EP1259654A1 - Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites - Google Patents

Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites

Info

Publication number
EP1259654A1
EP1259654A1 EP01909918A EP01909918A EP1259654A1 EP 1259654 A1 EP1259654 A1 EP 1259654A1 EP 01909918 A EP01909918 A EP 01909918A EP 01909918 A EP01909918 A EP 01909918A EP 1259654 A1 EP1259654 A1 EP 1259654A1
Authority
EP
European Patent Office
Prior art keywords
strip
casting
less
bodies
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01909918A
Other languages
German (de)
English (en)
Inventor
Pierre-Yves Menet
Jean-Luc Hoffmann
Pierre Ranquet
Philippe Solignac
Bruno Chenal
Frédéric BASSON
Klaus Maiwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novelis Inc Canada
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP1259654A1 publication Critical patent/EP1259654A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to a method of manufacturing aluminum alloy strips suitable for the manufacture of can bodies, in particular beverage cans, produced by stamping-stretching.
  • the patent FR 2615530 (Cégédur Pechiney) describes a process for manufacturing strips by continuous casting between cylinders suitable both for the manufacture of bodies of beverage cans and their lids.
  • the alloy used in this process contains (by weight) from 0.8 to 1.8% Mn, 1 to 2% Si, 0.7 to 3% Mg, less than 0.7% Fe, less than 0.5 % Cu and less than 0.5% Cr.
  • the strip, cast to a thickness between 4 and 20 mm, is subjected to a rolling range with intermediate annealing and quenching.
  • Patent FR 2526047 SCAL Aluminum packaging company teaches that to obtain a strip with a thickness of approximately 300 ⁇ m suitable for making beverage cans from a strip cast between cylinders, the surface of the the raw casting strip, for example by brushing with an air jet, to form a oxide layer such that the phenomenon of galling ( "galling"), likely to occur during the manufacture of cans by drawing and ironing, and well known to those skilled in the art, is minimized.
  • Patent EP 0298876 (Pechiney Rhenalu) describes a satin-etching process to modify the composition of the oxide layer present on the surface of a raw strip of continuous casting so as to improve its ability to manufacture can bodies , and in particular to reduce the seizure phenomenon. This satin-pickling process generates liquid effluents which must be treated specifically.
  • Patent application GB 2027743 (Swiss Aluminum Ltd.) discloses a process for the production of strips from continuous casting suitable for the production of can bodies. This process involves a hot rolling step.
  • Aluminum relate to an integrated line for manufacturing tapes for box bodies by continuous casting between two belts (“belt casting"), hot rolling and cold rolling, which target narrow strips (12 inches or about 300 mm) .
  • This line designated under the name of "micromill” is described in particular in the article by GF Wyatt-Mair and DG Harrington: "The Aluminum Canstock Micromill Process” Light Metal Age, August 1995, pp. 44-50.
  • Patent Application WO 97/01652 (Alcoa) relates to the manufacture by continuous casting between cylinders of a AIMnMg alloy thick band between 1 and 5 mm which is then subjected to homogenization and rolling sequence cold with an intermediate anneal of less than a minute, followed by quenching. This alloy contains at least 0.4% iron.
  • Patent application WO 98/01592 (Alcan International) teaches the preparation of a lower strip thickness exceeding 30 mm by casting between belts (Hazelett process), and rolling process to obtain strips adapted to the making bodies of boxes.
  • the manganese content of the alloy should not exceed 1.2% in order to limit the formation of dispersoids degrading the anisotropy of the band.
  • patent application WO 98/01593 (Alcan International) relates to the use of a thick continuous casting (greater than 9 mm) with a -> alloy containing less than 0.9% of manganese for the development of bands suitable for making can bodies.
  • JP 04,276,047 (Sky Aluminum) describes a process for producing strips of aluminum alloy for can lids, comprising the continuous casting of thick strip less than 15 mm, cooled to more than 50 ° C / s, cold rolling with two intermediate anneals and a final annealing.
  • the alloy has the following composition (% by weight):
  • Patent EP 099739 (Continental) describes a process for manufacturing strips for box bodies, comprising the casting of a strip less than 25 mm thick, reheating between 510 and 620 ° C., cold rolling with a intermediate annealing, recrystallization annealing and final cold rolling.
  • US patent 5616190 (Pechiney Rhenalu) claims the continuous casting of a strip of thickness less than or equal to 4 mm and of composition (% by weight): Mg: 1 - 4, Mn: 0 - 1, 6 and which may contain also copper and chromium, followed by homogenization between 400 ° C and 580 ° C, and several cold rolling passes to a final thickness of less than 0.3 mm, to obtain a micro structure at least partially recrystallized.
  • the weight of a 33 cl aluminum beverage can decreased from around 13 grams to about 10 grams, and the thickness of the strip used for the body of such a box increased from approximately 330 ⁇ m to approximately 275 ⁇ m.
  • This development increases the difficulty of proposing a strip produced by continuous casting which can directly replace a strip resulting from the traditional process (semi-continuous casting of plates, hot and then cold rolling), to give a box having the same characteristics. .
  • This trend towards decreasing the thickness of the can bodies revealed the existence of three main critical factors to consider during production: the turning pressure of the bottom of the boxes, puncture resistance of the side wall boxes filled, and the vertical crush resistance of empty boxes. Added to this is the observation that reducing the thickness of the boxes increases the risk of breakage during their manufacture by stamping-drawing on machines and with industrial production rates; indeed, the rates of stretching machines
  • bodymakers were dubbed during the same period of the 1990s.
  • the subject of the invention is a process for manufacturing a strip suitable for manufacturing bodies of beverage cans, comprising: the production of an aluminum alloy containing (by weight) from 1.1 to 1.7% Mg, 1.2-2.6% Mn, 0.05-0.45% Si, 0.05-0.60% Fe, up to 0.40% Cu, up to '' at 0.14% Cr, up to 0.08% Ti, other elements up to 0.07% each and 0.25% in total, aluminum remains the treatment of this liquid alloy by gas injection ( preferably argon), - the casting between cylinders of a strip of thickness less than 5 mm and preferably less than 4 mm.
  • gas injection preferably argon
  • the homogenization of the strip between 450 and 530 ° C for a period of between 2 and 20 hours, - the strip of cold rolling in several passes, an intermediate annealing between 300 and 400 ° C for 1 to 12 hours, cold rolling in one or more passes to the final thickness.
  • the homogenization step can take place before the first cold rolling step, or between two passes of this step.
  • the present invention is based on the combination, in order to obtain strips of large width suitable for the industrial manufacture of bodies of beverage cans, of a particular field of AIMnMg alloy composition, of continuous casting in thin strip and of '' a range of special transformation of the strip.
  • the composition comprises manganese and magnesium contents higher than those of alloy 3104 usually used for the manufacture of can bodies from strips produced in a conventional manner by casting plates, hot and cold rolling.
  • the manganese content is between 1.2 and 1.6%, and preferably between 1.2 and 1.4%. Above a content of the order of 1.6%, the Applicant has observed the formation of coarse primary phases which should be avoided in continuous casting of thin strips between cylinders. Below 1.2% manganese, the mechanical properties of the strip become insufficient for the intended application.
  • the magnesium content is between 1.1 and 1.7%, and preferably between 1.3 and 1.5%. When this content exceeds 1.7%, there is a risk of the appearance of defects related to surface segregation. Below 1.1% magnesium, the characteristics of the strip become insufficient.
  • the ratio of Mg / Mn contents is preferably between 1.05 and 1.15.
  • a preferred composition range is as follows (% by weight): Mn: 1.2 - 1.4 Mg: 1.3 - 1.5 Si: 0.10 - 0.30 Fe: 0.20 - 0.40 Cu: 0.10 - 0.35 Cr: 0.04 - 0.12 Ti ⁇ 0.07
  • the metal must have a high metallurgical cleanliness, and it is essential to carry out a degassing treatment by injection of a neutral gas, generally argon, in a treatment pocket comprising a gas injection and a rotor, a diffuser. static bubbles or equivalent.
  • a neutral gas generally argon
  • the purpose of this treatment is in particular to remove the hydrogen from the liquid metal, to avoid the formation of porosities during solidification. It is then recommended to carry out a filtration of the metal using techniques known to those skilled in the art, for example deep bed filtration.
  • Continuous casting between cooled rolls is preferably done at a speed greater than 2 m / ran, and more preferably at 3 m / min.
  • the clamping force is preferably between 0.5 and 1.2 tonnes per mm of strip width.
  • the cast strip has a width greater than 1600 mm and a thickness less than 5 mm, and preferably 4 mm.
  • the cast strip is then homogenized at a metal temperature between 450 and 530 ° C for a period between 2 and 20 h. Homogenized with a band below 450 ° C, the Applicant has found the occurrence of galling ( "galling") during stretching of the can bodies. If the homogenization takes place above 530 ° C, there is a risk of over-oxidation of the surface of the strip which makes it unfit for the intended application. Homogenization can be preceded by a cold rolling pass. It is followed, in a preferred embodiment of the invention, by a chemical pickling of the strip, for example with an acid or a base. The strip is then cold rolled, annealed at a temperature between 300 and 400 ° C to improve the anisotropy.
  • Annealing above 400 ° C leads to the oxidation of oil residues ("cracking"), while annealing below 300 ° C does not allow sufficient recrystallization of the metal to be obtained. Finally, it is laminated, preferably in a single pass on a single rolling stand, to the final thickness, which is generally a little below 0.280 mm.
  • the cylinders of the casting machine are brushed for casting.
  • the Applicant has observed that brushing the cylinders during casting decreases the frequency of appearance of tear-off defects when stretching the bodies of boxes.
  • brushing helps improve a characteristic of beverage cans becomes essential since the thickness of the side wall of the box decreases, ie the resistance of the sidewall puncture.
  • He is known to the skilled person that there are several parameters capable of limiting the trend towards a reduction in the thickness of a beverage can body, in particular the bottom turning pressure and the resistance of the side wall to perforation.
  • the turning pressure depends on both the mechanical characteristics of the strip and the design of the bottom.
  • the resistance of the side wall to perforation in English
  • SWAR sidewall abuse resistance
  • the characterization of the resistance of the side wall to perforation was carried out on contoured box bodies not coated with varnish in the following manner: two points are located approximately halfway up the box body, and aligned parallel to the direction of rolling, the thickness is measured at the two points and the point which best corresponds to the average value obtained for the production batch is selected.
  • the box is placed horizontally on a support which follows its curvature and which is equipped with a sealing device comprising a cover, equipped with a seal, and a pressurizing device equipped with a manometer.
  • the box is inflated to a nitrogen pressure of 0.414 MPa.
  • a STUB steel punch is positioned, the point of which has a radius of curvature of 0.5 mm, at the selected point of the surface of the box.
  • By recording the force values (in Newtons) and vertical punch displacement (in millimeters) is made to penetrate the punch with a constant speed of 2 mm per minute in the body of the box, up to rupture of the wall. This break is visualized by a clear drop in the displacement / force curve recorded.
  • the area under the displacement / force curve gives the energy W at the time of failure; it characterizes the resistance of the side wall to perforation and is called here
  • SWAR sidewall abuse resistance
  • the method according to the invention makes it possible to obtain strips of thickness less than
  • the manufacture of the bodies of boxes by stamping-drawing is done with a rate of breakage on drawing ("tear-off") less than 1 per 10,000, evaluated on a batch of at least 150,000 boxes, resistance to perforation of the side wall (SWAR) greater than 30, or even 35 or 40 mJ, and a bottom turning pressure greater than 0.62 MPa, or even 0.65 MPa.
  • the bottom turning pressures obtained are of the same order as those obtained on can bodies of the same geometry, produced with strips of the same thickness in standard 3104 alloy resulting from the traditional method of plate casting.
  • AQUAGRAPH ® with 2% graphite The two cylinders were brushed using a brush with a diameter of about 200 mm moving along the axis of the cylinder over its entire width in order to distribute the suspension evenly.
  • the raw casting strip was homogenized for 10 hours at 500 ° C. It was then cold rolled in 3 passes in a tandem rolling mill with 3 stands to a thickness of 0.8 mm. Then, an intermediate annealing was carried out at 350 ° C for
  • the anisotropy was measured by the horn indices So and S x according to the EN standard
  • SWAR parameter which represents the energy of resistance force F at the compression stroke C
  • the turning pressure is practically similar, and remains above the specifications of brewers or producers of carbonated drinks (generally 0.62 MPa).
  • Example 1 An identical band to that of Example 1 and the same method was developed. The only difference was that after the intermediate annealing, the strip was rolled in one pass on a roll mill monocage to the final thickness that was the same as in Example 1. All the characteristics of the tape were similar to those obtained in Example 1. The strip was found suitable for the manufacture of can bodies by drawing and ironing.
  • the strip was found to be suitable for the manufacture of can bodies by stamping-drawing, and the other properties were practically identical to those measured in Example 1.
  • a cold rolled strip was prepared as in Example 1, except that the intermediate annealing was carried out at the thickness 0.6 mm instead of 0.8 mm.
  • the strip was found to be suitable for the manufacture of can bodies by stamping-drawing, and the other properties were practically identical to those measured in Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention a pour objet un procédé de fabrication d'une bande apte à la fabrication de corps de boîtes boisson, comportant: l'élaboration d'un alliage d'aluminium contenant (en poids) de 1,1 à 1,7 % de Mg, de 1,2 à 1,6 % de Mn, de 0,05 à 0,45 % de Si, de 0,05 à 0,60 % de Fe, jusqu'à 0,40 % de Cu, jusqu'à 0,14 % de Cr, jusqu'à 0,08 % de Ti, autres éléments jusqu'à 0,07 % chacun et 0,25 % au total, reste aluminium; le traitement de cet alliage liquide par injection de gaz (préférentiellement d'argon); la coulée entre cylindres d'une bande d'épaisseur inférieure à 5 mm et préférentiellement inférieure à 4 mm, au cours de laquelle un poteyage est appliqué sur les cylindres; l'homogénéisation de la bande entre 450 et 530 DEG C pour une durée comprise entre 2 et 20 heures; le laminage à froid de la bande en plusieurs passes; un recuit intermédiaire entre 300 et 400 DEG C pendant 1 à 12 heures; le laminage à froid en une ou plusieurs passes jusqu'à l'épaisseur finale. Le procédé permet d'obtenir des bandes aptes à la fabrication de corps de boîtes présentant une résistance améliorée à la perforation de la paroi latérale.

Description

Procédé de fabrication de bandes en alliage d'aluminium aptes à la fabrication de corps de boîtes
Domaine de l'invention
L'invention concerne un procédé de fabrication de bandes en alliage d'aluminium aptes à la fabrication de corps de boîtes, notamment de boîtes boisson, fabriquées par emboutissage-étirage.
Etat de la technique
Dans Létat de la technique, il existe de nombreuses tentatives de fabriquer par coulée continue des bandes aptes à la fabrication de corps de boîtes boisson par le procédé d'emboutissage-étirage. Elles ont toutes échoué sur le plan industriel, pour des raisons différentes.
Le brevet FR 2615530 (Cégédur Pechiney) décrit un procédé de fabrication de bandes par coulée continue entre cylindres aptes à la fois à la fabrication de corps de boîtes boisson et de leurs couvercles. L'alliage utilisé dans ce procédé contient (en poids) de 0,8 à 1,8% Mn, 1 à 2% Si, 0,7 à 3% Mg, moins de 0,7% Fe, moins de 0,5% de Cu et moins de 0,5% de Cr. La bande, coulée à une épaisseur comprise entre 4 et 20 mm, est soumise à une gamme de laminage avec recuit intermédiaire et trempe. Cette approche d'un alliage unique pour corps de boîte et couvercles n'a pas permis jusqu'à présent de faire face à la contrainte de diminution du poids d'une boîte boisson, et il apparaît aujourd'hui comme préférable de continuer à utiliser deux alliages différents, avec leurs gammes de transformation spécifiques, pour les couvercles et les corps de boîte, chacun étant optimisé aux fonctions et contraintes spécifiques auxquelles il doit répondre. Le brevet FR 2526047 (SCAL Société de conditionnements en aluminium) enseigne que pour obtenir une bande d'une épaisseur d'environ 300 μm apte à la confection de boîtes boisson à partir d'une bande coulée entre cylindres, il faut modifier la surface de la bande brute de coulée, par exemple par brossage au jet d'air, pour former une couche d'oxyde telle que le phénomène de grippage (" galling "), susceptible de se produire lors de la fabrication des boîtes par emboutissage-étirage, et bien connu de l'homme du métier, soit minimisé.
Le brevet EP 0298876 (Pechiney Rhenalu) décrit un procédé de satinage-décapage pour modifier la composition de la couche d'oxyde présente sur la surface d'une bande brute de coulée continue de façon à améliorer son aptitude à la fabrication de corps de boîtes, et notamment à réduire le phénomène de grippage. Ce procédé de satinage-décapage génère des effluents liquides qui doivent être traités spécifiquement. La demande de brevet GB 2027743 (Swiss Aluminium Ltd.) divulgue un procédé de fabrication de bandes issues d'une coulée continue aptes à la fabrication de corps de boîtes. Ce procédé fait intervenir une étape de laminage à chaud.
Les brevets EP 0576170, EP 0576171, EP 0605947 et WO 97/1 1205 (Kaiser
Aluminum) concernent une ligne intégrée de fabrication de bandes pour corps de boîtes par coulée continue entre deux courroies (" belt casting "), laminage à chaud et laminage à froid, qui visent des bandes de faible largeur (12 inches soit environ 300 mm). Cette ligne, désignée sous le nom de " micromill " est décrite notamment dans l'article de G. F. Wyatt-Mair et D.G. Harrington : " The Aluminum Canstock Micromill Process " Light Métal Age, août 1995 , pp. 44-50. La demande de brevet WO 97/01652 (Alcoa) concerne la fabrication par coulée continue entre cylindres d'un alliage AIMnMg d'une bande d'épaisseur comprise entre 1 et 5 mm, qui est ensuite soumise à une homogénéisation et une séquence de laminage à froid avec un recuit intermédiaire de moins d'une minute, suivi d'une trempe. Cet alliage contient au minimum 0,4% de fer. La demande de brevet WO 98/01592 (Alcan International) enseigne l'élaboration d'une bande d'épaisseur inférieure ou égale à 30 mm par coulée entre courroies (procédé Hazelett), et son procédé de laminage pour obtenir des bandes aptes à la confection de corps de boîtes. La teneur en manganèse de l'alliage ne doit pas dépasser 1,2 % afin de limiter la formation de dispersoïdes qui dégradent l'anisotropie de la bande.
Dans la même lignée, la demande de brevet WO 98/01593 (Alcan International) concerne l'utilisation d'une coulée continue épaisse (supérieure à 9 mm) avec un -> alliage contenant moins de 0,9 % de manganèse pour l'élaboration de bandes aptes à la confection de corps de boîtes.
Le brevet JP 04 276 047 (Sky Aluminium) décrit un procédé d'obtention de bandes en alliage d'aluminium pour couvercles de boîtes, comportant la coulée continue d'une bande d'épaisseur inférieure à 15 mm, refroidie à plus de 50°C/s, un laminage à froid avec deux recuits intermédiaires et un recuit final. L'alliage a la composition suivante (% en poids) :
Mg : 1,2 - 3 Cu : 0,05 - 0,5 Mn : 0,5 - 2 Fe : 0,1 - 0,7
Le brevet EP 099739 (Continental) décrit un procédé de fabrication de bandes pour corps de boîtes, comportant la coulée d'une bande de moins de 25 mm d'épaisseur, un réchauffage entre 510 et 620°C, un laminage à froid avec un recuit intermédiaire, un recuit de recristallisation et un laminage à froid final.
Les brevets US 4976790, US 5104465, US 51 10545, US 5106429, US 5833775, US 5976279 (Golden Aluminum) se réfèrent à un procédé de coulée continue pour la fabrication de bandes aptes à la confection de corps de boîtes, dans lequel la bande brute de coulée est soumise d'abord à un laminage à chaud.
Le brevet US 5616190 (Pechiney Rhenalu) revendique la coulée continue d'une bande d'épaisseur inférieure ou égale à 4 mm et de composition (% en poids) : Mg : 1 - 4, Mn : 0 - 1 ,6 et pouvant contenir également du cuivre et du chrome, suivie d'une homogénéisation entre 400°C et 580°C, et de plusieurs passes de laminage à froid jusqu'à une épaisseur finale inférieure à 0,3 mm, pour obtenir une micro structure au moins partiellement recristallisée.
Poursuivant ces recherches, la demanderesse a tenté d'améliorer les propriétés des bandes obtenues par ce procédé de manière à satisfaire les exigences des fabricants de boîtes.
Au cours des années 90, le poids d'une boîte boisson en aluminium de 33 cl a diminué d'environ 13 grammes à environ 10 grammes, et l'épaisseur de la bande utilisée pour le corps d'une telle boîte est passée d'environ 330 μm à environ 275 μm. Cette évolution augmente la difficulté de proposer une bande élaborée par coulée continue qui puisse se substituer directement à une bande issue du procédé traditionnel (coulée semi-continue de plaques, laminage à chaud, puis à froid), pour donner une boîte présentant les mêmes caractéristiques. Cette tendance vers la diminution de l'épaisseur des corps de boîtes a révélé l'existence de trois principaux facteurs critiques à prendre en compte lors de leur fabrication: la pression de retournement du fond des boîtes, la résistance à la perforation de la paroi latérale des boîtes remplies, et la résistance à l'écrasement vertical des boîtes vides. Il s'y ajoute l'observation que la réduction de l'épaisseur des boîtes augmente le risque de casse lors de leur fabrication par emboutissage-étirage sur des machines et avec des cadences industrielles ; en effet, les cadences des machines d'étirage
(" bodymakers ") ont été doublées au cours de la même période des années 90.
Il existe donc un besoin pour un nouveau procédé de fabrication par coulée continue de bandes de grande largeur aptes à la fabrication industrielle de corps de boîtes boisson par emboutissage-étirage, qui présentent des propriétés au moins comparables à celles des bandes issues de la coulée semi-continue habituelle, de façon à pouvoir se substituer à celles-ci.
Objet de l'invention
L'invention a pour objet un procédé de fabrication d'une bande apte à la fabrication de corps de boîtes boisson, comportant : l'élaboration d'un alliage d'aluminium contenant (en poids) de 1,1 à 1,7% de Mg, de 1 ,2 à 1 ,6% de Mn, de 0,05 à 0,45% de Si, de 0,05 à 0,60% de Fe, jusqu'à 0,40% de Cu, jusqu'à 0,14% de Cr, jusqu'à 0,08% de Ti, autres éléments jusqu'à 0,07% chacun et 0,25% au total, reste aluminium le traitement de cet alliage liquide par injection de gaz (préférentiellement d'argon), - la coulée entre cylindres d'une bande d'épaisseur inférieure à 5 mm et préférentiellement inférieure à 4 mm. au cours de laquelle un poteyage est appliqué sur les cylindres, l'homogénéisation de la bande entre 450 et 530°C pour une durée comprise entre 2 et 20 heures, - le laminage à froid de la bande en plusieurs passes, un recuit intermédiaire entre 300 et 400°C pendant 1 à 12 heures, le laminage à froid en une ou plusieurs passes jusqu'à l'épaisseur finale. L'étape d'homogénéisation peut se situer avant la première étape de laminage à froid, ou entre deux passes de cette étape.
Description de l'invention
La présente invention est basée sur la combinaison, pour obtenir des bandes de grande largeur aptes à la fabrication industrielle de corps de boîtes-boisson, d'un domaine particulier de composition d'alliage AIMnMg, d'une coulée continue en bande mince et d'une gamme de transformation particulière de la bande. La composition comporte des teneurs en manganèse et magnésium supérieures à celles de l'alliage 3104 habituellement utilisé pour la fabrication de corps de boîtes à partir de bandes élaborées de manière classique par coulée de plaques, laminage à chaud et à froid. La teneur en manganèse est comprise entre 1,2 et 1,6%, et de préférence entre 1,2 et 1,4%. Au dessus d'une teneur de l'ordre de 1,6%, la demanderesse a observé la formation de phases primaires grossières qu'il convient d'éviter en coulée continue de bandes minces entre cylindres. Au dessous de 1,2% de manganèse, les caractéristiques mécaniques de la bande deviennent insuffisantes pour l'application visée. La teneur en magnésium est comprise entre 1,1 et 1,7%, et de préférence entre 1,3 et 1,5%. Lorsque cette teneur dépasse 1,7%, on risque l'apparition de défauts liés à la ségrégation de surface. Au dessous de 1,1% de magnésium, les caractéristiques de la bande deviennent insuffisantes. Le rapport des teneurs Mg/Mn se situe, de préférence, entre 1,05 et 1,15. Un domaine préférentiel de composition est le suivant (% en poids) : Mn : 1,2 - 1,4 Mg : 1,3 - 1,5 Si : 0,10 - 0,30 Fe : 0,20 - 0,40 Cu : 0,10 - 0,35 Cr : 0,04 - 0,12 Ti < 0,07
Le métal doit présenter une propreté métallurgique élevée, et il est indispensable de procéder à un traitement de dégazage par injection d'un gaz neutre, généralement de l'argon, dans une poche de traitement comportant une injection de gaz et un rotor, un diffuseur statique de bulles ou un moyen équivalent. Ce traitement a pour but notamment d'éliminer l'hydrogène du métal liquide, pour éviter la formation de porosités lors de la solidification. Il est recommandé ensuite de procéder à une filtration du métal en utilisant les techniques connues de l'homme de métier, par exemple la filtration en lit profond (deep bed filter).
La coulée continue entre cylindres refroidis se fait de préférence à une vitesse supérieure à 2 m/ran, et plus préférentiellement à 3 m/mn. L'effort de serrage est compris de préférence entre 0,5 et 1,2 tonnes par mm de largeur de bande. La bande coulée a une largeur supérieure à 1600 mm et une épaisseur inférieure à 5 mm, et de préférence à 4 mm. Un poteyage, le plus souvent à base d'un produit carboné, par exemple une suspension contenant entre 0,2 et 10% de graphite, est appliqué sur les cylindres, pour éviter le collage de la bande sur les cylindres et optimiser l'échange thermique entre les cylindres refroidis et le métal en cours de solidification.
La bande coulée est ensuite homogénéisée à une température de métal comprise entre 450 et 530°C pour une durée comprise entre 2 et 20 h. Avec une bande homogénéisée au dessous de 450°C, la demanderesse a constaté l'apparition de grippage (« galling ») lors de l'étirage des corps de boites. Si l'homogénéisation se fait au dessus de 530°C, on risque une suroxydation de la surface de la bande qui la rend impropre à l'application visée. L'homogénéisation peut être précédée d'une passe de laminage à froid. Elle est suivie, dans un mode de réalisation préféré de l'invention, d'un décapage chimique de la bande, par exemple par un acide ou une base. La bande est ensuite laminée à froid, recuite à une température comprise entre 300 et 400°C pour améliorer l'anisotropie. Un recuit à plus de 400°C conduit à l'oxydation des résidus d'huiles (« cracking »), tandis qu'un recuit au-dessous de 300°C ne permet pas d'obtenir une recristallisation suffisante du métal. Elle est enfin laminée, de préférence en une seule passe sur une seule cage de laminoir, à l'épaisseur finale, qui se situe généralement un peu au dessous de 0,280 mm.
Dans un mode de réalisation préféré de l'invention, les cylindres de la machine de coulée sont brossés pour la coulée. La demanderesse a observé en effet que le brossage des cylindres lors de la coulée diminue la fréquence d'apparition des défauts d'arrachement (« tear-off ») à l'étirage des corps de boîtes. D'autre part, le brossage contribue à améliorer une caractéristique des boîtes boisson qui devient essentielle dès lors que l'épaisseur de la paroi latérale de la boîte diminue, à savoir la résistance de la paroi latérale à la perforation. Il est connu de l'homme du métier qu'il existe plusieurs paramètres susceptibles de limiter la tendance vers la diminution de l'épaisseur d'un corps de boîte boisson, en particulier la pression de retournement du fond et la résistance de la paroi latérale à la perforation. La pression de retournement dépend à la fois des caractéristiques mécaniques de la bande et de la conception du fond. La résistance de la paroi latérale à la perforation (en anglais
" sidewall abuse résistance ", abrégé par les initiales SWAR), est un paramètre plus complexe qui cherche à reproduire une exigence pratique des utilisateurs des boîtes qui doivent résister au mieux au percement accidentel. Cette problématique est bien exposée dans la demande de brevet japonais n° 08-199273, déposée en 1995 par Kobe Steel. Lors des recherches qui ont conduit à la présente invention, la demanderesse a mis en évidence que le paramètre SWAR dépend, pour les corps de boîtes fabriqués à partir de bandes issues de coulée continue entre cylindres, de la conjonction de plusieurs facteurs, notamment l'épaisseur de coulée, la vitesse de coulée, la pression métallostatique du métal liquide, l'état de surface et le poteyage des cylindres de coulée, et l'effort de serrage au cours de la coulée. Bien que l'influence et le mécanisme d'action de chacun de ces facteurs ne puissent être isolés, la demanderesse a identifié, pour ces différents facteurs, des domaines de fonctionnement conduisant ensemble à une bande apte à la fabrication industrielle de corps de boîtes par emboutissage-étirage, avec une résistance améliorée à la perforation latérale.
La caractérisation de la résistance de la paroi latérale à la perforation a été effectuée sur des corps de boîtes détourés non revêtus de vernis de la façon suivante : on repère deux points environ à mi-hauteur du corps de boîte, et alignés parallèlement au sens de laminage, on mesure l'épaisseur aux deux points et on sélectionne le point qui correspond le mieux à la valeur moyenne obtenue pour le lot de fabrication.
On pose la boîte à l'horizontale sur un support qui épouse sa courbure et qui est équipé d'un dispositif d'étanchéité comprenant un couvercle, équipé d'un joint d'étanchéité, et un dispositif de mise sous pression équipé d'un manomètre. On gonfle la boîte à une pression d'azote de 0,414 MPa. A l'aide d'une machine à traction avec capteur de déplacement et capteur de force, pilotée par microprocesseur, on positionne un poinçon en acier STUB, dont la pointe a un rayon de courbure de 0,5 mm, sur le point sélectionné de la surface de la boîte. En enregistrant les valeurs de force (en Newton) et de déplacement vertical du poinçon (en millimètres), on fait pénétrer le poinçon avec une vitesse constante de 2 mm par minute dans le corps de la boîte, jusqu'à rupture de la paroi. Cette rupture est visualisée par un décrochement net de la courbe déplacement/force enregistrée. L'aire sous la courbe déplacement/force donne l'énergie W au moment de la rupture ; elle caractérise la résistance de la paroi latérale à la perforation et est appelée ici
" SWAR " (sidewall abuse résistance).
Le procédé selon l'invention permet d'obtenir des bandes d'épaisseur inférieure à
0.300 mm et de largeur supérieure à 1500 mm en alliage d'aluminium parfaitement adaptées à la fabrication industrielle de corps de boites par emboutissage-étirage. On obtient sur ces bandes, après un recuit de 10 mn à 204°C, destiné à simuler le traitement de cuisson du vernis qui sera appliqué sur le corps de boite, une résistance à la rupture Rm > 300 MPa. une limite d'élasticité R0.2 > 265 MPa et un allongement A > 4%. La fabrication des corps de boites par emboutissage-étirage se fait avec un taux de casse à l'étirage (« tear-off ») inférieur à 1 pour 10000, évalué sur un lot d'au moins 150000 boites, une résistance à la perforation de la paroi latérale (SWAR) supérieure à 30, voire à 35 ou 40 mJ, et une pression de retournement de fond supérieure à 0,62 MPa, voire à 0,65 MPa. Les pressions de retournement de fond obtenues sont du même ordre que celles obtenues sur des corps de boites de même géométrie, réalisés avec des bandes de même épaisseur en alliage 3104 standard issues du procédé traditionnel de coulée de plaques.
Exemples
Exemple 1
On a élaboré un alliage de la composition suivante :
Si = 0,25 ; Fe = 0,30 ; Cu = 0,20 ; Mn = 1,30 ; Mg = 1,42 , Cr = 0,08 , Ti = 0,02 Le bain liquide a été affiné avec 3 kg/t de fil en AT5B. Il a ensuite été traité, dans une poche de traitement ALPUR ™ de la société Pechiney Rhenalu, par injection d'argon ou d'un mélange argon-chlore. Ensuite, on a coulé sur une machine de type JUMBO 3CM ™ de la société Pechiney Rhenalu une bande d'une largeur de 1600 mm et d'une épaisseur de 3,7 mm, avec une vitesse de coulée de 2,1 m/min et un effort de serrage de 1,0 tonne par millimètre de largeur de bande, soit 1600 tonnes. Le niveau de métal dans le bac de coulée se situait à une hauteur comprise entre 28 et 30 mm à partir du fond du bac, et l'arc entre le métal et le cylindre de coulée était de 60 mm. Le poteyage a été effectué par projection d'une suspension de graphite
AQUAGRAPH ® à 2% de graphite. Les deux cylindres ont été brossés à l'aide d'une brosse d'un diamètre d'environ 200 mm se déplaçant le long de l'axe du cylindre sur toute sa largeur afin de répartir uniformément la suspension.
La bande brute de coulée a été homogénéisée pendant 10 heures à 500°C. Elle a ensuite été laminée à froid en 3 passes dans un laminoir tandem à 3 cages jusqu'à une épaisseur de 0.8 mm. Ensuite, un recuit intermédiaire a été effectué à 350°C pendant
4 heures. Puis la bande a été laminée en deux passes sur un laminoir monocage lubrifié au kérosène jusqu'à l'épaisseur finale de 0,275 mm. La tolérance sur cette épaisseur finale a été déterminée à ± 0.005 mm. Les caractéristiques mécaniques suivantes ont été mesurées :
Résistance à la rupture Rm = 343 MPa Limite d'élasticité à 0,2% R0,2 = 331 MPa
Allongement A = 2,5%
L'anisotropie a été mesurée par les indices de cornes So et Sx selon la norme EN
1669, avec un rayon de matrice de 2,5 mm, une force de serrage du serre-flan de 600 dN, un rapport d'emboutissage de 1,94 et un jeu entre poinçon et matrice de 61%.
Lors de l'essai d'emboutissage, le serre-flan a été libéré à une hauteur de 20 mm.. Les valeurs de So et Sx calculées selon l'annexe B de la norme EN 1669 sont respectivement de 3 et 6%.
Après un traitement thermique de 10 mn à 204°C, destiné à simuler la cuisson du vernis, les caractéristiques mécaniques deviennent :
Rm = 313 MPa R0,2 = 275 MPa A = 5,4%
A titre de comparaison, les caractéristiques mécaniques d'une bande de même épaisseur en alliage 3104 de composition :
Si = 0,22 Fe = 0,35 Cu = 0,16 Mn = 0,95 Mg = l,20 fabriquée selon la gamme traditionnelle de coulée de plaque, laminage à chaud, puis à froid, sont les suivantes : Rm = 320 MPa, R0,2 = 300 MPa, A = 4,5 % et les indices de cornes So = 4% et Sx = 6% On a mesuré, sur une moyenne de 10 échantillons de corps de boites issus de 2 bobines différentes de métal, le paramètre SWAR (en mJ) correspondant à la force F (en N) appliquée sur la paroi latérale d'épaisseur e (en μm), en parcourant une course C (en mm). Les résultats ont été comparés avec ceux obtenus sur des échantillons de corps de boites en alliage 3104 transformé selon la gamme conventionnelle. On a mesuré également, en faisant la moyenne des résultats sur des lots de 5 échantillons de corps de boites issus de 2 bobines de métal selon l'invention, et d'une bobine de 3104 conventionnel, la pression P (en MPa) de retournement de fond. Les résultats sont rassemblés au tableau 1 :
Tableau 1
On constate que le paramètre SWAR, qui représente l'énergie de résistance à la force F lors de la compression sur la course C, est nettement plus élevé sur les corps de boîtes réalisés selon l'invention que sur ceux réalisés à partir de bandes en alliage 3104 avec une gamme traditionnelle. La pression de retournement est pratiquement semblable, et reste au-dessus des spécifications des brasseurs ou producteurs de boissons gazeuses (généralement 0,62 MPa).
Exemple 2
Une bande identique à celle de l'exemple 1 et selon le même procédé a été élaborée. La seule différence était qu'après le recuit intermédiaire, la bande a été laminée en une seule passe sur un laminoir monocage jusqu'à l'épaisseur finale qui était la même que dans l'exemple 1. Toutes les caractéristiques de la bande étaient similaires à celles obtenues dans l'exemple 1. La bande s'est révélée apte à la fabrication de corps de boites par emboutissage-étirage.
Exemple 3
Une bande brute de coulée élaborée selon l'exemple 1 a été laminée en une passe sur un laminoir monocage jusqu'à une épaisseur de 2,5 mm. C'est seulement après cette passe de laminage à froid que la bande a été homogénéisée à 500°C pendant 10 heures. Ensuite, la bande a été soumise à trois passes de laminage à froid sur un laminoir tandem à trois cages jusqu'à une épaisseur de 0,6 mm. Le recuit intermédiaire a été effectué à 350°C pendant 4 heures. Puis, la bande a été laminée en deux passes sur un laminoir monocage lubrifié au kérosène jusqu'à l'épaisseur finale de 0,273 mm. La tolérance sur cette épaisseur finale a été déterminée à ± 0,005 mm. Toutes les caractéristiques de la bande étaient similaires à celles de l'exemple 1. On a mesuré sur la bande à l'épaisseur finale les caractéristiques mécaniques suivantes : Rm = 300 MPa R0;2 = 285 MPa A = 3,2%
La bande s'est révélée apte à la fabrication de corps de boites par emboutissage- étirage, et les autres propriétés étaient pratiquement identiques à celles mesurées dans l'exemple 1.
Exemple 4
Une bande laminée à froid a été élaborée comme dans l'exemple 1, sauf que le recuit intermédiaire a été effectué à l'épaisseur 0,6 mm au lieu de 0,8 mm. Les caractéristiques mécaniques de la bande à l'épaisseur finale étaient les suivantes : Rm = 310 MPa R0,2 = 290 MPa A = 3,5%
La bande s'est révélée apte à la fabrication de corps de boites par emboutissage- étirage, et les autres propriétés étaient pratiquement identiques à celles mesurées dans l'exemple 1.

Claims

Revendications
1) Procédé de fabrication d'une bande apte à la fabrication de corps de boîtes boisson par emboutissage-étirage, comportant : l'élaboration d'un alliage d'aluminium contenant (en poids) de 1 ,1 à 1 ,7 % de Mg. de 1,2 à 1 ,6 % de Mn, de 0,05 à 0,45 % de Si, de 0,05 à 0,60 % de Fe, jusqu'à 0,40 % de Cu, jusqu'à 0,14 % de Cr, jusqu'à 0,08 % de Ti, autres éléments jusqu'à 0,07 % chacun et 0,25 % au total, reste aluminium, - le traitement de cet alliage liquide par injection de gaz (préférentiellement d'argon), la coulée entre cylindres d'une bande d'épaisseur inférieure à 5 mm, et préférentiellement inférieure à 4 mm. au cours de laquelle un poteyage est appliqué sur les cylindres, - l'homogénéisation de la bande entre 450 et 530°C pour une durée comprise entre 2 et 20 heures, le laminage à froid de la bande en plusieurs passes, un recuit intermédiaire entre 300 et 400 °C pendant 1 à 12 heures, le laminage à froid en une ou plusieurs passes jusqu'à l'épaisseur finale.
2) Procédé selon la revendication 1 , caractérisé en ce que l'étape d'homogénéisation se situe entre deux passes de la première étape de laminage à froid.
3) Procédé selon l'une des revendications 1 ou 2, caractérisé en ce que le laminage après le recuit intermédiaire est effectué en une seule passe sur une seule cage de laminoir.
4) Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'épaisseur finale de la bande est inférieure à 0,280 mm.
5) Procédé selon l'une des revendications 1 à 4, caractérisé en ce que la teneur en manganèse est comprise entre 1,2 et 1,4%. 6) Procédé selon l'une des revendications 1 à 5, caractérisé en ce que la teneur en magnésium est comprise entre 1,3 et 1 ,5%.
7) Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le rapport des teneurs Mg/Mn est compris entre 1,05 et 1 ,15.
8) Procédé selon l'une des revendications 1 à 7, caractérisé en ce que Mn est compris (en poids) entre 1,2 et 1 ,4%, Mg entre 1 ,3 et 1,5%, Si entre 0,10 et 0,30%, Fe entre 0,20 et 0,40%, Cu entre 0.10 et 0,35%, Cr entre 0,04 et 0,12%, Ti inférieur à 0.07%.
9) Procédé selon l'une des revendications 1 à 8, caractérisé en ce que la bande brute de coulée a une largeur supérieure ou égale à 1600 mm.
10) Procédé selon l'une des revendications 1 à 9, caractérisé en ce que la vitesse de coulée est supérieure à 2 m/mn, et préférentiellement supérieure à 3 m/mn.
1 1) Procédé selon l'une des revendications 1 à 10, caractérisé en ce que l'effort de serrage lors de la coulée est compris entre 0,5 et 1,2 tonnes par mm de largeur de la bande.
12) Procédé selon l'une des revendications 1 à 1 1, caractérisé en ce que le poteyage est effectué avec une suspension contenant entre 0,2 et 10 % de graphite.
13) Procédé selon l'une des revendications 1 à 12, caractérisé en ce que, lors de la coulée, la surface des cylindres de coulée est brossée.
14) Procédé selon l'une des revendications 1 à 13, caractérisé en ce que la bande est soumise, après homogénéisation, à un décapage chimique par un acide ou une base. 15) Procédé selon l'une des revendications 1 à 14, caractérisé en ce que la bande, laminée à l'épaisseur finale inférieure à 0,300 mm, possède, après un recuit de 10 mn à 204°C, une résistance à la rupture Rm > 300 MPa et une limite d'élasticité Ro 2 > 265 MPa.
16) Procédé selon l'une des revendications 1 à 15, caractérisé en ce que la bande, laminée à l'épaisseur finale inférieure à 0,300 mm, possède, après un recuit de 10 mn à 204°C, un allongement à la rupture A > 4%.
17) Procédé d'élaboration de coφs de boîtes boisson par emboutissage-étirage à partir d'une bande d'épaisseur inférieure à 0,300 mm obtenue par un procédé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que le taux de casses lors de l'étirage est inférieur à 1 pour 10 000 coφs de boîtes, évalué sur un lot d'au moins 150 000 coφs de boîtes.
18) Coφs de boîte boisson élaboré avec la bande issue du procédé selon l'une quelconque des revendications 1 à 16, caractérisé en ce que la résistance de sa paroi latérale à la perforation, mesurée par le paramètre SWAR, est supérieure à 30 mJ et préférentiellement supérieure à 35 mJ.
19) Cθφs de boîte boisson selon la revendication 18, caractérisé en ce que sa pression de retournement est supérieure à 0,62 MPa.
EP01909918A 2000-03-03 2001-02-28 Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites Withdrawn EP1259654A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0002780A FR2805827B1 (fr) 2000-03-03 2000-03-03 Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites
FR0002780 2000-03-03
PCT/FR2001/000576 WO2001064965A1 (fr) 2000-03-03 2001-02-28 Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites

Publications (1)

Publication Number Publication Date
EP1259654A1 true EP1259654A1 (fr) 2002-11-27

Family

ID=8847710

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01909918A Withdrawn EP1259654A1 (fr) 2000-03-03 2001-02-28 Procede de fabrication de bandes en alliage d'aluminium aptes a la fabrication de corps de boites

Country Status (10)

Country Link
EP (1) EP1259654A1 (fr)
JP (1) JP2003525353A (fr)
KR (1) KR20020079924A (fr)
CN (1) CN1183265C (fr)
AR (1) AR027592A1 (fr)
AU (1) AU3750901A (fr)
BR (1) BR0108862A (fr)
FR (1) FR2805827B1 (fr)
NO (1) NO20024182L (fr)
WO (1) WO2001064965A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256079A1 (en) * 2001-09-25 2004-12-23 Akkurt Soner A Process of producing 5xxx series aluminum alloys with high mechanical, properties through twin-roll casting
AR032233A1 (es) 2002-01-09 2003-10-29 Maria Eugenia Barrera Un procedimiento para conformar un envase de alta resistencia, particularmente un envase para aerosoles y a un envase obtenido mediante dicho procedimiento
JP5005888B2 (ja) * 2005-03-24 2012-08-22 旭テックTdm株式会社 金属製品の生産方法
EP2034035B2 (fr) * 2006-05-18 2022-09-14 Kabushiki Kaisha Kobe Seiko Sho Procédé servant à produire une plaque d'alliage d'aluminium
JP5848694B2 (ja) * 2012-12-27 2016-01-27 株式会社神戸製鋼所 Di缶胴用アルミニウム合金板
CN103397230A (zh) * 2013-08-06 2013-11-20 温州天迪铝业有限公司 一种铝合金材料
CN106636774A (zh) * 2016-12-19 2017-05-10 苏州金威特工具有限公司 一种高硬度铝合金
CN114653904B (zh) * 2022-03-22 2024-01-12 浙江永杰铝业有限公司 铝合金带材的制备方法及铝合金带材
EP4306668A1 (fr) * 2022-07-14 2024-01-17 Elvalhalcor Hellenic Copper and Aluminium Industry S.A. Procédé de production de tôle de canette d'aluminium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3930895A (en) * 1974-04-24 1976-01-06 Amax Aluminum Company, Inc. Special magnesium-manganese aluminum alloy
JPS6274030A (ja) * 1985-09-27 1987-04-04 Showa Alum Corp アルミニウム溶湯の処理方法
FR2707669B1 (fr) * 1993-07-16 1995-08-18 Pechiney Rhenalu Procédé de fabrication d'une feuille mince apte à la confection d'éléments constitutifs de boîtes.
US5714019A (en) * 1995-06-26 1998-02-03 Aluminum Company Of America Method of making aluminum can body stock and end stock from roll cast stock
JPH10152762A (ja) * 1996-11-21 1998-06-09 Furukawa Electric Co Ltd:The Di加工性に優れるアルミニウム合金硬質板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0164965A1 *

Also Published As

Publication number Publication date
AU3750901A (en) 2001-09-12
CN1404534A (zh) 2003-03-19
FR2805827A1 (fr) 2001-09-07
CN1183265C (zh) 2005-01-05
BR0108862A (pt) 2003-04-29
FR2805827B1 (fr) 2002-04-12
NO20024182D0 (no) 2002-09-02
NO20024182L (no) 2002-09-02
WO2001064965A1 (fr) 2001-09-07
AR027592A1 (es) 2003-04-02
KR20020079924A (ko) 2002-10-19
JP2003525353A (ja) 2003-08-26

Similar Documents

Publication Publication Date Title
EP1067203B1 (fr) &#34;Procédé de fabrication de bandes en alliage fer-carbone-manganèse, et bandes ainsi produites&#34;
JP2020514556A (ja) リサイクルされたアルミニウムスクラップの鋳造
EP0983129B1 (fr) Procede de fabrication de bandes en alliages d&#39;aluminium par coulee continue mince entre cylindres
US4614224A (en) Aluminum alloy can stock process of manufacture
US20170233856A1 (en) Feedstock for metal foil product and method of making thereof
FR3005664A1 (fr) Tole en alliage d&#39;alliage pour bouteille metallique ou boitier d&#39;aerosol
EP1259654A1 (fr) Procede de fabrication de bandes en alliage d&#39;aluminium aptes a la fabrication de corps de boites
EP0660882B1 (fr) Procede de fabrication d&#39;une feuille mince apte a la confection d&#39;elements constitutifs de boites
WO2010071981A1 (fr) Tôle revêtue pour canettes
JP6898254B2 (ja) 缶ボディ用アルミニウム合金板及びその製造方法
JP3657738B2 (ja) 耳率の低いキャンボディ用アルミニウム合金板の製造方法
JP3550259B2 (ja) 高速しごき成形性の優れたdi缶胴用アルミニウム合金板およびその製造方法
EP1644545B1 (fr) Feuilles ou bandes minces en alliage al-fe-si
JP2001073058A (ja) 耐ブローアップ性に優れた缶エンド用アルミニウム合金板およびその製造方法
JP3973540B2 (ja) 耐摩耗性に優れたアルミニウム合金板材およびその製造方法
JPH06500827A (ja) アルミニウムシートの製法
JP4467443B2 (ja) アルミニウム合金板の製造方法
JP4222964B2 (ja) 自動車外板用アルミニウム合金板とその製造方法および自動車外板
JP3708616B2 (ja) 成形性に優れたDI缶胴用Ai合金板の製造方法
JP2001032057A (ja) 耐ブローアップ性に優れる缶エンド用アルミニウム合金板の製造方法
JP3836532B2 (ja) 建材及び器物用アルミニウム合金板とその製造方法
CA1195821A (fr) Tole d&#39;aluminium pour boites de conserves, et methode de fabrication
FR2853668A3 (fr) Tole fine en acier bas carbone et tres bas aluminium, notamment pour emballage, et son procede d&#39;obtention

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20050704

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NOVELIS, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051114