy-C₁-C₅-alkyl steht,
R² für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl oder Poly- C₁-C₆-alkoxy-C₂-C₆-alkyl,
für gegebenenfalls durch Fluor, Chlor, C₁-C₄-Alkyl oder C₁-C₄-Al­ koxy substituiertes C₃-C₇-Cycloalkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, C₁-C₄-Alkyl, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkyl oder C₁-C₃-Ha­ logenalkoxy substituiertes Phenyl oder Benzyl steht,
R³ für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Alkoxy, C₁-C₃-Halogenalkyl, C₁-C₃-Halogenalk­ oxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Alkyl­ amino, Di-(C₁-C₆-alkyl)amino, C₁-C₆-Alkylthio oder C₃-C₄-Alkenyl­ thio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₃-Alkoxy, C₁-C₃-Halogenalkoxy, C₁-C₃-Alkyl­ thio, C₁-C₃-Halogenalkylthio, C₁-C₃-Alkyl oder C₁-C₃-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebe­ nenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₃-C₆-Cyclo­ alkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl oder C₁-C₆-Alkoxy-C₂-C₆-al­ kyl, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Ha­ logenalkyl, C₁-C₅-Alkyl oder C₁-C₅-Alkoxy substituiertes Phenyl oder Benzyl, oder zusammen für einen gegebenenfalls durch C₁-C₄-Alkyl substituierten C₃-C₆-Alkylenrest stehen, in welchem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
R¹³ für Wasserstoff oder für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl oder C₁-C₆-Alkoxy, für gegebe­ nenfalls durch Fluor, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy substituiertes C₃-C₇-Cycloalkyl steht, in welchem gegebenenfalls eine Methylen­ gruppe durch Sauerstoff oder Schwefel ersetzt ist oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, C₁-C₅-Alkyl, C₁-C₅-Al­ koxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₃-alkyl oder Phenyl-C₁-C₂-alkyloxy,
R¹⁴ für Wasserstoff oder C₁-C₆-Alkyl steht oder
R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,
R¹⁵ und R¹⁶ gleich oder verschieden sind und für C₁-C₄-Alkyl stehen oder
R¹⁵ und R¹⁶ zusammen für einen C₂-C₃-Alkandiylrest stehen, der gegebe­ nenfalls durch C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl oder durch gege­ benenfalls durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₂-Halogen­ alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkoxy, Nitro oder Cyano sub­ stituiertes Phenyl substituiert ist,
R¹⁷ und R¹⁸ unabhängig voneinander für Wasserstoff, für gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl oder für gege­ benenfalls durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl stehen oder
R¹⁷ und R¹⁸ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind, für gegebenenfalls durch C₁-C₃-Alkyl oder C₁-C₃-Alkoxy substituiertes C₅-C₆-Cycloalkyl stehen, in dem gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
R¹⁹ und R²⁰ unabhängig voneinander für C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₆-Alkoxy, C₁-C₆-Alkylamino, C₃-C₆-Alkenylamino, Di-(C₁-C₆-alkyl)amino oder Di-(C₃-C₆-alkenyl)amino stehen.
4. Verbindungen der Formel (I) gemäß Anspruch 1, in welcher
X für Methyl, Ethyl, n-Propyl oder iso-Propyl steht,
Y für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl oder iso-Propyl steht,
Z für Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl oder iso-Propyl steht,
wobei immer einer der Reste Y und Z für Halogen und der andere für Alkyl steht,
Het für eine der Gruppen A für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₄-Alkenyl, C₁-C₆-Alkoxy-C₁-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder C₁-C₆-Alkylthio-C₁-C₄-alkyl, oder für gegebenenfalls durch Fluor, Chlor, Methyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gegebenen­ falls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Thienyl, Pyridyl oder Benzyl steht,
B für Wasserstoff, C₁-C₈-Alkyl oder C₁-C₄-Alkoxy-C₁-C₂-alkyl steht oder
A, B und das Kohlenstoffatom an das sie gebunden sind, für C₃-C₈-Cyclo­ alkyl oder C₅-C₈-Cycloalkenyl stehen, worin jeweils gegebe­ nenfalls eine Methylengruppe durch Sauerstoff oder Schwefel er­ setzt ist und welche gegebenenfalls durch Methyl, Ethyl, n-Propyl, iso-Ppropyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Cyclohexyl, Trifluormethyl, Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, Butoxy, iso-Butoxy, sek.-Butoxy, tert.-Butoxy, Methylthio, Ethylthio, Fluor, Chlor oder Phenyl substituiert sind oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₅-C₆-Cyclo­ alkyl stehen, welches durch eine gegebenenfalls ein Sauer­ stoff- oder Schwefelatom enthaltende Alkylendiyl- oder durch eine Alkylendioxyl-Gruppe substituiert ist, die mit dem Kohlenstoffatom, an das sie gebunden ist, einen weiteren fünf- oder sechsgliedrigen Ring bildet oder
A, B und das Kohlenstoffatom, an das sie gebunden sind, für C₃-C₆-Cyclo­ alkyl oder C₅-C₆-Cycloalkenyl stehen, in dem zwei Substi­ tuenten gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, für C₃-C₄-Alkandiyl, C₃-C₄-Alkendiyl oder Butadiendiyl stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist,
D für Wasserstoff, für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₃-C₄-Alkenyl, C₃-C₄-Alkinyl, C₁-C₆-Al­ koxy-C₂-C₄-alkyl, Poly-C₁-C₄-alkoxy-C₂-C₄-alkyl, C₁-C₄-Alkyl­ thio-C₂-C₄-alkyl oder C₃-C₆-Cycloalkyl, in welchem gegebenenfalls eine oder zwei nicht direkt benachbarte Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind oder für jeweils gegebe­ nenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, iso-Propyl, Methoxy, Ethoxy, Trifluormethyl, Trifluormethoxy, Cyano oder Nitro substituiertes Phenyl, Furanyl, Pyridyl, Thienyl oder Benzyl steht,
oder
A und D gemeinsam für eine C₃-C₅-Alkandiyl oder C₃-C₅-Alkendiyl­ gruppe stehen, worin jeweils gegebenenfalls eine Methylengruppe durch Sauerstoff oder Schwefel ersetzt ist und welche gegebenen­ falls durch Fluor, Chlor, Hydroxy, Mercapto oder durch jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₃-C₆-Cycloalkyl, Phenyl oder Benzyloxy substituiert sind oder
worin gegebenenfalls eine der folgenden Gruppen enthalten ist,
oder A und D im Fall der Verbindungen der Formel (I-1) ge­ meinsam mit den Atomen, an die sie gebunden sind, für eine der folgenden Gruppen G im Fall, daß Het für einen der Reste (1), (2), (3), (5) oder (6) steht, für Wasserstoff (a) oder, im Fall, daß Het für einen der Reste (1), (2), (3), (4), (5) oder (6) steht, für eine der Gruppen in welchen
E für ein Metallionäquivalent oder ein Ammoniumion steht,
L für Sauerstoff oder Schwefel steht und
M für Sauerstoff oder Schwefel steht,
R¹ für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁- C₁₄-Alkyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₁-C₆-alkyl, C₁-C₄-Al­ kylthio-C₁-C₆-alkyl, Poly-C₁-C₄-alkoxy-C₁-C₄-alkyl oder für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Butyl, tert.-Butyl, Methoxy, Ethoxy, n-Propoxy oder iso-Propoxy substituiertes C₃-C₆-Cycloalkyl, in welchem gege­ benenfalls eine oder zwei Methylengruppen durch Sauerstoff und/oder Schwefel ersetzt sind,
für gegebenenfalls durch Fluor, Chlor, Brom, Cyano, Nitro, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl, Tri­ fluormethoxy, Methylthio, Ethylthio, Methylsulfonyl oder Ethyl­ sulfonyl substituiertes Phenyl,
für gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluor­ methoxy substituiertes Benzyl,
für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl oder Ethyl substituiertes Furanyl, Thienyl oder Pyridyl,
für gegebenenfalls durch Fluor, Chlor, Methyl oder Ethyl substitu­ iertes Phenoxy-C₁-C₄-alkyl oder
für jeweils gegebenenfalls durch Fluor, Chlor, Amino, Methyl oder Ethyl substituiertes Pyridyloxy-C₁-C₄-alkyl, Pyrimidyloxy-C₁-C₄-al­ kyl oder Thiazolyloxy-C₁-C₄-alkyl steht,
R² für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₁₄-Al­ kyl, C₂-C₁₄-Alkenyl, C₁-C₄-Alkoxy-C₂-C₆-alkyl oder Poly-C₁-C₄-alkoxy-C₂-C₆-alkyl,
für gegebenenfalls durch Fluor, Chlor, Methyl, Ethyl, n-Propyl, iso-Propyl oder Methoxy substituiertes C₃-C₆-Cycloalkyl,
oder für jeweils gegebenenfalls durch Fluor, Chlor, Cyano, Nitro, Methyl, Ethyl, n-Propyl, i-Propyl, Methoxy, Ethoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl oder Benzyl steht,
R³ für gegebenenfalls durch Fluor oder Chlor substituiertes Methyl, Ethyl, Propyl, Isopropyl oder jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, Propyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, Isopropoxy, tert.-Butoxy, Trifluormethyl, Trifluor­ methoxy, Cyano oder Nitro substituiertes Phenyl oder Benzyl steht,
R⁴ und R⁵ unabhängig voneinander für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkyl­ amino, Di-(C₁-C₄-alkyl)amino oder C₁-C₄-Alkylthio oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Nitro, Cyano, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl, Phenoxy oder Phenylthio stehen,
R⁶ und R⁷ unabhängig voneinander für Wasserstoff, für jeweils gegebe­ nenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₃-C₆-Cyc­ loalkyl, C₁-C₄-Alkoxy, C₃-C₄-Alkenyl oder C₁-C₄-Al­ koxy-C₂-C₄-alkyl, für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl, oder zusammen für einen gegebenenfalls durch Methyl oder Ethyl substituierten C₅-C₆-Alkylenrest stehen, in welchem gegebe­ nenfalls eine Methylengruppe durch Sauerstoff oder Schwefel er­ setzt ist,
R¹³ für Wasserstoff oder für jeweils gegebenenfalls durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl oder C₁-C₄-Alkoxy, für C₃-C₆-Cyc­ loalkyl oder für jeweils gegebenenfalls durch Fluor, Chlor, Brom, Methyl, Ethyl, iso-Propyl, tert.-Butyl, Methoxy, Ethoxy, iso-Propoxy, tert.-Butoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl, Phenyl-C₁-C₂-alkyl oder Benzyloxy steht,
R¹⁴ für Wasserstoff oder C₁-C₄-Alkyl steht oder
R¹³ und R¹⁴ gemeinsam für C₄-C₆-Alkandiyl stehen,
R¹⁵ und R¹⁶ gleich oder verschieden sind für Methyl oder Ethyl stehen oder
R¹⁵ und R¹⁶ zusammen für einen C₂-C₃-Alkandiylrest stehen, der gegebe­ nenfalls durch Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sek.-Butyl, tert.-Butyl oder durch gegebenenfalls durch Fluor, Chlor, Methoxy, Trifluormethyl, Trifluormethoxy, Nitro oder Cyano substituiertes Phenyl substituiert ist,
5. Verfahren zur Herstellung von Verbindungen der Formel (I) gemäß An­ spruch 1, dadurch gekennzeichnet, daß man
  • (A) Verbindungen der Formel (I-1-a) in welcher
    A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (II) in welcher
    A, B, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    und
    R⁸ für Alkyl steht,
    in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,
  • (B) Verbindungen der Formel (I-2-a) in welcher
    A, B, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (III) in welcher
    A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben,
    in Gegenwart eines Verdünnungsmittels und in Gegenwart einer Base intramolekular kondensiert,
  • (C) Verbindungen der Formel (I-3-a) in welcher
    A, B, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (IV) in welcher
    A, B, X, Y, Z und R⁸ die oben angegebenen Bedeutungen haben und
    W für Wasserstoff, Halogen, Alkyl oder Alkoxy steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und in Ge­ genwart einer Säure intramolekular cyclisiert,
  • (E) die Verbindungen der Formel (I-5-a) in welcher
    A, D, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man
    Verbindungen der Formel (VIII) in welcher
    A und D die oben angegebenen Bedeutungen haben,
    mit Verbindungen der Formel (V) in welcher
    X, Y und Z die oben angegebenen Bedeutungen haben und
    Hal für Halogen steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säureakzeptors umsetzt,
  • (F) die Verbindungen der Formel (I-6-a) in welcher
    A, X, Y und Z die oben angegebenen Bedeutungen haben,
    erhält, wenn man Verbindungen der Formel (IX) in welcher
    A die oben angegebene Bedeutung hat,
    mit Verbindungen der Formel (V) in welcher
    Hal, X, Y und Z die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säureakzeptors umsetzt und gegebenen­ falls anschließend die so erhaltenen Verbindungen der oben gezeig­ ten Formeln (I-1-a) bis (I-3-a), (I-5-a) und (I-6-a) oder Verbin­ dungen der Formel (I-4-a) in welcher
    A, D, X, Y und Z die oben angegebene Bedeutung haben, jeweils
  • (Gα) mit Säurehalogeniden der Formel (X) in welcher
    R¹ die oben angegebene Bedeutung hat und
    Hal für Halogen steht
    oder
  • β) mit Carbonsäureanhydriden der Formel (XI) R¹-CO-O-CO-R¹ (XI)in welcher
    R¹ die oben angegebene Bedeutung hat,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt,
  • (H) mit Chlorameisensäureestern oder Chlorameisensäurethioestern der Formel (XII) R²-M-CO-Cl (XII)in welcher
    R² und M die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt,
    oder
  • (Iα) mit Chlormonothioameisensäureestern oder Chlordithioameisensäu­ reestern der Formel (XIII) in welcher
    M und R² die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt
    oder
  • β) mit Schwefelkohlenstoff und anschließend mit Verbindungen der Formel (XIV) R²-Hal (XIV)in welcher
    R² die oben angegebene Bedeutung hat und
    Hal für Chlor, Brom oder Iod steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart einer Base umsetzt,
    oder
  • (J) mit Sulfonsäurechloriden der Formel (XV) R³-SO₂-Cl (XV)in welcher
    R³ die oben angegebene Bedeutung hat,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt,
    oder
  • (K) mit Phosphorverbindungen der Formel (XVI) in welcher
    L, R⁴ und R⁵ die oben angegebenen Bedeutungen haben und
    Hal für Halogen steht,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels umsetzt,
    oder
  • (L) mit Metallverbindungen oder Aminen der Formeln (XVII) oder (XVIII) Me(OR¹⁰)t (XVII) in welchen
    Me für ein ein- oder zweiwertiges Metall,
    t für die Zahl 1 oder 2 und
    R¹⁰, R¹¹, R¹² unabhängig voneinander für Wasserstoff oder Alkyl stehen,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt
    oder
  • (Mα) mit Isocyanaten oder Isothiocyanaten der Formel (XIX) R⁶-N=C=L (XIX)in welcher
    R⁶ und L die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Katalysators umsetzt oder
  • β) mit Carbamidsäurechloriden oder Thiocarbamidsäurechloriden der Formel (XX) in welcher
    L, R⁶ und R⁷ die oben angegebenen Bedeutungen haben,
    gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe­ nenfalls in Gegenwart eines Säurebindemittels, umsetzt.
6. Verbindungen der Formel (II) in welcher
A, B, D, X, Y und Z die in Anspruch 1 angegebene Bedeutungen haben und
R⁸ für Alkyl steht.
7. Verbindungen der Formel (XXIII) in welcher
A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben.
8. Verbindungen der Formel (XXII) in welcher
X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht.
9. Verbindungen der Formel (XXV) in welcher
X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.
10. Verbindungen der Formel (XXVI) in welcher
X, Y und Z die oben angegebene Bedeutung haben, und
R⁸ für Alkyl steht.
11. Verbindungen der Formel (XXVII) in welcher
X, Y und Z die in Anspruch 1 angegebene Bedeutung haben.
12. Verbindungen der Formel (XXXI) in welcher
A, B, D, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben.
13. Verbindungen der Formel (III) in welcher
A, B, X, Y und Z die oben angegebenen Bedeutungen haben, und
R⁸ für Alkyl steht.
14. Verbindungen der Formel (IV) in welcher
A, B, X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben,
W für Wasserstoff-Halogen, Alkyl oder Alkoxy steht und
R⁸ für Alkyl steht.
15. Verbindungen der Formel (V) in welcher
X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und
Hal für Chlor oder Brom steht.
16. Verbindungen der Formel (XXXV) X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben.
17. Verbindungen der Formel (VI) in welcher
X, Y und Z die in Anspruch 1 angegebenen Bedeutungen haben und
R⁸ für Alkyl steht.
18. Schädlingsbekämpfungsmittel und Unkrautbekämpfungsmittel, gekennzeich­ net durch einen Gehalt an mindestens einer Verbindung der Formel (I) gemäß Anspruch 1.
19. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Bekämpfung von Schädlingen und Unkräutern.
20. Verfahren zur Bekämpfung von Schädlingen und Unkräutern, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 auf Schädlinge und/oder ihren Lebensraum einwirken läßt oder auf Unkräuter und/oder ihren Lebensraum einwirken läßt.
21. Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln und Unkraut­ bekämpfungsmitteln, dadurch gekennzeichnet, daß man Verbindungen der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder oberflächen­ aktiven Mitteln vermischt.
22. Verwendung von Verbindungen der Formel (I) gemäß Anspruch 1 zur Herstellung von Schädlingsbekämpfungsmitteln und Unkrautbekämpfungs­ mitteln.
DE19603332A 1995-06-30 1996-01-31 Dialkyl-halogenphenylsubstituierte Ketoenole Withdrawn DE19603332A1 (de)

Priority Applications (22)

Application Number Priority Date Filing Date Title
DE19603332A DE19603332A1 (de) 1995-06-30 1996-01-31 Dialkyl-halogenphenylsubstituierte Ketoenole
CNB961964561A CN1152860C (zh) 1995-06-30 1996-06-17 二烷基-卤代苯基取代的酮-烯醇
CA002225830A CA2225830C (en) 1995-06-30 1996-06-17 Dialkyl phenyl halide-substituted keto-enols for use as herbicides and pesticides
DE59610095T DE59610095D1 (de) 1995-06-30 1996-06-17 Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
BR9609301A BR9609301A (pt) 1995-06-30 1996-06-17 Cetoenois dialquil-halogenofenil-substituídos
KR1019970709769A KR100473579B1 (ko) 1995-06-30 1996-06-17 제초제및페스티사이드로서유용한디알킬페닐할리드-치환된케토-에놀
CA002532743A CA2532743C (en) 1995-06-30 1996-06-17 Intermediates for preparing dialkyl-halogenophenyl-substituted ketoenols
EP96922817A EP0835243B1 (de) 1995-06-30 1996-06-17 Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
DK96922817T DK0835243T3 (da) 1995-06-30 1996-06-17 Dialkyl-halogenphenylsubstituerede ketoenoler til anvendelse som herbicider og pesticider
TR97/01740T TR199701740T1 (xx) 1995-06-30 1996-06-17 Herbisitler ve pestisitler olarak kullan�lmak �zere dialkil fenil halit ikameli ketoenoller.
JP50475097A JP4362149B2 (ja) 1995-06-30 1996-06-17 除草剤および有害生物防除剤として使用するためのジアルキル−ハロゲン置換フェニルのケト−エノール類
US08/981,610 US5994274A (en) 1995-06-30 1996-06-17 Dialkyl phenyl halide-substituted keto-enols for use as herbicides and pesticides
ES96922817T ES2189877T3 (es) 1995-06-30 1996-06-17 Cetoenoles dialquil-halogenofenilsubstituidos para el empleo como herbicidas y pesticidas.
HU9802279A HUP9802279A3 (en) 1995-06-30 1996-06-17 Dialkyl phenyl halide-substituted keto-enols for use as herbicides and pesticides
CN01138493.XA CN1229323C (zh) 1995-06-30 1996-06-17 二烷基-卤代苯基取代的酮-烯醇
AU63561/96A AU707357B2 (en) 1995-06-30 1996-06-17 Dialkyl-halogenophenyl-substituted ketoenols for use as herbicides and pesticides
PCT/EP1996/002601 WO1997002243A1 (de) 1995-06-30 1996-06-17 Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
TW085107798A TW410141B (en) 1995-06-30 1996-06-28 Dialkyl-halogenophenyl-substituted ketoenols
MX9710376A MX9710376A (es) 1995-06-30 1997-12-18 Cetoenoles dialquil-halogenofenilsubstituidos para el empleo como herbicidas y pesticidas.
US09/360,510 US6251830B1 (en) 1995-06-30 1999-07-26 Dialkyl-halogenophenyl-substituted ketoenols
US09/839,481 US6469196B2 (en) 1995-06-30 2001-04-20 Dialkyl phenyl halide-substituted keto-enols for use as herbicides and pesticides
US10/197,720 US6759548B2 (en) 1995-06-30 2002-07-18 Dialkyl-halogenophenyl-substituted ketoenols

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19523850 1995-06-30
DE19603332A DE19603332A1 (de) 1995-06-30 1996-01-31 Dialkyl-halogenphenylsubstituierte Ketoenole

Publications (1)

Publication Number Publication Date
DE19603332A1 true DE19603332A1 (de) 1997-01-02

Family

ID=7765668

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19603332A Withdrawn DE19603332A1 (de) 1995-06-30 1996-01-31 Dialkyl-halogenphenylsubstituierte Ketoenole

Country Status (4)

Country Link
JP (1) JP4362149B2 (de)
KR (1) KR100473579B1 (de)
DE (1) DE19603332A1 (de)
ZA (1) ZA965516B (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997036868A1 (de) * 1996-04-02 1997-10-09 Bayer Aktiengesellschaft Substituierte phenylketoenole als schädlingsbekämpfungsmittel und herbizide
WO1998005638A2 (de) * 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
WO1999016748A1 (de) * 1997-09-26 1999-04-08 Bayer Aktiengesellschaft Spirocyclische phenylketoenole als pestizide und herbizide
EP1277751A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
WO2005044796A1 (de) * 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituierte spirocyclische tetramsäure-derivate

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10139465A1 (de) * 2001-08-10 2003-02-20 Bayer Cropscience Ag Selektive Herbizide auf Basis von substituierten, cayclischen Ketoenolen und Safenern
DE10146910A1 (de) * 2001-09-24 2003-04-10 Bayer Cropscience Ag Spirocyclische 3-Phenyl-3-substituierte-4-ketolaktame und -laktone
PT2166855T (pt) * 2007-06-07 2018-06-12 Bayer Animal Health Gmbh Controlo de ectoparasitas
EP2045240A1 (de) * 2007-09-25 2009-04-08 Bayer CropScience AG Halogenalkoxyspirocyclische Tetram- und Tetronsäure-Derivate
BR112015007719A2 (pt) 2012-10-09 2017-07-04 Sumitomo Chemical Co compostos do tipo pirona e herbicidas compreendendo os mesmos

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216814A1 (de) * 1991-07-16 1993-01-21 Bayer Ag 3-aryl-4-hydroxy-(delta)(pfeil hoch)3(pfeil hoch)-dihydrofuranon- und 3-aryl-4-hydroxy-(delta)(pfeil hoch)3(pfeil hoch)-dihydrothiophenon-derivate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271180B2 (en) 1996-04-02 2001-08-07 Bayer Aktiengesellschaft Substituted phenyl keto enols as pesticides and herbicides
WO1997036868A1 (de) * 1996-04-02 1997-10-09 Bayer Aktiengesellschaft Substituierte phenylketoenole als schädlingsbekämpfungsmittel und herbizide
US6486343B1 (en) 1996-04-02 2002-11-26 Bayer Aktiengesellschaft Substituted phenyl keto enols as pesticides and herbicides
US6388123B1 (en) 1996-04-02 2002-05-14 Bayer Aktiengesellschaft Substituted phenyl keto enols as pesticides and herbicides
US6140358A (en) * 1996-04-02 2000-10-31 Bayer Aktiengesellschaft Substituted phenyl keto enols as pesticides and herbicides
EP1277751A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
WO1998005638A3 (de) * 1996-08-05 1998-03-19 Bayer Ag 2- und 2,5-substituierte phenylketoenole
US6504036B1 (en) 1996-08-05 2003-01-07 Bayer Aktiengesellschaft 2- and 2.5-substituted phenylketoenols
WO1998005638A2 (de) * 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
EP1277734A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
EP1277749A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
EP1277733A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
EP1277735A1 (de) * 1996-08-05 2003-01-22 Bayer CropScience AG 2- und 2,5-substituierte Phenylketoenole
WO1999016748A1 (de) * 1997-09-26 1999-04-08 Bayer Aktiengesellschaft Spirocyclische phenylketoenole als pestizide und herbizide
WO2005044796A1 (de) * 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituierte spirocyclische tetramsäure-derivate

Also Published As

Publication number Publication date
JPH11510481A (ja) 1999-09-14
KR19990028453A (ko) 1999-04-15
ZA965516B (en) 1997-02-06
KR100473579B1 (ko) 2005-11-11
JP4362149B2 (ja) 2009-11-11

Similar Documents

Publication Publication Date Title
EP0835243B1 (de) Dialkyl-halogenphenylsubstituierte ketoenole zur verwendung als herbizide und pestizide
EP0825982B1 (de) Alkyl-dihalogenphenylsubstituierte ketoenole als schädlingsbekämpfungsmittel und herbizide
EP0837847B1 (de) 2,4,5-trisubstituierte phenylketoenole zur verwendung als pestizide und herbizide
EP0809629B1 (de) 2-phenylsubstituierte heterocyclische 1,3-ketoenole als herbizide und pestizide
EP1066258B1 (de) Arylphenylsubstituierte cyclische ketoenole
EP0891330B1 (de) Substituierte phenylketoenole als schädlingsbekämpfungsmittel und herbizide
EP0944633B1 (de) Substituierte phenylketoenole und ihre verwendung als schädlingsbekämpfungsmittel
EP0915846B1 (de) 2- und 2,5-substituierte phenylketoenole
EP1028963B1 (de) Neue substituierte phenylketoenole
DE19818732A1 (de) Arylphenylsubstituierte cyclische Ketoenole
DE19808261A1 (de) Arylphenylsubstituierte cyclische Ketoenole
EP0912547A2 (de) Neue substituierte pyridylketoenole
DE19603332A1 (de) Dialkyl-halogenphenylsubstituierte Ketoenole
DE19543864A1 (de) Phenylsubstituierte cyclische Ketoenole
DE19649665A1 (de) Neue substituierte Phenylketoenole
EP1277749B1 (de) 2- und 2,5-substituierte Phenylketoenole
DE19602524A1 (de) 2,4,5-Trisubstituierte Phenylketoenole
DE19545467A1 (de) Alkyl-dihalogenphenylsubstituierte Ketoenole
DE19651841A1 (de) Neue substituierte Pyridylketoenole

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee