EP1136651A1 - Système de refroidissement pour une aube de turbine à gaz - Google Patents

Système de refroidissement pour une aube de turbine à gaz Download PDF

Info

Publication number
EP1136651A1
EP1136651A1 EP00106245A EP00106245A EP1136651A1 EP 1136651 A1 EP1136651 A1 EP 1136651A1 EP 00106245 A EP00106245 A EP 00106245A EP 00106245 A EP00106245 A EP 00106245A EP 1136651 A1 EP1136651 A1 EP 1136651A1
Authority
EP
European Patent Office
Prior art keywords
insert
blade
wall
horizontal ribs
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00106245A
Other languages
German (de)
English (en)
Inventor
Peter Dipl.-Ing. Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP00106245A priority Critical patent/EP1136651A1/fr
Priority to JP2001569124A priority patent/JP4637437B2/ja
Priority to EP01919384A priority patent/EP1266127B1/fr
Priority to CNB018067905A priority patent/CN1293285C/zh
Priority to PCT/EP2001/002755 priority patent/WO2001071163A1/fr
Priority to US10/239,234 priority patent/US6769875B2/en
Priority to DE50105062T priority patent/DE50105062D1/de
Publication of EP1136651A1 publication Critical patent/EP1136651A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the invention relates to a blade, in particular a turbine blade, with at least one channel bounded by walls is, with in at least one channel with a Cooling fluid loadable insert is inserted.
  • Such a blade is known from US 5,419,039.
  • the cooling fluid emerges from use in these chambers crashes into the walls of the shovel. Subsequently it flows along the walls and passes through outlet openings in specially shaped chambers on the outside of the Walls and from there into the surroundings.
  • With the known Blade is the effect of convection cooling when flowing of the cooling fluid along the walls is small because of the flow length is severely limited. Mixing continues of the cooling fluid in the chambers along the longitudinal axis of the Shovel open so that no targeted cooling is possible.
  • the object of the present invention is therefore a blade to provide an improvement in ease of manufacture the cooling effect is achieved.
  • this task is carried out with a shovel initially mentioned type in that at least one the walls are provided with a number of horizontal ribs, which are arranged between the insert and the wall, and that the insert is provided with openings through which the Enter cooling fluid from the insert between the horizontal fins can.
  • the horizontal ribs guide the coolant along the wall the blade and prevent the coolant from flowing in Direction of the longitudinal axis of the blade. It will be a good one Convection cooling of the wall achieved. Further stiffen the Horizontal ribs the blade so that the wall thickness is reduced can be. The reduction in wall thickness leads to increased cooling efficiency.
  • the manufacture of the shovel can be done with known methods without a complex cross section. Cavity walls are not required. The reject rate is therefore significantly reduced.
  • the insert touches the horizontal ribs.
  • the insert is supported and in the desired Position aligned.
  • the horizontal ribs form cooling fluid flowed through the insert and wall Chambers.
  • a flow of the Cooling fluids reliably in the direction of the longitudinal axis of the blade prevented.
  • the cooling effect along the Longitudinal axis of the blade due to different loading of the chambers with the cooling fluid can be varied in a targeted manner.
  • the openings of the insert at a first end of the chambers and outlet openings for the cooling fluid in the wall at a second end of the chambers are arranged.
  • the cooling fluid therefore flows along the entire length of the chamber along the wall to be cooled, so that the convection cooling is further improved.
  • the horizontal ribs can be substantially perpendicular to that Longitudinal axis of the blade can be arranged.
  • one Angular position are provided. With a vertical arrangement with respect to the longitudinal axis is the length of the horizontal ribs and thus the chambers minimized. The angular position enables an increase in the length of the chambers and thus a further improved convection cooling.
  • the insert is advantageously closed at one end.
  • the Cooling fluid in this case is only from the other end of the Deployed here. An escape of the cooling fluid the end facing away from the feed side is prevented, so that the cooling efficiency is increased. Alternatively, from cooling fluid are supplied to both ends.
  • the turbulators are used to stiffen the wall and go into each other and into the Horizontal ribs over. This will result in a significant increase the rigidity achieved without additional material. At the same thickness of the shovel can again the wall thickness be reduced. At the same time there is a good heat exchange reached between the walls and the cooling fluid. Result it high cooling efficiency and high overall efficiency.
  • the stiffening of the wall does not only arise in the area of one single turbulator. It is rather through the Connection of the turbulators to one another over a large area Stiffener provided.
  • the turbulators are advantageously straight.
  • the use of straight turbulators enables high rigidity with simple production.
  • the turbulators are arranged so that they are together with the horizontal ribs form adjacent recesses in the form of polygons, especially triangles or diamonds.
  • the inside of the Wall is provided with a honeycomb structure.
  • the single ones Polygons or honeycombs each form a closed, high resilient cross-section and support each other. It a significant increase in stiffness can be achieved.
  • the wall thickness of the wall reduced at least in the area between the turbulators. This reduction in wall thickness is made possible by that the turbulators stiffen the wall. By reducing the wall thickness, the cooling efficiency increased again.
  • the turbulators can be advantageous here used as metal feed channels when casting the blade become. The honeycomb structure is therefore easy to manufacture.
  • the blade according to the invention can be used as a guide blade or as Blade of a rotary machine are formed.
  • Figure 1 shows a longitudinal section through a rotary machine in the form of a turbine 10 with a housing 11 and a rotor 12.
  • the housing 11 is with guide vanes 13 and the rotor 12 provided with blades 14.
  • the turbine 10 through which a fluid flows according to arrow direction 15 flows along the guide vanes 13 and blades 14 and the rotor 12 is rotated about an axis 16.
  • the temperature of the fluid is in many applications, especially in the area of the first row of blades (in FIG. 1 shown on the left), relatively high. It is therefore cooling the guide blades 13 and blades 14 are provided.
  • the Flow of the cooling fluid is schematic with the arrows 17, 18 indicated.
  • Figure 2 shows schematically a broken representation of a Guide vane 13.
  • the guide vane 13 has curved outer walls 19, 20 on. The lying between the outer walls 19, 20 The interior is divided into two walls 21 in total divided three channels 22. In each of the channels 22 is one Insert 25 used. The insert is for better illustration of the middle channel 22 not shown.
  • the two outer walls 19, 20 are in each of the channels 22 provided with a number of horizontal ribs 24.
  • the horizontal ribs 24 run along the walls 19, 20 and extend down to the partitions 21. Between the horizontal ribs 24 turbulators 23 are arranged.
  • the stakes 25 touch the horizontal ribs 24.
  • the cooling fluid in particular cooling air, becomes an interior 26 the inserts 25 supplied.
  • the inserts 25 are of a number of openings 27 through which the cooling fluid in the space between the outer walls 19, 20 and the insert 25 exits.
  • the cooling fluid then flows along the outer walls 19, 20 up to outlet openings 28 in the Walls 19, 20. This flow is schematic with the arrow 30 displayed.
  • the openings 27 of the inserts 25 are here spaced from the outlet openings 28 of the outer walls 19, 20 arranged.
  • the outlet openings 28 form in the illustrated Embodiment essentially straight rows 29.
  • the cooling fluid emerging from the inserts 25 initially bounces on the outer walls 19, 20 and there leads to a Impact cooling. Then it flows along the outer walls 19, 20 up to the outlet openings 28, so that convection cooling is achieved. After exiting the outlet openings 28 forms a film of the cooling fluid on the Outside of the outer walls 19, 20, so that also film cooling is made available. There is an essential one improved cooling.
  • the front edge of the guide vane shown on the left in FIG. 2 13 is also provided with direct impingement cooling.
  • the insert 25 has further openings for this impingement cooling 36 on that immediately behind the front edge of the Guide vane 13 are arranged.
  • the cooling medium overflows these openings 36 directly and provides targeted cooling the leading edge of the vane 13 ready.
  • FIGS 3 to 5 show further details of the inside the outer wall 19.
  • the horizontal ribs 24 run essentially perpendicular to a longitudinal axis 31 of the guide vane 13. They are arranged parallel to each other. Between Horizontal ribs 24 are arranged straight turbulators 23, which merge into one another and into the horizontal ribs 24.
  • the front edge 33 of the horizontal ribs 24 goes at the middle Channel 22 in the partition 21 on.
  • Left channel 22 is the leading edge 33 at some distance the foremost outflow openings 28 are arranged.
  • the chambers 32 can be acted upon differently by the cooling fluid become. This is done by varying the number and / or the size of the openings 27 of the insert 25 is reached In this way, individual chambers 32 can be selectively stronger or cooled less than others.
  • the cooling can thus targeted along the longitudinal axis 31 of the guide vane 13 adjusted and adapted to the prevailing conditions become.
  • the turbulators 23 further serve to stiffen the outer wall 19.
  • the straight turbulators 23 are arranged in such a way that they form polygons.
  • Figure 3 are an example Triangles and diamonds in Figure 6 as examples.
  • the stiffening achieved by the turbulators 23 enables a reduction in the wall thickness d of the outer wall 19 in the area between the turbulators 23. Because of this Reducing the wall thickness d further increases the cooling efficiency on.
  • Figure 6 shows a plan view of the inside of the outer wall 19 in a second embodiment.
  • the turbulators 24 With this configuration are the turbulators 24 with respect to the longitudinal axis 31 of the Guide vane 13 inclined. Enlarged due to this inclination the length of the chambers 32 and thus the effect of convection cooling. Even with this configuration are straight Turbulators 23 are provided, four of which are each one Rhombus are summarized. The reduction in wall thickness is indicated schematically in these diamonds with visible edges.
  • the second outer wall 20 is also appropriate Turbulators 23 and horizontal ribs 24 are provided.
  • the horizontal ribs 24 and turbulators 23 can alternatively or additionally provided for a blade 14 become.
  • FIGS. 7 and 8 show two configurations of an insert 25.
  • Such an insert 25 can be used for example in the first row of blades become.
  • an insert 25 according to FIG. 8 can be provided, which is closed at the end 34. The cooling fluid will then fed only through the end 35.
  • This insert will be 25 used in the other rows of blades, in each of which only one end of the vane 13 or the blade 14 via the housing 11 or the rotor 12 with the Cooling fluid can be applied.
EP00106245A 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz Withdrawn EP1136651A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP00106245A EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz
JP2001569124A JP4637437B2 (ja) 2000-03-22 2001-03-12 冷却形タービン翼
EP01919384A EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine
CNB018067905A CN1293285C (zh) 2000-03-22 2001-03-12 涡轮叶片的冷却装置
PCT/EP2001/002755 WO2001071163A1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine
US10/239,234 US6769875B2 (en) 2000-03-22 2001-03-12 Cooling system for a turbine blade
DE50105062T DE50105062D1 (de) 2000-03-22 2001-03-12 Kühlsystem für eine turbinenschaufel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00106245A EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz

Publications (1)

Publication Number Publication Date
EP1136651A1 true EP1136651A1 (fr) 2001-09-26

Family

ID=8168201

Family Applications (2)

Application Number Title Priority Date Filing Date
EP00106245A Withdrawn EP1136651A1 (fr) 2000-03-22 2000-03-22 Système de refroidissement pour une aube de turbine à gaz
EP01919384A Expired - Lifetime EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01919384A Expired - Lifetime EP1266127B1 (fr) 2000-03-22 2001-03-12 Systeme de refroidissement pour aube de turbine

Country Status (6)

Country Link
US (1) US6769875B2 (fr)
EP (2) EP1136651A1 (fr)
JP (1) JP4637437B2 (fr)
CN (1) CN1293285C (fr)
DE (1) DE50105062D1 (fr)
WO (1) WO2001071163A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1840330A2 (fr) 2006-03-24 2007-10-03 United Technologies Corporation Agencement de turbulateurs pour passages d' écoulement
US7300251B2 (en) 2003-11-21 2007-11-27 Mitsubishi Heavy Industries, Ltd. Turbine cooling vane of gas turbine engine
EP2107214A1 (fr) * 2008-03-31 2009-10-07 United Technologies Corporation Refroidissement de surface portante chambrée
EP2890880A4 (fr) * 2012-08-30 2015-12-02 United Technologies Corp Circuit de refroidissement de profil aérodynamique de moteur à turbine à gaz
EP3002412A1 (fr) * 2014-10-03 2016-04-06 Rolls-Royce plc Refroidissement interne de composants d'une turbine à gaz
US10494939B2 (en) 2014-02-13 2019-12-03 United Technologies Corporation Air shredder insert
EP3647544A1 (fr) * 2018-11-01 2020-05-06 United Technologies Corporation Profil d'aube statorique refroidie d'une turbine à gaz
EP3663524A1 (fr) * 2018-12-05 2020-06-10 United Technologies Corporation Schéma de refroidissement à flux axial avec nervure structurale pour un moteur à turbine à gaz
US10822963B2 (en) 2018-12-05 2020-11-03 Raytheon Technologies Corporation Axial flow cooling scheme with castable structural rib for a gas turbine engine

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6902372B2 (en) * 2003-09-04 2005-06-07 Siemens Westinghouse Power Corporation Cooling system for a turbine blade
US6929451B2 (en) 2003-12-19 2005-08-16 United Technologies Corporation Cooled rotor blade with vibration damping device
US7125225B2 (en) 2004-02-04 2006-10-24 United Technologies Corporation Cooled rotor blade with vibration damping device
US7217095B2 (en) * 2004-11-09 2007-05-15 United Technologies Corporation Heat transferring cooling features for an airfoil
US20070258814A1 (en) * 2006-05-02 2007-11-08 Siemens Power Generation, Inc. Turbine airfoil with integral chordal support ribs
US7544044B1 (en) * 2006-08-11 2009-06-09 Florida Turbine Technologies, Inc. Turbine airfoil with pedestal and turbulators cooling
US7497655B1 (en) 2006-08-21 2009-03-03 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
JP4957131B2 (ja) * 2006-09-06 2012-06-20 株式会社Ihi 冷却構造
US7857588B2 (en) * 2007-07-06 2010-12-28 United Technologies Corporation Reinforced airfoils
US8257035B2 (en) * 2007-12-05 2012-09-04 Siemens Energy, Inc. Turbine vane for a gas turbine engine
US7946817B2 (en) * 2008-01-10 2011-05-24 General Electric Company Turbine blade tip shroud
US8348612B2 (en) * 2008-01-10 2013-01-08 General Electric Company Turbine blade tip shroud
CN101981381A (zh) 2008-03-31 2011-02-23 川崎重工业株式会社 燃气涡轮燃烧器的冷却结构
US8342797B2 (en) * 2009-08-31 2013-01-01 Rolls-Royce North American Technologies Inc. Cooled gas turbine engine airflow member
US9347324B2 (en) 2010-09-20 2016-05-24 Siemens Aktiengesellschaft Turbine airfoil vane with an impingement insert having a plurality of impingement nozzles
US8777569B1 (en) * 2011-03-16 2014-07-15 Florida Turbine Technologies, Inc. Turbine vane with impingement cooling insert
US20120304654A1 (en) * 2011-06-06 2012-12-06 Melton Patrick Benedict Combustion liner having turbulators
CN102425459B (zh) * 2011-11-21 2014-12-10 西安交通大学 一种重型燃机高温涡轮双工质冷却叶片
RU2014125561A (ru) * 2011-11-25 2015-12-27 Сименс Акциенгезелльшафт Аэродинамический профиль с охлаждающими каналами
RU2634986C2 (ru) * 2012-03-22 2017-11-08 Ансалдо Энерджиа Свитзерлэнд Аг Охлаждаемая стенка
US9719372B2 (en) 2012-05-01 2017-08-01 General Electric Company Gas turbomachine including a counter-flow cooling system and method
JP2015527530A (ja) * 2012-08-20 2015-09-17 アルストム テクノロジー リミテッドALSTOM Technology Ltd 回転機械用の内部冷却される翼
EP2754856A1 (fr) * 2013-01-09 2014-07-16 Siemens Aktiengesellschaft Pale pour turbomachine
CN103967531A (zh) * 2013-02-01 2014-08-06 西门子公司 用于流体机械的、薄膜冷却的涡轮叶片
CN103277145A (zh) * 2013-06-09 2013-09-04 哈尔滨工业大学 一种燃气涡轮冷却叶片
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
KR101501444B1 (ko) * 2014-04-30 2015-03-12 연세대학교 산학협력단 냉각 성능 향상을 위한 내부유로 구조를 포함하는 가스터빈 블레이드
EP3158169A1 (fr) * 2014-06-17 2017-04-26 Siemens Energy, Inc. Système de refroidissement d'un profil de turbine comprenant un système de refroidissement par impact d'un bord d'attaque et d'un système d'impact d'un quasi-paroi
EP3048262A1 (fr) * 2015-01-20 2016-07-27 Alstom Technology Ltd Paroi pour un canal de gaz chaud dans une turbine à gaz
US9850763B2 (en) * 2015-07-29 2017-12-26 General Electric Company Article, airfoil component and method for forming article
US10337334B2 (en) 2015-12-07 2019-07-02 United Technologies Corporation Gas turbine engine component with a baffle insert
US10422233B2 (en) * 2015-12-07 2019-09-24 United Technologies Corporation Baffle insert for a gas turbine engine component and component with baffle insert
US10280841B2 (en) 2015-12-07 2019-05-07 United Technologies Corporation Baffle insert for a gas turbine engine component and method of cooling
US10577947B2 (en) * 2015-12-07 2020-03-03 United Technologies Corporation Baffle insert for a gas turbine engine component
PL232314B1 (pl) 2016-05-06 2019-06-28 Gen Electric Maszyna przepływowa zawierająca system regulacji luzu
US10309246B2 (en) 2016-06-07 2019-06-04 General Electric Company Passive clearance control system for gas turbomachine
US10392944B2 (en) 2016-07-12 2019-08-27 General Electric Company Turbomachine component having impingement heat transfer feature, related turbomachine and storage medium
US10605093B2 (en) 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
EP3472437B1 (fr) 2016-07-28 2020-04-15 Siemens Aktiengesellschaft Profil aérodynamique de turbine avec circuit de refroidissement indépendant pour contrôle de la température à mi-profil
US10648341B2 (en) 2016-11-15 2020-05-12 Rolls-Royce Corporation Airfoil leading edge impingement cooling
US10465526B2 (en) 2016-11-15 2019-11-05 Rolls-Royce Corporation Dual-wall airfoil with leading edge cooling slot
US10767487B2 (en) * 2016-11-17 2020-09-08 Raytheon Technologies Corporation Airfoil with panel having flow guide
US10844724B2 (en) * 2017-06-26 2020-11-24 General Electric Company Additively manufactured hollow body component with interior curved supports
US10450873B2 (en) * 2017-07-31 2019-10-22 Rolls-Royce Corporation Airfoil edge cooling channels
EP3460190A1 (fr) * 2017-09-21 2019-03-27 Siemens Aktiengesellschaft Structures d'amélioration de transfert de chaleur sur des nervures en ligne d'une cavité de surface portante d'une turbine à gaz
US10934857B2 (en) 2018-12-05 2021-03-02 Raytheon Technologies Corporation Shell and spar airfoil
US11396819B2 (en) * 2019-04-18 2022-07-26 Raytheon Technologies Corporation Components for gas turbine engines
US11371360B2 (en) * 2019-06-05 2022-06-28 Raytheon Technologies Corporation Components for gas turbine engines
DE102020106135B4 (de) * 2020-03-06 2023-08-17 Doosan Enerbility Co., Ltd. Strömungsmaschinenkomponente für eine gasturbine, strömungsmaschinenanordnung und gasturbine mit derselben
CN114109515B (zh) * 2021-11-12 2024-01-30 中国航发沈阳发动机研究所 一种涡轮叶片吸力面冷却结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628880A (en) * 1969-12-01 1971-12-21 Gen Electric Vane assembly and temperature control arrangement
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
EP0541207A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Aube de turbine réfroidi par des jets d'air comportant une pièce d'insertion liant les deux moitiés
US5419039A (en) 1990-07-09 1995-05-30 United Technologies Corporation Method of making an air cooled vane with film cooling pocket construction
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
WO1998025009A1 (fr) 1996-12-02 1998-06-11 Siemens Aktiengesellschaft Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP0905353A1 (fr) * 1997-09-30 1999-03-31 Abb Research Ltd. Elément de paroi refroidi par jet

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US429677A (en) 1890-06-10 Whip-socket and rein-holder
US3574481A (en) * 1968-05-09 1971-04-13 James A Pyne Jr Variable area cooled airfoil construction for gas turbines
JPS60182304A (ja) * 1984-02-29 1985-09-17 Toshiba Corp ガスタ−ビンの冷却翼
US5232343A (en) * 1984-05-24 1993-08-03 General Electric Company Turbine blade
JPS61187501A (ja) * 1985-02-15 1986-08-21 Hitachi Ltd 流体冷却構造
JPH04259603A (ja) * 1991-02-14 1992-09-16 Toshiba Corp タービン静翼
DE19634238A1 (de) * 1996-08-23 1998-02-26 Asea Brown Boveri Kühlbare Schaufel
SE512384C2 (sv) * 1998-05-25 2000-03-06 Abb Ab Komponent för en gasturbin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3628880A (en) * 1969-12-01 1971-12-21 Gen Electric Vane assembly and temperature control arrangement
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4296779A (en) * 1979-10-09 1981-10-27 Smick Ronald H Turbulator with ganged strips
US5419039A (en) 1990-07-09 1995-05-30 United Technologies Corporation Method of making an air cooled vane with film cooling pocket construction
EP0541207A1 (fr) * 1991-11-04 1993-05-12 General Electric Company Aube de turbine réfroidi par des jets d'air comportant une pièce d'insertion liant les deux moitiés
US5695321A (en) * 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
WO1998025009A1 (fr) 1996-12-02 1998-06-11 Siemens Aktiengesellschaft Aube de turbine et son utilisation dans un systeme de turbine a gaz
EP0905353A1 (fr) * 1997-09-30 1999-03-31 Abb Research Ltd. Elément de paroi refroidi par jet

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300251B2 (en) 2003-11-21 2007-11-27 Mitsubishi Heavy Industries, Ltd. Turbine cooling vane of gas turbine engine
EP1840330A3 (fr) * 2006-03-24 2008-07-23 United Technologies Corporation Agencement de turbulateurs pour passages d' écoulement
US7513745B2 (en) 2006-03-24 2009-04-07 United Technologies Corporation Advanced turbulator arrangements for microcircuits
US8210812B2 (en) 2006-03-24 2012-07-03 United Technologies Corporation Advanced turbulator arrangements for microcircuits
EP1840330A2 (fr) 2006-03-24 2007-10-03 United Technologies Corporation Agencement de turbulateurs pour passages d' écoulement
EP2107214A1 (fr) * 2008-03-31 2009-10-07 United Technologies Corporation Refroidissement de surface portante chambrée
US8393867B2 (en) 2008-03-31 2013-03-12 United Technologies Corporation Chambered airfoil cooling
EP2890880A4 (fr) * 2012-08-30 2015-12-02 United Technologies Corp Circuit de refroidissement de profil aérodynamique de moteur à turbine à gaz
US9759072B2 (en) 2012-08-30 2017-09-12 United Technologies Corporation Gas turbine engine airfoil cooling circuit arrangement
US11377965B2 (en) 2012-08-30 2022-07-05 Raytheon Technologies Corporation Gas turbine engine airfoil cooling circuit arrangement
US10494939B2 (en) 2014-02-13 2019-12-03 United Technologies Corporation Air shredder insert
EP3002412A1 (fr) * 2014-10-03 2016-04-06 Rolls-Royce plc Refroidissement interne de composants d'une turbine à gaz
US9797261B2 (en) 2014-10-03 2017-10-24 Rolls-Royce Plc Internal cooling of engine components
EP3647544A1 (fr) * 2018-11-01 2020-05-06 United Technologies Corporation Profil d'aube statorique refroidie d'une turbine à gaz
US10787913B2 (en) 2018-11-01 2020-09-29 United Technologies Corporation Airfoil cooling circuit
EP3663524A1 (fr) * 2018-12-05 2020-06-10 United Technologies Corporation Schéma de refroidissement à flux axial avec nervure structurale pour un moteur à turbine à gaz
US10822963B2 (en) 2018-12-05 2020-11-03 Raytheon Technologies Corporation Axial flow cooling scheme with castable structural rib for a gas turbine engine

Also Published As

Publication number Publication date
JP2003528246A (ja) 2003-09-24
CN1293285C (zh) 2007-01-03
JP4637437B2 (ja) 2011-02-23
EP1266127B1 (fr) 2005-01-12
EP1266127A1 (fr) 2002-12-18
US20030049127A1 (en) 2003-03-13
CN1418284A (zh) 2003-05-14
US6769875B2 (en) 2004-08-03
WO2001071163A1 (fr) 2001-09-27
DE50105062D1 (de) 2005-02-17

Similar Documents

Publication Publication Date Title
EP1266127B1 (fr) Systeme de refroidissement pour aube de turbine
DE69823236T2 (de) Einrichtung zur kühlung von gasturbinenschaufeln und methode zu deren herstellung
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
EP1113145B1 (fr) Aube pour turbine a gaz avec section de mesure sur le bord de fuite
DE10001109B4 (de) Gekühlte Schaufel für eine Gasturbine
DE2718661C2 (de) Leitschaufelgitter für eine axial durchströmte Gasturbine
DE2930949C2 (fr)
EP1267039B1 (fr) Configuration de refroidissement du bord de fuite d'une aube
DE2343673C2 (de) Kühleinrichtung
DE3211139C1 (de) Axialturbinenschaufel,insbesondere Axialturbinenlaufschaufel fuer Gasturbinentriebwerke
EP2304185B1 (fr) Aube de turbine pour une turbine à gaz et noyau de coulée pour sa fabrication
DE3225414C1 (de) Gekuehlte Schaufel fuer ein Gasturbinentriebwerk
DE2358521C2 (de) Gasturbinenschaufel mit gewelltem Austrittskantenbereich
DE1601561C3 (de) Gekühlte Schaufel mit Tragflächenprofil für eine Axialströmungsmaschine
DE19944923B4 (de) Turbinenschaufel für den Rotor einer Gasturbine
DE102015015598A1 (de) Kühlung von Triebwerkskomponenten
DE2241192A1 (de) Hohle gasturbinenschaufel
DE3508976C2 (de) Gekühlte Turbinenleitschaufel
DE69815563T2 (de) Kühlung von Gasturbinenleitschaufeln
DE2042947A1 (de) Schaufelanordnung mit Kühlvorrichtung
CH628397A5 (de) Luftgekuehlte turbinenschaufel.
EP1223308A2 (fr) Refroidissement d'une composante d'une turbomachine
DE2235375A1 (de) Hohlschaufel fuer axial-stroemungsmaschinen mit elastischem treibmittel
DE1157432B (de) Schaufel fuer Stroemungsmaschinen, insbesondere fuer Axialgasturbinen
DE19612840A1 (de) Vorrichtung und Verfahren zur Kühlung einer einseitig von Heissgas umgebenen Wand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020327