EP1230415A1 - Verfahren für die nitrocarburierung metallischer werkstücke - Google Patents

Verfahren für die nitrocarburierung metallischer werkstücke

Info

Publication number
EP1230415A1
EP1230415A1 EP00962293A EP00962293A EP1230415A1 EP 1230415 A1 EP1230415 A1 EP 1230415A1 EP 00962293 A EP00962293 A EP 00962293A EP 00962293 A EP00962293 A EP 00962293A EP 1230415 A1 EP1230415 A1 EP 1230415A1
Authority
EP
European Patent Office
Prior art keywords
treatment
gas
carbon
temperature
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00962293A
Other languages
English (en)
French (fr)
Other versions
EP1230415B1 (de
Inventor
Hans-Peter Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Messer Group GmbH
Original Assignee
Messer Griesheim GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messer Griesheim GmbH filed Critical Messer Griesheim GmbH
Publication of EP1230415A1 publication Critical patent/EP1230415A1/de
Application granted granted Critical
Publication of EP1230415B1 publication Critical patent/EP1230415B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding

Definitions

  • the invention relates to a method for nitrocarburizing metallic workpieces by treating the workpieces in a treatment atmosphere containing nitrogen, carbon monoxide and hydrogen at a treatment temperature in a treatment room, carbon dioxide being used as the carbon donor to generate the treatment atmosphere.
  • the atomic nitrogen produced during ammonia splitting reacts particularly easily with the metal to form nitrides when it comes into contact with metal surfaces (hereinafter referred to as (N) a d).
  • Different nitride phases can form in connection with iron.
  • nitride phases in the form of so-called ⁇ -nitride (F ⁇ 2-3N) and ⁇ '-nitride (F ⁇ 4N) or mixtures of these nitrides, for example, are preferred with regard to high hardness and wear resistance.
  • the reactions taking place during the nitride formation of Fe-containing metals can be described schematically using the following chemical equations:
  • the carbon dioxide contents are usually between 4 and 10% by volume.
  • the carbon dioxide is metered directly into the furnace chamber of the nitriding furnace, where it partially reacts with hydrogen according to the following reaction equation:
  • a carbon activity (a c, B ), which is adapted to the prevailing conditions, settles down and can be defined according to the Boudouard reaction:
  • K B denotes the constant of the Boudouard equilibrium.
  • the maximum carbon activity is 1, which corresponds to the activity of pure graphite.
  • K N nitriding index
  • the known method is characterized in that the NH 3 gas throughput is kept constant and only the operating point of the pre-splitter in which the NH 3 split gas is generated is regulated.
  • a high nitriding index requires a high ammonia content in the nitriding furnace, which in turn results in a high residual ammonia content in the furnace exhaust gas, which leaves the furnace unused.
  • Substance such as methanol is fed into the furnace space.
  • the CO-forming components such as methanol or CO 2 are thus fed directly into the treatment room.
  • carburizing or carbonitriding this is effective due to the high temperatures involved, but not at the usual, relatively low nitriding temperatures of max. 580 ° C.
  • methanol does not cleave stoichiometrically, but undesirable cleavage products such as CH 4 and other higher hydrocarbons, CO 2 , aldehydes, ketones, etc. are formed, some of which are toxic and corrosive when condensed.
  • the cleavage of the methanol strongly depends on the conditions in the boiler room and on the surface of the batch, so that the desired furnace gas composition cannot be reproduced. This also has the consequence that soot deposits on the batch material and the boiler room surface due to uncontrolled cracking reactions or undesired carbides are formed.
  • the invention is therefore based on the object of modifying the known method for nitrocarburizing metallic workpieces using carbon dioxide as a carbon donor so that the type and extent of nitride formation can be adjusted within a wide range.
  • a carbon dioxide-containing gas stream is introduced into a reactor upstream of the treatment room and is modified therein by reaction with a hydrogen donor at a reaction temperature above the treatment temperature to give a carbonization gas which has a higher carbon activity than the carbon dioxide-containing gas stream at the treatment temperature.
  • the gas stream containing carbon dioxide is fed to a reactor, modified therein in the direction of a higher carbon activity and then introduced into the treatment room as carbonizing gas.
  • the modification is based on a

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

Verfahren für die Nitrocarburierung metallischer Werkstücke
Die Erfindung betrifft ein Verfahren zum Nitrocarburieren metallischer Werkstücke, indem die Werkstücke in einer Stickstoff, Kohlenmonoxid und Wasserstoff enthaltenden Behandlungsatmosphäre bei einer Behandlungstemperatur in einem Behandlungsraum behandelt werden, wobei zur Erzeugung der Behandlungsatmosphäre Kohlendioxid als Kohlenstoffspender eingesetzt wird.
Zum Nitrocarburieren von metallischen Werkstücken kommen verschiedene Gasgemische zum Einsatz. Stickstoffspender ist dabei grundsätzlich Ammoniak (NH3), während als Kohlenstoffspender verschiedene Gasgemische wie beispielsweise Luft- Kohlenwasserstoff-Gemische (Endogas und Exogas) sowie Kohlendioxid zum Einsatz kommen. Im Nitrierofen reagieren diese Gase mit vorhandenem Wasserstoff, wobei sich je nach thermischen und chemischen Bedingungen eine stationäre Kohlenstoff-, Stickstoff und Sauerstoffaktivität einstellt.
Der bei der Ammoniakspaltung entstehende atomare Stickstoff reagiert bei Kontakt mit Metalloberflächen (im folgenden als (N)ad bezeichnet) besonders leicht mit dem Metall unter Bildung von Nitriden. In Verbindung mit Eisen können sich unterschiedliche Nitrid-Phasen bilden. Bei Stählen werden im Hinblick auf eine hohe Härte und Verschleißfestigkeit beispielsweise Nitrid-Phasen in Form von sogenanntem ε-Nitrid (Fβ2-3N) und γ'-Nitrid (Fβ4N) oder Gemische dieser Nitride bevorzugt. Die bei der Nitridbildung von Fe-haltigen Metallen ablaufenden Reaktionen lassen sich schematisch anhand folgender chemischer Gleichungen beschreiben:
(1) NH3 = (N)ad + 1 ,5 H2
(2a) (N)ad + 4 Fe = Fe4N (γ'-Nitrid)
(2b) (N)ad + 2-3 Fe = Fe2-3N (ε-Nitrid)
Der im Nitrid gelöste Kohlenstoff wirkt sich auf Morphologie, Kompaktheit, Porensaum und Haftung der Verbindungsschicht und deren Korrosions- und Verschleißbeständigkeit aus. Darüberhinaus hat es sich gezeigt, daß Art und Umfang der Nitridbildung durch die Kohlenstoffaktivität in der Nitrieratmosphäre wesentlich beeinflußt wird. Die Kohlenstoffaktivität wiederum hängt von dem eingesetzten
Kohlenstoffspender ab. Sie fällt in der Reihenfolge Propan, Endogas, Exogas und Kohlendioxid ab. Da die Zusammensetzung der Gasphase im Nitrierofen somit wesentlichen Einfluß auf das Ergebnis der Nitrocarbuherung hat, ist es günstig, wenn diese in möglichst weiten Bereichen einstellbar ist.
Bei den bekannten Gasgemischen liegen die Kohlendioxidgehalte üblicherweise zwischen 4 und 10 Vol.-%. Das Kohlendioxid wird direkt in den Ofenraum des Nitrierofens dosiert und reagiert dort teilweise mit Wasserstoff nach folgender Reaktionsgleichung:
(3) Cθ2+H2=CO+H2θ
Üblicherweise wird der Nitrierofen permanent mit Frischgas durchströmt, so daß sich in der Gasphase kein chemisches Gleichgewicht einstellt. Es ergibt sich dadurch eine stationäre Kohlenstoffaktivität (ac,B), die im wesentlichen von konkreten Gegebenheiten im Nitrierofen, wie etwa der Oberfläche der zu behandelnden Werkstücke, der Nitriertemperatur, der Gaszusammensetzung und dem
Gasvolumenstrom abhängt und die von außen kaum zu regeln ist. Es pendelt sich somit eine den vorherrschenden Gegebenheiten angepaßte Kohlenstoffaktivität (ac,B) ein, die nach der Boudouard-Reaktion definiert werden kann:
2 CO = C+ CO2
KB bezeichnet dabei die Konstante des Boudouard-Gleichgewichts. Beim Einspeisen von Kohlendioxid direkt in den Nitrierofen stellt sich eine Kohlenstoffaktivität von maximal 1 ein, was einer Aktivität von reinem Graphit entspricht. Unter diesen Bedingungen kann die Bildung von ε-Nitrid (Fe2-3N) aber nur durch eine hohe Nitrierkennzahl (KN) von größer 1 realisiert werden. Im Hinblick hierauf ist auf die DE-C1 197 19 225 zu verweisen, aus der ein Verfahren für die Regelung der Nitrierkennzahl einer Nitrier- bzw. Nitrocarburieratmosphäre in einer Ofenanlage bei Einsatz von NH3 als Stickstoffquelle bekannt ist. Das bekannte Verfahren zeichnet sich dadurch aus, dass der NH3-Gasdurchsatz konstant gehalten wird, und lediglich der Arbeitspunkt des Vorspalters, in dem das NH3-Spaltgas erzeugt wird, geregelt wird. Eine hohe Nitrierkennzahl erfordert einen hohen Ammoniakgehalt im Nitrierofen, was wiederum einen hohen Rest-Ammoniakgehalt im Ofenabgas zur Folge hat, das ungenutzt den Ofen verläßt.
Dieser Effekt stellt sich auch bei dem in der DE-A1 42 29 803 vorgeschlagenen Verfahren ein, wonach die Nitrierkennzahl für die Kontrolle einer Nitrier- bzw. Nitrocarburieratmosphäre eingesetzt wird, wobei die Nitrierkennzahl durch Messung des O2-Gehalts der Atmosphäre unter Einsatz einer O2-Sonde ermittelt wird.
In der DE-A1 195 14 932 wird zur Erzeugung einer Carbonitrier- Atmosphäre vorgeschlagen, dem Ofen Kohlenwasserstoffe und eine oxidierende Komponente, wie Luft oder CO2, und Ammoniak direkt zuzuführen. Um einen geregelten, möglichst hohen CO-Gehalt in der Carbonitrier-Atmosphäre zu erreichen, wird der CO-Gehalt gemessen und bei Erreichen einer vorgegebenen Untergrenze eine CO-bildende
Substanz, wie Methanol, in den Ofenraum eingespeist. Bei diesem Verfahren werden die CO-bildenden Komponenten wie Methanol oder CO2 somit direkt in den Behandlungsraum eingespeist. Beim Aufkohlen oder Carbonitrieren ist dies aufgrund der dabei herrschenden hohen Temperaturen effektiv, jedoch nicht bei den üblichen, relativ niedrigen Nitriertemperaturen von max. 580°C. Bei diesen niedrigeren Temperaturen spaltet Methanol nicht stöchiometrisch, sondern es bilden sich unerwünschte Spaltprodukte wie CH4 und andere höhere Kohlenwasserstoffe, CO2, Aldehyde, Ketone usw, die teilweise giftig und bei Kondensation ätzend sind. Zudem hängt die Spaltung des Methanols stark von den Gegebenheiten des Heizraumes und von der Chargenoberfläche ab, so dass die Reproduzierbarkeit der gewünschten Ofengaszusammensetzung nicht gegeben ist. Dies hat weiterhin zur Folge, dass sich durch unkontrollierten Spaltreaktionen Ruß auf dem Chargenmaterial und der Heizraumoberfläche abscheidet oder unerwünschte Carbide gebildet. Der Erfindung liegt daher die Aufgabe zugrunde, das bekannte Verfahren zum Nitrocarburieren metallischer Werkstücke unter Einsatz von Kohlendioxid als Kohlenstoffspender so zu modifizieren, daß Art und Umfang der Nitridbildung in weitem Rahmen einstellbar sind.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß ein Kohlendioxid-haltiger Gasstrom in einen dem Behandlungsraum vorgeschalteten Reaktor eingeleitet und darin durch Reaktion mit einem Wasserstoffspender bei einer Reaktionstemperatur oberhalb der Behandlungstemperatur zu einem Kohlungsgas modifiziert wird, das eine im Vergleich zum Kohlendioxid-haltigen Gasstrom höhere Kohlenstoffaktivität bei der Behandlungstemperatur aufweist.
Der Kohlendioxid-haltige Gasstrom wird erfindungsgemäß einem Reaktor zugeführt, darin in Richtung einer höheren Kohlenstoffaktivität modifiziert und anschließend als Kohlungsgas in den Behandlungsraum eingeleitet. Die Modifizierung beruht auf einer

Claims

Patentansprüche
1. Verfahren zum Nitrocarburieren metallischer Werkstücke, indem die Werkstücke in einer Stickstoff, Kohlenmonoxid und Wasserstoff enthaltenden
Behandlungsatmosphäre bei einer Behandlungstemperatur in einem Behandlungsraum behandelt werden, wobei zur Erzeugung der Behandlungsatmosphäre Kohlendioxid als Kohlenstoffspender eingesetzt wird, dadurch gekennzeichnet, daß ein Kohlendioxid-haltiger Gasstrom (1 ; 21) in einen dem Behandlungsraum (6; 27) vorgeschalteten Reaktor (4; 24) eingeleitet und darin durch Reaktion mit einem Wasserstoffspender (2; 22) bei einer Reaktionstemperatur oberhalb der Behandlungstemperatur zu einem Kohlungsgas (5; 25) modifiziert wird, das eine im Vergleich zum Kohlendioxid-haltigen Gasstrom (1 ; 21) höhere Kohlenstoffaktivität bei der Behandlungstemperatur aufweist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als Wasserstoffspender ein Kohlenwasserstoff-haltiges Fluid (2) eingesetzt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Wasserstoffspender Erdas, Propan oder Methan (2) eingesetzt wird.
4. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß als Wasserstoffspender Ammoniak (22) eingesetzt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß als Reaktor ein Spaltgerät (24) für Ammoniak eingesetzt wird.
6. Verfahren nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß dem Kohlungsgas (5; 25) vor Einleitung in den Behandlungsraum (6; 27) Feuchtigkeit entzogen wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß eine Regelung (9; 30) für die Kohlenstoffaktivität im Behandlungsraum (6; 27) vorgesehen ist, bei der als Stellgröße die Zufuhrrate eines den Wasserstoffspender (2; 22) enthaltenden Teilstromes dient.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Regelung (9; 30) für die Kohlenstoffaktivität eine Messung der Sauerstoffaktivität (8; 29) und/oder der
Kohlenmonoxidkonzentration im Behandlungsraum (6; 27) umfaßt.
9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß dem Kohlendioxid-haltigen Gasstrom (1 ; 21), dem Kohlungsgas (5; 25) und/oder dem Teilstrom für den Wasserstoffspender (2; 22) ein Verdünnungsgas (3; 23) beigemischt wird.
10.Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Kohlungsgas (25) vor Einleitung in den Behandlungsraum (27) auf eine Temperatur im Bereich der Behandlungstemperatur abgekühlt wird.
11.Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Kohlungsgas (5) bei Einleitung in den Behandlungsraum (6) eine Temperatur im Bereich der Reaktionstemperatur aufweist.
12.Verfahren nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Behandlungstemperatur im Bereich zwischen 500 °C und 700 °C liegt.
13.Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Reaktionstemperatur im Bereich zwischen 800 und 1150 °C liegt.
EP00962293A 1999-08-25 2000-08-04 Verfahren für die nitrocarburierung metallischer werkstücke Expired - Lifetime EP1230415B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19940370A DE19940370C2 (de) 1999-08-25 1999-08-25 Verfahren für die Nitrocarburierung metallischer Werkstücke
DE19940370 1999-08-25
PCT/EP2000/007576 WO2001014611A1 (de) 1999-08-25 2000-08-04 Verfahren für die nitrocarburierung metallischer werkstücke

Publications (2)

Publication Number Publication Date
EP1230415A1 true EP1230415A1 (de) 2002-08-14
EP1230415B1 EP1230415B1 (de) 2004-01-14

Family

ID=7919599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00962293A Expired - Lifetime EP1230415B1 (de) 1999-08-25 2000-08-04 Verfahren für die nitrocarburierung metallischer werkstücke

Country Status (7)

Country Link
EP (1) EP1230415B1 (de)
AT (1) ATE257865T1 (de)
CZ (1) CZ298996B6 (de)
DE (2) DE19940370C2 (de)
ES (1) ES2214316T3 (de)
PL (1) PL195105B1 (de)
WO (1) WO2001014611A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801111B2 (en) 2002-08-21 2004-10-05 Square D Company Latch for an electrical device
US7621201B2 (en) * 2008-03-05 2009-11-24 Gm Global Technology Operations, Inc. Hot forming tools for aluminum and magnesium sheets

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0024106B1 (de) * 1979-07-09 1986-01-02 Ford Motor Company Limited Verfahren zur Wärmebehandlung von Werkstücken aus Eisen
JPH01129957A (ja) * 1987-11-13 1989-05-23 Toyota Motor Corp マルエージング鋼の表面処理方法
DE3937699A1 (de) * 1989-11-13 1991-05-16 Thaelmann Schwermaschbau Veb Verfahren zum herstellen von (epsilon)-karbonitridschichten definierter zusammensetzung
DE4229803A1 (de) * 1992-09-11 1994-03-17 Iva Industrieoefen Verfahren A Kontrolle und Steuerung von Nitrier- bzw. Nitrocarburieratmosphären
DE19514932A1 (de) * 1995-04-22 1996-10-24 Ipsen Ind Int Gmbh Verfahren und Vorrichtung zur Regelung des CO-Gehaltes einer Ofenatmosphäre zum Aufkohlen und Carbonitrieren metallischer Werkstücke
DE19652125C1 (de) * 1996-12-14 1998-04-30 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens
DE19719225C1 (de) * 1997-05-07 1998-08-06 Volker Dipl Ing Leverkus Verfahren zur Regelung einer Nitrier- bzw. Nitrocarburier-Atmosphäre sowie Vorrichtung zur Durchführung des Verfahrens

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0114611A1 *

Also Published As

Publication number Publication date
PL353217A1 (en) 2003-11-03
ATE257865T1 (de) 2004-01-15
PL195105B1 (pl) 2007-08-31
CZ2002645A3 (cs) 2003-02-12
WO2001014611A1 (de) 2001-03-01
DE19940370C2 (de) 2001-07-12
DE50005043D1 (de) 2004-02-19
EP1230415B1 (de) 2004-01-14
DE19940370A1 (de) 2001-03-01
ES2214316T3 (es) 2004-09-16
CZ298996B6 (cs) 2008-04-02

Similar Documents

Publication Publication Date Title
CA2164020C (en) Treatment of furnace tubes
DE2135763C3 (de) 31 08 70 Japan 45 76202 Verfahren zur Behandlung von Eisen- und Stahlgegenstanden zur Bildung einer Nitrid schicht
DE69021658T2 (de) Verfahren zum Wärmebehandeln von Metallen.
DE69032144T2 (de) Verfahren und Vorrichtung zur thermischen oder thermochemischen Behandlung von Stahl
DE3419638A1 (de) Verfahren zur erzeugung von oxidischen schutzschichten auf der oberflaeche von metallen bzw. metallegierungen
DE4400391A1 (de) Verfahren zur Vermeidung von Randoxidation beim Aufkohlen von Stählen
EP1230415B1 (de) Verfahren für die nitrocarburierung metallischer werkstücke
EP1122331B1 (de) Verfahren zum Nitrieren und/oder Nitrocarburieren von höher legierten Stählen
EP1122330B1 (de) Verfahren und Verwendung einer Vorrichtung zum Nitrocarburieren von Eisenwerkstoffen
DE2652382B2 (de) Verfahren zur Karbonitrierung von Stahl und Roheisenerzeugnissen
DE68914624T2 (de) Verfahren und Anlage für Wärmebehandlungen wie Einsatzhärten, Karbonitrieren oder Erwärmung vor dem Härten von metallischen Werkstoffen.
US3892597A (en) Method of nitriding
US6004373A (en) Method for producing iron carbide
US1984411A (en) Method of case hardening
EP0779376B1 (de) Verfahren zur Plasmaaufkohlung metallischer Werkstücke
WO2001055471A1 (de) Verfahren zum karbonitrieren von kohlenstoffreichen und hochlegierten stählen
EP1050592A1 (de) Verfahren zur Wärmebehandlung metallischer Werkstücke
POSLEDICE Supersaturation of iron with nitrogen, hydrogen or carbon and the consequences
DE3937699A1 (de) Verfahren zum herstellen von (epsilon)-karbonitridschichten definierter zusammensetzung
DE2419997C2 (de) Verfahren und Einrichtung zur Erzeugung härtbarer bzw. verschleißfester Oberflächenschichten von Stahlteilen in einem Glühofen
DE3935486A1 (de) Verfahren zum gaskarbonitrierhaerten von bauteilen aus eisenwerkstoffen
DE3124872C2 (de) Verfahren zum Aufbringen verschleißfester Überzüge aus Titankarbid oder Titankarbonitrid auf Erzeugnisse aus gesinterten Hartlegierungen
DE2105549C3 (de) Verfahren zum Gasnitrieren von Eisen und Eisenlegierungen
Jack The Development of High-Strength Iron Alloys through Gaseous Reactions
DE1142261B (de) Verfahren zur Herstellung von UEberzuegen aus reinen hochschmelzenden Karbiden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESSER GRIESHEIM GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040114

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005043

Country of ref document: DE

Date of ref document: 20040219

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040804

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MESSER GROUP GMBH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2214316

Country of ref document: ES

Kind code of ref document: T3

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MESSER GROUP GMBH

Owner name: MESSER GRIESHEIM GMBH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: MESSER GROUP GMBH

Owner name: MESSER GRIESHEIM GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MESSER GROUP GMBH

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MESSER GROUP GMBH

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: MESSER GROUP GMBH

26N No opposition filed

Effective date: 20041015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20090902

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090803

Year of fee payment: 10

Ref country code: AT

Payment date: 20090812

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090825

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090814

Year of fee payment: 10

BERE Be: lapsed

Owner name: *MESSER GRIESHEIM G.M.B.H.

Effective date: 20100831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100804

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20150811

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180823

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190821

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50005043

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20200803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20200803