EP1262658B1 - Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine - Google Patents

Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine Download PDF

Info

Publication number
EP1262658B1
EP1262658B1 EP02011015A EP02011015A EP1262658B1 EP 1262658 B1 EP1262658 B1 EP 1262658B1 EP 02011015 A EP02011015 A EP 02011015A EP 02011015 A EP02011015 A EP 02011015A EP 1262658 B1 EP1262658 B1 EP 1262658B1
Authority
EP
European Patent Office
Prior art keywords
fuel
pressure
shut
fuel pump
valve device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02011015A
Other languages
English (en)
French (fr)
Other versions
EP1262658A3 (de
EP1262658A2 (de
Inventor
Helmut Rembold
Jens Wolber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1262658A2 publication Critical patent/EP1262658A2/de
Publication of EP1262658A3 publication Critical patent/EP1262658A3/de
Application granted granted Critical
Publication of EP1262658B1 publication Critical patent/EP1262658B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/20Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines characterised by means for preventing vapour lock

Definitions

  • the invention relates to a fuel system for supply of fuel for an internal combustion engine, with a Reservoir, with a first fuel pump, the Inlet is connected to the reservoir, with a second fuel pump, the inlet of which Fuel connection with an outlet of the first Fuel pump is connected to at least one Injector, which with an outlet of the second Fuel pump is connected and fuel at least can lead indirectly to a combustion chamber with one Locking device, which a return flow of fuel at least from a portion of the fuel connection prevented back into the reservoir, and with a Leakage line coming from the second fuel pump leads to the reservoir.
  • Such a fuel system is known from the market see e.g. US-A-5558068.
  • an electrically delivers powered fuel pump from a fuel tank Fuel through a fuel line too a high-pressure fuel pump driven by the internal combustion engine. This promotes the fuel under a lot high pressure in a fuel manifold (also: "Rail” called). From there the fuel gets at least an injector, through which the fuel eventually gets into the combustion chamber of the internal combustion engine.
  • a fundamental problem with fuel systems is that Supply of the combustion chambers of the internal combustion engine with Fuel during starting.
  • a valve device ensures that the electrically driven one during the starting process Fuel pump closes the fuel with increased feed pressure supplies the injectors. In many cases it is enough this increased feed pressure to the internal combustion engine start in no time. By the increased Feed pressure can cause a gas bubble in the Fuel connection between the electrically powered Fuel pump and that of the internal combustion engine driven fuel pump in many cases like this be compressed that a safe start of the Internal combustion engine is guaranteed.
  • the present invention has the task of a Fuel system of the type mentioned above to further that the starting and operating behavior of a internal combustion engine equipped with the fuel system gets better at high operating temperatures and that Service life of the fuel system is as long as possible. At the same time, the fuel system should be as simple as possible be constructed.
  • shut-off valve device in the Leakage line is achieved that after turning off the Internal combustion engine the increased form in the Fuel connection between the first and second Fuel pump can be maintained.
  • the leakage line is blocked after it has been switched off The engine prevents fuel from flowing through the gap between the movable pump element and the Limitation of the pump space of the second fuel pump passes through and flows back to the reservoir. This would cause a gradual decrease in pressure in the Fuel connection upstream from the first Run the fuel pump.
  • Maintaining pressure prevents that after turning off one is called Internal combustion engine in the connection between the first and the second fuel pump can form gas bubbles.
  • Such gas bubbles occur when the in the Fuel lines between the fuel pumps located fuel due to heat conduction from the Internal combustion engine heated up.
  • the pressure is like this is possible with the fuel system according to the invention is, even with an internal combustion engine turned off can maintain the formation of such gas bubbles largely avoided. This improves that Starting behavior of one with the invention Fuel system-equipped internal combustion engine considerably.
  • the hydraulic actuation of the shut-off valve device is reliable and simple, i.e. inexpensive, realizable.
  • the control of the shut-off valve device by the pressure in that section of the Fuel connection which is upstream of the Locking device is located, allows a quick response of the Shut-off valve device on switching the first fuel pump.
  • This section occurs when the Fuel pump very quickly to build up pressure from ambient pressure prevailing at rest to normal Operating pressure of the first fuel pump. Conversely, falls the pressure in this section of the fuel connection at Switching off the first fuel pump from the normal one Operating pressure very quickly to ambient pressure, so that the shut-off valve device is also safe in this case and can be switched reliably.
  • the Shut-off valve device by the pressure at the outlet of the first fuel pump is controlled.
  • the Pressure changes when switching the first on and off Fuel pump is most noticeable.
  • the shut-off valve device can switch off the first fuel pump thus be closed very quickly what an undesirable outflow of fuel from the Leakage line and the fuel connection in the Storage container prevented early.
  • the pressure in the Fuel connection can thus be as high as possible Level can be maintained.
  • the Shut-off valve device only when a Control pressure opens, which is in the normal range Operating pressure of the first fuel pump is and a pressure drop indicates a control pressure which below the normal operating pressure of the first Fuel pump is, and if there is a pressure drop to one Control pressure closes, which is below normal Operating pressure of the first fuel pump is.
  • shut-off valve device a biasing element, for example a spring, which includes a valve element in the closed Rested position applied.
  • a pressure relief valve is provided downstream of the Locking device.
  • this pressure relief valve it has the following Proven: After turning off the hot ones Internal combustion engine, the standstill of the first Fuel pump and the associated closing of the Shut-off valve device could be caused by heating the Fuel and the associated expansion of the Fuel in the fuel connection and the Leakage line to an impermissible pressure increase in this Area come. Such an impermissible increase in pressure will prevented by the pressure relief valve.
  • the Components in the fuel connection and in the Leakage line are thus also in the case of shutdown Internal combustion engine protected against impermissibly high pressures, which increases their lifespan. In addition, too cheaper components designed for lower pressures are used.
  • An advantageous embodiment provides that a return flow line downstream of the blocking device from the fuel connection to the reservoir branches and the pressure relief valve in the Return flow line is arranged.
  • control connection the shut-off valve device with a degassing connection the first fuel pump is connected.
  • this solution comes into question if with the Return flow no suction jet pump should be operated. It is then for the efficiency of the first fuel pump advantageous that of the main flow of fuel no tax amount is deducted.
  • shut-off valve device is a connected in parallel to the shut-off function Has pressure limiting function. In this case, on a separate pressure relief valve can be dispensed with, what the construction costs for the fuel system according to the invention reduced.
  • shut-off valve device in the area of the storage container, especially in the area of the first fuel pump, is arranged. It is particularly preferred if the first fuel pump and the shut-off valve device Are part of a tank installation unit.
  • the invention also relates to an internal combustion engine, especially for motor vehicles, with a Fuel system that uses at least one fuel Feeds combustion chamber. It is advantageous if that Fuel system is designed in the above manner.
  • a fuel system as a whole carries that Reference numeral 10. It is part of an internal combustion engine 11 and includes a low pressure region 12 and one High pressure area 14.
  • the low pressure region 12 comprises a storage container 16, in which fuel 18 is stored.
  • the fuel 18 is from the reservoir 16 by a first Fuel pump 20 promoted. This is about an electric fuel pump powered by a Clock module 22 is driven.
  • the electrical Fuel pump 20 feeds into an via an outlet 23 Low pressure fuel line 24. In this is after the electric fuel pump 20 in the flow direction first seen a check valve 26 and then a Filter 28 arranged.
  • Branch line 30 Seen in the direction of flow before the check valve 26 branches off from the low-pressure fuel line 24 Branch line 30, which to the reservoir 16 returns.
  • branch line 30 In the branch line 30 is one Flow throttle 32 arranged.
  • Branch line 34 From the between the Check valve 26 and the filter 28 located area of Low-pressure fuel line 24 branches one more Branch line 34, which also goes to the reservoir 16 returns and in which a pressure relief valve 36 is arranged.
  • the pressure in the downstream of that Check valve 26 located portion of the low pressure fuel line 24 is detected by a pressure sensor 38.
  • the low pressure fuel line 24 leads to a second one Fuel pump 40. This will not be discussed here illustrated way of the crankshaft of the Internal combustion engine 11 driven.
  • the second Fuel pump 40 is a 1-piston high-pressure pump. Upstream of the high pressure pump 40 are still in the low pressure fuel line 24 Pressure damper 42 and a check valve 44 are arranged.
  • the high pressure pump 40 pumps into a Fuel line 46, which via a check valve 48 leads to a fuel rail 50.
  • a fuel rail 50 This will commonly referred to as "rail”.
  • To the fuel rail 50 are in turn several fuel injectors 52 connected which the fuel in a combustion chamber, not shown, of the internal combustion engine Inject 11.
  • the pressure in the fuel rail 50 is detected by a pressure sensor 54.
  • a pressure relief valve 56 provided which is fluidly connected via a line 58 to the Low pressure fuel line 24 is connected.
  • the pressure in the fuel line 46 and the fuel rail 50, that is in the high pressure region 14 of the Fuel system 10, is via a quantity control valve 60 controlled which between the check valve 48 and the high pressure pump 40 located area of Fuel line 46 with between the check valve 44 and the pressure damper 42 located area of Low pressure fuel line 24 connects.
  • the fuel system 10 also includes a control and Control device 62, which among other things signals from Pressure sensor 54 receives. This is also from the pressure sensor 38 Control and regulating device 62 supplied with signals. On the output side, the control and regulating device 62 is below with the clock module 22 of the first fuel pump 20 and connected to the flow control valve 60.
  • a leakage line 64 leads from the high pressure pump 40 back to the storage container 16.
  • a shut-off valve device 66 is present. This has via an open switch position 68 and a closed Switch position 70. In the closed rest position 70 the shut-off valve device 66 by a compression spring 72 brought. In the open switch position 68 Shut-off valve device 66 by a piston 74 brought, which is shown only symbolically in Fig. 1. The piston 74 can communicate with the pressure via a control line 76 are applied, which in the branch line 30th prevails.
  • the electric fuel pump 20, the check valve 26, the filter 28, the pressure sensor 38, the Pressure relief valve 36, the flow restrictor 32 and the Shut-off valve device 66 are part of one Tank installation unit 75.
  • the high pressure pump 40 is a 1-piston pump.
  • the piston 77 is driven by a cam drive 78 driven.
  • the piston 77 is in a cylinder housing 80 guided.
  • the top of the piston 74 and that Cylinder housing 80 delimit a pump chamber 82. This becomes opposite the cam drive 78 by a gap seal sealed between the piston 74 and the Cylinder housing 80 is formed.
  • one Piston seal 84 fixed to the housing is provided.
  • the Leakage line 64 branches directly from an annular groove 86 Above the piston seal 84. This will in Operation relieves the piston seal 84.
  • the shut-off valve device 66 comprises a housing 88, in which the piston 74 is guided. At its top in Fig. 2 At the end, the piston 74 carries a head 90, the diameter of which is considerably larger than that of the piston 74. Also the Piston 90 is in a correspondingly wider area of the Valve housing 88 guided tightly.
  • the head 90 is from the Compression spring 72 acts, through which the lower End face of the piston 74 against an annular web 92 is acted upon in a flow space 94 behind formed an inlet 96 of the shut-off valve device 66 is.
  • a radial outlet 97 is located at the flow space 94 provided to which the leading to the reservoir 16 Section of the leakage line 64 is connected.
  • the housing 88 of the shut-off valve device 66 is after closed at the top by a lid 98, which on a pin on its inside facing head 90 (without reference numerals) through which the compression spring 72 is centered.
  • the shut-off valve device cover 98 66 is with the valve housing 88 by caulking 99 inextricably linked.
  • Below the head 90 is between the Head 90, the piston 74 and the valve housing 88 a further pressure chamber 100 is formed below the head 90. This is about one radial bore 102 connected to the control line 76.
  • the Compression spring 72 is in a cylindrical recess (without Reference numerals) performed in the top of the head 90. from A flow channel 104 runs along the bottom of the recess through the piston 74 downwards and further radially outwards into the flow space 94.
  • the fuel system 10 shown in FIGS. 1 and 2 works as follows:
  • the high pressure pump 40 promotes the electric fuel pump 20 pre-compressed fuel 18 continue with another pressure increase in the Fuel line 46 to the fuel rail 50.
  • the pressure sensor 54 and the quantity control valve 60 are part a closed controlled system, over which the of the High pressure pump 40 in the high pressure area 14 of the Fuel system 10 delivered fuel amount and their Pressure is set.
  • the pressure area below the head 90 and the compression spring 72 are matched to one another so that when printing just below the minimum operating pressure of 1.5 bar the head 90 and with it the piston 74 against the force of the Compression spring 72 is moved upwards.
  • the Piston 74 from the ring web 92 and gives the way from the Leakage line 64 through the shut-off valve device 66 to the reservoir 16 free.
  • shut-off valve device 66 As mentioned above, they are below the Head 90 lying pressure surface and the compression spring 72 so coordinated that the closing of the shut-off valve device 66 already scarce at one print takes place below 1.5 bar. Is the shut-off valve device 66 closed, but is the entire Area of the leakage line 64 between the shut-off valve device 66 and the high pressure pump 40 and the Area of low pressure fuel line between the High pressure pump 40 and the check valve 26 from the Environment completed. The remains in this area System pressure at the time of parking also at parked engine received.
  • the pressure relief valve 36 is on the Branch line 34 with this area of the low-pressure fuel line 24 connected.
  • the compression spring 72 and located within the Ring web 72 located end face of the piston 74 so be coordinated with one another that if the Pressure in the leakage line 64 to a value above a limit value of the piston 74 lifts off from the ring web 92
  • the corresponding pressure level is preferably above the pressure levels predetermined by the pressure relief valve 36.
  • the shut-off valve device 66 an additional safety pressure limiting device for the low pressure fuel line 24 and the Leakage line 64 created.
  • the flow channel 104 Via the flow channel 104 is the space in which the Compression spring 72 is arranged with the radial outlet 97 the shut-off valve device 66, which in turn leads to the reservoir 16. Because there usually approximately ambient pressure prevails, is caused by this Flow channel 104 avoided in the room in which the compression spring 72 is arranged, the force ratio can build up disturbing pressure.
  • the Control line from the shut-off valve device is not closed a branch line, but to one on the electrical Fuel pump existing degassing connection.
  • This solution is preferably used if the Return flow no suction jet pump is operated. This has the advantage of being the bulk of the fuel no tax amount is deducted, reducing the efficiency of the electric fuel pump improved.

Description

Stand der Technik
Die Erfindung betrifft ein Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine, mit einem Vorratsbehälter, mit einer ersten Kraftstoffpumpe, deren Einlass mit dem Vorratsbehälter verbunden ist, mit einer zweiten Kraftstoffpumpe, deren Einlass über eine Kraftstoffverbindung mit einem Auslass der ersten Kraftstoffpumpe verbunden ist, mit mindestens einer Einspritzvorrichtung, welche mit einem Auslass der zweiten Kraftstoffpumpe verbunden ist und Kraftstoff mindestens indirekt einem Brennraum zuführen kann, mit einer Sperreinrichtung, welche einen Rückstrom von Kraftstoff wenigstens aus einem Abschnitt der Kraftstoffverbindung zurück in den Vorratsbehälter verhindert, und mit einer Leckageleitung, welche von der zweiten Kraftstoffpumpe zu dem Vorratsbehälter führt.
Ein derartiges Kraftstoffsystem ist vom Markt her bekannt siehe z.B. US-A-5.558.068. Bei dem bekannten Kraftstoffsystem fördert eine elektrisch angetriebene Kraftstoffpumpe aus einem KraftstoffVorratsbehälter Kraftstoff über eine Kraftstoffleitung zu einer von der Brennkraftmaschine angetriebenen Hochdruck-Kraftstoffpumpe. Diese fördert den Kraftstoff unter sehr hohem Druck in eine Kraftstoff-Sammelleitung (auch: "Rail" genannt). Von dort gelangt der Kraftstoff zu mindestens einem Einspritzventil, über das der Kraftstoff schließlich in den Brennraum der Brennkraftmaschine gelangt.
Bei dem bekannten Kraftstoffsystem wird als Hochdruck-Kraftstoffpumpe eine 1-Zylinder-Kolbenpumpe verwendet. Über die Leckageleitung wird Leckage-Kraftstoff, welcher durch den Spalt zwischen Zylinder und Kolben hindurchtritt, von der Hochdruck-Kraftstoffpumpe zum Vorratsbehälter zurückgeführt. Dies entlastet die Kolbendichtung der verwendeten 1-Zylinder-Kolbenpumpe. Hinter dem Ausgang der elektrischen Kraftstoffpumpe ist ein Rückschlagventil vorhanden, welches einen Rückstrom von Kraftstoff durch die Krafstoffpumpe zurück in den Vorratsbehälter verhindert.
Ein grundsätzliches Problem bei Kraftstoffsystemen ist die Versorgung der Brennräume der Brennkraftmaschine mit Kraftstoff während des Startvorgangs. Bei dem bekannten Kraftstoffsystem sorgt eine Ventileinrichtung dafür, dass während des Startvorgangs die elektrisch angetriebene Kraftstoffpumpe den Kraftstoff mit erhöhtem Speisedruck zu den Einspritzventilen liefert. In vielen Fällen reicht dieser erhöhte Speisedruck aus, um die Brennkraftmaschine in kürzester Zeit zu starten. Durch den erhöhten Speisedruck kann eine eventuelle Gasblase in der Kraftstoffverbindung zwischen der elektrisch angetriebenen Kraftstoffpumpe und der von der Brennkraftmaschine angetriebenen Kraftstoffpumpe in vielen Fällen so komprimiert werden, dass ein sicherer Start der Brennkraftmaschine gewährleistet ist.
Die vorliegende Erfindung hat die Aufgabe, ein Kraftstoffsystem der eingangs genannten Art so weiterzubilden, dass das Start- und Betriebsverhalten einer mit dem Kraftstoffsystem ausgestatteten Brennkraftmaschine bei hohen Betriebstemperaturen noch besser wird und die Lebensdauer des Kraftstoffsystems möglichst lange ist. Gleichzeitig soll das Kraftstoffsystem möglichst einfach aufgebaut sein.
Diese Aufgabe wird bei einem Kraftstoffsystem der eingangs genannten Art dadurch gelöst, dass in der Leckageleitung eine hydraulisch betätigte Absperr-Ventileinrichtung angeordnet ist, welche durch den Druck in einem Abschnitt der Kraftstoffverbindung gesteuert wird, welcher stromaufwärts von der Sperreinrichtung liegt.
Vorteile der Erfindung
Durch das Vorsehen einer Absperr-Ventileinrichtung in der Leckageleitung wird erreicht, dass nach dem Abstellen der Brennkraftmaschine der erhöhte Vordruck in der Kraftstoffverbindung zwischen erster und zweiter Kraftstoffpumpe aufrechterhalten werden kann. Durch eine Sperrung der Leckageleitung wird nämlich nach dem Abstellen der Brennkraftmaschine verhindert, dass Kraftstoff durch den Spalt zwischen dem beweglichen Pumpenelement und der Begrenzung des Pumpenraums der zweiten Kraftstoffpumpe hindurchtritt und zum Vorratsbehälter zurückfließt. Dies würde zu einer allmählichen Absenkung des Drucks in der Kraftstoffverbindung stromaufwärts von der ersten Kraftstoffpumpe führen.
Durch eine Aufrechterhaltung des Drucks wird vermieden, dass sich nach dem Abstellen einer heißen Brennkraftmaschine in der Verbindung zwischen der ersten und der zweiten Kraftstoffpumpe Gasblasen bilden können. Derartige Gasblasen treten dann auf, wenn sich der in den Kraftstoffleitungen zwischen den Kraftstoffpumpen befindliche Kraftstoff aufgrund von Wärmeleitung von der Brennkraftmaschine her erwärmt. Wird jedoch der Druck, wie dies bei dem erfindungsgemäßen Kraftstoffsystem möglich ist, auch bei einer abgestellten Brennkraftmaschine aufrechterhalten, kann die Entstehung solcher Gasblasen weitgehend vermieden werden. Dies verbessert das Startverhalten einer mit dem erfindungsgemäßen Kraftstoffsystem ausgestatteten Brennkraftmaschine erheblich.
Die hydraulische Betätigung der Absperr-Ventileinrichtung ist dabei zuverlässig und einfach, d.h. preiswert, realisierbar. Die Steuerung der Absperr-Ventileinrichtung durch den Druck in jenem Abschnitt der Kraftstoffverbindung, welcher stromaufwärts von der Sperreinrichtung liegt, ermöglicht eine rasche Reaktion der Absperr-Ventileinrichtung auf ein Aus- bzw. Einschalten der ersten Kraftstoffpumpe.
In diesem Abschnitt kommt es bei einem Einschalten der Kraftstoffpumpe nämlich sehr rasch zu einem Druckaufbau vom im Ruhezustand herrschenden Umgebungsdruck auf den normalen Betriebsdruck der ersten Kraftstoffpumpe. Umgekehrt fällt der Druck in diesem Abschnitt der Kraftstoffverbindung beim Ausschalten der ersten Kraftstoffpumpe vom normalen Betriebsdruck sehr rasch auf Umgebungsdruck ab, so dass auch in diesem Fall die Absperr-Ventileinrichtung sicher und zuverlässig geschaltet werden kann.
Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
In einer ersten Weiterbildung ist genannt, dass die Absperr-Ventileinrichtung durch den Druck am Auslass der ersten Kraftstoffpumpe gesteuert wird. Hier sind die Druckveränderungen beim Aus- und Einschalten der ersten Kraftstoffpumpe am unmittelbarsten spürbar. Beim Ausschalten der ersten Kraftstoffpumpe kann die Absperr-Ventileinrichtung somit sehr rasch geschlossen werden, was ein unerwünschtes Abströmen von Kraftstoff aus der Leckageleitung und der Kraftstoffverbindung in den Vorratsbehälter frühzeitig unterbindet. Der Druck in der Kraftstoffverbindung kann somit auf einem möglichst hohen Niveau gehalten werden.
Bei einem Kraftstoffsystem mit konstantem Vordruck ist ist jene Weiterbildung besonders bevorzugt, bei welcher die Absperr-Ventileinrichtung erst bei Anliegen eines Steuerdrucks öffnet, welcher im Bereich des normalen Betriebsdrucks der ersten Kraftstoffpumpe liegt und bei einem Druckabfall auf einen Steuerdruck schließt, welcher unterhalb des normalen Betriebsdrucks der ersten Kraftstoffpumpe liegt, und bei einem Druckabfall auf einen Steuerdruck schließt, welcher unterhalb des normalen Betriebsdrucks der ersten Kraftstoffpumpe liegt.
Bei Kraftstoffsystemen mit variablem Vordruck gelten die obigen Ausführunge mit der Maßgabe, dass der Öffnungsdruck der Absperr-Ventileinrichtung im Bereich des minimalen Betriebsdrucks der ersten Kraftstoffpumpe und der Schließdruck unterhalb dieses minimalen Betriebsdrucks liegt.
Hierdurch wird sichergestellt, dass erst dann, wenn die Kraftstoffpumpe nach dem Einschalten eine so ausreichende Leistung erbringt, dass ein verzögerungsfreies Starten der Brennkraftmaschine möglich ist, die Absperr-Ventileinrichtung geöffnet und der Druck in der Leckageleitung auf Umgebungsdruck abgesenkt wird. Umgekehrt wird aber auch sichergestellt, dass die Absperr-Ventileinrichtung sofort nach Ausschalten der ersten Kraftstoffpumpe geschlossen wird.
Dabei wird besonders bevorzugt, wenn die Absperr-Ventileinrichtung ein Vorspannelement, bspw. eine Feder, umfasst, welches ein Ventilelement in die geschlossene Ruhestellung beaufschlagt.
Ferner ist es möglich, dass stromabwärts von der Sperreinrichtung ein Druckbegrenzungsventil vorgesehen ist. Mit diesem Druckbegrenzungsventil hat es folgende Bewandnis: Nach dem Abstellen der heißen Brennkraftmaschine, dem Stillstand der ersten Kraftstoffpumpe und dem damit einhergehenden Schließen der Absperr-Ventileinrichtung könnte es durch die Erwärmung des Kraftstoffs und die damit verbundene Ausdehnung des Kraftstoffs in der Kraftstoffverbindung und der Leckageleitung zu einem unzulässigen Druckanstieg in diesem Bereich kommen. Ein solcher unzulässiger Druckanstieg wird durch das Druckbegrenzungsventil verhindert. Die Komponenten in der Kraftstoffverbindung und in der Leckageleitung werden somit auch im Abstellfalle der Brennkraftmaschine vor unzulässig hohen Drücken geschützt, was deren Lebensdauer erhöht. Darüber hinaus können auch preiswertere, für niedrigere Drücke ausgelegte Komponenten zum Einsatz kommen.
Eine vorteilhafte Ausgestaltung sieht dabei vor, dass stromabwärts von der Sperreinrichtung eine Rückströmleitung von der Kraftstoffverbindung zum Vorratsbehälter hin abzweigt und das Druckbegrenzungsventil in der Rückströmleitung angeordnet ist.
Ferner ist es möglich, dass zwischen dem Auslass der ersten Kraftstoffpumpe und der Sperreinrichtung von der Kraftstoffverbindung eine Leitung zum Vorratsbehälter hin abzweigt, in der eine Strömungsdrossel angeordnet ist, und diese Leitung mit einem Steueranschluss der Absperr-Ventileinrichtung verbunden ist. Durch eine solche Drossel wird beim Einschalten der ersten Kraftstoffpumpe die Herstellung eines stabilen Drucks in der Kraftstoffverbindung zwischen erster und zweiter Kraftstoffpumpe beschleunigt und erleichtert. Die über die Strömungsdrossel zum Vorratsbehälter abströmende Kraftstoffmenge kann vorzugsweise zum Betrieb einer Saugstrahlpumpe zur Speisung der ersten Kraftstoffpumpe verwendet werden. Der für die Steuerung der Absperr-Ventileinrichtung notwendige Kraftstoffstrom fällt hierbei nicht ins Gewicht.
Alternativ hierzu ist es möglich, dass der Steueranschluss der Absperr-Ventileinrichtung mit einem Entgasungsanschluss der ersten Kraftstoffpumpe verbunden ist. Vorzugsweise kommt diese Lösung dann in Frage, wenn mit der Rücklaufmenge keine Saugstrahlpumpe betrieben werden soll. Für den Wirkungsgrad der ersten Kraftstoffpumpe ist es dann vorteilhaft, dass von der Haupt-Fördermenge an Kraftstoff keine Steuermenge abgezogen wird.
Möglich ist auch, dass die Absperr-Ventileinrichtung eine parallel zur Absperrfunktion geschaltete Druckbegrenzungsfunktion aufweist. In diesem Fall kann auf ein separates Druckbegrenzungsventil verzichtet werden, was den Bauaufwand für das erfindungsgemäße Kraftstoffsystem reduziert.
Günstig für den Bauaufwand ist es ferner, wenn die Absperr-Ventileinrichtung im Bereich des Vorratsbehälters, insbesondere im Bereich der ersten Kraftstoffpumpe, angeordnet ist. Dabei wird besonders bevorzugt, wenn die erste Kraftstoffpumpe und die Absperr-Ventileinrichtung Teil einer Tankeinbaueinheit sind.
Die Erfindung betrifft auch eine Brennkraftmaschine, insbesondere für Kraftfahrzeuge, mit einem Kraftstoffsystem, welches den Kraftstoff mindestens einem Brennraum zuführt. Dabei ist es vorteilhaft, wenn das Kraftstoffsystem in der obigen Art ausgebildet ist.
Zeichnung
Nachfolgend wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die beiliegende Zeichnung im Detail erläutert. In der Zeichnung zeigen:
Figur 1
ein schematisiertes Blockschaltbild eines Ausführungsbeispiels eines Kraftstoffsystems; und
Figur 2
eine schematisierte Detaildarstellung einer zweiten Kraftstoffpumpe sowie einer Absperr-Ventileinrichtung des Kraftstoffsystems von Figur 1.
Beschreibung des Ausführungsbeispiels
In Fig. 1 trägt ein Kraftstoffsystem insgesamt das Bezugszeichen 10. Es ist Teil einer Brennkraftmaschine 11 und umfasst einen Niederdruckbereich 12 und einen Hochdruckbereich 14.
Der Niederdruckbereich 12 umfasst einen Vorratsbehälter 16, in dem Kraftstoff 18 bevorratet wird. Der Kraftstoff 18 wird aus dem Vorratsbehälter 16 von einer ersten Kraftstoffpumpe 20 gefördert. Bei dieser handelt es sich um eine elektrische Kraftstoffpumpe, welche von einem Taktmodul 22 angesteuert wird. Die elektrische Kraftstoffpumpe 20 fördert über einen Auslass 23 in eine Niederdruck-Kraftstoffleitung 24. In dieser ist nach der elektrischen Kraftstoffpumpe 20 in Strömungsrichtung gesehen zunächst ein Rückschlagventil 26 und dann ein Filter 28 angeordnet.
In Strömungsrichtung gesehen noch vor dem Rückschlagventil 26 zweigt von der Niederdruck-Kraftstoffleitung 24 eine Zweigleitung 30 ab, welche zum Vorratsbehälter 16 zurückführt. In der Zweigleitung 30 ist eine Strömungsdrossel 32 angeordnet. Von dem zwischen dem Rückschlagventil 26 und dem Filter 28 gelegenen Bereich der Niederdruck-Kraftstoffleitung 24 zweigt nochmals eine Zweigleitung 34 ab, die ebenfalls zum Vorratsbehälter 16 zurückführt und in der ein Druckbegrenzungsventil 36 angeordnet ist. Der Druck in dem stromabwärts von dem Rückschlagventil 26 gelegenen Abschnitt der Niederdruck-Kraftstoffleitung 24 wird von einem Drucksensor 38 erfasst.
Die Niederdruck-Kraftstoffleitung 24 führt zu einer zweiten Kraftstoffpumpe 40. Diese wird auf hier nicht näher dargestellte Weise von der Kurbelwelle der Brennkraftmaschine 11 angetrieben. Bei der zweiten Kraftstoffpumpe 40 handelt es sich um eine 1-Kolben-Hochdruckpumpe. Stromaufwärts von der Hochdruckpumpe 40 sind in der Niederdruck-Kraftstoffleitung 24 noch ein Druckdämpfer 42 und ein Rückschlagventil 44 angeordnet.
Ausgangsseitig fördert die Hochdruckpumpe 40 in eine Kraftstoffleitung 46, welche über ein Rückschlagventil 48 zu einer Kraftstoff-Sammelleitung 50 führt. Diese wird gemeinhin auch als "Rail" bezeichnet. An die Kraftstoff-Sammelleitung 50 sind wiederum mehrere Kraftstoff-Einspritzventile 52 angeschlossen, welche den Kraftstoff in einen nicht dargestellten Brennraum der Brennkraftmaschine 11 einspritzen. Der Druck in der Kraftstoff-Sammelleitung 50 wird von einem Drucksensor 54 erfasst.
Um einen Überdruck in der Kraftstoff-Sammelleitung 50 zu vermeiden, welcher die Funktionstüchtigkeit der Einspritzventile 52 beeinträchtigen könnte, ist an der Kraftstoff-Sammelleitung 50 ein Druckbegrenzungsventil 56 vorgesehen, welches über eine Leitung 58 fluidisch mit der Niederdruck-Kraftstoffleitung 24 verbunden ist. Der Druck in der Kraftstoffleitung 46 und der Kraftstoff-Sammelleitung 50, also im Hochdruckbereich 14 des Kraftstoffsystems 10, wird über ein Mengensteuerventil 60 gesteuert, welches den zwischen dem Rückschlagventil 48 und der Hochdruckpumpe 40 gelegenen Bereich der Kraftstoffleitung 46 mit dem zwischen dem Rückschlagventil 44 und dem Druckdämpfer 42 gelegenen Bereich der Niederdruck-Kraftstoffleitung 24 verbindet.
Das Kraftstoffsystem 10 umfasst auch ein Steuer- und Regelgerät 62, welches unter anderem Signale vom Drucksensor 54 erhält. Auch vom Drucksensor 38 wird das Steuer- und Regelgerät 62 mit Signalen versorgt. Ausgangsseitig ist das Steuer- und Regelgerät 62 unter anderem mit dem Taktmodul 22 der ersten Kraftstoffpumpe 20 und mit dem Mengensteuerventil 60 verbunden.
Von der Hochdruckpumpe 40 führt eine Leckageleitung 64 zurück zum Vorratsbehälter 16. In der Leckageleitung 64 ist eine Absperr-Ventileinrichtung 66 vorhanden. Diese verfügt über eine offene Schaltstellung 68 und eine geschlossene Schaltstellung 70. In die geschlossene Ruhestellung 70 wird die Absperr-Ventileinrichtung 66 von einer Druckfeder 72 gebracht. In die geöffnete Schaltstellung 68 wird die Absperr-Ventileinrichtung 66 durch einen Kolben 74 gebracht, welcher in Fig. 1 nur symbolisch dargestellt ist. Über eine Steuerleitung 76 kann der Kolben 74 mit dem Druck beaufschlagt werden, welcher in der Zweigleitung 30 herrscht.
Die elektrische Kraftstoffpumpe 20, das Rückschlagventil 26, der Filter 28, der Drucksensor 38, das Druckbegrenzungsventil 36, die Strömungsdrossel 32 und die Absperr-Ventileinrichtung 66 sind Teil einer Tankeinbaueinheit 75.
Die Hochdruckpumpe 40 und die Absperr-Ventileinrichtung 66 werden nun unter Bezugnahme auf Fig. 2 im Detail erläutert:
Bei der Hochdruckpumpe 40 handelt es sich um eine 1-Kolben-Pumpe. Der Kolben 77 wird über einen Nockenantrieb 78 angetrieben. Der Kolben 77 ist in einem Zylindergehäuse 80 geführt. Die Oberseite des Kolbens 74 und das Zylindergehäuse 80 begrenzen einen Pumpraum 82. Dieser wird gegenüber dem Nockenantrieb 78 durch eine Spaltdichtung abgedichtet, welche zwischen dem Kolben 74 und dem Zylindergehäuse 80 gebildet ist. Ferner ist eine gehäusefeste Kolbendichtung 84 vorgesehen. Die Leckageleitung 64 zweigt von einer Ringnut 86 unmittelbar oberhalb der Kolbendichtung 84 ab. Hierdurch wird im Betrieb die Kolbendichtung 84 entlastet.
Die Absperr-Ventileinrichtung 66 umfasst ein Gehäuse 88, in dem der Kolben 74 geführt ist. An seinem in Fig. 2 oberen Ende trägt der Kolben 74 einen Kopf 90, dessen Durchmesser erheblich größer ist als jener des Kolbens 74. Auch der Kolben 90 ist in einem entsprechend weiteren Bereich des Ventilgehäuses 88 dicht geführt. Der Kopf 90 wird von der Druckfeder 72 beaufschlagt, durch welche die untere Stirnfläche des Kolbens 74 gegen einen Ringsteg 92 beaufschlagt wird, der in einem Strömungsraum 94 hinter einem Einlass 96 der Absperr-Ventileinrichtung 66 gebildet ist. Beim Strömungsraum 94 ist ein radialer Auslass 97 vorgesehen, an den der zum Vorratsbehälter 16 führende Abschnitt der Leckageleitung 64 angeschlossen ist.
Das Gehäuse 88 der Absperr-Ventileinrichtung 66 ist nach oben hin durch einen Deckel 98 abgeschlossen, welcher auf seiner dem Kopf 90 zugewandten Innenseite einen Zapfen (ohne Bezugszeichen) aufweist, durch den die Druckfeder 72 zentriert ist. Der Deckel 98 der Absperr-Ventileinrichtung 66 ist mit dem Ventilgehäuse 88 durch eine Verstemmung 99 unlösbar verbunden. Unterhalb des Kopfs 90 ist zwischen dem Kopf 90, dem Kolben 74 und dem Ventilgehäuse 88 ein weiterer Druckraum 100 gebildet. Dieser ist über eine radiale Bohrung 102 mit der Steuerleitung 76 verbunden. Die Druckfeder 72 ist in einer zylindrischen Ausnehmung (ohne Bezugszeichen) in der Oberseite des Kopfs 90 geführt. Vom Boden der Ausnehmung führt ein Strömungskanal 104 längs durch den Kolben 74 nach unten und weiter radial nach außen in den Strömungsraum 94.
Das in den Figuren 1 und 2 dargestellte Kraftstoffsystem 10 arbeitet folgendermaßen:
Im normalen Betrieb der Brennkraftmaschine 11 wird der Kraftstoff 18 aus dem Vorratsbehälter 16 von der elektrischen Kraftstoffpumpe 20 in die Niederdruck-Kraftstoffleitung 24 und weiter zur Hochdruckpumpe 40 gefördert. Die Hochdruckpumpe 40 fördert den von der elektrischen Kraftstoffpumpe 20 vorverdichteten Kraftstoff 18 weiter unter nochmaliger Druckerhöhung in die Kraftstoffleitung 46 zur Kraftstoff-Sammelleitung 50 hin. Der Drucksensor 54 und das Mengensteuerventil 60 sind Teil einer geschlossenen Regelstrecke, über die die von der Hochdruckpumpe 40 in den Hochdruckbereich 14 des Kraftstoffsystems 10 geförderte Kraftstoffmenge und deren Druck eingestellt wird.
Wenn die elektrische Kraftstoffpumpe 20 eingeschaltet wird, steigt der Druck in der Niederdruck-Kraftstoffleitung 24 bis zu dem vom Steuer- und Regelgerät 62 vorgegebenen Wert an, der über den Drucksensor 38 und das Taktmodul 22 eingeregelt wird. Beim Heißstart wird der Druck bis zum Öffnungsdruck des Druckbegrenzungsventils 36 von ungefähr 6 bar gesteigert. Im gesamten Betriebsbereich wird Druck im Niederdruckbereich 12 zwischen ungefähr 1,5 und ungefähr 6 bar variiert. Auch in der Zweigleitung 30, in welcher die Strömungsdrossel 32 angeordnet ist, herrscht dieser Druck. Der Druck wird somit auch über die Steuerleitung 76 in den Druckraum 100 der Absperr-Ventileinrichtung 66 geleitet.
Die Druckfläche unterhalb des Kopfes 90 und die Druckfeder 72 sind so aufeinander abgestimmt, dass bei einem Druck knapp unterhalb des minimalen Betriebsdrucks von 1,5 bar der Kopf 90 und mit ihm der Kolben 74 gegen die Kraft der Druckfeder 72 nach oben bewegt wird. Somit löst sich der Kolben 74 vom Ringsteg 92 und gibt den Weg von der Leckageleitung 64 durch die Absperr-Ventileinrichtung 66 zum Vorratsbehälter 16 frei.
Hierdurch ist es möglich, dass Kraftstoff, welcher durch die Spaltdichtung zwischen dem Kolben 77 und dem Zylindergehäuse 80 hindurch bis zur Ringnut 86 gelangt, über den Strömungsraum 94, den radialen Auslass 97 und die Leckageleitung 66 zum Vorratsbehälter 16 zurückfließen kann. Dies führt zu einer merklichen Entlastung der Kolbendichtung 84.
Wenn die Brennkraftmaschine abgestellt wird, wird auch die elektrische Kraftstoffpumpe 20 ausgeschaltet. In dem Bereich der Niederdruck-Kraftstoffleitung 24, welcher stromaufwärts von dem Rückschlagventil 26 liegt, fällt somit der Druck auf den im Vorratsbehälter 16 herrschenden Umgebungsdruck ab. Gleiches gilt auch für die Zweigleitung 30, die Steuerleitung 76 und den Druckraum 100. Durch die Druckfeder 72 kann nun der Kopf 90 und der Kolben 74 wieder nach unten gedrückt werden, bis der Kolben 74 am Ringsteg 92 anliegt und die Verbindung der Leckageleitung 64 zum Vorratsbehälter 16 unterbricht.
Wie bereits oben ausgeführt wurde, sind die unterhalb des Kopfes 90 liegende Druckfläche und die Druckfeder 72 so aufeinander abgestimmt, dass das Schließen der Absperr-Ventileinrichtung 66 bereits bei einem Druck knapp unterhalb von 1,5 bar erfolgt. Ist die Absperr-Ventileinrichtung 66 geschlossen, ist jedoch der gesamte Bereich der Leckageleitung 64 zwischen der Absperr-Ventileinrichtung 66 und der Hochdruckpumpe 40 sowie der Bereich der Niederdruck-Kraftstoffleitung zwischen der Hochdruckpumpe 40 und dem Rückschlagventil 26 von der Umgebung abgeschlossen. In diesem Bereich bleibt somit der Systemdruck zum Zeitpunkt des Abstellens auch bei abgestellter Brennkraftmaschine erhalten.
Nach dem Abstellen der Brennkraftmaschine kann es aufgrund von Wärmeleitung zu einer Erwärmung der Niederdruck-Kraftstoffleitung 24 kommen. Hierdurch wird auch der Kraftstoff 18 in der Niederdruck-Kraftstoffleitung 24 erwärmt und dehnt sich aus. Dies führt in dem gerade beschriebenen abgeschlossenen Bereich der Niederdruck-Kraftstoffleitung 24 zu einer Druckerhöhung. Um eine Beschädigung von Komponenten der Niederdruck-Kraftstoffleitung 24 bzw. insgesamt des Niederdruckbereichs 12 zu vermeiden, ist das Druckbegrenzungsventil 36 über die Zweigleitung 34 eben mit diesem Bereich der Niederdruck-Kraftstoffleitung 24 verbunden.
Ggf. können die Druckfeder 72 und die sich innerhalb des Ringstegs 72 befindliche Stirnfläche des Kolbens 74 so aufeinander abgestimmt sein, dass bei einem Anstieg des Drucks in der Leckageleitung 64 auf einen Wert oberhalb eines Grenzwerts der Kolben 74 vom Ringsteg 92 abhebt. Das entsprechende Druckniveau liegt vorzugsweise oberhalb des vom Druckbegrenzungsventil 36 vorgegebenen Druckniveaus. In diesem Falle wird durch die Absperr-Ventileinrichtung 66 eine zusätzliche Sicherheits-Druckbegrenzungseinrichtung für die Niederdruck-Kraftstoffleitung 24 und die Leckageleitung 64 geschaffen.
Über den Strömungskanal 104 ist der Raum, in dem die Druckfeder 72 angeordnet ist, mit dem radialen Auslass 97 der Absperr-Ventileinrichtung 66 verbunden, der wiederum zum Vorratsbehälter 16 führt. Da dort üblicherweise ungefähr Umgebungsdruck herrscht, wird durch diesen Strömungskanal 104 vermieden, dass sich in dem Raum, in dem die Druckfeder 72 angeordnet ist, ein das Kräfteverhältnis störender Druck aufbauen kann.
In einem nicht dargestellten Ausführungsbeispiel führt die Steuerleitung von der Absperr-Ventileinrichtung nicht zu einer Zweigleitung, sondern zu einem an der elektrischen Kraftstoffpumpe vorhandenen Entgasungsanschluss. Vorzugsweise kommt diese Lösung dann in Frage, wenn mit der Rücklaufmenge keine Saugstrahlpumpe betrieben wird. Dies hat den Vorteil, dass von der Hauptmenge des Kraftstoffs keine Steuermenge abgezogen wird, was den Wirkungsgrad der elektrischen Kraftstoffpumpe verbessert.

Claims (13)

  1. Kraftstoffsystem (10) zum Zuliefern von Kraftstoff (18) für eine Brennkraftmaschine, mit einem Vorratsbehälter (16), mit einer ersten Kraftstoffpumpe (20), deren Einlass mit dem Vorratsbehälter (16) verbunden ist, mit einer zweiten Kraftstoffpumpe (40), deren Einlass über eine Kraftstoffverbindung (24) mit einem Auslass (23) der ersten Kraftstoffpumpe (20) verbunden ist, mit mindestens einer Einspritzvorrichtung (52), welche mit einem Auslass der zweiten Kraftstoffpumpe (40) verbunden ist und Kraftstoff (18) mindestens indirekt einem Brennraum zuführen kann, mit einer Sperreinrichtung (26), welche einen Rückstrom von Kraftstoff (18) wenigstens aus einem Abschnitt der Kraftstoffverbindung (24) zurück in den Vorratsbehälter (16) verhindert, und mit einer Leckageleitung (64), welche von der zweiten Kraftstoffpumpe (40) zu dem Vorratsbehälter (16) führt, dadurch gekennzeichnet, dass in der Leckageleitung (64) eine hydraulisch betätigte Absperr-Ventileinrichtung (66) angeordnet ist, welche durch den Druck in einem Abschnitt der Kraftstoffverbindung (24) gesteuert wird, welcher stromaufwärts von der Sperreinrichtung (26) liegt.
  2. Kraftstoffsystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung (66) durch den Druck am Auslass der ersten Kraftstoffpumpe (20) gesteuert wird.
  3. Kraftstoffsystem (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung (66) erst bei Anliegen eines Steuerdrucks öffnet, welcher im Bereich des normalen Betriebsdrucks der ersten Kraftstoffpumpe (20) liegt, und bei einem Druckabfall auf einen Steuerdruck schließt, welcher unterhalb des normalen Betriebsdrucks der ersten Kraftstoffpumpe (20) liegt.
  4. Kraftstoffsystem (10) nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung (66) erst bei Anliegen eines Steuerdrucks öffnet, welcher im Bereich des minimalen Betriebsdrucks der ersten Kraftstoffpumpe (20) liegt, und bei einem Druckabfall auf einen Steuerdruck schließt, welcher unterhalb des minimalen Betriebsdrucks der ersten Kraftstoffpumpe (20) liegt.
  5. Kraftstoffsystem (10) nach einem der Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung (66) ein Vorspannelement (72) umfasst, welches ein Ventilelement (74, 90) in die geschlossene Ruhestellung beaufschlagt.
  6. Kraftstoffsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass stromabwärts von der Sperreinrichtung (26) ein Druckbegrenzungsventil (36) vorgesehen ist.
  7. Kraftstoffsystem (10) nach Anspruch 6, dadurch gekennzeichnet, dass stromabwärts von der Sperreinrichtung (26) eine Rückströmleitung (34) von der Kraftstoffverbindung (24) zum Vorratsbehälter (16) hin abzweigt und das Druckbegrenzungsventil (36) in der Rückströmleitung (34) angeordnet ist.
  8. Kraftstoffsystem (10) nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass zwischen dem Auslass der ersten Kraftstoffpumpe (20) und der Sperreinrichtung (26) von der Kraftstoffverbindung (24) eine Leitung (30) zum Vorratsbehälter (16) hin abzweigt, in der eine Strömungsdrossel (32) angeordnet ist, und diese Leitung (30) mit einem Steueranschluss (102) der Absperr-Ventileinrichtung (66) verbunden ist.
  9. Kraftstoffsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Steueranschluss der Absperr-Ventileinrichtung mit einem Entgasungsanschluss der ersten Kraftstoffpumpe verbunden ist.
  10. Kraftstoffsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung eine parallel zur Absperrfunktion geschaltete Druckbegrenzungsfunktion aufweist.
  11. Kraftstoffsystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Absperr-Ventileinrichtung (66) im Bereich des Vorratsbehälters (16), insbesondere im Bereich der ersten Kraftstoffpumpe (20), angeordnet ist.
  12. Kraftstoffsystem (10) (10) nach Anspruch 11, dadurch gekennzeichnet, dass die erste Kraftstoffpumpe (20) und die Absperr-Ventileinrichtung (66) Teil einer Tankeinbaueinheit sind.
  13. Brennkraftmaschine (11), insbesondere für ein Kraftfahrzeug, mit einem Kraftstoffsystem (10), welches den Kraftstoff (18) mindestens einem Brennraum zuführt, dadurch gekennzeichnet, dass das Kraftstoffsystem (10) nach einem der Ansprüche 1 bis 12 ausgebildet ist.
EP02011015A 2001-05-29 2002-05-17 Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine Expired - Lifetime EP1262658B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10125942 2001-05-29
DE10125942A DE10125942A1 (de) 2001-05-29 2001-05-29 Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine, sowie Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP1262658A2 EP1262658A2 (de) 2002-12-04
EP1262658A3 EP1262658A3 (de) 2003-04-09
EP1262658B1 true EP1262658B1 (de) 2004-08-04

Family

ID=7686393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02011015A Expired - Lifetime EP1262658B1 (de) 2001-05-29 2002-05-17 Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine

Country Status (3)

Country Link
EP (1) EP1262658B1 (de)
JP (1) JP2002364474A (de)
DE (2) DE10125942A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10212870A1 (de) * 2002-03-22 2003-10-02 Volkswagen Ag Kraftstoffversorgungssystem einer Brennkraftmaschine mit Hochdruckeinspritzung
DE10259685A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Rückführleitungsverschaltung einer Hochdruckpumpe einer Kraftstoffversorgungsanlage für eine Brennkraftmaschine
DE10305372B4 (de) * 2003-02-10 2009-01-08 Continental Automotive Gmbh Vorrichtung und Verfahren zum Erkennen von Fehlern in einem einen Kraftstoffdruckdämpfer aufweisenden Kraftstoffeinspritzsystem
DE102005003592A1 (de) * 2005-01-26 2006-08-03 Daimlerchrysler Ag Kraftstoffversorgungseinrichtung
DE102005033638A1 (de) * 2005-07-19 2007-01-25 Robert Bosch Gmbh Kraftstoff-Fördereinrichtung, insbesondere für eine Brennkraftmaschine
DE102005059160A1 (de) * 2005-12-12 2007-06-14 Robert Bosch Gmbh Kraftstoffsystem für eine Brennkraftmaschine
JP2007224833A (ja) * 2006-02-24 2007-09-06 Bosch Corp 内燃機関の燃料噴射システム
DE102010027789A1 (de) * 2010-04-15 2011-10-20 Ford Global Technologies, Llc Kraftstoffeinspritzsystem zum schnellen Druckaufbau bei erneutem Start des Verbrennungsmotors mit Stopp-Start-System
GB2507747B (en) * 2012-11-07 2014-10-08 Perkins Engines Co Ltd A pump assembly and a valve
DE102017124193A1 (de) * 2017-10-17 2019-04-18 Schwäbische Hüttenwerke Automotive GmbH Fluidpumpe mit einem Ventil

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2848232A1 (de) * 1978-11-07 1980-05-08 Bosch Gmbh Robert Steuereinrichtung einer kraftstoffeinspritzpumpe fuer fahrzeug-dieselbrennkraftmaschinen
US5558068A (en) * 1994-05-31 1996-09-24 Zexel Corporation Solenoid valve unit for fuel injection apparatus
JP3031222B2 (ja) * 1995-12-13 2000-04-10 三菱自動車工業株式会社 エンジンの燃料供給装置
JP3819208B2 (ja) * 2000-03-01 2006-09-06 三菱電機株式会社 可変吐出量燃料供給装置

Also Published As

Publication number Publication date
DE10125942A1 (de) 2002-12-12
EP1262658A3 (de) 2003-04-09
DE50200730D1 (de) 2004-09-09
EP1262658A2 (de) 2002-12-04
JP2002364474A (ja) 2002-12-18

Similar Documents

Publication Publication Date Title
EP1360406B1 (de) Kraftstoffsystem, verfahren zum betreiben des kraftstoff-systems, computerprogramm sowie steuer- und/oder regelgerät zur steuerung des kraftstoffsystems
EP1411238B1 (de) Druckbegrenzungsventil für ein Kraftstoffeinspritzsystem
EP1073840B1 (de) Zuschaltventil in einem kraftstoffeinspritzsystem für brennkraftmaschinen
EP1913255B1 (de) Kraftstoff-fördereinrichtung, insbesondere für eine brennkraftmaschine
EP1440237B1 (de) Ventil zum steuern von flüssigkeiten
EP1306548B1 (de) Kraftstoffeinspritzanlage mit verbesserter Fördermengenregelung
EP1799991B1 (de) Vorrichtung zum fördern von kraftstoff
EP2217795B1 (de) Kraftstoffeinspritzsystem für eine brennkraftmaschine mit hc-injektor
EP2670971A2 (de) Pumpeneinheit für eine hochdruckpumpe
EP1262658B1 (de) Kraftstoffsystem zum Zuliefern von Kraftstoff für eine Brennkraftmaschine
WO2000039450A1 (de) Kolbenpumpe zur kraftstoffhochdruckerzeugung
EP1403509B1 (de) Druckbegrenzungseinrichtung sowie Kraftstoffsystem mit einer solchen Druckbegrenzungseinrichtung
EP1357283B1 (de) Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine
WO1999028620A1 (de) Schnellstart einer hochdruckpumpe mittels druckübersetzungskolben
DE10139055A1 (de) Verfahren, Computerprogramm, Steuer- und/oder Regelgerät sowie Kraftstoffsystem für eine Brennkraftmaschine
DE102006013165A1 (de) Kraftstoffhochdruckpumpe und Kraftstoffeinspritzsystem für eine Brennkraftmaschine
DE10261780A1 (de) Niederdruckkreislauf für ein Speichereinspritzsystem
WO2000011339A1 (de) Steuereinheit zur steuerung des druckaufbaus in einer pumpeneinheit
EP1394403B1 (de) Kraftstoffsystem für eine Brennkraftmaschine
WO2004027250A1 (de) Kraftstoffeinspritzanlage für brennkraftmaschinen
DE10208576A1 (de) Hydraulische Druckentlastungseinrichtung für eine Kraftstoffeinspritzanlage
WO1999011924A1 (de) System zur hochdruckerzeugung
DE10125982A1 (de) Kraftstoffsystem für eine Brennkraftmaschine, Brennkraftmaschine, sowie Verfahren zum Betreiben einer Brennkraftmaschine
DE102007016625A1 (de) Ventil und Einspritzanlage für eine Brennkraftmaschine mit Ventil
DE102004048594A1 (de) Kraftstoffsystem, für eine Brennkraftmaschine, sowie Verfahren zum Betreiben eines Kraftstoffsystems

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7F 02D 41/06 B

Ipc: 7F 02M 69/46 B

Ipc: 7F 02M 63/02 A

Ipc: 7F 02M 37/20 B

17P Request for examination filed

Effective date: 20031009

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040804

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040804

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50200730

Country of ref document: DE

Date of ref document: 20040909

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20040804

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050506

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110726

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50200730

Country of ref document: DE

Effective date: 20121201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121201