EP1266127A1 - Systeme de refroidissement pour aube de turbine - Google Patents

Systeme de refroidissement pour aube de turbine

Info

Publication number
EP1266127A1
EP1266127A1 EP01919384A EP01919384A EP1266127A1 EP 1266127 A1 EP1266127 A1 EP 1266127A1 EP 01919384 A EP01919384 A EP 01919384A EP 01919384 A EP01919384 A EP 01919384A EP 1266127 A1 EP1266127 A1 EP 1266127A1
Authority
EP
European Patent Office
Prior art keywords
insert
blade
horizontal ribs
wall
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01919384A
Other languages
German (de)
English (en)
Other versions
EP1266127B1 (fr
Inventor
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01919384A priority Critical patent/EP1266127B1/fr
Publication of EP1266127A1 publication Critical patent/EP1266127A1/fr
Application granted granted Critical
Publication of EP1266127B1 publication Critical patent/EP1266127B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a blade, in particular a turbine blade, with at least one channel which is delimited by walls, wherein an insert which can be acted upon by a cooling fluid is inserted into at least one channel.
  • Chambers are formed between the insert and the walls of the blade, which run in the direction of a longitudinal axis of the blade.
  • the cooling fluid enters the chamber from the insert and impacts the walls of the blade. It then flows along the walls and exits through specially designed chambers on the outside of the walls and from there the surroundings.
  • the effect of convection cooling when the cooling fluid flows along the walls is only slight, since the flow length is very limited. Mixing of the cooling fluid also occurs in the chambers along the longitudinal axis of the blade, so that targeted cooling is not possible.
  • Blades with partially hollow walls through which a cooling fluid flows. Due to the reduction in the wall thickness in the area of the hollow chambers, a high cooling efficiency is achieved. However, blades with such hollow walls require a complicated casting process with high reject rates and are therefore very expensive.
  • the object of the present invention is therefore to provide a blade which, with simple manufacture, achieves an improvement in the cooling effect.
  • this object is achieved in a shovel of the type mentioned in the introduction in that at least one of the walls is provided with a number of horizontal ribs which are arranged between the insert and the wall, and in that the insert is provided with openings through which the
  • Cooling fluid from the insert can enter between the horizontal ribs.
  • the horizontal ribs guide the coolant along the wall of the blade and prevent the coolant from flowing
  • the insert touches the horizontal ribs.
  • the insert is clipped and aligned in the desired position.
  • the horizontal ribs, the insert and the wall form the chambers through which the cooling fluid flows.
  • the chambers reliably prevent the cooling fluid from flowing in the direction of the longitudinal axis of the blade.
  • the cooling effect along the longitudinal axis of the blade can be varied in a targeted manner by applying the cooling fluid to the chambers differently.
  • the openings of the insert are at a first end of the chambers and exit openings for the cooling fluid m the wall are arranged at a second end of the chambers.
  • the cooling fluid therefore flows along the entire length of the chamber along the wall to be cooled, so that the convection cooling is further improved.
  • the horizontal ribs can be arranged essentially perpendicular to the longitudinal axis of the blade.
  • an angular position can be provided. With a vertical arrangement with respect to the longitudinal axis, the length of the horizontal ribs and thus the chambers is minimized. The angular position enables the length of the chambers to be increased and thus further improved convection cooling.
  • the insert is advantageously closed at one end.
  • the cooling fluid is only supplied from the other end of the insert.
  • the cooling fluid is prevented from escaping through the end facing away from the supply side, so that the cooling efficiency is increased.
  • cooling fluid can be supplied from both ends.
  • the turbulators serve to stiffen the wall and merge into one another and m the horizontal ribs. This results in a significant increase in rigidity without additional material. With the same strength of the blade, the wall thickness can be reduced again. At the same time, good heat exchange between the walls and the cooling fluid is achieved. This results in high cow efficiency and high overall efficiency.
  • the stiffening of the wall does not only occur in the area of a single turbulator. Rather, a large-area stiffening is provided by connecting the turbulators to one another.
  • the turbulators are advantageously straight. The use of straight turbulators enables high rigidity with simple manufacture.
  • the turbulators are arranged such that, together with the horizontal ribs, they form mutually adjacent recesses in the form of polygons, in particular triangles or rhombuses.
  • the inside of the wall is provided with a honeycomb structure.
  • the individual polygons or honeycombs each form a closed, highly resilient cross-section and support each other. A substantial increase in rigidity can be achieved.
  • the wall thickness of the wall is reduced at least in the area between the turbulators. This reduction in wall thickness is made possible by the fact that the turbulators stiffen the wall. By reducing the wall thickness, the cow's efficiency is increased again.
  • the turbulators can advantageously be used as metal feed channels when casting the blade. The honeycomb structure is therefore easy to manufacture.
  • the blade according to the invention can be designed as a guide blade or as a rotor blade of a rotary machine.
  • FIG. 1 shows a longitudinal section through a rotary machine
  • FIG. 2 shows a perspective, broken-away representation of a blade
  • 3 shows a plan view of the inside of a wall of the blade
  • FIG. 8 shows a view similar to FIG. 7 in the second embodiment.
  • FIG. 1 shows a longitudinal section through a rotary machine in the form of a turbine 10 with a housing 11 and a rotor 12.
  • the housing 11 is provided with guide vanes 13 and the rotor 12 with rotor blades 14.
  • the turbine 10 is flowed through according to arrow 15 by a fluid which flows along the guide vanes 13 and rotor blades 14 and rotates the rotor 12 m around an axis 16.
  • the temperature of the fluid is relatively high in many application cases, particularly in the area of the first row of blades (shown on the left in FIG. 1). A cooling of the guide vanes 13 and blades 14 is therefore provided.
  • Flow of the cooling fluid is indicated schematically by the arrows 17, 18.
  • FIG. 2 schematically shows a broken view of a guide vane 13.
  • the guide vane 13 has curved outer walls 19, 20.
  • the interior lying between the outer walls 19, 20 is divided into a total of three channels 22 via two partition walls 21 m.
  • An insert 25 is inserted into each of the channels 22.
  • the embedding of the middle channel 22 is not shown for better illustration.
  • the two outer walls 19, 20 are provided with a number of horizontal ribs 24 in each of the channels 22.
  • the horizontal ribs 24 run along the walls 19, 20 and extend as far as the partition walls 21.
  • Turbulators 23 are arranged between the horizontal ribs 24.
  • the inserts 25 touch the horizontal ribs 24.
  • the cooling fluid in particular cooling air, is supplied to an interior 26 of the inserts 25.
  • the inserts 25 are provided with a number of openings 27 through which the cooling fluid exits the space between the outer walls 19, 20 and the insert 25.
  • the cooling fluid then flows along the outer walls 19, 20 to outlet openings 28 in the walls 19, 20. This flow is indicated schematically by the arrow 30.
  • the openings 27 of the inserts 25 are arranged at a distance from the opening 28 of the outer walls 19, 20. In the exemplary embodiment shown, the opening openings 28 form essentially straight rows 29.
  • the cooling fluid emerging from the inserts 25 first impacts the outer walls 19, 20 and leads there to one
  • the front edge of the guide vane 13 shown on the left in FIG. 2 is additionally provided with direct impact cooling.
  • the insert 25 has further openings 36 for this impingement cooling, which are arranged directly behind the front edge of the guide vane 13.
  • the cooling medium exits directly through these openings 36 and provides targeted cooling of the front edge of the guide vane 13.
  • the associated insert 25 is also provided with a further opening 37 in the region of the rear edge of the guide vane 13. Through this opening 37, cooling fluid emerges directly in a narrow gap 38 between the outer walls 19, 20 and causes film cooling there.
  • FIGS. 3 to 5 show further details of the inside of the outer wall 19.
  • the horizontal ribs 24 run essentially at right angles to a longitudinal axis 31 of the guide vane 13. They are arranged parallel to one another. Between the horizontal ribs 24 straight turbulators 23 are arranged, which merge into one another and the ho ⁇ zonal ⁇ ppen 24.
  • the front edge 33 of the horizontal ribs 24 merges into the partition 21 in the middle channel 22 m. In the channel 22 on the left in FIG. 2, the front edge 33 is arranged at some distance from the foremost outflow openings 28.
  • the cooling fluid enters this chamber 32 through the openings 27 of the insert 25 m. It then flows according to arrow 30 to the opening 28.
  • the openings 27 are arranged at one end of the chamber 32 and the opening 28 at the other end. This maximizes the distance that the cooling fluid traverses as it flows along the outer wall 19. This results in maximum convection cooling.
  • the effect of convection cooling is further enhanced by the turbulators 23, since these improve the heat exchange between the outer wall 19 and the cooling fluid.
  • the chambers 32 can be supplied with the cooling fluid in different ways. This is achieved by varying the number and / or the size of the openings 27 in the insert 25. In this way, individual chambers 32 can be specifically cooled more or less than others. The cooling can thus be specifically adjusted along the longitudinal axis 31 of the guide vane 13 and adapted to the prevailing boundary conditions.
  • the turbulators 23 also serve to stiffen the outer wall 19.
  • the straight turbulators 23 are arranged in such a way that they form polygons. In FIG. 3, game triangles and shown in Figure 6 as examples diamonds.
  • the stiffening achieved by the turbulators 23 enables a reduction in the wall thickness d of the outer wall 19 in the region between the turbulators 23. Because of this reduction in the wall thickness d, the cooling efficiency increases further.
  • Figure 6 shows a plan view of the inside of the outer wall 19 m of the second embodiment.
  • the turbulators 24 are opposite to the longitudinal axis 31
  • turbulators 23 are provided, four of which are combined to form a rhombus. The reduction in the wall thickness is indicated schematically in these diamonds with visible edges.
  • the second outer wall 20 is also provided with corresponding turbulators 23 and horizontal ribs 24.
  • the horizontal ribs 24 and turbulators 23 can alternatively or additionally also be provided for a moving blade 14.
  • FIGS. 7 and 8 show two configurations of an insert 25. In the configuration according to FIG.
  • Cooling fluid is supplied from both ends 34, 35 of the insert and exits through openings 27.
  • Such an insert 25 can be used, for example, in the first row of blades.
  • an insert 25 according to FIG. 8 can be provided, which is closed at the end 34.
  • the cooling fluid is then only supplied via the end 35.
  • This insert 25 is used in the further rows of blades, in which only one end of the guide vane 13 or the rotor blade 14 can be acted upon by the cooling fluid via the housing 11 or the rotor 12. Due to the horizontal ribs 24 provided according to the invention, there is a directed flow of the cooling fluid along the outer walls 19, 20. The cooling effect is therefore significantly improved. At the same time, simple manufacture is possible since there is no need for blades with hollow walls.

Abstract

L'invention concerne une aube (13 ; 14) pour une turbine (10), comportant au moins un canal (22) délimité par les parois (19, 20, 21). Une pièce d'insertion (25) alimentée par un fluide de refroidissement est introduite dans au moins un canal (22). L'invention est caractérisée en ce qu'au moins l'une des parois (19 ; 20) est munie d'une pluralité de nervures horizontales (24) disposées entre la pièce d'insertion (25) et la paroi (19 ; 20), et en ce que la pièce d'insertion (25) est munie d'orifices (27) à travers lesquels le fluide de refroidissement sortant de la pièce (25) peut pénétrer entre les nervures horizontales (24). Le fluide de refroidissement circule ainsi le long de la paroi (19, 20) et est guidé par les nervures horizontales, ce qui permet d'obtenir un refroidissement par convection amélioré.
EP01919384A 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine Expired - Lifetime EP1266127B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01919384A EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00106245 2000-03-22
EP00106245A EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz
PCT/EP2001/002755 WO2001071163A1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine
EP01919384A EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine

Publications (2)

Publication Number Publication Date
EP1266127A1 true EP1266127A1 (fr) 2002-12-18
EP1266127B1 EP1266127B1 (fr) 2005-01-12

Family

ID=8168201

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00106245A Withdrawn EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz
EP01919384A Expired - Lifetime EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP00106245A Withdrawn EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz

Country Status (6)

Country Link
US (1) US6769875B2 (fr)
EP (2) EP1136651A1 (fr)
JP (1) JP4637437B2 (fr)
CN (1) CN1293285C (fr)
DE (1) DE50105062D1 (fr)
WO (1) WO2001071163A1 (fr)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
JP4191578B2 (ja) 2003-11-21 2008-12-03 三菱重工業株式会社 ガスタービンエンジンのタービン冷却翼
US6929451B2 (en) 2003-12-19 2005-08-16 United Technologies Corporation Cooled rotor blade with vibration damping device
US7125225B2 (en) 2004-02-04 2006-10-24 United Technologies Corporation Cooled rotor blade with vibration damping device
US7217095B2 (en) * 2004-11-09 2007-05-15 United Technologies Corporation Heat transferring cooling features for an airfoil
US7513745B2 (en) 2006-03-24 2009-04-07 United Technologies Corporation Advanced turbulator arrangements for microcircuits
US20070258814A1 (en) * 2006-05-02 2007-11-08 Siemens Power Generation, Inc. Turbine airfoil with integral chordal support ribs
US7544044B1 (en) * 2006-08-11 2009-06-09 Florida Turbine Technologies, Inc. Turbine airfoil with pedestal and turbulators cooling
US7497655B1 (en) 2006-08-21 2009-03-03 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
JP4957131B2 (ja) * 2006-09-06 2012-06-20 株式会社Ihi 冷却構造
US7857588B2 (en) * 2007-07-06 2010-12-28 United Technologies Corporation Reinforced airfoils
US8257035B2 (en) * 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine
US7946817B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8348612B2 (en) * 2008-01-10 2013-01-08 General Electric Company Turbine blade tip shroud
US8393867B2 (en) 2008-03-31 2013-03-12 United Technologies Corporation Chambered airfoil cooling
WO2009122474A1 (fr) 2008-03-31 2009-10-08 川崎重工業株式会社 Structure de refroidissement pour brûleur de turbine à gaz
US8342797B2 (en) * 2009-08-31 2013-01-01 Rolls-Royce North American Technologies Inc. Cooled gas turbine engine airflow member
US9347324B2 (en) 2010-09-20 2016-05-24 Siemens Aktiengesellschaft Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
US8777569B1 (en) * 2011-03-16 2014-07-15 Florida Turbine Technologies, Inc. Turbine vane with impingement cooling insert
US20120304654A1 (en) * 2011-06-06 2012-12-06 Melton Patrick Benedict Combustion liner having turbulators
CN102425459B (zh) * 2011-11-21 2014-12-10 西安交通大学 一种重型燃机高温涡轮双工质冷却叶片
RU2014125561A (ru) * 2011-11-25 2015-12-27 Сименс Акциенгезелльшафт Аэродинамический профиль с охлаждающими каналами
WO2013139938A1 (fr) * 2012-03-22 2013-09-26 Alstom Technology Ltd Paroi refroidie
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
WO2014029728A1 (fr) * 2012-08-20 2014-02-27 Alstom Technology Ltd Surface portante à refroidissement interne pour une machine rotative
US9759072B2 (en) * 2012-08-30 2017-09-12 United Technologies Corporation Gas turbine engine airfoil cooling circuit arrangement
EP2754856A1 (fr) 2013-01-09 2014-07-16 Siemens Aktiengesellschaft Pale pour turbomachine
CN103967531A (zh) * 2013-02-01 2014-08-06 西门子公司 用于流体机械的、薄膜冷却的涡轮叶片
CN103277145A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种燃气涡轮冷却叶片
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
EP3105437A4 (fr) 2014-02-13 2017-03-15 United Technologies Corporation Pièce rapportée de brasseur d'air
KR101501444B1 (ko) * 2014-04-30 2015-03-12 연세대학교 산학협력단 냉각 성능 향상을 위한 내부유로 구조를 포함하는 가스터빈 블레이드
WO2015195086A1 (fr) * 2014-06-17 2015-12-23 Siemens Energy, Inc. Système de refroidissement d'un profil de turbine comprenant un système de refroidissement par impact d'un bord d'attaque et d'un système d'impact d'un quasi-paroi
GB201417476D0 (en) 2014-10-03 2014-11-19 Rolls Royce Plc Internal cooling of engine components
EP3048262A1 (fr) * 2015-01-20 2016-07-27 Alstom Technology Ltd Paroi pour un canal de gaz chaud dans une turbine à gaz
US9850763B2 (en) * 2015-07-29 2017-12-26 General Electric Company Article, airfoil component and method for forming article
US10422233B2 (en) * 2015-12-07 2019-09-24 United Technologies Corporation Baffle insert for a gas turbine engine component and component with baffle insert
US10337334B2 (en) 2015-12-07 2019-07-02 United Technologies Corporation Gas turbine engine component with a baffle insert
US10577947B2 (en) * 2015-12-07 2020-03-03 United Technologies Corporation Baffle insert for a gas turbine engine component
US10280841B2 (en) 2015-12-07 2019-05-07 United Technologies Corporation Baffle insert for a gas turbine engine component and method of cooling
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
CN109477393B (zh) * 2016-07-28 2021-08-17 西门子股份公司 具有用于中部本体温度控制的独立冷却回路的涡轮翼型件
US10648341B2 (en) 2016-11-15 2020-05-12 Rolls-Royce Corporation Airfoil leading edge impingement cooling
US10465526B2 (en) 2016-11-15 2019-11-05 Rolls-Royce Corporation Dual-wall airfoil with leading edge cooling slot
US10767487B2 (en) * 2016-11-17 2020-09-08 Raytheon Technologies Corporation Airfoil with panel having flow guide
US10844724B2 (en) * 2017-06-26 2020-11-24 General Electric Company Additively manufactured hollow body component with interior curved supports
US10450873B2 (en) 2017-07-31 2019-10-22 Rolls-Royce Corporation Airfoil edge cooling channels
EP3460190A1 (fr) * 2017-09-21 2019-03-27 Siemens Aktiengesellschaft Structures d'amélioration de transfert de chaleur sur des nervures en ligne d'une cavité de surface portante d'une turbine à gaz
US10787913B2 (en) 2018-11-01 2020-09-29 United Technologies Corporation Airfoil cooling circuit
US10934857B2 (en) * 2018-12-05 2021-03-02 Raytheon Technologies Corporation Shell and spar airfoil
US10822963B2 (en) 2018-12-05 2020-11-03 Raytheon Technologies Corporation Axial flow cooling scheme with castable structural rib for a gas turbine engine
US20200182068A1 (en) * 2018-12-05 2020-06-11 United Technologies Corporation Axial flow cooling scheme with structural rib for a gas turbine engine
US11396819B2 (en) * 2019-04-18 2022-07-26 Raytheon Technologies Corporation Components for gas turbine engines
US11371360B2 (en) * 2019-06-05 2022-06-28 Raytheon Technologies Corporation Components for gas turbine engines
DE102020106135B4 (de) * 2020-03-06 2023-08-17 Doosan Enerbility Co., Ltd. Strömungsmaschinenkomponente für eine gasturbine, strömungsmaschinenanordnung und gasturbine mit derselben
CN114109515B (zh) * 2021-11-12 2024-01-30 中国航发沈阳发动机研究所 一种涡轮叶片吸力面冷却结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US429677A (en) 1890-06-10 Whip-socket and rein-holder
US3574481A (en) * 1968-05-09 1971-04-13 James A Pyne Jr Variable area cooled airfoil construction for gas turbines
BE755567A (fr) * 1969-12-01 1971-02-15 Gen Electric Structure d'aube fixe, pour moteur a turbines a gaz et arrangement de reglage de temperature associe
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
JPS60182304A (ja) * 1984-02-29 1985-09-17 Toshiba Corp ガスタ−ビンの冷却翼
US5232343A (en) * 1984-05-24 1993-08-03 General Electric Company Turbine blade
JPS61187501A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd 流体冷却構造
US5405242A (en) 1990-07-09 1995-04-11 United Technologies Corporation Cooled vane
JPH04259603A (ja) * 1991-02-14 1992-09-16 Toshiba Corp タービン静翼
JPH05214957A (ja) * 1991-11-04 1993-08-24 General Electric Co <Ge> 接合フォイル挿入体を備えた被衝突冷却翼
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
DE19634238A1 (de) * 1996-08-23 1998-02-26 Asea Brown Boveri Kühlbare Schaufel
EP0954680B1 (fr) 1996-12-02 2002-02-06 Siemens Aktiengesellschaft Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP0905353B1 (fr) * 1997-09-30 2003-01-15 ALSTOM (Switzerland) Ltd Ensemble des jets d'air pour un procédé de chauffage ou de refroidissement par convection
SE512384C2 (sv) * 1998-05-25 2000-03-06 Abb Ab Komponent för en gasturbin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0171163A1 *

Also Published As

Publication number Publication date
JP2003528246A (ja) 2003-09-24
CN1418284A (zh) 2003-05-14
US20030049127A1 (en) 2003-03-13
DE50105062D1 (de) 2005-02-17
WO2001071163A1 (fr) 2001-09-27
EP1266127B1 (fr) 2005-01-12
CN1293285C (zh) 2007-01-03
EP1136651A1 (fr) 2001-09-26
JP4637437B2 (ja) 2011-02-23
US6769875B2 (en) 2004-08-03

Similar Documents

Publication Publication Date Title
EP1266127B1 (fr) Systeme de refroidissement pour aube de turbine
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
EP1113145B1 (fr) Aube pour turbine a gaz avec section de mesure sur le bord de fuite
EP1267039B1 (fr) Configuration de refroidissement du bord de fuite d&#39;une aube
DE4441507C3 (de) Gekühlte Turbinenschaufel
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
DE69823236T2 (de) Einrichtung zur kühlung von gasturbinenschaufeln und methode zu deren herstellung
DE2718661C2 (de) Leitschaufelgitter für eine axial durchströmte Gasturbine
DE2930949C2 (fr)
DE2241192C3 (de) Hohle Gasturbinenschaufel
DE19944923B4 (de) Turbinenschaufel für den Rotor einer Gasturbine
DE69815563T2 (de) Kühlung von Gasturbinenleitschaufeln
DE19612840A1 (de) Vorrichtung und Verfahren zur Kühlung einer einseitig von Heissgas umgebenen Wand
DE1601561C3 (de) Gekühlte Schaufel mit Tragflächenprofil für eine Axialströmungsmaschine
EP1223308A2 (fr) Refroidissement d&#39;une composante d&#39;une turbomachine
CH628397A5 (de) Luftgekuehlte turbinenschaufel.
DE2042947A1 (de) Schaufelanordnung mit Kühlvorrichtung
DE2343673A1 (de) Stiftrippen-kuehlsystem
DE2202857B1 (de) Gekuehlte Laufschaufel fuer Gasturbinen
DE3508976C2 (de) Gekühlte Turbinenleitschaufel
EP1668236B1 (fr) Chambre de combustion comprenant un dispositif de refroidissement, et procede de production de cette chambre de combustion
EP1292760B1 (fr) Configuration d&#39;une aube de turbine pouvant etre refroidie
EP1192333B1 (fr) Composant, notamment aube de turbine, pouvant etre expose a un gaz chaud
DE2127454A1 (de) Gasturbine
EP1266128B1 (fr) Structure de rigidification et de refroidissement d&#39;une aube de turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020809

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50105062

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051013

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105062

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001