EP1240433B1 - Pompe à vide à compression sèche comportant un dispositif de ballast à gaz - Google Patents

Pompe à vide à compression sèche comportant un dispositif de ballast à gaz Download PDF

Info

Publication number
EP1240433B1
EP1240433B1 EP00951529A EP00951529A EP1240433B1 EP 1240433 B1 EP1240433 B1 EP 1240433B1 EP 00951529 A EP00951529 A EP 00951529A EP 00951529 A EP00951529 A EP 00951529A EP 1240433 B1 EP1240433 B1 EP 1240433B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
gas
pressure
ballast device
ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00951529A
Other languages
German (de)
English (en)
Other versions
EP1240433A1 (fr
Inventor
Lutz Arndt
Thomas Dreifert
Michael HÖLZEMER
Jürgen Meyer
Frank SCHÖNBORN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold Vakuum GmbH
Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold Vakuum GmbH, Leybold Vacuum GmbH filed Critical Leybold Vakuum GmbH
Publication of EP1240433A1 publication Critical patent/EP1240433A1/fr
Application granted granted Critical
Publication of EP1240433B1 publication Critical patent/EP1240433B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B25/00Multi-stage pumps
    • F04B25/005Multi-stage pumps with two cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/18Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids
    • F04B37/20Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use for specific elastic fluids for wet gases, e.g. wet air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/50Pumps with means for introducing gas under pressure for ballasting

Definitions

  • the invention relates to a dry-compressing vacuum pump with continuous or stepwise internal compression and with a gas ballast device.
  • dry-compressing vacuum pump with internal compression should be understood to mean any vacuum pump whose pump chamber or pump chambers are oil-free and in which the pump chamber volume decreases continuously or stepwise from the inlet to the outlet of the pump.
  • An example of a dry compressing vacuum pump with continuously decreasing pump head volume is a screw vacuum pump with screw flights whose pitch, depth and / or width continuously decrease from the inlet to the outlet.
  • Examples of dry-compressing vacuum pumps with gradually decreasing internal compression are multi-stage claw, roots or piston vacuum pumps in which the volume of the scoop or compression spaces decreases from stage to stage. Even with screw vacuum pumps, it is known the helical flight length so that they gradually change their properties.
  • Dry-compacting vacuum pumps are typically used in applications such as semiconductor manufacturing where toxic, very expensive or even explosive gases have to be pumped.
  • gas ballast devices in dry-compressing vacuum pumps of the type mentioned in order to avoid condensations in the outlet region.
  • the gas ballast is therefore supplied to the discharge space or pumping space sections located in the outlet area.
  • Dry-compressing vacuum pumps of the type concerned here often have pressures due to their internal compression in the outlet region, which can clearly exceed not only the suction pressure but also the atmospheric pressure. This also applies to the case of using bypass valves because these valves restrict a large gas flow due to their limited cross-sections. If a vacuum pump of the type in question was operated with open gas ballast valve in this operating phase, then gases conveyed by the pump would escape from the pump chamber into the atmosphere.
  • GB-A-13 64 854 describes the equipment of an oil-sealed vacuum pump with a check valve, as already described in the book "Modern Vacuum Practice, McGraw-Hill Book Company Europe, London, (1989), page 78 of Nigel S. Harris
  • the check valve of GB-A-13 64 854 is a spring-loaded check valve.
  • the present invention is based on the object, in a vacuum pump of the type mentioned, the gas ballast device in such a way that the risk of leakage of gases no longer exists. In addition, it should be achieved that the gas ballast operation does not additionally load the drive motor of the pump.
  • part of the gas ballast device is a check valve, it can be ensured that funded by the pump gases can not get over the gas ballast device to the outside.
  • the differential pressure valve allows the ballast gas inlet only from a certain pressure difference. By this measure it can be ensured that a Gasballasteinstory is possible only at pressures in the vacuum pump, which are below the predetermined pressure by the differential pressure valve. An unnecessary load on the pump through the introduced ballast gases can be avoided.
  • the pump 1 according to FIG. 1 comprises three stages 2, 3, 4 with the suction chamber volume decreasing from the inlet 5 to the outlet 6. Between the penultimate and the last stage an inventively designed gas ballast device 8 is connected, which in a ballast gas supply line 9 - arranged in any order - a check valve 11, a check valve 12 and a differential pressure valve 13.
  • the gas ballast operation can be switched on or off in a known manner.
  • the check valve 12 is installed so as to prevent the escape of gases, which are conveyed in the pump 1, through the conduit 9.
  • the differential pressure valve 13 causes the ballast gas enters the pump 1 with the valve 11 open only when the pressure in the ballast gas inlet falls below a predetermined pressure by the differential pressure valve.
  • FIG. 2 shows an embodiment of the gas ballast device 8, which is placed directly on the housing 15 of a vacuum pump 1. It comprises the housing 16, which is fastened by means of a screw 17 on the vacuum pump 1. The screw 17 is screwed into the conduit 18 serving to supply the ballast gas and has a shaft cavity 19 in this area on, which is connected via a lateral opening 21 with the interior 22 of the housing 16 in connection. It consists of a ball 23 (for example made of an elastomer), a seat 24 (for example made of steel) and a spring 25 which acts in the direction of the closed position.
  • a ball 23 for example made of an elastomer
  • a seat 24 for example made of steel
  • the described check valve 12 also has the function of the differential pressure valve 13.
  • the desired differential pressure can be determined by the design of the closing spring 25.
  • the interior 22 of the cylindrically shaped housing 16 has lateral openings 27.
  • a rotatable sleeve 28, which encloses the housing 16, has concentric openings 29 in the illustrated position relative to the openings 27. By rotating the sleeve 28, the opening or closing of the gas ballast supply takes place.
  • FIG. 3 shows the rotors 31, 32 of a dry-compressing vacuum pump 1 according to the screw principle. Inlet and outlet are schematically indicated by arrows 34, 35.
  • the screw threads of the rotors 31, 32 have a decreasing pitch and a decreasing width of the thread ridges. Auslassnah a gas ballast supply via the gas ballast device 8 is provided.
  • Screw vacuum pumps are advantageously operated with significant internal compression, so that there is a maximum power consumption of the drive motor at an intake pressure of about 300 mbar. At this suction pressure the supply of ballast gas is not required because the then usually high pump temperatures avoid condensation. If ballast gas were nevertheless conveyed in this operating state, this would result in additional power consumption, ie an additional engine power would have to be stored. It is therefore expedient to dimension the differential pressure valve 13 so that a gas ballast supply can be made only at a relatively high pressure difference. If, for example, the opening pressure of the differential pressure valve is 900 mbar, gas ballast could only be admitted at a pressure of approximately 100 mbar (atmospheric pressure minus 900 mbar). In this mode, the full engine power is no longer needed, so that no greater engine power must be installed for the gas ballast.
  • Figures 4 and 5 show an embodiment ( Figure 4 only partially) of a dry-compressing vacuum pump, which is designed as a multi-stage piston vacuum pump.
  • housing parts 41 and 42 are the cylindrical pump chambers 43 to 46.
  • the pistons 51 to 54 are each stepped and form eight pump chambers, which are partially connected in parallel, so that the illustrated pump has four pumping stages of decreasing volume. Its inlet is 55, its outlet 56.
  • a vacuum pump of this type is described in detail.
  • the last annular pump chamber forms the last stage of the illustrated Vacuum pump. Its inlet is 57, its outlet 58.
  • the gas ballast feed takes place in the connecting line between the outlet of the penultimate pumping stage and the inlet 57 of the last pumping stage. At this connection line the gas ballast device 8 is connected.
  • the gas ballast supply takes place via the crankshaft space 47, as is known per se from DE-A-197 09 206.
  • the inlet 57 of the last stage of the pump is connected via the line 59 with the crankshaft 47 in space. It lies in the vicinity of one end face of the crankshaft housing 48.
  • the gas ballast or purge gas inlet 8 is located in the region of the opposite side of the crankshaft housing 48. Gas flowing in via the gas inlet 8 can purge the crankshaft space 47 and / or or maintain a negative pressure therein.
  • crankcase 47 In piston vacuum pumps, it is important that the pressure in the crankcase 47 match the pressure in the pump chambers. In particular, the start of a piston vacuum pump when using AC motors having a weak starting torque is difficult when in the crankcase, a high pressure (eg atmospheric pressure) and prevails in the working spaces 43 to 46, a vacuum. This case occurs when the pump is evacuated to the recipient stopped and over the open gas ballast device 8, the crankcase 47 is flooded. However, opens the gas ballast supply only when a pressure difference is exceeded, a negative pressure can be maintained even when stopping the pump in the crankcase.
  • a high pressure eg atmospheric pressure
  • the crankcase 47 is ventilated only up to a pressure of approximately 400 mbar (atmospheric pressure minus 600 mbar).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

L'invention concerne une pompe à vide à compression sèche (1) ayant une compression intérieure continue ou étagée, et comportant un dispositif de ballast à gaz (8) pourvu d'une soupape d'arrêt (11) et en complément d'une soupape de retenue (12) empêchant la sortie des gaz hors de la pompe (1), au travers du dispositif de ballast à gaz (8).

Claims (7)

  1. Pompe à vide à compression sèche (1) comprenant une compression intérieure en continu ou étagée, un moteur de commande ainsi qu'un dispositif de ballast à gaz (8) qui comprend une vanne d'arrêt (11),
    caractérisée en ce que
    le dispositif de ballast à gaz (8) comprend en outre un clapet anti-retour (12) qui empêche la sortie vers l'extérieur des gaz de la pompe (1) par le dispositif de ballast à gaz (8),
    le dispositif de ballast à gaz (8) comprend de plus une soupape de pression différentielle (13) qui ne prend sa position ouverte que lorsque la différence entre la pression atmosphérique et la pression régnant au niveau de la soupape (13) côté pompe dépasse une valeur réglée, et
    la pression d'ouverture de la soupape de pression différentielle (13) est mesurée de telle sorte qu'une alimentation de ballast à gaz n'est possible que dans un état de fonctionnement de la pompe à vide (1) où la puissance totale du moteur de commande n'est pas nécessaire.
  2. Pompe à vide selon la revendication 1,
    caractérisée en ce qu'il s'agit d'une pompe à vide à vis.
  3. Pompe à vide selon la revendication 2,
    caractérisée en ce que la soupape de pression différentielle (13) est réalisée de telle sorte qu'elle s'ouvre dans le cas d'une différence de pression de 800 à 1 000 mbar, de préférence environ à 900 mbar.
  4. Pompe à vide selon la revendication 1,
    caractérisée en ce qu'il s'agit d'une pompe à vide à pistons à plusieurs étages.
  5. Pompe à vide selon la revendication 4,
    caractérisée en ce qu'une chambre de vilebrequin commune (47) est associée aux pistons et l'alimentation de ballast à gaz s'effectue par la chambre de vilebrequin (47).
  6. Pompe à vide selon la revendication 4 ou 5,
    caractérisée en ce que le dispositif de ballast à gaz (8) est raccordé à une conduite qui relie la sortie de l'avant-dernier étage à l'entrée (57) du dernier étage.
  7. Pompe à vide selon l'une quelconque des revendications des 4 à 6,
    caractérisée en ce que la soupape de pression différentielle (13) est réalisée de telle sorte qu'elle s'ouvre dans le cas d'une différence de pression de 500 à 1 000 mbar, de préférence de 800 mbar.
EP00951529A 1999-12-22 2000-08-23 Pompe à vide à compression sèche comportant un dispositif de ballast à gaz Expired - Lifetime EP1240433B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19962445 1999-12-22
DE19962445A DE19962445A1 (de) 1999-12-22 1999-12-22 Trockenverdichtende Vakuumpumpe mit Gasballasteinrichtung
PCT/EP2000/008201 WO2001046592A1 (fr) 1999-12-22 2000-08-23 Pompe a vide a compression seche comportant un dispositif de ballast a gaz

Publications (2)

Publication Number Publication Date
EP1240433A1 EP1240433A1 (fr) 2002-09-18
EP1240433B1 true EP1240433B1 (fr) 2006-07-19

Family

ID=7934119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00951529A Expired - Lifetime EP1240433B1 (fr) 1999-12-22 2000-08-23 Pompe à vide à compression sèche comportant un dispositif de ballast à gaz

Country Status (7)

Country Link
US (1) US6776588B1 (fr)
EP (1) EP1240433B1 (fr)
JP (1) JP2003518228A (fr)
AU (1) AU6443100A (fr)
DE (2) DE19962445A1 (fr)
TW (1) TW482875B (fr)
WO (1) WO2001046592A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304115A (ja) * 2000-04-26 2001-10-31 Toyota Industries Corp 真空ポンプにおけるガス供給装置
DE10212940A1 (de) * 2002-03-22 2003-10-02 Leybold Vakuum Gmbh Exzenterpumpe und Verfahren zum Betrieb dieser Pumpe
AU2003269250A1 (en) * 2002-10-14 2004-05-04 The Boc Group Plc Rotary piston vacuum pump with washing installation
DE102004059486A1 (de) * 2004-12-10 2006-06-22 Leybold Vacuum Gmbh Vakuum-Anlage
DE102004063058A1 (de) * 2004-12-22 2006-07-13 Leybold Vacuum Gmbh Verfahren zum Reinigen einer Vakuum-Schraubenpumpe
DE102006011577A1 (de) * 2006-03-10 2007-09-13 Linde Ag Verdichteranlage mit einem Pufferbehälter
JP2008088912A (ja) * 2006-10-03 2008-04-17 Tohoku Univ メカニカルポンプおよびその製造方法
DE102007011589A1 (de) * 2007-03-08 2008-09-11 Schott Ag Fördereinrichtung für Precursor
DE102007043350B3 (de) 2007-09-12 2009-05-28 Oerlikon Leybold Vacuum Gmbh Vakuumpumpe sowie Verfahren zur Steuerung einer Gasballastzufuhr zu einer Vakuumpumpe
JP5680972B2 (ja) * 2008-03-10 2015-03-04 ブルクハルト コンプレッション アーゲー 天然ガス燃料の供給装置および方法
WO2011146231A1 (fr) * 2010-05-21 2011-11-24 Exxonmobil Upstream Research Company Appareil compresseur dynamique, parallèle et procédés associés
EP3045724A1 (fr) * 2015-01-13 2016-07-20 Neoceram S.A. Pompe en céramique et carter correspondant
DE202016007609U1 (de) * 2016-12-15 2018-03-26 Leybold Gmbh Vakuumpumpsystem
GB2572958C (en) * 2018-04-16 2021-06-23 Edwards Ltd A multi-stage vacuum pump and a method of differentially pumping multiple vacuum chambers
CN111500309A (zh) * 2020-04-27 2020-08-07 中山凯旋真空科技股份有限公司 干式真空泵及原油真空闪蒸处理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116872A (en) * 1959-05-18 1964-01-07 Bendix Balzers Vacuum Inc Gas ballast pumps
GB1248031A (en) 1967-09-21 1971-09-29 Edwards High Vacuum Int Ltd Two-stage rotary vacuum pumps
US3470706A (en) * 1967-10-16 1969-10-07 Mitchell Co John E Machine for making carbonated desserts
GB1364854A (en) * 1971-08-23 1974-08-29 Cenco Inc Vacuum pump
DD143172A1 (de) * 1979-05-17 1980-08-06 Rainer Moeller Verfahren zum abpumpen von hochreaktiven oder toxischen gasen oder daempfen mittels drehschiebervakuumpumpen
US4236876A (en) * 1979-07-30 1980-12-02 Carrier Corporation Multiple compressor system
DE3710782A1 (de) * 1987-03-31 1988-10-20 Vacuubrand Gmbh & Co Verfahren und vorrichtung zum abpumpen von daempfen und/oder dampfhaltigen gemischen und/oder gas-dampf-gemischen oder dgl. medien
JPH01216082A (ja) * 1988-02-25 1989-08-30 Hitachi Ltd 真空ポンプ
EP0401399B1 (fr) * 1989-06-06 1994-03-02 Leybold Aktiengesellschaft Pompe à vide élevé à deux ou plusieurs étages
JPH04121468A (ja) * 1990-09-12 1992-04-22 Hitachi Ltd 真空排気装置
DE4136950A1 (de) * 1991-11-11 1993-05-13 Pfeiffer Vakuumtechnik Mehrstufiges vakuumpumpsystem
US5209653A (en) * 1992-01-17 1993-05-11 Spx Corporation Vacuum pump
GB9223804D0 (en) * 1992-11-13 1993-01-06 Boc Group Plc Improvements in vacuum pumps
JPH076962A (ja) * 1993-06-17 1995-01-10 Fujitsu Ltd ガス圧制御方法およびガス圧制御装置
DE4325281A1 (de) * 1993-07-28 1995-02-02 Leybold Ag Vakuumpumpe mit einer Gasballasteinrichtung
DE4327583A1 (de) * 1993-08-17 1995-02-23 Leybold Ag Vakuumpumpe mit Ölabscheider
DE19524609A1 (de) * 1995-07-06 1997-01-09 Leybold Ag Vorrichtung zum raschen Evakuieren einer Vakuumkammer
DE19634519A1 (de) 1996-08-27 1998-03-05 Leybold Vakuum Gmbh Kolbenvakuumpumpe mit Eintritt und Austritt
DE19704234B4 (de) * 1997-02-05 2006-05-11 Pfeiffer Vacuum Gmbh Verfahren und Vorrichtung zur Regelung des Saugvermögens von Vakuumpumpen
DE19709206A1 (de) * 1997-03-06 1998-09-10 Leybold Vakuum Gmbh Vakuumpumpe

Also Published As

Publication number Publication date
AU6443100A (en) 2001-07-03
EP1240433A1 (fr) 2002-09-18
JP2003518228A (ja) 2003-06-03
TW482875B (en) 2002-04-11
DE19962445A1 (de) 2001-06-28
DE50013201D1 (de) 2006-08-31
US6776588B1 (en) 2004-08-17
WO2001046592A1 (fr) 2001-06-28

Similar Documents

Publication Publication Date Title
EP1240433B1 (fr) Pompe à vide à compression sèche comportant un dispositif de ballast à gaz
DE60221316T2 (de) Diagnosesystem für hermetische Spiralverdichter
DE69924892T2 (de) Spiralverdichter mit Auslassventil
DE602004002054T2 (de) Spiralverdichter mit Auslassventil
DE2708900A1 (de) Regelsystem fuer schraubenverdichter
DE4227332C2 (de) Schraubenverdichter
DE3935571A1 (de) Klimaanlage
DE3137918A1 (de) Leistungssteuerung fuer einen kompressor
EP1650434B2 (fr) Compresseur à pistons multi-étages ayant un gain en puissance réduit à vide
EP3280915A1 (fr) Système de pompes à vide
DE102016110273A1 (de) Vakuum Pumpensystem mit Leichtgas Pumpen und einer Leckage Detektion Vorrichtung, aufweisend dieselbe
DE60307662T2 (de) Kompressor mit leistungsregelung
DE102012002672A1 (de) Registerpumpe
DE112017003912B4 (de) Spiralverdichter
EP2806165B1 (fr) Compresseur à spirale et installation de climatisation de véhicule à CO2 dotée d'un compresseur à spirale
DE7527262U (de) Rotationsverdichter
DE102005040921B4 (de) Trockenlaufender Schraubenverdichter mit pneumatisch gesteuertem Entlüftungsventil
DE102009053133A1 (de) Kolbenverdichter mit Leerlaufventil
DE102017125968A1 (de) Spiralverdichter mit optimiertem Anpressdruck
DE102014008288A1 (de) Spindelverdichter für Kompressionskältemaschinen
DE102017102645B4 (de) Kältemittel-Scrollverdichter für die Verwendung innerhalb einer Wärmepumpe
DE3834278A1 (de) Klimaanlage mit einem verdichter mit variabler kapazitaet
DE112016001228T5 (de) Spiralverdichter
EP2499366A1 (fr) Compresseur de climatisation pour un véhicule et véhicule
DE3828558A1 (de) Fluegelverdichter mit variabler kapazitaet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020504

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH CY DE FR GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

17Q First examination report despatched

Effective date: 20050419

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 37/14 20060101ALI20060217BHEP

Ipc: F04C 25/02 20060101AFI20060217BHEP

Ipc: F04C 25/00 20060101ALI20060217BHEP

Ipc: F04B 37/20 20060101ALI20060217BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50013201

Country of ref document: DE

Date of ref document: 20060831

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060928

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090827

Year of fee payment: 10

Ref country code: DE

Payment date: 20090821

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090821

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100823

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013201

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090914

Year of fee payment: 10