EP1258550B1 - Weft insertion control apparatus in jet loom - Google Patents
Weft insertion control apparatus in jet loom Download PDFInfo
- Publication number
- EP1258550B1 EP1258550B1 EP02009374A EP02009374A EP1258550B1 EP 1258550 B1 EP1258550 B1 EP 1258550B1 EP 02009374 A EP02009374 A EP 02009374A EP 02009374 A EP02009374 A EP 02009374A EP 1258550 B1 EP1258550 B1 EP 1258550B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- yarn
- weft
- route
- yarn route
- guide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003780 insertion Methods 0.000 title claims description 125
- 230000037431 insertion Effects 0.000 title claims description 125
- 238000005452 bending Methods 0.000 claims description 35
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 238000013459 approach Methods 0.000 claims description 2
- 230000006835 compression Effects 0.000 description 23
- 238000007906 compression Methods 0.000 description 23
- 238000004804 winding Methods 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D47/00—Looms in which bulk supply of weft does not pass through shed, e.g. shuttleless looms, gripper shuttle looms, dummy shuttle looms
- D03D47/34—Handling the weft between bulk storage and weft-inserting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H59/00—Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
- B65H59/10—Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
- B65H59/20—Co-operating surfaces mounted for relative movement
- B65H59/26—Co-operating surfaces mounted for relative movement and arranged to deflect material from straight path
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2701/00—Handled material; Storage means
- B65H2701/30—Handled filamentary material
- B65H2701/31—Textiles threads or artificial strands of filaments
Definitions
- the present invention relates to a weft insertion control apparatus in a jet loom for inserting weft by a fluid injecting action of a nozzle.
- Running of weft in a jet loom ends when pulling-out of the weft from a storage device of measuring weft length ends. Then, an action for preventing the weft from being pulled out at the end of the pulling-out of the weft suddenly stops the weft, which is running at a high speed, causing a tension of the weft to increase. The sudden increase of the tension may cause breakage of the weft.
- a weft insertion control apparatus is used that imparts braking to weft as weft insertion is about to end and controls the sudden increase of a tension.
- Weft insertion control apparatuses of this type are disclosed in Japanese Patent Applications Laid-open Nos. Sho 60-185844, Hei 5-98539, Hei 6-184868 and Hei 7-48760.
- a linear member which is switchingly disposed in a position where it is not brought into contact with weft and a position where it is brought into contact with the weft, is driven by a rotary actuator such as a rotary solenoid and a pulse motor.
- Braking imparted to the weft as weft insertion is about to end is caused by a bending resistance in the weft that is bent by the linear member disposed in the position where it is brought into contact with the weft.
- a tension generated when braking is imparted to weft and a tension generated at the end of pulling-out of weft from the storage device of measuring weft length can be absorbed by the torque of the actuator.
- increase of the tension at the end of pulling-out of weft, that is, at the end of weft insertion, is absorbed only by the torque of the actuator, the load becomes larger.
- the present invention has been devised in view of the above and other drawbacks, and it is an object of the present invention to provide a weft insertion control apparatus capable of controlling increase of a tension of weft while controlling a load torque.
- the present invention provides a weft insertion control apparatus comprising: yarn route changing means for changing a yarn route of weft between a first yarn route, which becomes a weft route in inserting weft between a storage device of measuring weft length and the nozzle, and a second yarn route for causing a weft insertion resistance larger than a weft insertion resistance in the first yarn route; a first yarn guide disposed on the upstream side of the yarn route changing means; and a second yarn guide disposed on the downstream side of the yarn routechangingmeans, in which the yarn route changing means comprises: first and second contacting bodies that are moved between the first yarn route and the second yarn route while contacting the weft at least on the second yarn route side; and rotary driving means for integrally moving the first and second contacting bodies by a torque, in which a position of a rotation axis of the rotary driving means is set between the pair of contacting bodies, in which a distance between the rotation axi
- a first embodiment of the present invention will be hereinafter described based on Figs. 1 to 5.
- weft Y1 is wound and stored on a yarn winding surface 112 by the rotation of a yarn winding tube 111 of a storage device of measuring weft length 11 of a winding system.
- the weft Y1 wound and stored on the yarn winding surface 112 is pulled out by a fluid injecting action of a main nozzle for weft insertion 13A in a state in which it is released from a locking action of a locking pin 121 driven by an electromagnetic solenoid 12.
- the locking pin 121 disengages from the yarn winding surface 112 based on an excitation instruction given to the electromagnetic solenoid 12 by a control device 15.
- the injection of the main nozzle for weft insertion 13A and the disengagement of the locking pin 121 are carried out at different timing or at substantially the same timing depending on a type of yarn.
- a weft unwinding detector 14 of a reflective photoelectrical sensor type is disposed in the vicinity of the yarn winding surface 112.
- the weft unwinding detector 14 detects wound yarn which is pulled out and unwound from the yarn winding surface 112 and a signal for the detection is sent to the control device 15.
- the control device 15 instructs demagnetization of the electromagnetic solenoid 12 and the locking pin 121 engages with the yarn winding surface 112.
- the locking pin 121 engages with the yarn winding surface 112, pulling-out of the weft Y1 is prevented.
- a supporting frame 16 is disposed between the storage device of measuring weft length 11 and the main nozzle for weft insertion 13A.
- the supporting frame 16 consists of a base plate portion 161 of a flat plate shape, a guide plate portion 162 that is integrally formed with the base plate portion 161 at its end portion on the storage device of measuring weft length 11 side, and a supporting block 163 that is integrally formed with the base plate portion 161 at its end portion on the main nozzle for weft insertion 13A side.
- a first yarn guide 17 of a ring shape is fastened to the guide plate portion 162.
- the guide plate portion 162 and the supporting block 163 may have structures in which separate members are attached and fixed to the base plate portion 161, respectively.
- the first yarn guide 17 is made of ceramics.
- a supporting hole 164 is recessed at the upper end of the supporting block 163 and a part of a slider 18 is slidably fitted in the supporting hole 164.
- a second yarn guide 21 of a ring shape is fastened to the slider 18.
- the second yarn guide 21 is made of ceramics.
- a spring bracket 19 is fastened to the base plate portion 161 so as to oppose the slider 18 and a compression spring 20 is disposed between the spring bracket 19 and the slider 18.
- the compression spring 20 is energized in a direction for driving the slider 18 into the supporting hole 164.
- a direction of a threading hole 171 of the first yarn guide 17 and a direction of a threading hole 211 of the second yarn guide 21 are identical.
- the threading hole 171 of the first yarn guide 17 and the threading hole 211 of the second yarn guide 21 are disposed on a substantially identical axis when viewed in the direction of the threading hole 171.
- a stepping motor 22 is attached to the back of the base plate portion 161.
- An output shaft 221 of the stepping motor 22 protrudes through the base plate portion 161 to the front side of the baseplate portion 161.
- a yarn route changing body 23 is fastened to the protruding portion of the output shaft 221.
- a yarn passage 231 of a linear shape is provided through the yarn route changing body 23.
- a first guide ring 24 of a ring shape is fitted in and fixed to one opening of the yarn passage 231.
- a second guide ring 25 of a ring shape is fitted in and fixed to the other opening of the yarn passage 231.
- the first guide ring 24 and the second guide ring 25 constitute a contacting body of the yarn route changing means of the present invention.
- the guide rings 24 and 25 are made of ceramics. Threading holes 241 and 251 of the guide rings 24 and 25 overlap the yarn passage 231 when viewed in the passage direction of the yarn passage 231.
- the yarn route changing body 23 rotates integrally with the output shaft 221 following the actuation of the stepping motor 22.
- the weft Y1 is threaded through the first yarn guide 17, the first guide ring 24, the yarn passage 231, the second guide ring 25, and the second yarn guide 21.
- the stepping motor 22 functioning as rotary driving means is subject to the control of the control device 15.
- the control device 15 controls the actuation of the stepping motor 22 basedon information on detection of a loom rotation angle obtained from a rotary encoder 26 for detecting a rotation angle of a loom.
- Figs. 1A and 1B show a state immediately before starting to insert the weft Y1.
- the yarn route changing body 23 is set in a weft inserting position where the passage direction of the yarn passage 231 is the same as the hole direction of the threading holes 171 and 211 immediately before the insertion of the weft Y1 is started.
- the threading hole 171 of the first yarn guide 17 as well as the threading hole 211 and the yarn passage 231 of the second yarn guide 21 are disposed on a substantially identical axis when viewed in the hole direction of the threading hole 211.
- the weft Y1 takes a first yarn route which becomes a weft route of a linear shape between the first yarn guide 17 and the second yarn guide 21. Moreover, it is not brought into contact with the guide rings 24 and 25.
- the yarn route changing body 23, the first guide ring 24, the second guide ring 25, and the stepping motor 22 constitute yarn route changing means for changing the yarn route of the weft Y1 between a first yarn route and a second yarn route causing a weft insertion resistance larger than a weft insertion resistance in the first yarn route.
- the second yarn guide 21 provided downstream the pair of guide rings 24 and 25 functioning as contacting bodies is a movable body that is brought into contact with the weft Y1 moving between the first yarn route and the second yarn route.
- the compression spring 20 is elastically energizing means for elastically energizing the second yarn guide 21 toward the first yarn route side from the second yarn route side.
- the spring bracket 19 is supporting means for supporting the unmovable end of the compression spring 20.
- the slider 18, the second yarn guide 21, the spring bracket 19, and the compression spring 20 constitute weft insertion resistance imparting means for imparting a weft insertion resistance, which becomes larger as the weft Y1 moves farther apart from the first yarn route, to the weft Y1 via the second yarn guide 21.
- a main nozzle for weft insertion 13B which is different from the main nozzle for weft insertion 13A, injects and inserts weft Y2, which is different from the weft Y1.
- the weft Y2 is measured by a storage device of measuring weft length similar to the storage device of measuring weft length 11.
- Yarn route changing means having the same structure as the above-mentioned yarn route changing means is disposed between this storage device of measuring weft length and the main nozzle for weft insertion 13B.
- the weft Y2 is disposed in the first and the second yarn routes described above.
- An electromagnetic solenoid in the storage device of measuring weft length corresponding to the main nozzle for weft insertion 13B and a stepping motor in the yarn route changing means corresponding to the main nozzle for weft insertion 13B are subject to the control of the control device 15.
- the main nozzles for weft insertion 13A and 13B select weft based on a weft selecting pattern set in advance and inject the weft.
- the control device 15 instructs energization of the electromagnetic solenoid 12 and the locking pin 121 disengages from the yarn winding surface 112.
- the weft Y1 which is released from the locking action of the locking pin 121 by fluid injection of the main nozzle for weft insertion 13A, is injected from the mainnozzle for weft insertion 13A.
- the control device 15 controls the actuation of the stepping motor 22 so that the yarn route changing body 23 is rotated and disposed to a weft braking position of Fig. 3 from the weft insertion position of Fig. 1A.
- the weft Y1 takes the second yarn route, in which the weft Y1 takes a bent shape between the first yarn guide 17 and the second yarn guide 21, while being brought into contact with the pair of yarn guides 17 and 21 and the pair of guide rings 24 and 25.
- a weft tension at this point moves the second yarn guide 21 and the slider 18 against a spring force of the compression spring 20.
- a rotating direction of the stepping motor 22 in moving the weft Y1 from the first yarn route to the second yarn route is a direction in which the first guide ring 24 moves from a position on the first yarn route to a side of a position in a rotation axis 222 and the second guide ring 25 moves from a position on the first yarn route to an opposite side of a position in the rotation axis 222.
- the control device 15 controls the actuation of the stepping motor 22 so that the yarn route changing body 23 is rotated and disposed in a third yarn route that is a pulling-back position of Fig.
- the first yarn route between the first yarn guide 17 and the second yarn guide 21 takes a liner shape.
- the first yarn route is perpendicular to the rotation axis 222 when viewed on a plane.
- an arrangement position of the rotation axis 22 of the stepping motor 22 functioning as rotary driving means is set below the first yarn route and between the pair of yarn guides 17 and 21.
- a distance L1 between the rotation axis 222 and the first guide ring 24 is set smaller than a distance L2 between the rotation axis 222 and the second guide ring 25.
- a distance L3 between the first yarn guide 17 and the first guide ring 24 is set smaller than a distance L4 between the second yarn guide 21 and the second guide ring 25.
- a second embodiment of the present invention will be described with reference to Figs. 6 to 10.
- the same components as those in the first embodiment are denoted by the same reference numerals.
- the output shaft 221 of the stepping motor 22 protrudes through the base plate portion 161 to the front side of the base plate portion 161.
- a yarn route changing body 23A is fastened to the protruding portion of the output shaft 221.
- a supporting cylinder 28 is disposed directly above the yarn route changing body 23A.
- the supporting cylinder 28 is fastened to the base plate portion 161.
- a part of a movable body 29 is slidably fitted into the supporting cylinder 28.
- a compression spring 30 is disposed between the movable body 29 and the bottom of the supporting cylinder 28.
- a second yarn guide 27 made of ceramics is fastened to a guide plate portion 165 of the supporting frame 16.
- the threading hole 171 of the first yarn guide 17 and the threading hole 271 of the second yarn guide 27 coincide with each other when viewed in the hole direction of the threading hole 171.
- the positional relationship among the rotation axis 222, the yarn guides 17 and 27 and the guide rings 24 and 25 is substantially the same as the relationship among the rotation axis 222, the yarn guides 17 and 21 and the guide rings 24 and 25 in the first embodiment.
- the yarn Y1 takes the first yarn route at the time of weft insertion, which takes a liner shape between the first yarn guide 17 and the second yarn guide 27. Moreover, it is not brought into contact with the guide rings 24 and 25.
- the control device 15 controls the actuation of the stepping motor 22 so that the yarn route changing body 23A is rotated to be disposed to a yarn braking position of Fig. 8 from a weft inserting position of Fig. 6A.
- the weft Y1 takes the second yarn route, in which the weft Y1 takes a bent shape between the first yarn guide 17 and the second yarn guide 27, while being brought into contact with the pair of yarn guides 17 and 27 and the pair of guide rings 24 and 25.
- a weft tension at this point moves the movable body 29 against the spring force of the compression spring 20.
- the magnitude relationship of the yarn bending angles ⁇ and ⁇ in the guide rings 24 and 25 is ⁇ > ⁇ .
- the control device 15 controls the actuation of the stepping motor 22 so that the yarn route changing body 23A is rotated and disposed of a third yarn route that is a pulling-back position of Fig. 10 from the weft braking position of Figs. 8 and 9.
- a yarn route between the first yarn guide 17 and the second yarn guide 27 in the state of Fig. 10 is brought into a state of bend larger than that in the second yarn route in the state of Fig. 8.
- weft Y1 extending from the second yarn guide 27 to the main nozzle for weft insertion 13A is pulled back to the storage device of measuring weft length 11 side and the tip of the weft Y1 on standby for insertion is pulled into the main nozzle for weft insertion 13A.
- the yarn route changing body 23A, the pair of guide rings 24 and 25 and the stepping motor 22 constitute yarn route changing means.
- the compression spring 30 is elastically energizing means for elastically energizing the movable body 29 toward the first yarn route side from the second yarn route side.
- the supporting cylinder 28 is a supporting means for supporting unmovable end of the compression spring 30.
- the movable body 29, the supporting cylinder 28 and the compression spring 30 constitute weft insertion resistance imparting means for imparting a weft insertion resistance, which becomes larger as the weft Y1 moves farther apart from the first yarn route, to the weft Y1 via the movable body 29.
- a leaf spring 31 is fastened to the upper end of the yarn route changing body 23.
- the leaf spring 31 extends to the front of the second guide ring 25 along the passage direction of the yarn passage 231.
- Amovable guide 32 of a ring shape is fastened to the end portion of the leaf spring 31.
- the movable guide 32 is made of ceramics.
- the positional relationship among the rotation axis 222, the yarn guides 17 and 27, the guide ring 24 and the movable guide 32 is substantially the same as the relationship among the rotation axis 222, the yarn guides 17 and 21 and the guide rings 24 and 25 in the first embodiment.
- the yarn Y1 takes the first yarn route at the time of weft insertion, which takes a liner shape between the first yarn guide 17 and the second yarn guide 27. Moreover, it is not brought into contact with the guide rings 24 and 25.
- Figs. 11A and 11B shows a state immediately before starting the weft insertion.
- the yarn route changing body 23 is set in a weft inserting position where the passage direction of the yarn passage 231 is the same as the hole direction of the threading hole 171 of the yarn guide 17.
- the threading hole 171 of the first yarn guide 17, the threading hole 271 of the second yarn guide 27, the yarn passage 231 and the threading hole 321 of the movable guide 32 overlap with each other when viewed in the hole direction of the threading holes 171 and 271 of the yarn guides 17 and 27.
- the weft Y1 takes a first yarn route that becomes a weft route of a linear shape between the first yarn guide 17 and the second yarn guide 27. Moreover, it is not brought into contact with the guide rings 24 and 25 and the movable guide 32.
- the control device 15 controls the actuation of the stepping motor 22 so that the yarn route changing body 23 is rotated to be disposed of a second yarn route that is a yarn braking position of Fig. 13 from a first yarn route of Fig. 11A.
- the weft Y1 takes a bent shape between the first yarn guide 17 and the second yarn guide 27 while being brought into contact with the yarn guides 17 and 27, the guide rings 24 and 25 and the movable guide 32.
- the leaf spring 31 at this point is distorted by a weft tension.
- the magnitude relationship of the yarn bending angles ⁇ and ⁇ in the guide ring 24 and the movable guide 32 is ⁇ > ⁇ .
- the yarn route changing body 23, the guide rings 24 and 25, the movable guide 32 and the stepping motor 22 constitute yarn route changing means for changing the yarn route of the weft Y1 between the first yarn route and the second yarn route.
- the movable guide 32 is a movable body that moves between the first and the second yarn routes and is brought into contact with the weft Y1.
- the guide ring 24 and the movable guide 32 become movable bodies that are moved between the first and the second yarn routes while being brought into contact with the weft Y1 at least on the second yarn route side.
- the leaf spring 31 is elastically energizing means for elastically energizing the second yarn guide 27 toward the second yarn route side from the first yarn route side.
- the yarn route changing body 23 is supporting means for supporting the unmovable end of the leaf spring 31.
- the yarn route changing body 23, the leaf spring 31 and the movable guide 32 constitute weft insertion resistance imparting means for imparting a weft insertion resistance, which becomes larger as the weft Y1 is further displaced from the first yarn route, to the weft Y1 via the second yarn guide 27.
- weft Y1 extending from the second yarn guide 27 to the main nozzle for weft insertion 13A is pulled back to the storage device of measuring weft length 11 side and the tip of the weft Y1 on standby for insertion is pulled into the main nozzle for weft insertion 13A.
- the spring force of the leaf spring 31 plays the same role as the compression spring 20 in the first embodiment and the compression spring 30 in the second embodiment.
- the same effects as those in the first embodiment are realized.
- an inserting groove 232 is formed in the yarn route changing body 23 and the leaf spring 31 is inserted and supported in the inserting groove 232.
- a screw 33 is screwed into the yarn route changing body 23.
- the tip of the screw 33 is made to abut the base end portion of the leaf spring 31, which is fixed to the yarn route changing body 23 in the inserting groove 232 by tightening the screw 33.
- the position of the leaf spring 31 in the inserting groove 232 can be adjusted in the state in which the screw 33 is loosened.
- the length of the part of the leaf spring 31 extending from the tip of the yarn route changing body 23 is adjusted by this adjustment, whereby the spring force of the leaf spring 31 is also adjusted.
- the adjustment of the spring force of the leaf spring 31 can be performed easily and meticulously and the effect described in the section (1-12) of the first embodiment is further improved.
- a guide pipe 34 made of ceramics is attached to the yarn route changing body 23.
- the guide pipe 34 functions as both the first contacting body and the second contacting body.
- the positional relationship among the rotation axis 222, the yarn guides 17 and 27 and the guide pipe 34 is substantially the same as the relationship among the rotation axis 222, the yarn guides 17 and 21 and the guide rings 24 and 25 in the first embodiment.
- the magnitude relationship of the yarn bending angles ⁇ and ⁇ in the guide pipe 34 is ⁇ > ⁇ .
- a sixth embodiment of the present invention shown in Figs. 18A and 18B applies the first embodiment to a weft insertion control apparatus with one main nozzle for weft insertion 13.
- the other components and operations and effects are identical with those in the first embodiment.
- a seventh embodiment of the present invention shown in Figs. 19A and 19B will be described.
- the same components as those in the second embodiment are denoted by the same reference numerals.
- a pair of contacting bodies 37 and 38 of a rod shape are vertically provided in a yarn route changing body 36 fastened to the output shaft 221 of the stepping motor 22.
- the pair of contacting bodies 37 and 38 are dislocated from each other in the vertical direction.
- weft Y passes through the first yarn route of a linear shape between the yarn guides 17 and 21, and the weft Y and the contacting bodies 37 and 38 are never brought into contact with each other.
- the weft Y takes the second yarn route of a bent shape in which the weft Y is brought into contact with the contacting bodies 37 and 38.
- the spring force of the compression springs 20 and 30 can be adjusted in the first, the second, the sixth and the seventh embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Looms (AREA)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001141576A JP2002339193A (ja) | 2001-05-11 | 2001-05-11 | ジェットルームにおける緯入れ制御装置 |
JP2001141576 | 2001-05-11 | ||
JP2002015613A JP3760866B2 (ja) | 2002-01-24 | 2002-01-24 | ジェットルームにおける緯入れ制御装置 |
JP2002015613 | 2002-01-24 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1258550A2 EP1258550A2 (en) | 2002-11-20 |
EP1258550A3 EP1258550A3 (en) | 2003-02-05 |
EP1258550B1 true EP1258550B1 (en) | 2006-07-12 |
Family
ID=26614970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02009374A Expired - Lifetime EP1258550B1 (en) | 2001-05-11 | 2002-05-06 | Weft insertion control apparatus in jet loom |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1258550B1 (ko) |
KR (1) | KR100482533B1 (ko) |
CN (1) | CN1225577C (ko) |
TW (1) | TW565637B (ko) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4003710B2 (ja) * | 2003-07-23 | 2007-11-07 | 株式会社豊田自動織機 | ジェットルームにおける緯入れ制御装置 |
DE10361244A1 (de) * | 2003-12-22 | 2005-07-21 | Picanol N.V. | Vorrichtung zum Aufnehmen eines Abschnittes eines Schussfadens |
ITTO20050781A1 (it) * | 2005-11-04 | 2007-05-05 | L G L Elecrtronics S P A | Dispositivo di frenatura a recupero di trama per linee di tessitura |
JP5150320B2 (ja) * | 2008-03-18 | 2013-02-20 | 株式会社豊田自動織機 | ジェットルームにおける緯入れ制御装置 |
ITTO20120156A1 (it) * | 2012-02-22 | 2013-08-23 | Lgl Electronics Spa | Apparato di alimentazione di filato a tensione controllata per macchine tessili, con funzione di recupero del filato. |
KR101534201B1 (ko) * | 2014-08-22 | 2015-07-06 | 주식회사 남아 | 워터제트직기의 위사 텐션 감소 장치 |
CN105177831A (zh) * | 2015-09-28 | 2015-12-23 | 嵊州市中森电子有限公司 | 一种带有张力调节装置的储纬器 |
CN105332149B (zh) * | 2015-10-21 | 2018-05-29 | 泉州市新空间装饰工程有限公司 | 一种张力可控的储纬器 |
JP6374369B2 (ja) * | 2015-11-06 | 2018-08-15 | 株式会社豊田自動織機 | 織機における緯糸測定装置 |
CN106865352B (zh) * | 2017-03-17 | 2019-10-11 | 江苏工程职业技术学院 | 一种弹性与惯性负载相结合的纱线张力装置及控制方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2618445A (en) * | 1949-11-09 | 1952-11-18 | Josef Sailer Maschinenfabrik | Yarn brake |
JPS60185844A (ja) * | 1984-02-29 | 1985-09-21 | 半田 憲治郎 | 張力調整装置 |
BE1005173A3 (nl) * | 1991-08-13 | 1993-05-11 | Picanol Nv | Draadrem. |
DE4131652A1 (de) * | 1991-09-23 | 1993-04-01 | Iro Ab | Webmaschine und eintragbremse fuer webmaschinen |
BE1007898A3 (nl) * | 1993-12-22 | 1995-11-14 | Picanol Nv | Inrichting voor weefmachines. |
-
2002
- 2002-05-06 EP EP02009374A patent/EP1258550B1/en not_active Expired - Lifetime
- 2002-05-09 CN CNB021193185A patent/CN1225577C/zh not_active Expired - Fee Related
- 2002-05-10 KR KR10-2002-0025761A patent/KR100482533B1/ko not_active IP Right Cessation
- 2002-05-10 TW TW091109763A patent/TW565637B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1258550A2 (en) | 2002-11-20 |
CN1385568A (zh) | 2002-12-18 |
KR20020086288A (ko) | 2002-11-18 |
CN1225577C (zh) | 2005-11-02 |
TW565637B (en) | 2003-12-11 |
EP1258550A3 (en) | 2003-02-05 |
KR100482533B1 (ko) | 2005-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1258550B1 (en) | Weft insertion control apparatus in jet loom | |
EP0467059B1 (en) | Device to regulate weft yarn tension and recover the weft yarn in looms | |
US6539982B1 (en) | Loom with an insertion brake | |
US7584769B2 (en) | Method and apparatus for the insertion of a weft thread | |
JPH07502079A (ja) | 織機と織機用挿入ブレーキ | |
WO2002010493A1 (en) | Weft yarn deflection brake and method for controlling the weft insertion into a weaving machine | |
SE439391B (sv) | Fiberoptiskt kopplingsorgan | |
CN1637185B (zh) | 控制至少一根纬纱的供给张力的方法,供给纬纱的装置以及装备有这种装置的织机 | |
US7243872B2 (en) | Device for detecting and/or adjusting a tensile force in a yarn | |
CN1129466A (zh) | 喷射织机的导纬系统 | |
CN1302167C (zh) | 夹纱器 | |
US20010022201A1 (en) | Thread brake for weaving looms | |
KR100191653B1 (ko) | 실 제동장치 | |
CN1098943C (zh) | 纱线加工系统和纬纱喂给方法 | |
CN1255593C (zh) | 流体喷射织机中的纱线稳定装置 | |
CN1034594C (zh) | 喷射织机的投纬控制装置 | |
JP3760866B2 (ja) | ジェットルームにおける緯入れ制御装置 | |
JP4003710B2 (ja) | ジェットルームにおける緯入れ制御装置 | |
EP0799341B1 (en) | Electromagnetic unit to stop the weft yarn in measuring weft feeders | |
WO2010049128A1 (en) | Thread brake and method of using the thread brake | |
US5170822A (en) | Yarn storage and feed device with axially adjustable yarn stopping element | |
JP4516651B2 (ja) | エアジェットルームにおける緯糸制動装置 | |
JPS61113859A (ja) | 織機の緯糸張力検出器 | |
CN1726313A (zh) | 纱线喂纱器 | |
EP0453032A1 (en) | A method and device for (re) establishing the yarn course between a yarn source and a yarn consuming device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20020506 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AKX | Designation fees paid |
Designated state(s): BE IT NL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE IT NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20060712 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20070413 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20090517 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090516 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090428 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: K.K. *TOYOTA JIDOSHOKKI Effective date: 20100531 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20101201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101201 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100506 |