EP1234670B1 - Tête d'impression et imprimante à électrodes de déflexion améliorées - Google Patents

Tête d'impression et imprimante à électrodes de déflexion améliorées Download PDF

Info

Publication number
EP1234670B1
EP1234670B1 EP02290450A EP02290450A EP1234670B1 EP 1234670 B1 EP1234670 B1 EP 1234670B1 EP 02290450 A EP02290450 A EP 02290450A EP 02290450 A EP02290450 A EP 02290450A EP 1234670 B1 EP1234670 B1 EP 1234670B1
Authority
EP
European Patent Office
Prior art keywords
drops
electrode
electrodes
jet
printing head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290450A
Other languages
German (de)
English (en)
Other versions
EP1234670A2 (fr
EP1234670A3 (fr
Inventor
Paul Bayeux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Markem Imaje SAS
Original Assignee
Imaje SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imaje SA filed Critical Imaje SA
Publication of EP1234670A2 publication Critical patent/EP1234670A2/fr
Publication of EP1234670A3 publication Critical patent/EP1234670A3/fr
Application granted granted Critical
Publication of EP1234670B1 publication Critical patent/EP1234670B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/07Ink jet characterised by jet control
    • B41J2/075Ink jet characterised by jet control for many-valued deflection
    • B41J2/08Ink jet characterised by jet control for many-valued deflection charge-control type
    • B41J2/09Deflection means

Definitions

  • the present invention is in the field of printer printheads. It relates more particularly to improving electrostatic deflection electrodes of electrically charged ink drops. It also relates to an inkjet printer equipped with this improved head.
  • Inkjet printers are classified into two major technological families, the first consisting of "drop-on-demand” printers and a second consisting of continuous jet printers:
  • Drop-on-demand printers are basically desktop printers, designed to print text and graphic patterns in black or color.
  • the "drop-on-demand" printers generate directly and only the ink drops actually needed to print the desired patterns.
  • the printhead of these printers has a plurality of ink ejection nozzles, usually aligned along a nozzle alignment axis and each addressing a single point of the media. printing. When the ejection nozzles are sufficient, the printing is obtained by simply moving the print medium under the head, perpendicular to the axis of alignment of the nozzles. Otherwise, additional scanning of the media relative to the print head is required.
  • Continuous ink jet printers are generally used for industrial marking and coding applications.
  • the typical operation of a continuous jet printer can be described as follows. Electrically conductive ink maintained under pressure escapes from a calibrated nozzle thus forming an ink jet. Under the action of a periodic stimulation device, the ink jet thus formed breaks at regular time intervals at a single point in space. This forced fragmentation of the ink jet is usually induced at a so-called jet breaking point by the periodic vibrations of a piezoelectric crystal, placed in the ink upstream of the nozzle. From the breaking point, the continuous jet is transformed into a train of identical and regularly spaced ink drops.
  • a first group of electrodes called “charging electrodes” whose function is to transfer, selectively and at each drop of the drop train, a predetermined amount of electric charge.
  • the set of drops of the jet then passes through a second electrode arrangement called “deflection electrodes” forming an electric field that will change the trajectory of the charged drops.
  • the amount of charge transferred to the drops of the jet is variable and each drop records a deflection proportional to the electrical charge which has previously been attributed to it.
  • the point of the print medium reached by a drop is a function of this electric charge.
  • the non-deflated drops are collected by a gutter and recycled to an ink circuit.
  • a second variant of continuous stream jet printers known as continuous binary jet differs mainly from the previous in that a single level of deflection of the drops is created.
  • the printing of characters or patterns therefore requires the use of multi-bus print heads.
  • the nozzle spacing coincides with that of the impacts on the print media. It should be noted that in general the drops intended for printing are non-deflected drops.
  • Binary continuous jet printers are for high-speed printing applications such as addressing or customizing documents.
  • the continuous jet technique requires pressurization of the ink, thus allowing a printing distance, ie the distance between the underside of the print head and the print medium, up to 20 mm, which is ten to twenty times the print distances of drop-on-demand printers.
  • the first so-called equipotential deflection technique is the oldest. It consists in using two metal electrodes having surfaces facing one another - said active surfaces -. The train of drops passes through the space between the active surfaces. Each of the active surfaces facing the jet is brought to a constant and uniform electrical potential. Two embodiments are particularly used.
  • the first mode is illustrated on the figure 1 .
  • a printer has a reservoir 111 containing electrically conductive ink 110 which is dispensed through a distribution channel 113 to a drop generator 116.
  • the drop generator 116 forms from the pressurized ink contained in the distribution channel 113 an ink jet and splits the jet into a drop train .
  • These drops are electrically selectively charged by means of a charging electrode 120 fed by a voltage generator 121.
  • the charged drops pass through a space between two deflection electrodes 2, 3. According to their charge, they are more or less deviated.
  • the least or no deviated drops are directed towards a recuperator or an ink channel 6 while the other deviated drops are directed towards a substrate 27 carried locally by a support 13.
  • the successive drops of a burst reaching the substrate 27 may thus be deflected to an extreme low position, an extreme high position and successive intermediate positions.
  • the set of drops of the burst forms a line of width ⁇ x perpendicular to a Y direction of relative advance of the print head and the substrate.
  • the print head is formed by the ink jet drop generation and splitting means 116, the charging electrode 120, the deflection electrodes 2, 3, and the gutter 6. This head is generally enclosed. in a cowling not shown.
  • the time elapsed between the first and the last drop of a salvo is very short. As a result, despite continuous movement between the print head and the substrate, it can be considered that the substrate has not moved relative to the print head during the time of a burst.
  • the bursts are fired at intervals regular space.
  • the combination of the relative movement of the head and the substrate, and the selection of the drops of each burst which are directed towards the substrate makes it possible to print any pattern such as that represented at 28 on the figure 1 .
  • only the deflection electrodes of the drops of the train 1 of drops formed from the jet of ink leaving the nozzle are of interest.
  • the second deflection technique differs from the previous in that at least a portion of at least one of the two active surfaces forms a non-zero angle with the axis of the inkjet 1.
  • the geometry is among the most common and retains a great simplicity.
  • the plates are parallel and spaced a distance generally less than that adopted in the first embodiment.
  • the electric field prevailing in this upstream part between the two plates 2, 3 then reaches a value at least equal to that of the first mode but for a lower potential difference.
  • the solution adopted consists in inclining with respect to the axis of the jet a downstream portion 16 of this electrode 3. It is clear that in the downstream region, the value of the electric field undergoes a very large fall, is no longer optimal. which leads to a serious degradation of the deflection efficiency. Consequently.
  • the main advantage of the second variant over the first is to provide substantially equivalent performance for a lower potential difference.
  • the request for patent FR 77 33131 proposes a variant, illustrated figure 3 , in which the active surface, towards which the deflection of drops, has a double longitudinal and transverse curvature.
  • the convexity resulting from the adoption of these curvatures eliminates any sharp metal edge and thus minimize the risk of electrical breakdown.
  • the longitudinal curvature of the active face 17 of the electrode 3 also provides an improved transition between the upstream region 15 with a high electric field and the downstream region 16 with a low electric field.
  • a curved face 19 of this part is placed facing the jet 1 and constitutes the active surface of the deflection device on which the electric potential is not uniform.
  • the permitivity of the dielectric material being known - and greater than that of air - it is proposed in the document to adjust the curvature of the part 18 so as to simultaneously follow the trajectory of the most loaded drops and obtain a value Ed optimum at any point between the two active surfaces of the device.
  • the second design presented in the GB Patent 2,249,995-A recommends the use of a resistive material to form the active face of one of the two electrodes of the deflection device. It is proposed to obtain, by judiciously feeding this electrode at its two ends, a variation of the electric potential along its active surface. This non-uniformity must then generate a deflection field Ed such that its value is approximately optimal in each of the points between the two active surfaces of the device. This solution is criticized in said GB Patent 2,249,995 A highlighting the high current consumption - and therefore the significant heat generation - that would be induced by its implementation.
  • US 4338613 A shows an equipotential device in which a print head of a continuous inkjet printer is equipped with means for generating an ink jet.
  • the FR 97 06799 contains a detailed analysis and critique of previous proposals.
  • This document focuses essentially on describing a non-equipotential device free from the operating difficulties described above.
  • at least one of the two active surfaces is in the form of an insulating substrate on which is deposited, according to the height of this surface, a plurality of electrodes connected to different voltage sources.
  • a resistive coating covers the insulating substrate and the electrodes.
  • the object of the present invention is to provide an electrostatic deflection device which can be integrated in a print head of an ink jet printer, and whose efficiency equals or surpasses that of non-equipotential designs for a significantly lower cost and this by means of a deflection electrode arrangement whose active surfaces are brought to uniform electrical potentials.
  • Another object of the present invention is to provide an arrangement of deflection electrodes of reduced size and leading to a reduction in the size of a print head of a printer in which this head is incorporated.
  • Another object of the present invention is to obtain the deflection performance with a significantly reduced voltage compared to the usual equipotential deflection electrode supply voltages and thus to facilitate integration into a print head of said electrodes and a generator of said reduced voltage.
  • Yet another object of the invention is to significantly reduce the risk of accidental spraying of ink on the active surface of the deflection electrodes.
  • the invention relates to a print head of a continuous ink jet printer equipped with means for generating an ink jet along an axis of the ink jet, from at least a nozzle for ejecting the jet, and for splitting the jet into a stream of drops, means for selectively electrically charging the different drops of the drop train, and deflection electrodes of the charged drops, deviating the drops according to the value of the received charge, either to a droplet collection trough, or to a printing substrate supported locally by a substrate of the printing substrate, the deflection electrodes each having with respect to the ejection nozzle of the jet an upstream portion, and a downstream portion, an active surface of each deflection electrode being a surface of said electrode which is opposite the train of drops, print head characterized in that the deflection electrodes of droplets of the jet comprise two electrodes a first and a second, the active surface of the first electrode having a first concave longitudinal curvature whose local radius of longitudinal curvature is located in a plane
  • the function of the recess is to allow the passage of undirected or little deviated drops through the first electrode.
  • the undirected drops substantially follow a trajectory, which in first approximation can be considered straight.
  • the most upstream portion of the contour of the recess will be located in the immediate vicinity and slightly upstream of the point of intersection of the first electrode with the axis of the jet.
  • the most upstream part of the contour of the recess must therefore be located at a sufficient distance from the point of intersection of the first electrode with the axis of the jet so that an undirected drop can pass through the recess of the recess. the electrode with a near zero probability of intercepting the electrode.
  • the lightly charged and therefore slightly deviated drops have a trajectory whose curvature may be less than that of the first electrode.
  • the trajectory of the slightly deviated drops is therefore likely to be secant to the active surface of the first electrode.
  • the recess must be such that it allows the passage of these little deviated drops.
  • the possible intersection point of the trajectory of a little deflected drop and the surface of the electrode before recess is necessarily downstream of the point which has been defined above as the most upstream of the recess. We can therefore consider that the downstream part of the first electrode is a part of this electrode located downstream of the point of intersection of the electrode and the axis of the jets.
  • the shape of this recess is to have as line of symmetry a line defined by the intersection of the electrode before recess, with a plane containing the axis of the jets and the direction of deviation of the drops.
  • the recess will have an oblong shape centered on the line of symmetry defined above.
  • the width of the recess results from a compromise between two requirements, let the drops through the first electrode without risk of collision between the drop and the electrode, which requires that the recess is wide, do not decrease too much inter electrode field, which requires that the recess is narrow.
  • the diameter of the ink drops is of the order of several tens of microns, typically between 30 and 140 microns, for example 100 microns.
  • the width measured perpendicular to this line is greater than the diameter of the drops and ideally of the order of two to three times the diameter of the drops, typically 200 to 300 ⁇ m. However, to be sure to avoid collisions between drops and first electrode, it may be necessary to set a width of the order of 8 to 10 times the diameter of the drops.
  • embodiments of the invention may together or separately exhibit the following features.
  • the curvature of the second electrode is such that the active surface of this second electrode is substantially parallel to that of the first electrode so that the two active surfaces have a substantially constant spacing e between them.
  • the outline of the recess has an upstream point located in the vicinity of the intersection, before obviously, the first electrode with the axis of the ink jet.
  • the recess has a symmetry with respect to a plane containing the axis of the ink jet.
  • the recess has a width of between two and ten times the diameter of the ink drops.
  • the recess has the shape of an oblong slot whose opening opens on the most downstream part of the first electrode.
  • the spacing between the active surfaces of the two electrodes is substantially constant from the upstream to the downstream of the electrodes and between 4 and 20 times the diameter of the ink drops is approximately between 0.5 and 3 mm.
  • a downstream edge of the first electrode is closer to the print medium than a downstream surface of the recovery gutter.
  • the second electrode is provided, from its active surface, with a groove drawn along an axis contained in a plane containing the axis of the jet.
  • a bottom of the groove is connected to the active surface of the second electrode by a transversely curved surface with radii of curvature greater than the radius of the drops of ink.
  • Languages of the first electrode formed on either side of the recess and the second electrode are transversely curved along radii of curvature of greater value than the radius of the ink drops.
  • the figure 7 comprises parts A, B, C, and D.
  • Part A is a perspective view, seen from the side, of a set of two electrodes according to the invention.
  • Part B represents a section of the two electrodes along line BB of part A.
  • Part C is a perspective view of a split electrode according to the invention.
  • Part D represents a perspective view of the convex electrode for revealing a surface indentation.
  • the figures 5 are respectively a schematic view of the front and left illustrating a particular embodiment of electrostatic deflection electrodes according to the invention, implemented within a single-pass deflected continuous jet jet print head.
  • the figures 6 , parts A and B are respectively cuts made at the Z axis of the figure 5 , part A, for two embodiments. These figures are intended to explain the invention and its operation.
  • the figure 7 is it intended to show, more realistically, the shape of the electrodes in a particular embodiment. Are not represented on Figures 5 - 7 that the elements relating to the electrodes subject of the invention.
  • the other components of the print head are known to those skilled in the art and their description as illustrated in connection with the prior art, for example in relation to the figure 1 is sufficient for a good understanding of the invention.
  • a train of selectively charged drops 1 enters the space delimited by electrodes 2 and 3 between which there is a potential difference Vd supplied by a voltage generator 30.
  • the electrodes 2 and 3 are of substantially equal heights.
  • a plane tangent to the electrodes 2 and 3 respectively in their most upstream part is parallel to the axis of the jets or secants to this axis at a low angle.
  • the active surface 11 of the first electrode 2 has a concave longitudinal curvature substantially opposite that of the active surface 10 of the second electrode 3.
  • An active surface 10 of the electrode 3 has a convex longitudinal curvature such that this surface is in a downstream part, substantially parallel to a trajectory 4, shown in dashed lines, the most deviated drops. In a known manner, a trajectory can be visualized by stroboscopic illumination of the drops.
  • the spacing e is substantially constant over the entire height of the electrodes 2, 3.
  • the value of the spacing e is less than 3.5 mm, preferably less than 2 mm.
  • a recess 12 which in the example shown, has the shape of a slit 12 apparent in part B of the figure 5 and B and C of the figure 7 , is practiced in the downstream part of the electrode 2.
  • the width of the recess 12 is greater than the diameter of the ink drops. In practice, the width of the recess 12 is advantageously limited so that the drop in the Ed field value existing in the downstream part of the electrodes 2, 3 does not exceed 15% of that of the optimal field created in its part. upstream.
  • the electrodes 2 and 3 are preferably made of a stainless metal.
  • the longitudinal curvature of the electrodes is preferably constant, so that the active surfaces of the electrodes 2, 3 are formed substantially by cylindrical surface portions having an axis perpendicular to the axis of the jet.
  • the operation is as follows.
  • the electric field Ed arising from the potential difference Vd deviates the ink drops in proportion to their electric charge along predefined trajectories.
  • the trajectory 4 is that followed by the drops carrying the maximum load Qmax. It is therefore the trajectory of the most deviated drops.
  • the active surface of the second electrode 3 is calculated so that the probability of meeting the trajectory 4 with the second electrode is almost zero, although the trajectory 4 is parallel and close to the active surface of the second electrode 3 at least in a downstream part of this surface.
  • the trajectory 5 is that traveled by the drops with the minimum load Qmin to avoid the recovery gutter 6 and thus be directed to the printing substrate. Drops bearing electrical charges between the values Qmax and Qmin follow intermediate paths such as, for example, the trajectories 7 or 8.
  • the trajectory 9 corresponds to that of drops with a charge quantity less than Qmin: such drops are captured by the recovery gutter 6 and recycled to an ink circuit of the printer.
  • the slot 12 shown figure 5 part B and figure 7 part B and C is as explained above such that the least deviated drops and especially those whose load is less than Qmin pass through this slot.
  • the upstream portion 39 of the contour 38 of this slot 12 is located at a location close to the point of intersection of the axis of the jet with the first electrode 2. Because the drops whose charge is less than Qmin and the least charged drops among those whose charge is between Qmin and Qmax pass through the slot 12 of the electrode 2, the dispersion of the drops may be retained despite a spacing e between the electrodes 2 and 3 reduced compared with the electrodes of the prior art.
  • the weakness of the spacing e allows the use of a value of Vd of the order of 3 kV instead of the 8 to 10 kV usually used in equipotential electrode devices of the prior art. It is then particularly advantageous to realize the potential difference Vd by bringing the electrode 2 to the reference potential of the ink, usually the mass potential of the printer. Under these conditions, unlike the prior art or this potential is a potential opposite to that of the electrode 3, with respect to the potential of the ink, it becomes possible to bring or even integrate the recovery gutter 6 and the electrode 2 without risk of electrical breakdown between these two elements and without altering the Ed field between the two electrodes.
  • the distance d1 between the lower edge 21 of the gutter 6 and the printing medium 13 may become greater than the distance d2 separating the downstream end 22 of the electrode 2 from this same printing medium 13.
  • Parts A and B of the figure 6 and part D of the figure 7 each illustrate an advantageous embodiment of the electrodes 2 and 3.
  • Each of these modes is illustrated figure 6 by an enlarged scale cut taken approximately along the z plane defined on the figure 5 part A.
  • the shape of these curves can characterize, over their entire height or at least in a downstream part, the active faces 10 and 11.
  • transverse curvatures illustrated on the figure 6 Part A is to eliminate any edge or sharp metallic roughness likely to generate an electric discharge phenomenon that can lead to a weakening of the Ed field or electrical breakdown.
  • the transverse radius of curvature of the surface 11 of the tongues 24, 25 and of the electrode 3 is in every point greater than that of the ink drops.
  • the figure 6 part B has an electrode 2 having the same transverse curvature characteristics as the electrode 2 shown in part A.
  • the active surface 10 of the electrode 3 is also provided with a transverse curvature having the same capabilities as the electrode 3 shown in part A, to reduce the occurrence of electric discharges.
  • the electrode 3 furthermore has an indentation or longitudinal groove 14. This indentation may extend over the entire height of the surface 10 or on a downstream part only as illustrated. figure 7 parts A and D.
  • the indentation 14 is transversely opposite the recess 12 of the electrode 2.
  • the width of the indentation 14 is greater than the diameter of the ink drops but remains thin enough not to distance significantly the Ed field of its optimal value.
  • Vd the low value of Vd and the high positioning of the gutter 6 recovery allow a clear reduction in the size of the print head and the path taken by the ink drops.
  • the parasitic variations of droplet trajectories are of low amplitude, and the print quality is better.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

    Domaine technique
  • La présente invention se situe dans le domaine des têtes d'impression d'imprimante. Elle concerne plus particulièrement une amélioration d'électrodes de déflexion électrostatique de gouttes d'encre électriquement chargées. Elle concerne aussi une imprimante à jet d'encre équipée de cette tête améliorée.
  • Arrière plan technologique.
  • Les imprimantes à jet d'encre se classent en deux familles technologiques majeures, une première constituées par les imprimantes "goutte à la demande" et une seconde constituée par les imprimantes à jet continu:
  • Les imprimantes "goutte à la demande", sont essentiellement des imprimantes de bureau, prévues pour imprimer du texte et des motifs graphiques, en noir ou en couleur.
  • Les imprimantes "goutte à la demande" génèrent directement et uniquement les gouttes d'encre effectivement nécessaires à l'impression des motifs désirés. La tête d'impression de ces imprimantes comporte une pluralité de buses d'éjection de l'encre, usuellement alignées suivant un axe d'alignement des buses et adressant chacune un point unique du support d'impression. Lorsque les buses d'éjection sont en nombre suffisant, l'impression s'obtient par le simple déplacement du support d'impression sous la tête, perpendiculairement à l'axe d'alignement des buses. Dans le cas contraire, un balayage supplémentaire du support par rapport à la tête d'impression est indispensable.
  • Les imprimantes à jet d'encre continu sont généralement utilisées pour des applications industrielles de marquage et de codage.
  • Le fonctionnement typique d'une imprimante à jet continu peut être décrit comme suit. De l'encre électriquement conductrice maintenue sous pression s'échappe d'une buse calibrée formant ainsi un jet d'encre. Sous l'action d'un dispositif de stimulation périodique, le jet d'encre ainsi formé se brise à intervalles temporels réguliers en un point unique de l'espace. Cette fragmentation forcée du jet d'encre est usuellement induite en un point dit de brisure du jet par les vibrations périodiques d'un cristal piézo-électrique, placé dans l'encre en amont de la buse. A partir du point de brisure, le jet continu se transforme en un train de gouttes d'encre identiques et régulièrement espacées. Au voisinage du point de brisure est placé un premier groupe d'électrodes appelé "électrodes de charge" dont la fonction est de transférer, de manière sélective et à chaque goutte du train de gouttes, une quantité de charge électrique prédéterminée. L'ensemble des gouttes du jet traverse ensuite un second agencement d'électrodes appelé "électrodes de déflexion" formant un champ électrique qui va modifier la trajectoire des gouttes chargées.
  • Dans une première variante, d'imprimantes dites à jet continu dévié, la quantité de charge transférée aux gouttes du jet est variable et chaque goutte enregistre une déflexion proportionnelle à la charge électrique qui lui a été précédemment attribuée. Le point du support d'impression atteint par une goutte est une fonction de cette charge électrique. Les gouttes non défléchies sont récupérées par une gouttière et recyclées vers un circuit d'encre.
  • Il est également connu de l'homme du métier qu'un dispositif spécifique est requis pour assurer une constante synchronisation entre les instants de brisure du jet et l'application des signaux de charge des gouttes. Il faut noter que cette technologie, grâce à ses multiples niveaux de déflexion, permet à une buse unique d'imprimer, par segments successifs, c'est à dire par lignes de points d'une largeur donnée, l'intégralité d'un motif. Le passage d'un segment à l'autre s'effectue par un déplacement relatif continu du substrat par rapport à la tête d'impression, perpendiculairement aux dits segments. Pour les applications nécessitant une largeur d'impression légèrement plus grande que la largeur d'un segment isolé, plusieurs têtes d'impression monobuses, typiquement 2 à 8, peuvent être regroupées au sein d'un même boîtier.
  • Une seconde variante d'imprimantes à jets continu dévié dite à jet continu binaire se démarque principalement de la précédente par le fait qu'un seul niveau de déflexion des gouttes est créé. L'impression de caractères ou de motifs nécessite donc l'utilisation de têtes d'impression multibuses. L'entraxe des buses coïncide avec celui des impacts sur le support d'impression. Il faut noter qu'en général les gouttes destinées à l'impression sont les gouttes non défléchies. Les imprimantes à jet continu binaire sont destinées à des applications d'impression à haute vitesse telles que l'adressage ou la personnalisation de documents.
  • Il convient de souligner que la technique du jet continu nécessite une pressurisation de l'encre, autorisant ainsi une distance d'impression c'est à dire, la distance entre la face inférieure de la tête d'impression et le support d'impression, pouvant atteindre 20 mm, soit dix à vingt fois supérieure aux distances d'impression des imprimantes goutte à la demande.
  • L'homme du métier s'est attaché à optimiser les performances de l'agencement des électrodes de déflexion selon deux techniques.
  • Ces techniques sont illustrées de façon schématique sur les figures 1 à 4 annexées.
  • La première technique de déflexion dite équipotentielle est la plus ancienne. Elle consiste à utiliser deux électrodes métalliques ayant des surfaces en regard l'une de l'autre - dites surfaces actives -. Le train de gouttes traverse l'espace compris entre les surfaces actives. Chacune des surfaces actives, en regard du jet, est portée à un potentiel électrique constant et uniforme. Deux modes de réalisation sont particulièrement usités.
  • Le premier mode est illustré sur la figure 1.
  • Une imprimante comporte un réservoir 111 contenant de l'encre électriquement conductrice 110 qui est distribuée par un canal de distribution 113 vers un générateur de gouttes 116. Le générateur de gouttes 116 forme à partir de l'encre sous pression contenue dans le canal de distribution 113 un jet d'encre et fractionne ce jet en un train de gouttes. Ces gouttes sont électriquement chargées de façon sélective au moyen d'une électrode de charge 120 alimentée par un générateur de tension 121. Les gouttes chargées passent au travers d'un espace compris entre deux électrodes de déviation 2, 3. Selon leur charge, elles sont plus ou moins déviées. Les gouttes les moins ou non déviées sont dirigées vers un récupérateur ou une gouttière 6 d'encre tandis que les autres gouttes déviées sont dirigées vers un substrat 27 porté localement par un support 13. Les gouttes successives d'une salve atteignant le substrat 27 peuvent ainsi être déviées vers une position extrême basse, une position extrême haute et des positions intermédiaires successives. L'ensemble des gouttes de la salve forme un trait de largeur Δx perpendiculaire à une direction Y d'avancée relative de la tête d'impression et du substrat. La tête d'impression est formée par les moyens 116 de génération et de fractionnement en gouttes du jet d'encre, l'électrode de charge 120, les électrodes de déviation 2, 3, et la gouttière 6. Cette tête est en général enfermée dans un capotage non représenté. Le temps écoulé entre la première et la dernière goutte d'une salve est très court. Il en résulte que malgré un mouvement continu entre la tête d'impression et le substrat, on peut considérer que le substrat n'a pas bougé par rapport à la tête d'impression pendant le temps d'une salve. Les salves sont tirées à intervalles spatiaux réguliers. La combinaison du mouvement relatif de la tête et du substrat, et de la sélection des gouttes de chaque salve qui sont dirigées vers le substrat permet d'imprimer un motif quelconque tel que celui représenté en 28 sur la figure 1. Dans la suite de l'exposé on ne s'intéresse qu'aux électrodes de déviation des gouttes du train 1 de gouttes formé à partir du jet d'encre sortant de la buse.
  • Pour la déviation desdites gouttes, il s'agit de former par application d'une tension Vd un très fort champ électrique Ed constant entre les deux électrodes 2, 3 formées par deux plaques 2, 3 parallèles entre elles. La valeur du champ électrique Ed créé entre les surfaces actives des électrodes 2, 3 est dite optimale lorsque cette valeur est légèrement inférieure, par la soustraction d'une marge de sécurité, à celle du champ de claquage correspondant à l'espacement e entre les surfaces actives.
  • Une telle conception se caractérise par sa simplicité mais également par de nombreux inconvénients :
    • ■ une grande valeur de e, typiquement 5 mm, est indispensable pour permettre l'impression de segments de grandes largeurs aux distances d'impression usuelles. Un tel espacement implique l'utilisation d'une très haute valeur de Vd, environ 8 kV, qui ne peut être générée au sein de la tête d'impression par manque de place, nécessite une connectique élaborée et conduit généralement à porter chacune des électrodes à des potentiels de signes opposés par rapport au potentiel de référence de l'encre ;
    • ■ une telle valeur de différence de potentiel oblige également à respecter des écartements minimum avec d'autres éléments métalliques de la tête d'impression
      • par exemple : électrodes de charge, gouttière de récupération ou capotage, afin d'éviter tout claquage électrique. L'encombrement qui en résulte conduit à allonger inutilement le trajet des gouttes, et donc le temps durant lequel agissent les perturbations d'ordre aérodynamique ou électrostatique, nuisant ainsi à la précision des impacts sur le support d'impression ;
    • ■ il est connu de l'homme du métier que la valeur du champ de claquage entre deux électrodes plongées dans un milieu gazeux, tel que l'air, est une fonction décroissante de l'espacement e entre les deux électrodes. La forte valeur de e caractérisant ce premier mode de réalisation et les contraintes relatives à l'évitement de claquage limite la valeur du champ de déflexion Ed à une valeur inférieure à la valeur optimale. L'impression des segments de grandes largeurs requiert donc des plaques de déflexion de hauteur importante, typiquement 25 mm, de façon à obtenir la déflexion maximum recherchée par une action plus longue du champs électrique. Cette caractéristique contribue également à l'allongement du trajet des gouttes vers le support d'impression.
  • La seconde technique de déflexion, schématisée sur la figure 2, se distingue de la précédente par le fait qu'au moins une partie d'au moins une des deux surfaces actives forme un angle non nul avec l'axe du jet d'encre 1. La géométrie compte parmi les plus usuelles et conserve une grande simplicité. Dans une partie 15 amont d'un agencement 20 de deux électrodes 2, 3 formées par des plaques 2, 3, les plaques sont parallèles et espacées d'une distance généralement inférieure à celle adoptée dans le premier mode de réalisation. Le champ électrique régnant dans cette partie 15 amont entre les deux plaques 2, 3, atteint alors une valeur au moins égale à celle du premier mode mais pour une différence de potentiel moins élevée. Il devient ensuite nécessaire, pour permettre l'impression des segments de grandes largeurs, d'éviter aux gouttes les plus chargées, et donc les plus déviées, d'entrer en collision avec l'électrode 3 vers laquelle elles sont déviées. La solution retenue consiste à incliner par rapport à l'axe du jet une partie aval 16 de cette électrode 3. Il est clair que dans la région aval, la valeur du champ électrique subit une chute très importante, n'est plus optimale, ce qui entraîne une forte dégradation de l'efficacité de déflexion. En conséquence. Le principal avantage de la seconde variante sur la première est de fournir des performances sensiblement équivalentes pour une différence de potentiel moins élevée.
  • On peut se reporter aux demandes de brevet WO 89/03768 et WO 98/28148 afin d'obtenir des précisions complémentaires sur l'incorporation de tels dispositifs de déflexion au sein d'imprimantes à jet continu dévié ou binaire. Dans cette dernière technologie, on notera que l'une des deux électrodes de déflexion est souvent supprimée.
  • La demande de brevet FR 77 33131 propose une variante, illustrée figure 3, dans laquelle la surface active, vers laquelle est orientée la déflexion des gouttes, possède une double courbure longitudinale et transversale. La convexité résultant de l'adoption de ces courbures permet d'éliminer toute arête métallique vive et de minimiser ainsi les risques de claquage électrique. La courbure longitudinale de la face active 17 de l'électrode 3, offre également une transition améliorée entre la région amont 15 à fort champ électrique et la région aval 16 à faible champ électrique.
  • Afin de maintenir une efficacité de déflexion optimale tout au long du trajet des gouttes, une seconde voie technique dite "non-équipotentielle" a été imaginée, dans laquelle l'une au moins des deux surfaces actives 2, 3 est portée à un potentiel électrique constant mais non-uniforme. La demande de brevet GB 2 249 995 A présente, dans cet esprit, deux conceptions différentes. La première, schématisée sur la figure 4, met en oeuvre deux électrodes métalliques planes 2, 3 entre lesquelles est créée une différence de potentiel Vd. Sur l'une 3 de ces électrodes 2, 3 est rapportée une pièce 18 fabriquée dans un matériau diélectrique dont la forme s'apparente à celle d'une portion de cylindre elliptique. Une face 19 courbe de cette pièce est placée en regard du jet 1 et constitue la surface active du dispositif de déflexion sur laquelle le potentiel électrique n'est pas uniforme. La permitivité du matériau diélectrique étant connue - et supérieure à celle de l'air - il est proposé dans le document d'ajuster la courbure de la pièce 18 de manière à simultanément épouser la trajectoire des gouttes les plus chargées et obtenir une valeur optimale de Ed en tout point compris entre les deux surfaces actives du dispositif.
  • La mise en oeuvre de ce dispositif soulève des problèmes :
    • de coût : la pièce supplémentaire 18 de forme complexe et dotée d'un très bon aspect de surface est rendue nécessaire ;
    • de fabrication : en sus du respect des tolérances dimensionnelles, le report de la pièce diélectrique 18 requiert un collage résistant aux aspersions d'encre.
    • de fonctionnement : la surface active 19 de la pièce diélectrique 18 ne permet pas l'évacuation de charges électriques parasites en provenance du milieu gazeux ambiant ou de gouttelettes d'encre accidentellement projetées sur la paroi. L'accumulation de ces charges électriques conduit rapidement à une forte dégradation de la valeur du champ Ed.
  • Une variante, proposée dans le brevet US 4 845 512 A , consiste à remplacer le matériau diélectrique par un électret afin de s'affranchir du générateur de tension créant la différence de potentiel Vd. Cette conception demeure sujette aux mêmes critiques que celles précédemment exposées.
  • La seconde conception présentée dans le brevet GB 2 249 995-A préconise l'emploi d'un matériau résistif pour former la face active d'une des deux électrodes du dispositif de déflexion. Il est proposé d'obtenir, en alimentant judicieusement cette électrode en ses deux extrémités, une variation du potentiel électrique le long de sa surface active. Cette non-uniformité doit alors générer un champ de déflexion Ed tel que sa valeur soit approximativement optimale en chacun des points compris entre les deux surfaces actives du dispositif. Cette solution est critiquée dans ledit brevet GB 2 249 995 A en soulignant la forte consommation en courant - et donc l'important dégagement de chaleur - qu'induirait sa mise en oeuvre.
  • US 4338613 A montre un dispositif équipotentiel dans lequel une tête d'impression d'une imprimante à jet d'encre continu est équipée de moyens de générer un jet d'encre.
  • Le brevet FR 97 06799 renferme une analyse et une critique détaillées des propositions précédentes. Ce document s'attache essentiellement à décrire un dispositif non-équipotentiel exempt des difficultés de fonctionnement décrites ci-dessus. A cet effet, l'une au moins des deux surfaces actives est réalisée sous forme d'un substrat isolant sur lequel est déposée, suivant la hauteur de cette surface, une pluralité d'électrodes connectées à différentes sources de tension. Un revêtement résistif recouvre le substrat isolant et les électrodes. Un choix judicieux du nombre d'électrodes, de la valeur des tensions appliquées et de la valeur de la résistance carrée du revêtement résistif permet la création d'un champ Ed optimal sur toute la hauteur du dispositif de déflexion tout en minimisant et maîtrisant les courants électriques et les flux de chaleur parasites.
  • Le handicap majeur d'un tel dispositif réside dans sa complexité de réalisation et son coût de fabrication.
  • En résumé, les dispositifs de déflexion représentatifs de l'art antérieur et implémentés dans des imprimantes à jet d'encre se caractérisent de la manière suivante :
    • voie équipotentielle : conception simple mais faible efficacité de déflexion.
    • voie non-équipotentielle : efficacité de déflexion accrue mais mise en oeuvre difficile en raison des coûts de fabrication et des principes de fonctionnement retenus.
    Brève description de l'invention
  • Par rapport à l'état de la technique qui vient d'être décrit l'objectif de la présente invention est de réaliser un dispositif de déflexion électrostatique qui puisse être intégré dans une tête d'impression d'une imprimante à jet d'encre, et dont l'efficacité égale ou surpasse celle des conceptions non-équipotentielles pour un coût de revient nettement plus faible et ceci au moyen d'un agencement d'électrodes de déflexion dont les surfaces actives sont portées à des potentiels électriques uniformes.
  • Un autre objet de la présente invention est de constituer un agencement d'électrodes de déflexion d'encombrement réduit et conduisant à une réduction de l'encombrement d'une tête d'impression d'une imprimante dans laquelle cette tête est incorporée.
  • Un autre objet de la présente invention est d'obtenir les performances de déflexion avec une tension réduite de façon significative par rapport aux tensions habituelles d'alimentation d'électrodes de déflexion équipotentielles et ainsi de faciliter l'intégration dans une tête d'impression desdites électrodes et d'un générateur de ladite tension réduite.
  • Encore un autre objet de l'invention est de réduire significativement le risque de projection accidentelle d'encre sur la surface active des électrodes de déflexion.
  • A toutes ces fins l'invention est relative à une tête d'impression d'une imprimante à jet d'encre continu équipée de moyens pour générer un jet d'encre selon un axe du jet d'encre, à partir d'au moins une buse d'éjection du jet, et pour fractionner le jet en un train de gouttes, de moyens pour charger électriquement de façon sélective les différentes gouttes du train de gouttes, et d'électrodes de déviation des gouttes chargées, déviant les gouttes en fonction de la valeur de la charge reçue, soit vers une gouttière de récupération de gouttes, soit vers un substrat d'impression soutenu localement par un support du substrat d'impression, les électrodes de déviation ayant chacune par rapport à la buse d'éjection du jet une partie amont, et une partie aval, une surface active de chaque électrode de déviation étant une surface de ladite électrode qui est en regard du train de gouttes, tête d'impression caractérisée en ce que les électrodes de déviation des gouttes du jet comprennent deux électrodes une première et une seconde, la surface active de la première électrode présentant une première courbure longitudinale concave dont le rayon local de courbure longitudinale est situé dans un plan formé par l'axe du jet d'encre et une direction de déviation des gouttes, en ce que la surface active de la seconde électrode présente une première courbure longitudinale convexe et en ce que la première électrode présente dans sa partie aval un évidement ayant un contour.
  • Ce qui est entendu par partie aval sera maintenant précisé. La fonction de l'évidement est de permettre le passage de gouttes non déviées ou peu déviées au travers de la première électrode. Les gouttes non déviées suivent sensiblement une trajectoire, qui en première approximation, peut être considérée comme rectiligne. Il en résulte que la partie la plus amont du contour de l'évidement sera située au voisinage immédiat et légèrement en amont du point d'intersection de la première électrode avec l'axe du jet. La partie la plus amont du contour de l'évidement devra donc être située à une distance suffisante du point d'intersection de la première électrode avec l'axe du jet pour qu'une goutte non déviée puisse passer au travers de l'évidement de l'électrode avec une probabilité quasi nulle d'intercepter l'électrode.
  • Les gouttes légèrement chargées et donc légèrement déviées ont une trajectoire dont la courbure peut être inférieure à celle de la première électrode. La trajectoire des gouttes légèrement déviées est donc susceptible d'être sécante à la surface active de la première électrode. L'évidement doit être tel qu'il permette le passage de ces gouttes peu déviées. Le point d'intersection éventuel de la trajectoire d'une goutte peu déviée et de la surface de l'électrode avant évidement se situe nécessairement en aval du point qui a été définit ci-dessus comme le plus amont de l'évidement. On peut donc considérer que la partie aval de la première électrode est une partie de cette électrode située en aval du point d'intersection de l'électrode et de l'axe des jets.
  • Etant donné la fonction de l'évidement on comprend également que la forme de cet évidement va se présenter comme ayant pour ligne de symétrie une ligne définie par l'intersection de l'électrode avant évidement, avec un plan contenant l'axe des jets et la direction de déviation des gouttes. L'évidement aura donc une forme oblongue centrée sur la ligne de symétrie définie ci-dessus.
  • La largeur de l'évidement résulte d'un compromis entre deux exigences, laisser passer les gouttes au travers de la première électrode sans risque de heurt entre la goutte et l'électrode, ce qui requiert que l'évidement soit large, ne pas diminuer trop le champ inter électrode, ce qui requiert que l'évidement soit étroit.
  • Le diamètre des gouttes d'encre est de l'ordre de plusieurs dizaines de µm, typiquement compris entre 30 et 140 µm, par exemple 100 µm.
  • La largeur mesurée perpendiculairement à cette ligne est supérieure au diamètre des gouttes et idéalement de l'ordre de deux à trois fois le diamètre des gouttes, soit typiquement 200 à 300 µm. Cependant, pour être sûr d'éviter les heurts entre gouttes et première électrode, on pourra être amené à fixer une largeur de l'ordre de 8 à 10 fois le diamètre des gouttes.
  • Ainsi des modes de réalisation de l'invention peuvent présenter ensemble ou séparément les caractéristiques suivantes.
  • La courbure de la seconde électrode est telle que la surface active de cette seconde électrode est sensiblement parallèle à celle de la première électrode en sorte que les deux surfaces actives présentent entre elles un écartement e sensiblement constant.
  • Le contour de l'évidement a un point le plus amont situé au voisinage de l'intersection, avant évidemment, de la première électrode avec l'axe du jet d'encre.
  • L'évidement présente une symétrie par rapport à un plan contenant l'axe du jet d'encre.
  • L'évidement a une largeur comprise entre deux et dix fois le diamètre des gouttes d'encre.
  • L'évidement présente la forme d'une fente oblongue dont une ouverture débouche sur la partie la plus avale de la première électrode.
  • L'espacement entre les surfaces actives des deux électrodes est sensiblement constant de l'amont à l'aval des électrodes et compris entre 4 et 20 fois le diamètre des gouttes d'encre soit environ entre 0,5 et 3 mm.
  • Un bord le plus aval de la première électrode est plus proche du support d'impression qu'une surface la plus aval de la gouttière de récupération.
  • La seconde électrode est munie, à partir de sa surface active, d'une rainure tracée selon un axe contenu dans un plan contenant l'axe du jet.
  • Un fond de la rainure est raccordé à la surface active de la seconde électrode par une surface courbée transversalement selon des rayons de courbure de valeur supérieure au rayon des gouttes d'encre.
  • Des langues de la première électrode formées de part et d'autre de l'évidement et la seconde électrode sont courbées transversalement selon des rayons de courbure de valeur supérieure au rayon des gouttes d'encre.
  • Brève description des dessins
  • Un exemple de réalisation et des variantes, ainsi que le fonctionnement d'une tête d'impression ayant des électrodes présentant les caractéristiques de l'invention seront maintenant décrits en regard des dessins annexés dans lesquels :
    • la figure 1, est une représentation schématique d'une tête d'impression comportant des électrodes équipotentielles de déflexion selon l'art antérieur ;
    • les figures 2, et 3 sont des représentations schématiques d'électrodes équipotentielles de déflexion d'une tête d'impression selon l'art antérieur ;
    • la figure 4 est une représentation schématique d'électrodes non-équipotentielles de déflexion d'une tête d'impression selon l'art antérieur ;
    • la figure 5 comporte une partie A et une partie B. La figure 5 partie A est une vue de face d'électrodes de déflexion électrostatique réalisées suivant l'invention. La figure 5 partie B représente la vue de gauche du schéma porté sur la figure 5 partie A ;
    • la figure 6 comporte une partie A et une partie B. Les parties A et B représentent chacune une coupe transversale d'électrodes de déflexion électrostatique réalisées suivant une variante de l'invention.
  • La figure 7 comporte les parties A, B, C, et D. La partie A représente une vue en perspective, vue de côté, d'un ensemble de deux électrodes selon l'invention. La partie B représente une coupe des deux électrodes selon la ligne B-B de la partie A. La partie C est une vue en perspective d'une électrode fendue selon l'invention. La partie D représente une vue en perspective de l'électrode convexe destinée à faire apercevoir une indentation de surface.
  • Les figures 1 à 4 relatives à l'art antérieur ont déjà été commentées.
  • Description d'exemples de réalisation
  • Dans la description qui va suivre les éléments ayant même fonction selon l'art antérieur ou selon la présente invention portent le même numéro de référence.
  • Les figures 5, parties A et B, sont respectivement une vue schématique de face et de gauche illustrant un mode particulier de réalisation d'électrodes de déflexion électrostatique selon l'invention, implémentées au sein d'une tête d'impression à jet continu stimulé dévié monobuse. Les figures 6, parties A et B, sont respectivement des coupes effectuées au niveau de l'axe Z de la figure 5, partie A, pour deux modes de réalisation. Ces figures sont destinées à expliquer l'invention et son fonctionnement. La figure 7 est elle destinée à faire apercevoir, de façon plus réaliste, la forme des électrodes dans un mode particulier de réalisation. Ne sont représentés sur les figures 5 - 7 que les éléments relatifs aux électrodes objets de l'invention. Les autres constituants de la tête d'impression sont connus de l'homme du métier et leur description telle qu'illustrée en relation avec l'art antérieur, par exemple en relation avec la figure 1 est suffisante pour une bonne compréhension de l'invention.
  • Un train de gouttes sélectivement chargées 1 pénètre dans l'espace délimité par des électrodes 2 et 3 entre lesquelles existe une différence de potentiel Vd fournie par un générateur de tension 30. Les électrodes 2 et 3 sont de hauteurs sensiblement égales. Un plan tangent aux électrodes 2 et 3 respectivement dans leur partie la plus amont est parallèle à l'axe des jets ou sécants à cet axe sous un angle faible.
  • La surface active 11 de la première électrode 2 possède une courbure longitudinale concave sensiblement opposée à celle de la surface active 10 de la seconde électrode 3. Une surface active 10 de l'électrode 3 possède une courbure longitudinale convexe telle que cette surface est dans une partie aval, sensiblement parallèle à une trajectoire 4, représentée en pointillés, des gouttes les plus déviées. De façon connue, une trajectoire peut être visualisée par éclairage stroboscopique des gouttes.
  • L'espacement e, séparant les surfaces 10 et 11, est sensiblement constant sur toute la hauteur des électrodes 2, 3. La valeur de l'espacement e est inférieure à 3,5 mm, préférentiellement inférieure à 2 mm. Afin de ne pas entraver les trajectoires des gouttes les moins chargées, un évidement 12, qui dans l'exemple représenté, a la forme d'une fente 12 apparente en partie B de la figure 5 et B et C de la figure 7, est pratiqué dans la partie aval de l'électrode 2. La largeur de l'évidement 12 est supérieure au diamètre des gouttes d'encre. En pratique, on limite avantageusement la largeur de l'évidement 12 de manière à ce que la chute de la valeur du champ Ed existant dans la partie aval des électrodes 2, 3 ne dépasse pas 15 % de celle du champ optimal créé dans sa partie amont.
  • Les électrodes 2 et 3 sont préférentiellement réalisées dans un métal inoxydable.
  • La courbure longitudinale des électrodes est préférentiellement constante, en sorte que les surfaces actives des électrodes 2, 3 sont formées sensiblement par des parties de surface cylindrique d'axe perpendiculaire à l'axe du jet.
  • Le fonctionnement est le suivant.
  • Le champ électrique Ed découlant de la différence de potentiel Vd dévie les gouttes d'encre proportionnellement à leur charge électrique le long de trajectoires prédéfinies. La trajectoire 4 est celle suivie par les gouttes portant la charge maximum Qmax. Il s'agit donc de la trajectoire des gouttes les plus déviées. La surface active de la seconde électrode 3 est calculée pour que la probabilité de rencontre de la trajectoire 4 avec la seconde électrode soit quasi nulle, bien que la trajectoire 4 soit parallèle et proche de la surface active de la seconde électrode 3 au moins dans une partie aval de cette surface. La trajectoire 5 est celle parcourue par les gouttes dotées de la charge minimum Qmin permettant d'éviter la gouttière de récupération 6 et donc d'être dirigée vers le substrat d'impression. Les gouttes portant des charges électriques comprises entre les valeurs Qmax et Qmin suivent des trajectoires intermédiaires telles que, par exemple, les trajectoires 7 ou 8. La trajectoire 9 correspond à celle de gouttes dotées d'une quantité de charge inférieure à Qmin : de telles gouttes sont captées par la gouttière de récupération 6 et recyclées vers un circuit d'encre de l'imprimante.
  • La fente 12 représentée figure 5 partie B et figure 7 partie B et C est comme expliqué plus haut telle que les gouttes les moins déviées et notamment celles dont la charge est inférieure à Qmin passent au travers de cette fente. Comme expliqué plus haut, il en résulte que la partie 39 la plus amont du contour 38 de cette fente 12 se situe en un lieu proche du point d'intersection de l'axe du jet avec la première électrode 2. Du fait que les gouttes dont la charge est inférieure à Qmin et les gouttes les moins chargées parmi celles dont la charge est comprise entre Qmin et Qmax passent au travers de la fente 12 de l'électrode 2, la dispersion des gouttes peut être conservée malgré un espacement e entre les électrodes 2 et 3 réduit par rapport aux électrodes de l'art antérieur.
  • La faiblesse de l'espacement e permet l'utilisation d'une valeur de Vd de l'ordre de 3 kV au lieu des 8 à 10 kV usuellement employés dans les dispositifs à électrodes équipotentielles de l'art antérieur. Il est alors particulièrement avantageux de réaliser la différence de potentiel Vd en portant l'électrode 2 au potentiel de référence de l'encre, usuellement le potentiel de masse de l'imprimante. Dans ces conditions, contrairement à l'art antérieur ou ce potentiel est un potentiel opposé à celui de l'électrode 3, par rapport au potentiel de l'encre, il devient possible de rapprocher ou même d'intégrer la gouttière de récupération 6 et l'électrode 2 sans risque de claquage électrique entre ces deux éléments et sans altérer le champ Ed entre les deux électrodes.
  • Dans ces conditions la distance d1 entre le bord inférieur 21 de la gouttière 6 et le support d'impression 13 peut devenir supérieure à la distance d2 séparant l'extrémité aval 22 de l'électrodes 2, de ce même support d'impression 13. On obtient ainsi une forte réduction du trajet effectué par les gouttes dirigées vers la gouttière 6 et donc une diminution de la probabilité de non atteinte de cette gouttière par ces gouttes.
  • Les parties A et B de la figure 6 et la partie D de la figure 7 illustrent chacune un mode avantageux de réalisation des électrodes 2 et 3. Chacun de ces modes est illustré figure 6 par une coupe à échelle agrandie effectuée approximativement suivant le plan z définit sur la figure 5 partie A. La forme de ces courbes peut caractériser, sur toute leur hauteur ou au moins dans une partie aval, les faces actives 10 et 11.
  • Ces coupes sont effectuées en aval du point le plus amont de la fente 12 représentée sur la figure 5 partie B. Sur la figure 5 partie B et sur la figure 7 partie C, on voit que la fente 12 sépare l'électrode 2 en deux langues 24 et 25 respectivement. La figure 6 est destinée à montrer que de façon avantageuse les langues 24, 25 et l'électrode 3 qui leur fait face ont des courbures transversales. Ces courbures transversales sont également visibles figure 7.
  • L'objectif des courbures transversales illustrées sur la figure 6 partie A est d'éliminer toute arête ou aspérité métallique vive susceptible d'engendrer un phénomène de décharge électrique pouvant conduire à un affaiblissement du champ Ed ou à un claquage électrique. Le rayon de courbure transversale de la surface 11 des langues 24, 25 et de l'électrode 3 est en tout point supérieur à celui des gouttes d'encre.
  • La figure 6 partie B présente une électrode 2 ayant les mêmes caractéristiques de courbure transversale que l'électrode 2 représentée en partie A. Selon la variante de réalisation représentée en partie B, la surface active 10 de l'électrode 3 est également dotée d'une courbure transversale présentant les mêmes capacités que l'électrode 3 représentée en partie A, à réduire l'apparition de décharges électriques.
  • L'électrode 3 présente de plus une indentation ou rainure longitudinale 14. Cette indentation peut s'étendre sur toute la hauteur de la surface 10 ou sur une partie aval seulement comme illustré figure 7 parties A et D. L'indentation 14 se situe transversalement en regard de l'évidement 12 de l'électrode 2. La largeur de l'indentation 14 est supérieure au diamètre des gouttes d'encre mais reste suffisamment fine pour ne pas éloigner significativement le champ Ed de sa valeur optimale.
  • Une telle indentation est particulièrement utile pour éviter certaines projections d'encre sur la surface 10. En effet, dans l'hypothèse où le rapport charge électrique sur masse de certaines gouttes est mal contrôlé et dépasse une valeur maximale prédéterminée, ces gouttes suivent une trajectoire erronée 35 et :
    • pénètrent dans l'indentation 14 sans heurter la surface 10,
      subissent, dans l'indentation 14, l'action d'un très faible champ électrique. Cette chute de la valeur du champ provoque une modification des trajectoires erronées de manière à les rapprocher, en sortie du dispositif de déflexion, de la trajectoire 4 des gouttes les plus déviées, dont le rapport charge sur masse respecte la valeur maximale prédéterminée. Ainsi ces gouttes bien qu'ayant une trajectoire erratique, ne heurtent pas l'électrode 3. De ce fait l'électrode 3 reste propre ce qui signifie qu'elle n'est pas déformée par la présence d'encre sur l'électrode. En conséquence les gouttes suivantes ne subiront pas de déformation de trajectoire dues à la présence éventuelle d'une goutte à trajectoire erratique. Cette disposition présente aussi pour avantage de faciliter les réglages de tension à appliquer aux électrodes à la mise en route de l'imprimante.
  • Les avantages de l'invention sur les réalisations de l'art antérieur sont clairs :
    • ■ simplicité de conception et efficacité de déflexion sont simultanément réalisées ;
    • ■ protection contre certaines projections d'encre sur les électrodes par ajustement de la géométrie d'une surface active au moins.
  • La faible valeur de Vd ainsi que le positionnement haut de la gouttière 6 de récupération autorisent une nette diminution de l'encombrement de la tête d'impression et du trajet effectué par les gouttes d'encre. Par suite les variations parasites de trajectoires de gouttes sont d'une amplitude faible, et la qualité d'impression est meilleure.

Claims (11)

  1. Tête d'impression d'une imprimante à jet d'encre continu équipée de moyens (116) pour générer un jet d'encre selon un axe du jet d'encre, à partir d'au moins une buse d'éjection du jet, et pour fractionner, le jet en un train de gouttes, de moyens (120, 121) pour charger électriquement de façon sélective les différentes gouttes du train de gouttes, et d'électrodes (2, 3) de déviation des gouttes chargées, déviant les gouttes en fonction de la valeur de la charge reçue, soit vers une gouttière (6) de récupération de gouttes, soit vers un substrat (27) d'impression soutenu localement par un support (13) du substrat (27) d'impression, les électrodes (2, 3) de déviation ayant chacune par rapport à la buse d'éjection du jet une partie amont (15), et une partie aval (16), une surface active (11, 10) de chaque électrode (2, 3) de déviation étant une surface de ladite électrode (2, 3) qui est en regard du train de gouttes, tête d'impression caractérisée en ce que les électrodes (2, 3) de déviation des gouttes du jet comprennent deux électrodes (2, 3) une première (2) et une seconde (3), la surface active (11) de la première électrode (2) présentant une première courbure longitudinale concave dont le rayon local de courbure longitudinale est situé dans un plan formé par l'axe du jet d'encre et une direction de déviation des gouttes, en ce que la surface active (10) de la seconde électrode (3) présente une première courbure longitudinale convexe, et en ce que la première électrode présente dans sa partie aval (16) un évidement (12) ayant un contour (38).
  2. Tête d'impression selon la revendication 1 caractérisée en ce que le contour (38) a un point le plus amont situé au voisinage de l'intersection avant évidement de la première électrode (2) avec l'axe du jet d'encre.
  3. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que l'évidement (12) présente une symétrie par rapport à un plan contenant l'axe du jet d'encre.
  4. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que l'évidement (12) a une largeur comprise entre 4 et 20 fois le diamètre des gouttes d'encre.
  5. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que l'évidement (12) présente la forme d'une fente oblongue dont une ouverture débouche sur la partie (22) la plus avale de la première électrode (2).
  6. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que l'espacement entre les surfaces actives (10, 11) des deux électrodes (3, 2) est sensiblement constant de l'amont à l'aval des électrodes et compris entre 4 et 20 fois le diamètre des gouttes d'encre.
  7. Tête d'impression selon l'une des revendications précédentes caractérisée en ce qu'un bord le plus aval (22) de la première électrode est plus proche du support d'impression (13) qu'une surface (21) la plus avale de la gouttière de récupération (6).
  8. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que la seconde électrode (3) a une rainure (14) selon un axe contenu dans un plan contenant l'axe du jet.
  9. Tête d'impression selon la revendication 8 caractérisée en ce que un fond de la rainure (14) est raccordé a la surface active (10) de la seconde électrode (3) par une surface courbée transversalement selon des rayons de courbure de valeur supérieure au rayon des gouttes d'encre.
  10. Tête d'impression selon l'une des revendications précédentes caractérisée en ce que des langues (24, 25) de la première électrode formées de part et d'autre de l'évidement (12) et la seconde électrode (3) sont courbées transversalement selon des rayons de courbure de valeur supérieure au rayon des gouttes d'encre.
  11. Imprimante caractérisée en ce qu'elle est équipée d'une tête d'impression selon l'une des revendications précédentes.
EP02290450A 2001-02-27 2002-02-25 Tête d'impression et imprimante à électrodes de déflexion améliorées Expired - Lifetime EP1234670B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0102638 2001-02-27
FR0102638A FR2821291B1 (fr) 2001-02-27 2001-02-27 Tete d'impression et imprimante a electrodes de deflexion ameliorees

Publications (3)

Publication Number Publication Date
EP1234670A2 EP1234670A2 (fr) 2002-08-28
EP1234670A3 EP1234670A3 (fr) 2007-03-07
EP1234670B1 true EP1234670B1 (fr) 2008-07-09

Family

ID=8860487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02290450A Expired - Lifetime EP1234670B1 (fr) 2001-02-27 2002-02-25 Tête d'impression et imprimante à électrodes de déflexion améliorées

Country Status (7)

Country Link
US (1) US6758555B2 (fr)
EP (1) EP1234670B1 (fr)
JP (1) JP2002264339A (fr)
CN (1) CN1157290C (fr)
DE (1) DE60227436D1 (fr)
ES (1) ES2310200T3 (fr)
FR (1) FR2821291B1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2835217B1 (fr) * 2002-01-28 2004-06-25 Imaje Sa Tete d'impression a double buse d'axes convergents et imprimante equipee
DE10327430A1 (de) * 2003-06-18 2005-01-05 Abb Patent Gmbh Ultraschall-Stehwellen-Zerstäuberanordnung
US7080897B2 (en) * 2003-10-31 2006-07-25 Hewlett-Packard Development Company, L.P. System for delivering material onto a substrate
FR2892052B1 (fr) * 2005-10-13 2011-08-19 Imaje Sa Impression par deflexion differentielle de jet d'encre
US20070115331A1 (en) * 2005-11-18 2007-05-24 Videojet Technologies Inc. Non-planar deflection electrode in an ink jet printer
KR100762036B1 (ko) * 2006-02-24 2007-09-28 비오이 하이디스 테크놀로지 주식회사 잉크젯 프린터
EP1923217A1 (fr) * 2006-11-16 2008-05-21 Domino Printing Sciences Plc Améliorations concernant imprimantes à jet d'encre continu
US20080136861A1 (en) * 2006-12-11 2008-06-12 3M Innovative Properties Company Method and apparatus for printing conductive inks
US7697256B2 (en) * 2007-04-12 2010-04-13 Hewlett-Packard Development Company, L.P. Directing aerosol
DE102007062620A1 (de) * 2007-12-22 2009-07-09 Schott Solar Gmbh Verfahren und Vorrichtung zur Herstellung eines semitransparenten photovoltaischen Moduls
FR2948602B1 (fr) 2009-07-30 2011-08-26 Markem Imaje Dispositif de detection de directivite de trajectoires de gouttes issues de jet de liquide, capteur electrostatique, tete d'impression et imprimante a jet d'encre continu devie associes
JP5584912B2 (ja) * 2010-02-24 2014-09-10 国立大学法人 東京大学 飛翔物体の飛翔方向の制御方法及び制御装置
FR2957442B1 (fr) 2010-03-10 2013-04-19 Markem Imaje Interface utilisateur pour une imprimante industrielle
JP5725800B2 (ja) * 2010-06-24 2015-05-27 キヤノン株式会社 液体吐出ヘッド
FR2971451B1 (fr) 2011-02-11 2013-03-15 Markem Imaje Detection de plage de stimulation dans une imprimante a jet d'encre continu
DE102011113664A1 (de) * 2011-09-20 2013-03-21 Simaco GmbH Verfahren und Vorrichtung zur Homogenisierung von Tinte für Inkjet-Geräte
JP5946322B2 (ja) * 2012-05-22 2016-07-06 株式会社日立産機システム インクジェット記録装置
CN107745580B (zh) * 2017-11-02 2023-04-07 北京赛腾标识系统股份公司 偏转电极及喷码机喷头
KR20200077889A (ko) * 2018-12-21 2020-07-01 세메스 주식회사 인쇄 장치 및 인쇄 방법
CN109808310B (zh) * 2019-03-07 2020-11-06 浙江鸣春纺织股份有限公司 一种喷码机连续喷墨打印装置
GB2600406A (en) * 2020-10-26 2022-05-04 Videojet Technologies Inc Electrode
JP2022120865A (ja) 2021-02-08 2022-08-19 株式会社日立産機システム インクジェット記録装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2374169A1 (fr) 1972-11-21 1978-07-13 Ibm Aspirateur de gouttelettes dans une imprimante a jet d'encre
US3955203A (en) * 1975-01-24 1976-05-04 International Business Machines Corporation High voltage deflection electrode apparatus for ink jet
US4266231A (en) * 1979-11-01 1981-05-05 International Business Machines Corp. Ink jet with retractable electrode and secondary ink catcher
CA1158706A (fr) * 1979-12-07 1983-12-13 Carl H. Hertz Methode et dispositif de controle de la charge electrique de goutelettes, et imprimante au jet d'encre garnie du dispositif
US4338613A (en) * 1980-12-19 1982-07-06 Pitney Bowes Inc. Ink drop deflector
US4375062A (en) * 1981-05-29 1983-02-22 International Business Machines Corporation Aspirator for an ink jet printer
DE3787807T2 (de) * 1986-08-28 1994-02-10 Commw Scient Ind Res Org Methode und apparat zum drucken durch ablenkung eines flüssigkeitsstroms.
AU2810189A (en) 1987-10-30 1989-05-23 Stolle Research & Development Corporation Low residual solvent microspheres and microencapsulation process
GB8725465D0 (en) 1987-10-30 1987-12-02 Linx Printing Tech Ink jet printers
US4845512A (en) 1988-10-12 1989-07-04 Videojet Systems International, Inc. Drop deflection device and method for drop marking systems
GB8829620D0 (en) * 1988-12-20 1989-02-15 Elmjet Ltd Continuous ink jet printer
GB2249995B (en) 1990-11-21 1995-03-01 Linx Printing Tech Electrostatic deflection of charged particles
US5465108A (en) * 1991-06-21 1995-11-07 Rohm Co., Ltd. Ink jet print head and ink jet printer
JP3120260B2 (ja) * 1992-12-26 2000-12-25 日本碍子株式会社 圧電/電歪膜型素子
US6217158B1 (en) * 1996-04-11 2001-04-17 Seiko Epson Corporation Layered type ink jet recording head with improved piezoelectric actuator unit
JP3141793B2 (ja) * 1996-10-14 2001-03-05 日本電気株式会社 インクジェットヘッド
GB9626709D0 (en) 1996-12-23 1997-02-12 Domino Printing Sciences Plc Continuous ink jet printer
FR2761283B1 (fr) 1997-03-25 1999-05-07 Ems Societe Procede de sectionnement d'un tube ou de decalottage d'une partie tubulaire fermee et moyens destines a le mettre en oeuvre
FR2763870B1 (fr) 1997-06-03 1999-08-20 Imaje Sa Systeme de commande de projection de liquide electriquement conducteur

Also Published As

Publication number Publication date
EP1234670A2 (fr) 2002-08-28
CN1365892A (zh) 2002-08-28
DE60227436D1 (de) 2008-08-21
FR2821291B1 (fr) 2003-04-25
JP2002264339A (ja) 2002-09-18
ES2310200T3 (es) 2009-01-01
FR2821291A1 (fr) 2002-08-30
US6758555B2 (en) 2004-07-06
US20020118258A1 (en) 2002-08-29
EP1234670A3 (fr) 2007-03-07
CN1157290C (zh) 2004-07-14

Similar Documents

Publication Publication Date Title
EP1234670B1 (fr) Tête d'impression et imprimante à électrodes de déflexion améliorées
EP1469997B1 (fr) Tete d'impression a double buse d'axes convergents et imprimante equipee
EP1628832B1 (fr) Imprimante a jet d'encre.
FR2892052A1 (fr) Impression par deflexion differentielle de jet d'encre
EP0521764B1 (fr) Procédé de projection de liquide et dispositif d'impression haute-résolution dans une imprimante à jet d'encre continu mettant en oeuvre ce procédé
EP0949077B1 (fr) Procédé de projection d'un liquide électriquement conducteur et dispositif d'impression par jet d'encre continu utilisant ce procédé
FR2471278A1 (fr) Procedes et appareils pour produire une file de gouttelettes et pour l'impression par jet d'encre
FR2906755A1 (fr) Impression par deflexion d'un jet d'encre par un champ variable.
FR2948602A1 (fr) Dispositif de detection de directivite de trajectoires de gouttes issues de jet de liquide, capteur electrostatique, tete d'impression et imprimante a jet d'encre continu devie associes
FR2938207A1 (fr) Imprimante munie d'un generateur de gouttes a jet continu binaire a deflexion et vitesse d'impression optimales
JP2012512769A (ja) 突合可能なプリントヘッドモジュール及び頁幅プリントヘッド
FR2913632A1 (fr) Dispositif d'impression a jet d'encre a injecteur d'air, injecteur d'air et tete d'impression grande largeur associes
FR2971199A1 (fr) Imprimante a jet d'encre continu binaire a frequence de nettoyage de tete d'impression diminuee
JP2010195034A (ja) インクジェット記録装置
FR2637844A1 (fr) Procede d'impression haute resolution au moyen de gouttes d'encre satellites mis en oeuvre dans une imprimante a jet d'encre continu
EP1092542B1 (fr) Imprimante et procédé d'impression par jets d'encre
JP2014515326A (ja) 滴帯電及び質量を利用した液吐出
FR2975632A1 (fr) Imprimante a jet d'encre continu binaire
JP5304362B2 (ja) インクジェット記録装置
JP2013147038A (ja) インクジェット記録装置
JP2006130701A (ja) インク吐出装置
JP2003305857A (ja) 静電式インクジェット記録装置のプリントヘッド及びその製造方法
JP2003226015A (ja) 静電式インクジェット記録装置
FR3057490B1 (fr) Machine d'impression d'une pluralite d'objets au moins en partie tronconiques
EP0822075A2 (fr) Tête d'enregistrement à jet d'encre électrostatique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20070823

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60227436

Country of ref document: DE

Date of ref document: 20080821

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2310200

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090414

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60227436

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: MARKEM-IMAJE HOLDING

Effective date: 20150420

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20150220

Year of fee payment: 14

Ref country code: IT

Payment date: 20150225

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60227436

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

Effective date: 20150413

Ref country code: DE

Ref legal event code: R081

Ref document number: 60227436

Country of ref document: DE

Owner name: MARKEM-IMAJE HOLDING, FR

Free format text: FORMER OWNER: MARKEM-IMAJE S.A.S., BOURG LES VALENCE, FR

Effective date: 20150413

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: MARKEM-IMAJE HOLDING, FR

Effective date: 20150428

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160225

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180214

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160226

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180226

Year of fee payment: 17

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181205

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210209

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60227436

Country of ref document: DE