EP1226243A2 - Nukleinesäuremolekulen abgeleitet von ratgehirn und programmierten zelltotmodellen - Google Patents

Nukleinesäuremolekulen abgeleitet von ratgehirn und programmierten zelltotmodellen

Info

Publication number
EP1226243A2
EP1226243A2 EP00972316A EP00972316A EP1226243A2 EP 1226243 A2 EP1226243 A2 EP 1226243A2 EP 00972316 A EP00972316 A EP 00972316A EP 00972316 A EP00972316 A EP 00972316A EP 1226243 A2 EP1226243 A2 EP 1226243A2
Authority
EP
European Patent Office
Prior art keywords
nucleic acid
polypeptide
expression
protein
genes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00972316A
Other languages
English (en)
French (fr)
Inventor
Lillian Wei-Ming Chiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Millennium Pharmaceuticals Inc
Original Assignee
Millennium Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millennium Pharmaceuticals Inc filed Critical Millennium Pharmaceuticals Inc
Publication of EP1226243A2 publication Critical patent/EP1226243A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the invention relates to nucleic acid molecules derived from rat brain and programmed cell death expression libraries. Also provided are vectors, host cells, and methods for making and using the novel molecules of the invention.
  • apoptosis occurs when an internal suicide program is activated. This program can be initiated by a variety of external signals as well as signals that are generated within the cell in response to, for example, genetic damage. Dying cells are eliminated by phagocytes, without an inflammatory response.
  • PCD Programmed cell death
  • the death signal is then transduced through various signaling pathways that converge on caspase-mediated degradative cascades resulting in the activation of late effectors of morphological and physiological aspects of apoptosis, including DNA fragmentation and cytoplasmic condensation.
  • regulation of programmed cell death may be integrated with regulation of energy, redox- and ion homeostasis in the mitochondria (reviewed by Kroemer (1998) Cell Death and Differentiation 5:547), and/or cell-cycle control in the nucleus and cytoplasm (reviewed by Choisy-Rossi and Yonish-Rouach (1998) Cell Death and Differentiation 5:129-131 ; Dang (1999) Molecular and Cellular Biology 7P:1-11; and Kasten and Giordano (1998) Cell Death and Differentiation 5:132-140).
  • the mechanisms that mediate apoptosis include, but are not limited to, the activation of endogenous proteases, loss of mitochondrial function, and structural changes such as disruption of the cytoskeleton, cell shrinkage, membrane blebbing, and nuclear condensation due to degradation of DNA.
  • the various signals that trigger apoptosis may bring about these events by converging on a common cell death pathway that is regulated by the expression of genes that are highly conserved.
  • Caspases cyste proteases having specificity for aspartate at the substrate cleavage site
  • ICE interleukin- IB
  • ICE cysteine protease responsible for the processing of pro-IL-l ⁇ to the active cytokine.
  • ICE interleukin- IB
  • caspase recruitment domain a caspase recruitment domain
  • Apoptotic proteins may bind to each other via their CARDs.
  • Different subtypes of CARDs may confer binding specificity, regulating the activity of various caspases. (Hofmann et al. (1997) TIBS 22:155).
  • apoptosis is a normal physiological activity necessary to proper and differentiation in all vertebrates.
  • Defects in apoptosis programs result in disorders including, but not limited to, neurodegenerative disorders, cancer, immunodeficiency, heart disease and autoimmune diseases (Thompson et al. (1995) Science 267:1456).
  • neuronal programmed cell death mechanisms have been associated with a variety of developmental roles, including the removal of neuronal precursors which fail to establish appropriate synaptic connections (Oppenheim et al. (1991) Annual Rev. Neuroscience 74:453-501), the quantiative matching of pre- and post-synaptic population sizes (Herrup et al. (1987) J. Neurosci. 7:829-836), and sculpting of neuronal circuits, both during development and in the adult (Bottjer et al. (1992) J Neurobiol. 25:1172-1191).
  • nucleic acid probes have long been used to detect complementary nucleic acid sequences in a nucleic acid of interest (the "target” nucleic acid). In some assay formats, the nucleic acid is tethered, i.e., by covalent attachment, to a solid support.
  • Arrays of nucleic acid sequences immobilized on solid supports have been used to detect specific nucleic acid sequences in a target nucleic acid. See, e.g., PCT patent publication Nos. WO 89/10977 and 89/1 1548. Others have proposed the use of large numbers of nucleic acid sequences to provide the complete nucleic acid sequence of a target nucleic with methods for using arrays of immobilized nucleic acid sequences for this purpose. See U.S. Pat. Nos. 5,202,231 and 5,002,867 and PCT patent publication No. WO 93/17126.
  • the present invention is based on the identification of novel nucleic acid molecules derived from rat brain and programmed cell death cDNA libraries.
  • the invention provides an isolated nucleic acid molecule that comprises a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • the invention also provides an isolated fragment or portion of any of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complement of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • the fragment is useful as a probe or primer, and/or is at least 15, at least 18, or at least 20, 22, 25, 30, 35, 50, 100, 200 or more nucleotides in length.
  • the invention provides an isolated nucleic acid molecule that comprises a nucleotide sequence that is at least about 60% identical, about 65%> identical, about 70% identical, about 80% identical, about 90% identical, about 95%> identical, about 96% identical, about 97% identical, about 98% identical, or about 99%) or more identical to a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, and the complements of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • the invention provides an isolated nucleic acid molecule that hybridizes under highly stringent conditions to a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, and the complements of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • the invention further provides nucleic acid vectors comprising the nucleic acid molecules described above.
  • the nucleic acid molecules of the invention are operatively linked to at least one expression control element.
  • the invention further includes host cells, such as bacterial cells, fungal cells, plant cells, insect cells and mammalian cells, comprising the nucleic acid vectors described above.
  • the invention provides isolated gene products, proteins and polypeptides encoded by nucleic acid molecules of the invention.
  • the invention further provides antibodies, including monoclonal antibodies, or antigen-binding fragments thereof, which selectively bind to the isolated proteins and polypeptides of the invention.
  • the invention also provides methods for preparing proteins and polypeptides encoded by isolated nucleic acid molecules described herein by culturing a host cell containing a vector molecule of the invention.
  • the invention provides a method for assaying for the presence of a nucleic acid sequence, protein or polypeptide of the present invention, in a biological sample, e.g., in a tissue sample, by contacting said sample with an agent (e.g., an antibody or a nucleic acid molecule) suitable for specific detection of the nucleic acid sequence, protein or polypeptide.
  • an agent e.g., an antibody or a nucleic acid molecule
  • the invention also provides a kit comprising a nucleic acid probe which hybridizes to a nucleotide sequence of claim 1 and instructions for use, and a kit comprising an agent which binds to a polypeptide of claim 10 and instructions for use.
  • a kit comprising a nucleic acid probe which hybridizes to a nucleotide sequence of claim 1 and instructions for use, and a kit comprising an agent which binds to a polypeptide of claim 10 and instructions for use.
  • BRIEF DESCRIPTION OF THE FIGURES Figure 1 illustrates the construction of the "Smart ChipTM I".
  • cDNAs were cloned from rat frontal cortex and from differentiated PC 12 cells deprived of nerve growth factor, a model of programmed cell death as described in detail in the experimental section.
  • PC 12 cells are an adrenal gland cell line from rat that provides a pre-neuron set that can be differentiated in vitro. The application of nerve growth factor induces the formation of axons and dendriti
  • Figure 2 shows the coefficient of variation (standard deviation/mean for triplicate hybridizations) after normalization for each array element plotted against the mean intensity for the gene (gene expression intensity).
  • the figure shows the moving average (with a window of 200) for three different mRNA probes, 3 hour KC1- withdrawn, 3 hour control, and 6 hour control (See the examples and figures 3 and 4). As is typical for all probes, past a threshold of 30 to 40, the coefficient of variation averages below 0.2.
  • the inset compares one triplicate hybridization (Filter Y) to another (Filter Z). Each point represents a different gene graphed on log-log axis comparing the intensity measured on one filter versus the other.
  • Figure 3 shows temporal expression clusters observed following KC1 and serum withdrawal.
  • a hierarchical clustering algorithm was used to cluster genes based on expression patterns across 10 time points (from left to right), 1, 3, 6, 12, and 24 hours post-KCl/serum-replacement (sham), and 1, 3, 6, 12, and 24 hours post-
  • KCl/serum-withdrawal Treatment
  • Expression values for each gene were scaled based on the number of standard deviations from the mean intensity of each gene across all 10 time points. Scaled expression values are color-coded such that red, yellow, and blue indicated above, at, and below mean intensity, respectively. The correlation between expression patterns of neighboring genes is depicted by the dendrogram on the right. Genes regulated by programmed cell death (KCl /serum- withdrawal alone) are enlarged in B. Representative non-scaled gene expression bar graphs with standard deviation error bars are aligned next to the four major clusters for Late Effector, Middle, Early, and Immediate Early gene expression classes. Regulated genes within each temporal expression class are listed in order of hierarchical clustering in SEQ ID NOS: 1-6, 8, and 106.
  • Figure 4 shows expression clusters for all of the CGN programmed cell death models (KCl and serum withdrawal, KCl withdrawal alone, and kainate treatment).
  • Figure 4A shows a self-organizing map (SOM) algorithm (See, e.g. Kohonen, Self Organizing Maps: Springer, Berlin (1997)) that was used to cluster genes based on expression in 26 experiments (in order: serum added back, 1, 3, 6, 12, 24 hours; KCl/serum withdrawal, 1, 3, 6, 12, 24 hours; controls for KCl withdrawal, 1, 3, 6, 12 hours; KCl withdrawal alone, 1, 3, 6, 12 hours; controls for kainate treatment, 2, 4, 8, 12 hours; kainate treatment, 2, 4, 8, 12 hours; see examples for experimental details).
  • SOM self-organizing map
  • a 5 x 4 geometry was used to organize the genes into 20 groups.
  • a cluster (3,3) of 17 programmed cell death-induced genes is highlighted.
  • Caspase 3 a gene involved in apoptosis, is part of the array and depicted in the raw values graph (i.e. relative expression in the 26 experiments); each experiment is represented in order on the x-axis; the y-axis indicates gene expression intensity.
  • Figure 4 B, C, D, and E show the raw gene expression intensity plotted for a representative gene from programmed cell death-regulated, regulated by KCl withdrawal only, immediate early genes, and serum-repressed constitutive expression classes, respectively.
  • Each panel shows the data for a representative member of the cluster (indicated in the gene list by *), along with a list of genes included in the expression cluster.
  • Figure 4B shows the raw gene expression intensity for a gene representative from the list on the right.
  • the graph shows increased expression with KCl and serum withdrawal, and kainate treatment. Accordingly, genes with these characteristics are designated "programmed cell death regulated.”
  • the list of genes with this pattern is shown on the right.
  • Known genes include genes regulated in apoptosis.
  • Figure 4C lists genes which show increased expression after withdrawal of KCL or KCL and serum, but following kainate treatment. The list includes genes known to be involved in apoptosis.
  • Figure 4D shows genes that demonstrate constitutive immediate early expression.
  • Figure 4E shows genes that demonstrate constitutive expression in the absence of serum. The list on the right shows that this class contains mediators of programmed cell death.
  • Figure 5 shows information relating to various NARC genes. Accordingly the first column gives the NARC (neuronal apoptosis regulated candidate) designation.
  • the second column provides specific information, such as the number of nucleotides sequenced, the region sequenced, for example, the 3' untranslated region, information regarding open reading frames, information regarding human orthologs (whose sequences may also be found in SEQ ID NOS: 1-6, 8, and 10), information regarding homology to known amino acid or nucleotide sequences, information regarding function, and other information related to specific physical or functional characteristics.
  • the third column shows the gene expression class as described and designated in Figure 4.
  • the fourth column shows the results of Northern blot hybridization, for example whether expression is restricted to specific organs or ubiquitous, and transcript size.
  • Figure 6 shows a tabulation of expression data of genes known to be related to programmed cell death, the data being obtained from experiments disclosed herein wherein nucleic acid sequences on the microarray were hybridized to mRNA derived from the two programmed cell death models (see examples).
  • the first column indicates the clone designation. Where the clone is a previously known gene (for example, c-fos and c-jun), the gene name is given rather than the cDNA clone designation.
  • the second column indicates the gene designation for each clone based on a BLASTX search.
  • the third column indicates the expression pattern for each of the clones.
  • This tabulation can serve as an internal control to assess the fidelity of the experimental conditions and thus can serve as a background to compare the expression pattern of uncharacterized clones in the array. Accordingly, this figure shows a subarray that can serve as an internal control for discovering genes related to apoptosis and cell proliferation.
  • Figure 7 shows all genes (i.e., that are represented by nucleic acid sequences on the chip) that are regulated in specific experimental conditions described in the examples and shown in Figure 4.
  • Specific genes are clustered (in an underlined category). Each cluster represents clones having a specific expression characteristic. For example, the first cluster is transiently down-regulated by serum and down- regulated by KCl withdrawal. The second column identifies cDNA clones whose function is previously known. The third column indicates the cluster number. See Figure 4A.
  • an analysis of the functions of the genes in each cluster showed that within a cluster, certain functional classes of genes may be over- represented. Thus, the material in parentheses indicates the biological functions that are associated with a disproportionate number of genes in the cluster.
  • Figure 8 summarizes tissue expression data for the Smart Chip ITM microarray elements.
  • the data were obtained by membrane blotting of the microarray against mRNA from testes, brain, heart, smooth muscle, spleen, kidney, skeletal muscle, lung, liver, and pancreatic tissue. Following hybridization with labeled cDNA synthesized from RNA from the indicated tissue type, the signal from each sequence on the array filters was quantitated by phosphorimaging.
  • Figure 9 provides a list of genes that were shown to be regulated by KCl and serum withdrawal in the microarray experiments described herein.
  • the invention encompasses the discovery and isolation of nucleic acid molecules that are expressed in rat brain and in programmed cell death in vitro models (neuronal apoptosis regulated candidates or NARCs) and their human homologs.
  • the sequences of these human homologs are specifically disclosed in SEQ ID NOS:l (human NARC 9B), 2 (human NARC 8B), 3 (human NARC 2A), 4 (human NARC 16B), 5 (human NARC 1 OC), 6 (human NARC 1 C), 8 (human NARC 1 A), and 10 (human NARC 25).
  • the isolated nucleic acid molecules of the present invention can be RNA, for example, mRNA, or DNA, such as cDNA and genomic DNA.
  • DNA molecules can be double-stranded or single-stranded; single stranded RNA or DNA can be either the coding, or sense, strand or the non-coding, or antisense, strand.
  • the nucleic acid molecule can include all or a portion of the coding sequence of the genes of the invention.
  • the nucleic acid molecule can be fused to a marker sequence, for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide.
  • a marker sequence for example, a sequence that encodes a polypeptide to assist in isolation or purification of the polypeptide.
  • sequences include, but are not limited to, those which encode a glutathione-S-transferase (GST) fusion protein and those which encode a hemaglutin A (HA) polypeptide marker from influenza.
  • an "isolated" nucleic acid molecule is one that is separated from nucleic acid which normally flanks the nucleic acid molecule in nature.
  • genomic DNA the term “isolated” refers to nucleic acid molecules which are separated from the chromosome with which the genomic DNA is naturally associated.
  • the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotides which flank the nucleic acid molecule in the genomic DNA of the cell from which the nucleic acid is derived.
  • an isolated nucleic acid of the invention such as a cDNA or RNA molecule
  • the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.
  • the isolated material will form part of a composition (for example, a crude extract containing other substances), buffer system or reagent mix. In other circumstances, the material may be purified to essential homogeneity, for example as determined by PAGE or column chromatography such as HPLC.
  • an isolated nucleic acid comprises at least about 50, 80 or 90%> (on a molar basis) of all macromolecular species present.
  • isolated nucleic acid molecules include recombinant DNA molecules in heterologous host cells, as well as partially or substantially purified DNA molecules in solution. "Isolated” nucleic acid molecules also encompass in vivo and in vitro RNA transcripts of the DNA molecules of the present invention.
  • the invention further provides variants of the isolated nucleic acid molecules of the invention.
  • variants can be naturally occurring, such as allelic variants (same locus), homologs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis.
  • non-naturally occurring variants can be made using well-known mutagenesis techniques, including those applied to polynucleotides, cells, or organisms.
  • variants can contain nucleotide substitutions, deletions, inversions and/or insertions in either or both the coding and non-coding region of the nucleic acid molecule. Further, the variations can produce both conservative and non-conservative amino acid substitutions.
  • variants have a substantial identity with a nucleic acid molecule selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements thereof.
  • nucleic acid molecules and fragments which have at least about 60%, at least about 70%>, at least about 80%o, at least about 85%>, at least about 90%, at least about 95%, at least about 96%), at least about 97%, at least about 98%), or at least about 99%) or more identity with nucleic acid molecules described herein.
  • nucleic acid molecules can be readily identified as being able to hybridize under stringent conditions to a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements thereof.
  • the variants hybridize under high stringency hybridization conditions (e.g., for selective hybridization) to a nucleotide sequence selected from the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • hybridizes under stringent conditions describes conditions for hybridization and washing.
  • Stringent conditions are known to those skilled in the art and can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. Aqueous and nonaqueous methods are described in that reference and either can be used.
  • a preferred, example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 50°C.
  • SSC sodium chloride/sodium citrate
  • stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 55°C.
  • a further example of stringent hybridization conditions is hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1 % SDS at 60°C.
  • stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2X SSC, 0.1% SDS at 65°C.
  • Particularly preferred stringency conditions are 0.5M Sodium Phosphate, 7% SDS at 65°C, followed by one or more washes at 0.2X SSC, 1%> SDS at 65°C.
  • the hybridization step may be performed for 4, 8, 12, or 16 hours, and the wash steps are generally 15 minutes or 30 minutes in length.
  • the percent identity of two nucleotide or amino acid sequences can be determined by aligning the sequences for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first sequence). The nucleotides or amino acids at corresponding positions are then compared, and the percent identity between the two sequences is a function of the number of identical positions shared by the sequences.
  • the length of a sequence aligned for comparison purposes is at least 30%, preferably at least 40%>, more preferably at least 60%>, and even more preferably at least 70%, 80%> or 90%> of the length of the reference sequence.
  • the actual comparison of the two sequences can be accomplished by well-known methods, for example, using a mathematical algorithm.
  • a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, C ABIOS (1989). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the CGC sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art and include ADVANCE and ADAM as described in Torellis and Robotti (1994) Comput. Appl. Biosci. 70:3-5; and FASTA described in Pearson and Lipman (1988) PNAS, 55:2444-8.
  • the percent identity between two amino acid sequences can be accomplished using the GAP program in the CGC software package (available at http://www.cgc.com) using either a BLOSUM 63 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4.
  • the percent identity between two nucleic acid sequences can be accomplished using the GAP program in the CGC software package (available at http://www.cgc.com), using a gap weight of 50 and a length weight of 3.
  • the present invention also provides isolated nucleic acids that contain a fragment or portion that hybridizes under highly stringent conditions to a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements of the sequences shown in SEQ ID NOS:l- 6, 8, and 10.
  • the nucleic acid consists of a fragment of a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and lOand the complements of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • nucleic acid fragments of the invention are at least about 15, preferably at least about 18, 20, 23 or 25 nucleotides, and can be 30, 40, 50, 100, 200 or more nucleotides in length. Longer fragments, for example, 30 or more nucleotides in length, which encode antigenic proteins or polypeptides described herein are useful. Additionally, nucleotide sequences described herein can also be contigged (e.g., overlapped or joined) to produce longer sequences (see, for example, http://bozeman.mbt.washington.edu/phrap.docs/phrap.html).
  • the nucleic acid fragments of the invention are used as probes or primers in assays such as those described herein.
  • Probes are oligonucleotides that hybridize in a base-specific manner to a complementary strand of nucleic acid. Such probes include polypeptide nucleic acids, as described in Nielsen et al. (1991) Science, 254, 1497-1500.
  • a probe comprises a region of nucleotide sequence that hybridizes under highly stringent conditions to at least about 15, typically about 20-25, and more typically about 40, 50 or 75 consecutive nucleotides of a nucleic acid selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements thereof. More typically, the probe further comprises a label, e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.
  • a label e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.
  • primer refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA synthesis using well-known methods (e.g. , PCR, LCR) including, but not limited to those described herein.
  • the appropriate length of the primer depends on the particular use, but typically ranges from about 15 to 30 nucleotides.
  • primer site refers to the area of the target DNA to which a primer hybridizes.
  • primer pair refers to a set of primers including a 5' (upstream) primer that hybridizes with the 5' end of the nucleic acid sequence to be amplified and a 3' (downstream) primer that hybridizes with the complement of the sequence to be amplified.
  • nucleic acid molecules of the invention such as those described above can be identified and isolated using standard molecular biology techniques and the sequence information provided in the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • nucleic acid molecules can be amplified and isolated by the polymerase chain reaction using synthetic oligonucleotide primers designed based on one or more of the sequences provided in the sequences shown in SEQ ID NOS: 1-6, 8, and lOand the complements thereof. See generally PCR Technology: Principles and Applications for DNA Amplification (ed. H.A. Erlich, Freeman Press, NY, NY, 1992); PCR Protocols: A Guide to Methods and Applications (Eds. Innis, et al.
  • the nucleic acid molecules can be amplified using cDNA, mRNA or genomic DNA as a template, cloned into an appropriate vector and characterized by DNA sequence analysis.
  • ligase chain reaction LCR
  • LCR ligase chain reaction
  • Genomics 4:560
  • transcription amplification Kwoh et al. (1989) Proc. Natl. Acad. Sci. USA, 56. 1173
  • self-sustained sequence replication Guatelli et al. (1990) Proc. Nat. Acad. Sci. USA, 57:1874
  • NASBA nucleic acid based sequence amplification
  • the latter two amplification methods involve isothermal reactions based on isothermal transcription, which produce both single stranded RNA (ssRNA) and double stranded DNA (dsDNA) as the amplification products in a ratio of about 30 or 100 to 1, respectively.
  • ssRNA single stranded RNA
  • dsDNA double stranded DNA
  • the amplified DNA can be radiolabelled and used as a probe for screening a cDNA library, mRNA in zap express, ZIPLOX or other suitable vector.
  • Corresponding clones can be isolated, DNA can obtained following in vivo excision, and the cloned insert can be sequenced in either or both orientations by art recognized methods to identify the correct reading frame encoding a protein of the appropriate molecular weight.
  • the direct analysis of the nucleotide sequence of nucleic acid molecules of the present invention can be accomplished using well-known methods that are commercially available. See, for example, Sambrook et al. Molecular Cloning, A Laboratory Manual (2nd Ed., CSHP, New York 1989); Zyskind et al. Recombinant DNA Laboratory Manual, (Acad. Press, 1988)). Using these or similar methods, the protein(s) and the DNA encoding the protein can be isolated, sequenced and further characterized.
  • Antisense nucleic acids of the invention can be designed using the nucleotide sequences of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, and constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art.
  • an antisense nucleic acid e.g., an antisense oligonucleotide
  • an antisense nucleic acid can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.
  • modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil,
  • the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest).
  • the nucleic acid molecules of the invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule.
  • the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry, 4:5).
  • peptide nucleic acids refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained.
  • the neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength.
  • the synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA, 93:14670.
  • PNAs can be further modified, e.g., to enhance their stability, specificity or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art.
  • the synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, Finn et al. (1996) Nucleic Acids Res. 2 (17):3357-63, Mag et al. (1989) Nucleic Acids Res. 77:5973, and Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119.
  • nucleic acid molecules and fragments of the invention can also include other appended groups such as peptides (e.g. , for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA, 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA, 84:648-652; PCT Publication No. WO88/0918) or the blood brain barrier (see, e.g., PCT Publication No. WO89/10134).
  • peptides e.g., for targeting host cell receptors in vivo
  • agents facilitating transport across the cell membrane see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA, 86:6553-6556; Lemaitre et al. (1987) Proc.
  • oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio-Techniques, (5:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm Res. 5:539-549).
  • hybridization-triggered cleavage agents see, e.g., Krol et al. (1988) Bio-Techniques, (5:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm Res. 5:539-549).
  • intercalating agents see, e.g., Zon (1988) Pharm Res. 5:539-549.
  • the nucleic acid sequences can also be used to compare with endogenous DNA sequences in patients to identify genetic disorders, and as probes, such as to hybridize and discover related DNA sequences or to subtract out known sequences from a sample.
  • the nucleic acid sequences can further be used to derive primers for genetic fingerprinting, to raise anti-protein antibodies using DNA immunization techniques, and as an antigen to raise anti-DNA antibodies or elicit immune responses.
  • the nucleotide sequences of the invention can be used identify and express recombinant proteins for analysis, characterization or therapeutic use, or as markers for tissues in which the corresponding protein is expressed, either constitutively, during tissue differentiation, or in disease states.
  • vectors and Host Cells Another aspect of the invention pertains to nucleic acid vectors containing a nucleic acid selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10. These vectors comprise a sequence of the invention that has been inserted in a sense or antisense orientation.
  • vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked.
  • plasmid which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated.
  • viral vector Another type of vector, wherein additional DNA segments can be ligated into the viral genome.
  • vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses) that serve equivalent functions.
  • viral vectors e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses
  • Preferred recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell.
  • the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed.
  • "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell).
  • regulatory sequence is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc.
  • the expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein .
  • the recombinant expression vectors of the invention can be designed for expression of a polypeptide of the invention in prokaryotic or eukaryotic cells, e.g., bacterial cells such as E. coli, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, supra.
  • the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.
  • Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein.
  • Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification.
  • a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein.
  • enzymes, and their cognate recognition sequences include Factor Xa, thrombin and enterokinase.
  • Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson (1988) Gene, 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.
  • GST glutathione S-transferase
  • maltose E binding protein or protein A, respectively, to the target recombinant protein.
  • Suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene, 69:301-315) and pET 1 Id (Studier et al. Gene Expression Technology: Methods in Enzymology, 185, Academic Press, San Diego, California (1990) 60-89).
  • Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter.
  • Target gene expression from the pET 1 Id vector relies on transcription from a T7 gnlO-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gnl). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident prophage harboring a T7 gnl gene under the transcriptional control of the lacUV 5 promoter.
  • One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, Gene Expression Technology: Methods in Enzymology, 185, Academic Press, San Diego, California (1990) 1 19-128).
  • Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al. (1992) Nucleic Acids Res.
  • nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.
  • the expression vector is a yeast expression vector.
  • yeast expression vectors for expression in yeast S. cerivisae include pYepSecl (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell
  • a nucleic acid of the invention can be expressed in insect cells using baculovirus expression vectors.
  • Baculovirus vectors available for expression of proteins in cultured insect cells include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology, 770:31-39).
  • a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector.
  • mammalian expression vectors include pCDM8 (Seed (1987) Nature, 529:840) and pMT2PC (Kaufman et al (1987) EMBOJ. 6:187-195).
  • the expression vector's control functions are often provided by viral regulatory elements.
  • commonly used promoters are derived from polyoma, Adeno virus 2, cytomegalovirus and Simian Virus 40.
  • suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al. supra.
  • the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid).
  • tissue-specific regulatory elements are known in the art.
  • suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 7:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J.
  • the invention further provides a recombinant expression vector comprising a
  • DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to at least one expression control element in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to an mRNA of the invention.
  • Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA.
  • the antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.
  • Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced.
  • the terms "host cell” and "recombinant host cell” are used interchangeably herein.
  • a host cell can be any prokaryotic or eukaryotic cell.
  • a nucleic acid of the invention can be expressed in bacterial cells (e.g., E. coli), insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells).
  • bacterial cells e.g., E. coli
  • insect cells e.g., yeast
  • mammalian cells such as Chinese hamster ovary cells (CHO) or COS cells.
  • Other suitable host cells are known to those skilled in the art.
  • Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques.
  • transformation or transfection techniques As used herein, the terms
  • transformation and transfection are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.
  • a gene that encodes a selectable marker (e.g. , for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest.
  • selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate.
  • Nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that nucleic acid of the invention or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have inco ⁇ orated the selectable marker gene will survive, while the other cells die).
  • a host cell of the invention such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) a polypeptide of the invention.
  • the invention further provides methods for producing a polypeptide using the host cells of the invention.
  • the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding a polypeptide of the invention has been introduced) in a suitable medium such that the polypeptide is produced.
  • the method further comprises isolating the polypeptide from the medium or the host cell.
  • the host cells of the invention can also be used to produce nonhuman transgenic animals.
  • a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which a nucleic acid of the invention have been introduced.
  • Such host cells can then be used to create non-human transgenic animals in which exogenous nucleotide sequences have been introduced into their genome or homologous recombinant animals in which endogenous nucleotide sequences have been altered.
  • Such animals are useful for studying the function and/or activity of the nucleotide sequence and polypeptide encoded by the sequence and for identifying and/or evaluating modulators of their activity.
  • a "transgenic animal” is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene.
  • Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc.
  • a transgene is exogenous DNA which is integrated into the genome of a cell from which a transgenic animal develops and which remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal.
  • an "homologous recombinant animal” is a non-human animal, preferably a mammal, more preferably a mouse, in which an endogenous gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.
  • a transgenic animal of the invention can be created by introducing a nucleic acid of the invention into the male pronuclei of a fertilized oocyte, e.g. , by microinjection, retroviral infection, and allowing the oocyte to develop in a pseudopregnant female foster animal.
  • the sequence can be introduced as a transgene into the genome of a non-human animal. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene.
  • a tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of a polypeptide in particular cells.
  • transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene.
  • transgenic animals carrying a transgene encoding the transgene can further be bred to other transgenic animals carrying other transgenes.
  • Homologously recombinant host cells can also be produced that allow the in situ alteration of endogenous polynucleotide sequences of the invention in a host cell genome.
  • the host cell includes, but is not limited to, a stable cell line, cell in vivo, or cloned microorganism. This technology is more fully described in WO 93/09222, WO 91/12650, WO 91/06667, U.S. 5,272,071, and U.S. 5,641,670.
  • polynucleotide sequences corresponding to the polynucleotides or sequences proximal or distal to a gene are allowed to integrate into a host cell genome by homologous recombination where expression of the gene can be affected.
  • regulatory sequences are introduced that either increase or decrease expression of an endogenous sequence. Accordingly, a protein can be produced in a cell not normally producing it. Alternatively, increased expression of a protein can be effected in a cell normally producing the protein at a specific level. Further, expression can be decreased or eliminated by introducing a specific regulatory sequence.
  • the regulatory sequence can be heterologous to the protein sequence or can be a homologous sequence with a desired mutation that affects expression. Alternatively, the entire gene can be deleted.
  • the regulatory sequence can be specific to the host cell or capable of functioning in more than one cell type. Still further, specific mutations can be introduced into any desired region of the gene to produce mutant proteins of the invention. Such mutations could be introduced, for example, into the specific functional regions.
  • a vector which contains at least a portion of a nucleic acid of the invention into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the endogenous gene.
  • the vector is designed such that, upon homologous recombination, the endogenous gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector).
  • the vector can be designed such that, upon homologous recombination, the endogenous gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous protein).
  • the altered portion of the gene is flanked at its 5' and 3' ends by additional nucleic acid of the gene to allow for homologous recombination to occur between the exogenous gene carried by the vector and an endogenous gene in an embryonic stem cell.
  • the additional flanking nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene.
  • flanking DNA both at the 5' and 3' ends
  • flanking DNA both at the 5' and 3' ends
  • the vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced nucleic acid has homologously recombined with the endogenous gene are selected (see, e.g., Li et al. (1992) Cell 69:915).
  • the selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see, e.g., Bradley in Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, Robertson, ed. (IRL, Oxford, 1987) pp. 113-152).
  • a chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term.
  • Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene.
  • transgenic non-human animals can be produced which contain selected systems that allow for regulated expression of the transgene.
  • a system is the cre/loxP recombinase system of bacteriophage PI .
  • cre/loxP recombinase system of bacteriophage PI .
  • FLP recombinase system of Saccharomyces cerevisiae (O'Gorman et al. (1991) Science 257: 1351-1355.
  • mice containing transgenes encoding both the Cre recombinase and a selected protein are required.
  • Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
  • Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut et al. (1997) Nature 555:810-813 and PCT Publication Nos. WO 97/07668 and WO 97/07669.
  • the present invention also provides isolated polypeptides and variants and fragments thereof that are encoded by the nucleic acid molecules of the invention, especially as shown in SEQ ID NOS: 1-6, 8, and 10.
  • the nucleotide sequences can be used to design primers to clone and express cDNAs encoding the polypeptides of the invention.
  • the nucleotide sequences of the invention e.g., the sequences shown in SEQ ID NOS: 1-6, 8, and 10 can be analyzed using routine search algorithms (e.g., BLAST, Altschul et al. (1990) J Mol. Biol. 275:403-410; BLAZE, Brutlag et al. (1993) Comp.
  • a polypeptide is said to be “isolated” or “purified” when it is substantially free of cellular material when it is isolated from recombinant and non-recombinant cells, or free of chemical precursors or other chemicals when it is chemically synthesized.
  • a polypeptide can be joined to another polypeptide with which it is not normally associated in a cell and still be “isolated” or “purified.”
  • polypeptides of the invention can be purified to homogeneity. It is understood, however, that preparations in which the polypeptide is not purified to homogeneity are useful and considered to contain an isolated form of the polypeptide. The critical feature is that the preparation allows for the desired function of the polypeptide, even in the presence of considerable amounts of other components.
  • the language “substantially free of cellular material” includes preparations of the polypeptide having less than about 30% (by dry weight) other proteins (i.e., contaminating protein), less than about 20%> other proteins, less than about 10% other proteins, or less than about 5%> other proteins.
  • a polypeptide When a polypeptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20%>, less than about 10%), or less than about 5%> of the volume of the protein preparation.
  • the language "substantially free of chemical precursors or other chemicals” includes preparations of the polypeptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language “substantially free of chemical precursors or other chemicals” includes preparations of the polypeptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10%> chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.
  • a polypeptide comprises an amino acid sequence encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements thereof.
  • sequence variants include a substantially homologous protein encoded by the same genetic locus in an organism, i.e., an allelic variant.
  • variants also encompass proteins derived from other genetic loci in an organism, but having substantial homology to a polypeptide encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10 and the complements thereof.
  • Variants also include proteins substantially homologous to these polypeptides but derived from another organism, i.e., an ortholog. Variants also include proteins that are substantially homologous to these polypeptides that are produced by chemical synthesis. Variants also include proteins that are substantially homologous or identical to these polypeptides that are produced by recombinant methods.
  • two proteins are substantially homologous or identical when the amino acid sequences are at least about 45-55%), typically at least about 70-75%>, more typically at least about 80-85%, and most typically at least about 90, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more identical.
  • a substantially homologous amino acid sequence will be encoded by a nucleic acid hybridizing to a nucleic acid sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, or fragment thereof under stringent conditions as more described above.
  • the sequences are aligned for optimal comparison pu ⁇ oses (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid).
  • the amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence, then the molecules are homologous at that position.
  • amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity”.
  • the percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., per cent homology equals the number of identical positions/total number of positions times 100).
  • the invention also encompasses polypeptides having a lower degree of identity but having sufficient similarity so as to perform one or more of the same functions performed by a polypeptide encoded by a nucleic acid of the invention. Similarity is determined by conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Conservative substitutions are likely to be phenotypically silent.
  • conservative substitutions are the replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and He; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gin, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr.
  • Guidance concerning which amino acid changes are likely to be phenotypically silent are found in Bowie et al. (1990) Science 247:1306-1310. TABLE 1. Conservative Amino Acid Substitutions.
  • variant polypeptide can differ in amino acid sequence by one or more substitutions, deletions, insertions, inversions, fusions, and truncations or a combination of any of these. Further, variant polypeptides can be fully functional or can lack function in one or more activities. Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Functional variants can also contain substitution of similar amino acids that result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively affect function to some degree.
  • Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.
  • variants can be naturally-occurring or can be made by recombinant means or chemical synthesis to provide useful and novel characteristics for the polypeptide. This includes preventing immunogenicity from pharmaceutical formulations by preventing protein aggregation.
  • Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis (Cunningham et al. (1989) Science 244:1081-1085). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity in vitro, or in vitro proliferative activity. Sites that are critical for polypeptide activity can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith et al. (1992) J. Mol. Biol. 224:899-904; de Vos et al. (1992) Science 255:306-312).
  • the invention also includes polypeptide fragments of the polypeptides of the invention. Fragments can be derived from a polypeptide encoded by a nucleic acid comprising a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, and the complements thereof. However, the invention also encompasses fragments of the variants of the polypeptides described herein.
  • a fragment comprises at least 6 contiguous amino acids.
  • Useful fragments include those that retain one or more of the biological activities of the polypeptide as well as fragments that can be used as an immunogen to generate polypeptide specific antibodies.
  • Biologically active fragments can comprise a domain, segment, or motif that has been identified by analysis of the polypeptide sequence using well-known methods, e.g., signal peptides, extracellular domains, one or more transmembrane segments or loops, ligand binding regions, zinc finger domains, DNA binding domains, acylation sites, glycosylation sites, or phosphorylation sites.
  • signal peptides e.g., extracellular domains, one or more transmembrane segments or loops, ligand binding regions, zinc finger domains, DNA binding domains, acylation sites, glycosylation sites, or phosphorylation sites.
  • the invention also provides fragments with immunogenic properties. These contain an epitope-bearing portion of the polypeptides and variants of the invention.
  • epitope-bearing peptides are useful to raise antibodies that bind specifically to a polypeptide or region or fragment. These peptides can contain at least 6, 7, 8, 9, 12, at least 14, or between at least about 15 to about 30 amino acids.
  • the epitope-bearing peptide and polypeptides may be produced by any conventional means (Houghten (1985) Proc. Natl. Acad. Sci. USA 52:5131-5135). Simultaneous multiple peptide synthesis is described in U.S. Patent No. 4,631,211.
  • Fragments can be discrete (not fused to other amino acids or polypeptides) or can be within a larger polypeptide. Further, several fragments can be comprised within a single larger polypeptide. In one embodiment a fragment designed for expression in a host can have heterologous pre- and pro-polypeptide regions fused to the amino terminus of the polypeptide fragment and an additional region fused to the carboxyl terminus of the fragment.
  • the invention thus provides chimeric or fusion proteins. These comprise a polypeptide of the invention operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the polypeptide. "Operatively linked" indicates that the polypeptide protein and the heterologous protein are fused in-frame.
  • the heterologous protein can be fused to the N-terminus or C-terminus of the polypeptide.
  • the fusion protein does not affect function of the polypeptide per se.
  • the fusion protein can be a GST-fusion protein in which the polypeptide sequences are fused to the C-terminus of the GST sequences.
  • fusion proteins include, but are not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions and Ig fusions.
  • enzymatic fusion proteins for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions and Ig fusions.
  • Such fusion proteins, particularly poly-His fusions can facilitate the purification of recombinant polypeptide.
  • expression and/or secretion of a protein can be increased by using a heterologous signal sequence. Therefore, in another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus.
  • EP-A-O 464 533 discloses fusion proteins comprising various portions of immunoglobulin constant regions.
  • the Fc is useful in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262).
  • human proteins have been fused with Fc portions for the pu ⁇ ose of high-throughput screening assays to identify antagonists. Bennett et al. (1995) Journal of Molecular Recognition 5:52-58 and Johanson et al. (1995) The Journal of Biological Chemistry 270,16:9459-947 ⁇ .
  • this invention also encompasses soluble fusion proteins containing a polypeptide of the invention and various portions of the constant regions of heavy or light chains of immunoglobulins of various subclass (IgG, IgM, IgA, IgE).
  • immunoglobulin is the constant part of the heavy chain of human IgG, particularly IgGl, where fusion takes place at the hinge region.
  • the Fc part can be removed in a simple way by a cleavage sequence that is also inco ⁇ orated and can be cleaved with factor Xa.
  • a chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques.
  • the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers.
  • PCR amplification of nucleic acid fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive nucleic acid fragments which can subsequently be annealed and re-amplified to generate a chimeric nucleic acid sequence (see Ausubel et al, Current Protocols in Molecular Biology, 1992).
  • fusion moiety e.g., a GST protein
  • a nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide protein.
  • the isolated polypeptide can be purified from cells that naturally express it, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods.
  • the protein is produced by recombinant DNA techniques.
  • a nucleic acid molecule encoding the polypeptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell.
  • the protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques.
  • Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally-occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in polypeptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art.
  • polypeptides also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence for purification of the mature polypeptide or a pro-protein sequence.
  • Known modifications include, but are not limited to, acetylation, acylation,
  • polypeptides are not always entirely linear.
  • polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of post-translation events, including natural processing event and events brought about by human manipulation which do not occur naturally.
  • Circular, branched and branched circular polypeptides may be synthesized by non-translational natural processes and by synthetic methods. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • Blockage of the amino or carboxyl group in a polypeptide, or both, by a covalent modification is common in naturally-occurring and synthetic polypeptides.
  • the amino terminal residue of polypeptides made in E. coli, prior to proteolytic processing almost invariably will be N-formylmefhionine.
  • the modifications can be a function of how the protein is made.
  • the modifications will be determined by the host cell posttranslational modification capacity and the modification signals in the polypeptide amino acid sequence. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell.
  • Insect cells often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to efficiently express mammalian proteins having native patterns of glycosylation. Similar considerations apply to other modifications.
  • the same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain more than one type of modification.
  • polypeptides or proteins of the present invention can be used as a molecular weight marker on SDS-PAGE gels or on molecular sieve gel filtration columns using art-recognized methods.
  • the polypeptides of the present invention can be used to raise antibodies or to elicit an immune response.
  • the polypeptides can also be used as a reagent, e.g., a labeled reagent, in assays to quantitatively determine levels of the protein or a molecule to which it binds (e.g., a receptor or a ligand) in biological fluids.
  • the polypeptides can also be used as markers for tissues in which the corresponding protein is preferentially expressed, either constitutively, during tissue differentiation, or in a diseased state.
  • the polypeptides can be used to isolate a corresponding binding partner, e.g., receptor or ligand, such as, for example, in an interaction trap assay, and to screen for peptide or small molecule antagonists or agonists of the binding interaction.
  • the invention provides antibodies to the polypeptides and polypeptide fragments of the invention, e.g., having an amino acid encoded by a nucleic acid comprising all or a portion of a nucleotide sequence selected from the group consisting of the sequences shown in SEQ ID NOS: 1-6, 8, and 10.
  • antibody refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that specifically binds an antigen.
  • a molecule that specifically binds to a polypeptide of the invention is a molecule that binds to that polypeptide or a fragment thereof, but does not substantially bind other molecules in a sample, e.g., a biological sample, which naturally contains the polypeptide.
  • immunologically active portions of immunoglobulin molecules include F(ab) and F(ab') 2 fragments which can be generated by treating the antibody with an enzyme such as pepsin.
  • the invention provides polyclonal and monoclonal antibodies that bind to a polypeptide of the invention.
  • monoclonal antibody or “monoclonal antibody composition”, as used herein, refers to a population of antibody molecules that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of a polypeptide of the invention.
  • a monoclonal antibody composition thus typically displays a single binding affinity for a particular polypeptide of the invention with which it immunoreacts.
  • Polyclonal antibodies can be prepared as described above by immunizing a suitable subject with a desired immunogen, e.g., polypeptide of the invention or fragment thereof. The antibody titer in the immunized subject can be monitored over time by standard techniques, such as with an enzyme linked immunosorbent assay (ELISA) using immobilized polypeptide.
  • ELISA enzyme linked immunosorbent assay
  • the antibody molecules directed against the polypeptide can be isolated from the mammal (e.g. , from the blood) and further purified by well-known techniques, such as protein A chromatography to obtain the IgG fraction.
  • antibody-producing cells can be obtained from the subject and used to prepare monoclonal antibodies by standard techniques, such as the hybridoma technique originally described by Kohler and Milstein (1975) Nature
  • an immortal cell line typically a myeloma
  • lymphocytes typically splenocytes
  • the culture supernatants of the resulting hybridoma cells are screened to identify a hybridoma producing a monoclonal antibody that binds a polypeptide of the invention.
  • the immortal cell line (e.g., a myeloma cell line) is derived from the same mammalian species as the lymphocytes.
  • murine hybridomas can be made by fusing lymphocytes from a mouse immunized with an immunogenic preparation of the present invention with an immortalized mouse cell line, e.g., a myeloma cell line that is sensitive to culture medium containing hypoxanthine, aminopterin and thymidine ("HAT medium").
  • any of a number of myeloma cell lines can be used as a fusion partner according to standard techniques, e.g., the P3-NSl/l-Ag4-l, P3-x63-Ag8.653 or Sp2/O-Agl4 myeloma lines. These myeloma lines are available from ATCC.
  • HAT-sensitive mouse myeloma cells are fused to mouse splenocytes using polyethylene glycol ("PEG").
  • Hybridoma cells resulting from the fusion are then selected using HAT medium, which kills unfused and unproductively fused myeloma cells (unfused splenocytes die after several days because they are not transformed).
  • Hybridoma cells producing a monoclonal antibody of the invention are detected by screening the hybridoma culture supernatants for antibodies that bind a polypeptide of the invention, e.g. , using a standard ELISA assay.
  • a monoclonal antibody to a polypeptide of the invention can be identified and isolated by screening a recombinant combinatorial immunoglobulin library (e.g., an antibody phage display library) with the polypeptide to thereby isolate immunoglobulin library members that bind the polypeptide.
  • Kits for generating and screening phage display libraries are commercially available (e.g., the Pharmacia Recombinant Phage Antibody System, Catalog No. 27-9400-01; and the Stratagene SurfZAPTM Phage Display Kit, Catalog No. 240612). Additionally, examples of methods and reagents particularly amenable for use in generating and screening antibody display library can be found in, for example, U.S. Patent No. 5,223,409; PCT Publication No. WO
  • recombinant antibodies such as chimeric and humanized monoclonal antibodies, comprising both human and non-human portions, which can be made using standard recombinant DNA techniques, are within the scope of the invention.
  • Such chimeric and humanized monoclonal antibodies can be produced by recombinant DNA techniques known in the art, for example using methods described in PCT Publication No. WO 87/02671 ; European Patent Application 184,187; European Patent Application 171,496; European Patent Application 173,494; PCT Publication No. WO 86/01533; U.S. Patent No. 4,816,567; European Patent Application 125,023; Better et al. (1988) Science 240:1041-1043; Liu et al.
  • the human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation.
  • this technology for producing human antibodies see Lonberg and Huszar (1995) Int. Rev. Immunol. 75:65-93.
  • this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies see, e.g., U.S. Patent 5,625,126; U.S. Patent 5,633,425; U.S. Patent 5,569,825; U.S. Patent 5,661,016; and U.S. Patent 5,545,806.
  • antibodies of the invention can be used to isolate a polypeptide of the invention by standard techniques, such as affinity chromatography or immunoprecipitation.
  • a polypeptide specific antibody can facilitate the purification of natural polypeptide from cells and of recombinantly produced polypeptide expressed in host cells.
  • an antibody specific for a polypeptide of the invention can be used to detect the polypeptide (e.g., in a cellular lysate, cell supernatant, or tissue sample) in order to evaluate the abundance and pattern of expression of the polypeptide.
  • Antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials.
  • suitable enzymes include horseradish peroxidase, alkaline phosphatase, (-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125 I, 131 1, 35 S or 3 H.
  • nucleotide or amino acid sequences of the invention are also provided in a variety of mediums to facilitate use thereof.
  • "provided” refers to a manufacture, other than an isolated nucleic acid or amino acid molecule, which contains a nucleotide or amino acid sequence of the present invention.
  • Such a manufacture provides the nucleotide or amino acid sequences, or a subset thereof (e.g., a subset of open reading frames (ORFs)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the nucleotide or amino acid sequences, or a subset thereof, as they exists in nature or in purified form.
  • ORFs open reading frames
  • a nucleotide or amino acid sequence of the present invention can be recorded on computer readable media.
  • computer readable media refers to any medium that can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.
  • magnetic storage media such as floppy discs, hard disc storage medium, and magnetic tape
  • optical storage media such as CD-ROM
  • electrical storage media such as RAM and ROM
  • hybrids of these categories such as magnetic/optical storage media.
  • recorded refers to a process for storing information on computer readable medium.
  • the skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide or amino acid sequence information of the present invention.
  • a variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide or amino acid sequence of the present invention.
  • the choice of the data storage structure will generally be based on the means chosen to access the stored information.
  • a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium.
  • the sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like.
  • the skilled artisan can readily adapt any number of dataprocessor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.
  • nucleotide or amino acid sequences of the invention can routinely access the sequence information for a variety of pu ⁇ oses.
  • one skilled in the art can use the nucleotide or amino acid sequences of the invention in computer readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the sequences of the invention which match a particular target sequence or target motif.
  • a "target sequence” can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids.
  • a skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database.
  • the most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues.
  • commercially important fragments such as sequence fragments involved in gene expression and protein processing, may be of shorter length.
  • a target structural motif refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif.
  • target motifs include, but are not limited to, enzyme active sites and signal sequences.
  • Nucleic acid target motifs include, but are not limited to, promoter sequences, hai ⁇ in structures and inducible expression elements (protein binding sequences).
  • Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium for analysis and comparison to other sequences.
  • a variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA).
  • ORFs open reading frames
  • Such ORFs are protein encoding fragments and are useful in producing commercially important proteins such as enzymes used in various reactions and in the production of commercially useful metabolites.
  • nucleotide sequences identified herein can be used in numerous ways as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome; and, thus, locate gene regions associated with genetic disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.
  • the nucleic acid (or a portion of the sequence) has been isolated, it can be used to map the location of the gene on a chromosome.
  • the mapping of the sequences to chromosomes is an important first step in correlating these sequences with genes associated with disease. Briefly, genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the nucleic acid molecules described herein. Computer analysis of the sequences can be used to predict primers that do not span more than one exon in the genomic DNA, thus complicating the amplification process. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes.
  • Somatic cell hybrids are prepared by fusing somatic cells from different mammals (e.g., human and mouse cells). As hybrids of human and mouse cells grow and divide, they gradually lose human chromosomes in random order, but retain the mouse chromosomes. By using media in which mouse cells cannot grow, because they lack a particular enzyme, but human cells can, the one human chromosome that contains the gene encoding the needed enzyme, will be retained. By using various media, panels of hybrid cell lines can be established.
  • Each cell line in a panel contains either a single human chromosome or a small number of human chromosomes, and a full set of mouse chromosomes, allowing easy mapping of individual genes to specific human chromosomes.
  • Somatic cell hybrids containing only fragments of human chromosomes can also be produced by using human chromosomes with translocations and deletions.
  • PCR mapping of somatic cell hybrids is a rapid procedure for assigning a particular sequence to a particular chromosome. Three or more sequences can be assigned per day using a single thermal cycle.
  • mapping strategies which can similarly be used to map a specified sequence to its chromosome include in situ hybridization (described in Fan et al. (1990) PNAS 97:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries.
  • Fluorescence in situ hybridization (FISH) of a nucleotide sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step.
  • Chromosome spreads can be made using cells whose division has been blocked in metaphase by a chemical such as colcemid that disrupts the mitotic spindle.
  • the chromosomes can be treated briefly with trypsin, and then stained with Giemsa. A pattern of light and dark bands develops on each chromosome, so that the chromosomes can be identified individually.
  • the FISH technique can be used with a nucleotide sequence as short as 500 or 600 bases.
  • clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection.
  • 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time, for a review of this technique, see Verma et al. , Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).
  • Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping pu ⁇ oses. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V.
  • Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible form chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymo ⁇ hisms.
  • the nucleotide sequences of the present invention can also be used to identify individuals from minute biological samples.
  • the United States military, for example, is considering the use of restriction fragment length polymo ⁇ hism (RFLP) for identification of its personnel.
  • RFLP restriction fragment length polymo ⁇ hism
  • an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identification.
  • This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult.
  • the sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Patent 5,272,057).
  • sequences of the present invention can be used to provide an alternative technique that determines the actual base-by-base DNA sequence of selected portions of an individual's genome.
  • the nucleic acid molecules described herein can be used to prepare two PCR primers from the 5' and 3' ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it.
  • Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.
  • the sequences of the present invention can be used to obtain such identification sequences from individuals and from tissue.
  • the nucleic acid molecules of the invention uniquely represent portions of the human genome. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. It is estimated that allelic variation between individual humans occurs with a frequency of about once per each 500 bases.
  • Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification pu ⁇ oses.
  • the noncoding sequences of these sequences can comfortably provide positive individual identification with a panel of perhaps 10 to 1,000 primers which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences are used, a more appropriate number of primers for positive individual identification would be 500-2,000. If a panel of reagents from nucleic acid molecules described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.
  • DNA-based identification techniques can also be used in forensic biology.
  • Forensic biology is a scientific field employing genetic typing of biological evidence found at a crime scene as a means of positively identifying, for example, a pe ⁇ etrator of a crime.
  • PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.
  • sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification* marker" (i.e. another DNA sequence that is unique to a particular individual).
  • identity* marker i.e. another DNA sequence that is unique to a particular individual.
  • actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments.
  • Sequences targeted to noncoding regions of sequences described herein are particularly appropriate for this use, as greater numbers of polymo ⁇ hisms occur in the noncoding regions, making it easier to differentiate individuals using this technique.
  • polynucleotide reagents include the nucleic acid molecules or the invention, or portions thereof, e.g., fragments having a length of at least 20 bases, preferably at least 30 bases.
  • the nucleic acid molecules described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, or example, an in situ hybridization technique, to identify a specific tissue. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such probes can be used to identify tissue by species and/or by organ type.
  • these reagents, primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture).
  • the present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) pu ⁇ oses to thereby treat an individual prophylactically.
  • diagnostic assays for determining protein and/or nucleic acid expression as well as activity of proteins of the invention, in the context of a biological sample (e.g., blood, serum, cells, tissue) to thereby determine whether an individual is afflicted with a disease or disorder, or is at risk of developing a disorder, associated with aberrant expression or activity.
  • the invention also provides for prognostic (or predictive) assays for determining whether an individual is at risk of developing a disorder associated with activity or expression of proteins or nucleic acids of the invention.
  • mutations in a specified gene can be assayed in a biological sample.
  • assays can be used for prognostic or predictive pu ⁇ ose to thereby prophylactically treat an individual prior to the onset of a disorder characterized by or associated with expression or activity of nucleic acid molecules or proteins of the invention.
  • Another aspect of the invention pertains to monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of proteins of the invention in clinical trials.
  • agents e.g., drugs, compounds
  • An exemplary method for detecting the presence or absence of proteins or nucleic acids of the invention in a biological sample involves obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting the protein, or nucleic acid (e.g., mRNA, genomic
  • a preferred agent for detecting mRNA or genomic DNA is a labeled nucleic acid probe capable of hybridizing to mRNA or genomic DNA sequences described herein.
  • the nucleic acid probe can be, for example, a full-length nucleic acid, or a portion thereof, such as an oligonucleotide of at least 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to appropriate mRNA or genomic DNA.
  • the nucleic acid probe can be all or a portion of the sequences shown in SEQ ID NOS: 1- 6, 8, and 10, or the complement of the sequences shown in SEQ ID NOS: 1-6, 8, and 10, or a portion thereof.
  • Other suitable probes for use in the diagnostic assays of the invention are described herein.
  • the agent for detecting proteins of the invention is an antibody capable of binding to the protein, preferably an antibody with a detectable label.
  • Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab') ) can be used.
  • the term "labeled", with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with another reagent that is directly labeled.
  • Examples of indirect labeling include detection of a primary antibody using a fluorescently labeled secondary antibody and end-labeling of a DNA probe with biotin such that it can be detected with fluorescently labeled streptavidin.
  • biological sample is intended to include tissues, calls and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. That is, the detection method of the invention can be used to detect mRNA, protein, or genomic DNA of the invention in a biological sample in vitro as well as in vivo.
  • in vitro techniques for detection of mRNA include Northern hybridizations and in situ hybridizations.
  • In vitro techniques for detection of protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence.
  • In vitro techniques for detection of genomic DNA include Southern hybridizations.
  • in vivo techniques for detection of protein include introducing into a subject a labeled anti-protein antibody.
  • the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques.
  • the biological sample contains protein molecules from the test subject.
  • the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.
  • a preferred biological sample is a serum sample or biopsy isolated by conventional means from a subject.
  • the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting protein, mRNA, or genomic DNA of the invention, such that the presence of protein, mRNA or genomic DNA is detected in the biological sample, and comparing the presence of protein, mRNA or genomic DNA in the control sample with the presence of protein, mRNA or genomic DNA in the test sample.
  • kits for detecting the presence of proteins or nucleic acid molecules of the invention in a biological sample can comprise a labeled compound or agent capable of detecting protein or mRNA in a biological sample; means for determining the amount of in the sample; and means for comparing the amount of in the sample with a standard.
  • the compound or agent can be packaged in a suitable container.
  • the kit can further comprise instructions for using the kit to detect protein or nucleic acid.
  • diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a disease or disorder associated with aberrant expression or activity of proteins and nucleic acid molecules of the invention. Accordingly, the term “diagnostic” refers not only to ascertaining whether a subject has an active disease but also relates to ascertaining whether a subject is predisposed to developing active disease as well as ascertaining the probability that treatment of active disease will be effective.
  • the assays described herein can be utilized to identify a subject having or at risk of developing a disorder associated with protein or nucleic acid expression or activity such as a proliferative disorder, a differentiative or developmental disorder, or a hematopoietic disorder.
  • the prognostic assays can be utilized to identify a subject having or at risk for developing a differentiative or proliferative disease (e.g., cancer).
  • the present invention provides a method for identifying a disease or disorder associated with aberrant expression or activity of proteins or nucleic acid molecules of the invention, in which a test sample is obtained from a subject and protein or nucleic acid (e.g., mRNA, genomic DNA) is detected, wherein the presence of protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant expression or activity of the protein or nucleic acid sequence of the invention.
  • a test sample refers to a biological sample obtained from a subject of interest.
  • a test sample can be a biological fluid (e.g., serum), cell or tissue sample.
  • disorders relating to programmed cell death are particularly relevant as discussed in detail herein below.
  • the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, polypeptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant expression or activity of a protein or nucleic acid molecule of the invention.
  • an agent for a disorder such as a proliferative disorder, a differentiative or a developmental disorder.
  • the present invention provides methods for determining whether a subject can be effectively treated with an agent for a disorder associated with aberrant expression or activity of a protein or nucleic acid of the present invention, in which a test sample is obtained and protein or nucleic acid expression or activity is detected (e.g., wherein the abundance of particular protein or nucleic acid expression or activity is diagnostic for a subject that can be administered the agent to treat a disorder associated with aberrant expression or activity.)
  • the methods of the invention can also be used to detect genetic alterations in genes or nucleic acid molecules of the present invention, thereby determining if a subject with the altered gene is at risk for a disorder characterized by aberrant development, aberrant cellular differentiation, aberrant cellular proliferation or an aberrant hematopoietic response.
  • the methods include detecting, in a sample of cells from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a particular protein, or the mis-expression of the gene.
  • such genetic alterations can be detected by ascertaining the existence of at least one of (1) a deletion of one or more nucleotides; (2) an addition of one or more nucleotides; (3) a substitution of one or more nucleotides, (4) a chromosomal rearrangement; (5) an alteration in the level of a messenger RNA transcript; (6) aberrant modification, such as of the methylation pattern of the genomic DNA; (7) the presence of a non- wild type splicing pattern of a messenger RNA transcript; (8) a non- wild type level; (9) allelic loss; and (10) inappropriate post-translational modification.
  • a preferred biological sample is a tissue or serum sample isolated by conventional means from a subject.
  • detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. , U.S. Patent Nos.
  • PCR polymerase chain reaction
  • This method can include the steps of collecting a sample of cells from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to the gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample.
  • nucleic acid e.g., genomic, mRNA or both
  • primers which specifically hybridize to the gene under conditions such that hybridization and amplification of the gene (if present) occurs
  • detecting the presence or absence of an amplification product or detecting the size of the amplification product and comparing the length to a control sample.
  • PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.
  • Alternative amplification methods include
  • mutations in a given gene from a sample cell can be identified by alterations in restriction enzyme cleavage patterns.
  • sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicate mutations in the sample DNA.
  • sequence specific ribozymes see, for sample, U.S. Patent No. 5,498,531 can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.
  • genetic mutations can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin et al. ( 1996) Human Mutation 7:244-255; Kozal et al.( ⁇ 996) Nature Medicine 2:753-759).
  • genetic mutations can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin, M.T. et al. supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes.
  • This step allows the identification of point mutations.
  • This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected.
  • Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.
  • any of a variety of sequencing reactions known in the art can be used to directly sequence the gene and detect mutations by comparing the sequence of the gene from the sample with the corresponding wild-type (control) gene sequence.
  • Examples of sequencing reactions include those based on techniques developed by Maxim and Gilbert ((1997) PNAS 74:560) or Sanger ((1977) PNAS 74:5463).
  • any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Biotechniques 79:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 56:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 55:147-159).
  • RNA/RNA or RNA/DNA heteroduplexes Other methods for detecting mutations include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 250:1242).
  • the art technique of "mismatch cleavage" starts by providing heteroduplexes of formed by hybridizing (labeled) RNA or DNA containing the wild-type sequence with potentially mutant RNA or DNA obtained from a tissue sample.
  • the double-standard duplexes are treated with an agent that cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands.
  • RNA/DNA duplexes can be treated with Rnase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 277:286-295.
  • the control DNA or RNA can be labeled for detection.
  • the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called "DNA mismatch repair" enzymes) in defined systems for detecting and mapping point mutations in cDNAs obtained from samples of cells.
  • DNA mismatch repair enzymes
  • the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15: 1657-1662).
  • a probe based on an nucleotide sequence of the invention is hybridized to a cDNA or other DNA product from a test cell(s).
  • duplex is treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like. See, for example, U.S. Patent No. 5,459,039.
  • alterations in electrophoretic mobility will be used to identify mutations in genes.
  • single strand conformation polymo ⁇ hism may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc. Natl. Acad. Sci. USA 56:2766, see also Cotton (1993) Mutat Res 255:125-144; and Hayashi (1992) Genet Anal. Tech. Appl. 9:73-79).
  • Single-stranded DNA fragments of sample and control nucleic acids will be denatured and allowed to renature.
  • the secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change.
  • the DNA fragments may be labeled or detected with labeled probes.
  • the sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence.
  • the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).
  • the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 575:495).
  • DGGE denaturing gradient gel electrophoresis
  • DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR.
  • a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265: 12753).
  • oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 524:163); Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 56:6320).
  • Such allele-specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.
  • allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention.
  • Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 77:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 77:238).
  • amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci. USA 88: 189). In such cases, ligation will occur only if there is a perfect match at the 3' end of the 5' sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.
  • the methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a gene of the present invention. Any cell type or tissue in which the gene is expressed may be utilized in the prognostic assays described herein.
  • Monitoring the influence of agents (e.g., drugs, compounds) on the expression or activity of nucleic acid molecules or proteins of the present invention can be applied not only in basic drug screening, but also in clinical trials.
  • agents e.g., drugs, compounds
  • the effectiveness of an agent determined by a screening assay as described herein to increase gene expression, protein levels, or upregulate protein activity can be monitored in clinical trials of subjects exhibiting decreased gene expression, protein levels, or downregulated protein activity.
  • the effectiveness of an agent determined by a screening assay to decrease gene expression, protein levels, or downregulate protein activity can be monitored in clinical trials of subjects exhibiting increased gene expression, protein levels, or upregulated protein activity.
  • the expression or activity of the specified gene and, preferably, other genes that have been implicated in, for example, a proliferative disorder can be used as a "read out" or markers of the phenotype of a particular cell.
  • genes that are modulated in cells by treatment with an agent e.g. , compound, drug or small molecule
  • an agent e.g. , compound, drug or small molecule
  • protein activity e.g., identified in a screening assay as described herein
  • cells can be isolated and RNA prepared and analyzed for the levels of expression of the specified gene and other genes implicated in the proliferative disorder, developmental or differentiative disorder, or hematopoietic disorder, respectively.
  • the levels of gene expression can be quantified by Northern blot analysis or RT-PCR, as described herein, or alternatively by measuring the amount of protein produced, by one of the methods as described herein, or by measuring the levels of activity of the specified gene or other genes.
  • the gene expression pattern can serve as a marker, indicative of the physiological response of the cells to the agent. Accordingly, this response state may be determined before, and at various points during, treatment of the individual with the agent.
  • the present invention provides a method for monitoring the effectiveness of treatment of a subject with an agent (e.g., an agonist, antagonist, peptidomimetic, protein, polypeptide, nucleic acid, small molecule, or other drug candidate identified by the screening assays described herein) comprising the steps of (i) obtaining a pre-administration sample from a subject prior to administration of the agent; (ii) detecting the level of expression of a specified protein, mRNA, or genomic DNA of the invention in the pre-administration sample; (iii) obtaining one or more post-administration samples from the subject; (iv) detecting the level of expression or activity of the protein, mRNA, or genomic DNA in the post-administration samples; (v) comparing the level of expression or activity of the protein, mRNA, or genomic DNA in the pre-administration sample with the protein, mRNA, or genomic DNA in the post-administration sample or samples; and (vi) altering the administration of the agent to the subject accordingly.
  • an agent e.g., an agonist
  • increased administration of the agent may be desirable to increase the expression or activity of the protein or nucleic acid molecule to higher levels than detected, i.e., to increase effectiveness of the agent.
  • decreased administration of the agent may be desirable to decrease effectiveness of the agent.
  • protein or nucleic acid expression or activity may be used as an indicator of the effectiveness of an agent, even in the absence of an observable phenotypic response.
  • the invention provides a method (also referred to herein as a "screening assay") for identifying modulators, i.e., candidate or test compounds or agents (e.g., antisense, polypeptides, peptidomimetics, small molecules or other drugs) which bind to nucleic acid molecules, polypeptides or proteins described herein or have a stimulatory or inhibitory effect on, for example, expression or activity of the nucleic acid molecules, polypeptides or proteins of the invention.
  • modulators i.e., candidate or test compounds or agents (e.g., antisense, polypeptides, peptidomimetics, small molecules or other drugs) which bind to nucleic acid molecules, polypeptides or proteins described herein or have a stimulatory or inhibitory effect on, for example, expression or activity of the nucleic acid molecules, polypeptides or proteins of the invention.
  • apoptosis-specific assays may be used to identify modulators of any of the target nucleic acids or proteins of the present invention, which proteins and/or nucleic acids are related to apoptosis. Accordingly, an agent that modulates the level or activity of any of these nucleic acids or proteins can be identified by means of apoptosis-specific assays. For example, high throughput screens exist to identify apoptotic cells by the use of chromatin or cytoplasmic-specific dyes. Thus, hallmarks of apoptosis, cytoplasmic condensation and chromosome fragmentation, can be used as a marker to identify modulators of any of the genes related to programmed-cell death described herein.
  • test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection.
  • biological libraries include biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the 'one-bead one-compound' library method; and synthetic library methods using affinity chromatography selection.
  • the biological library approach is limited to polypeptide libraries, while the other four approaches are applicable to polypeptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K.S. (1997) Anticancer Drug Des. 72:145).
  • an assay is a cell-based assay in which a cell that expresses an encoded polypeptide (e.g., cell surface protein such as a receptor) is contacted with a test compound and the ability of the test compound to bind to the polypeptide is determined.
  • an encoded polypeptide e.g., cell surface protein such as a receptor
  • the cell for example, can be of mammalian origin, such as a keratinocyte.
  • Determining the ability of the test compound to bind to the polypeptide can be accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the polypeptide can be determined by detecting the labeled with 125 1, 35 S, 14 C, or 3 H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting.
  • test compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.
  • a microphysiometer can be used to detect the interaction of a test compound with the polypeptide without the labeling of either the test compound or the polypeptide. McConnell et al. (1992) Science 257:1906-1912.
  • a "microphysiometer” e.g., CytosensorTM
  • LAPS light-addressable potentiometric sensor
  • the assay comprises contacting a cell which expresses an encoded protein described herein on the cell surface (e.g., a receptor) with a polypeptide ligand or biologically-active portion thereof, to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the polypeptide, wherein determining the ability of the test compound to interact with the polypeptide comprises determining the ability of the test compound to preferentially bind to the polypeptide as compared to the ability of the ligand, or a biologically active portion thereof, to bind to the polypeptide.
  • an assay is a cell-based assay comprising contacting a cell expressing a particular target molecule described herein with a test compound and determining the ability of the test compound to modulate or alter (e.g. stimulate or inhibit) the activity of the target molecule. Determining the ability of the test compound to modulate the activity of the target molecule can be accomplished, for example, by determining the ability of a known ligand to bind to or interact with the target molecule. Determining the ability of the known ligand to bind to or interact with the target molecule can be accomplished by one of the methods described above for determining direct binding.
  • determining the ability of the known ligand to bind to or interact with the target molecule can be accomplished by determining the activity of the target molecule.
  • the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (e.g., intracellular Ca 2+ , diacylglycerol, IP , etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a target-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, e.g. , luciferase), or detecting a cellular response, for example, development, differentiation or rate of proliferation.
  • a cellular second messenger of the target e.g., intracellular Ca 2+ , diacylglycerol, IP , etc.
  • detecting catalytic/enzymatic activity of the target an appropriate substrate detecting the induction of a reporter gene (comprising a
  • an assay of the present invention is a cell-free assay in which protein of the invention or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the protein or biologically active portion thereof is determined. Binding of the test compound to the protein can be determined either directly or indirectly as described above.
  • the assay includes contacting the protein or biologically active portion thereof with a known compound which binds the protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the protein. Determining the ability of the test compound to interact with the protein comprises determining the ability of the test compound to preferentially bind to the protein or biologically active portion thereof as compared to the known compound.
  • the assay is a cell-free assay in which a protein of the invention or biologically active portion thereof is contacted with a test compound and the ability of the test compound to modulate or alter (e.g., stimulate or inhibit) the activity of the protein or biologically active portion thereof is determined.
  • Determining the ability of the test compound to modulate the activity of the protein can be accomplished, for example, by determining the ability of the protein to bind to a known target molecule by one of the methods described above for determining direct binding. Determining the ability of the protein to bind to a target molecule can also be accomplished using a technology such as real-time Bimolecular Interaction Analysis (BIA). Sjolander and Urbaniczky (1991) Anal. Chem.
  • BIOA is a technology for studying biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcoreTM). Changes in the optical phenomenon surface plasmon resonance (SPR) can be used as an indication of real-time reactions between biological molecules.
  • SPR surface plasmon resonance
  • determining the ability of the test compound to modulate the activity of a protein of the invention can be accomplished by determining the ability of the protein to further modulate the activity of a target molecule.
  • the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as previously described.
  • the cell-free assay involves contacting a protein of the invention or biologically active portion thereof with a known compound which binds the protein to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with the protein, wherein determining the ability of the test compound to interact with the protein comprises determining the ability of the protein to preferentially bind to or modulate the activity of a target molecule.
  • the cell-free assays of the present invention are amenable to use of both soluble and/or membrane-bound forms of isolated proteins.
  • a solubilizing agent such that the membrane-bound form of the isolated protein is maintained in solution.
  • solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton®X-100, Triton® X-l 14, Thesit®, Isotridecypoly(ethylene glycol ether)n,3 - [(3 -cholamidopropy l)dimethylamminio] - 1 -propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-l -propane sulfonate (CHAPSO), or N-dodecyl-N,N-dimethyl-3-ammonio-l -propane sulfonate.
  • non-ionic detergents such as n-o
  • binding of a test compound to the protein, or interaction of the protein with a target molecule in the presence and absence of a candidate compound can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtitre plates, test tubes, and micro-centrifuge tubes.
  • a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix.
  • glutathione-S -transferase fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or protein of the invention, and the mixture incubated under conditions conducive to complex formation (e.g. , at physiological conditions for salt and pH). Following incubation, the beads or microtitre plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of binding or activity determined using standard techniques.
  • a protein of the invention or a target molecule can be immobilized utilizing conjugation of biotin and streptavidin.
  • Biotinylated protein of the invention or target molecules can be prepared from biotin-NHS(N-hydroxy-succinimide) using techniques well known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, IL), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).
  • antibodies reactive with a protein of the invention or target molecules, but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and unbound target or protein trapped in the wells by antibody conjugation.
  • Methods for detecting such complexes include immunodetection of complexes using antibodies reactive with the protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the protein or target molecule.
  • modulators of expression of nucleic acid molecules of the invention are identified in a method wherein a cell is contacted with a candidate compound and the expression of appropriate mRNA or protein in the cell is determined. The level of expression of appropriate mRNA or protein in the presence of the candidate compound is compared to the level of expression of mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of expression based on this comparison. For example, when expression of mRNA or protein is greater (statistically significantly greater) in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator or enhancer of the mRNA or protein expression.
  • the candidate compound when expression of the mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of the mRNA or protein expression.
  • the level of mRNA or protein expression in the cells can be determined by methods described herein for detecting mRNA or protein.
  • the proteins of the invention can be used as "bait proteins" in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Patent No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol.
  • captured proteins proteins which bind to or interact with the proteins of the invention and modulate their activity.
  • Such captured proteins are also likely to be involved in the propagation of signals by the proteins of the invention as, for example, downstream elements of a protein-mediated signaling pathway.
  • such captured proteins are likely to be cell-surface molecules associated with non-protein-expressing cells, wherein such captured proteins are involved in signal transduction.
  • This invention further pertains to novel agents identified by the above-described screening assays.
  • an agent identified as described herein in an appropriate animal model.
  • an agent identified as described herein e.g., a modulating agent, an antisense nucleic acid molecule, a specific antibody, or a protein-binding partner
  • an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent.
  • an agent identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.
  • this invention pertains to uses of novel agents identified by the above-described screening assays for treatments as described herein.
  • the present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant expression or activity of or related to proteins or nucleic acids of the invention.
  • Methods of treatment involve modulating nucleic acid or polypeptide level or activity in a subject having a disorder that can be treated by such modulation. Accordingly, modulation can cause up regulation or down regulation of the levels of expression or up regulation or down regulation of the activity of the nucleic acid or protein.
  • Disorders relating to programmed cell death are particularly relevant as discussed in detail herein below.
  • nucleic acids of the invention has been shown for the following tissues: testes, brain, heart, kidney, skeletal muscle, spleen, lung, smooth muscle, pancreas, and liver as shown in Figure 8. Accordingly, disorders to which the methods disclosed herein are particularly relevant include those involving these tissues.
  • Thallium disorders involving the spleen include, but are not limited to, splenomegaly, including nonspecific acute splenitis, congestive spenomegaly, and spenic infarcts; neoplasms, congenital anomalies, and rupture.
  • disorders associated with splenomegaly include infections, such as nonspecific splenitis, infectious mononucleosis, tuberculosis, typhoid fever, brucellosis, cytomegalovirus, syphilis, malaria, histoplasmosis, toxoplasmosis, kala-azar, trypanosomiasis, schistosomiasis, leishmaniasis, and echinococcosis; congestive states related to partial hypertension, such as cirrhosis of the liver, portal or splenic vein thrombosis, and cardiac failure; lymphohematogenous disorders, such as Hodgkin disease, non-Hodgkin lymphomas/leukemia, multiple myeloma, myeloproliferative disorders, hemolytic anemias, and thrombocytopenic pu ⁇ ura; immunologic-inflammatory conditions, such as rheumatoid arthritis and systemic lupus erythemat
  • disorders involving the lung include, but are not limited to, congenital anomalies; atelectasis; diseases of vascular origin, such as pulmonary congestion and edema, including hemodynamic pulmonary edema and edema caused by microvascular injury, adult respiratory distress syndrome (diffuse alveolar damage), pulmonary embolism, hemorrhage, and infarction, and pulmonary hypertension and vascular sclerosis; chronic obstructive pulmonary disease, such as emphysema, chronic bronchitis, bronchial asthma, and bronchiectasis; diffuse interstitial (infiltrative, restrictive) diseases, such as pneumoconioses, sarcoidosis, idiopathic pulmonary fibrosis, desquamative interstitial pneumonitis, hypersensitivity pneumonitis, pulmonary eosinophilia (pulmonary infiltration with eosinophilia), Bronchiolitis obliterans-organizing pneumonia, diffuse pulmonary hemo
  • disorders involving the liver include, but are not limited to, hepatic injury; jaundice and cholestasis, such as bilirubin and bile formation; hepatic failure and cirrhosis, such as cirrhosis, portal hypertension, including ascites, portosystemic shunts, and splenomegaly; infectious disorders, such as viral hepatitis, including hepatitis A-E infection and infection by other hepatitis viruses, clinicopathologic syndromes, such as the carrier state, asymptomatic infection, acute viral hepatitis, chronic viral hepatitis, and fulminant hepatitis; autoimmune hepatitis; drug- and toxin-induced liver disease, such as alcoholic liver disease; inborn errors of metabolism and pediatric liver disease, such as hemochromatosis, Wilson disease, ⁇ / - antitrypsin deficiency, and neonatal hepatitis; intrahepatic biliary tract disease, such as
  • Disorders involving the brain include, but are not limited to, disorders involving neurons, and disorders involving glia, such as astrocytes, oligodendrocytes, ependymal cells, and microglia; cerebral edema, raised intracranial pressure and herniation, and hydrocephalus; malformations and developmental diseases, such as neural tube defects, forebrain anomalies, posterior fossa anomalies, and syringomyelia and hydromyelia; perinatal brain injury; cerebro vascular diseases, such as those related to hypoxia, ischemia, and infarction, including hypotension, hypoperfusion, and low-flow states—global cerebral ischemia and focal cerebral ischemia—infarction from obstruction of local blood supply, intracranial hemorrhage, including intracerebral (intraparenchymal) hemorrhage, subarachnoid hemorrhage and ruptured berry aneurysms, and vascular malformations, hypertensive cerebrovascular disease, including
  • disorders involving the heart include but are not limited to, heart failure, including but not limited to, cardiac hypertrophy, left-sided heart failure, and right- sided heart failure; ischemic heart disease, including but not limited to angina pectoris, myocardial infarction, chronic ischemic heart disease, and sudden cardiac death; hypertensive heart disease, including but not limited to, systemic (left-sided) hypertensive heart disease and pulmonary (right-sided) hypertensive heart disease; valvular heart disease, including but not limited to, valvular degeneration caused by calcification, such as calcific aortic stenosis, calcification of a congenitally bicuspid aortic valve, and mitral annular calcification, and myxomatous degeneration of the mitral valve (mitral valve prolapse), rheumatic fever and rheumatic heart disease, infective endocarditis, and noninfected vegetations, such as nonbacterial thrombotic endocarditis and end
  • disorders involving the kidney include, but are not limited to, congenital anomalies including, but not limited to, cystic diseases of the kidney, that include but are not limited to, cystic renal dysplasia, autosomal dominant (adult) polycystic kidney disease, autosomal recessive (childhood) polycystic kidney disease, and cystic diseases of renal medulla, which include, but are not limited to, medullary sponge kidney, and nephronophthisis-uremic medullary cystic disease complex, acquired (dialysis- associated) cystic disease, such as simple cysts; glomerular diseases including pathologies of glomerular injury that include, but are not limited to, in situ immune complex deposition, that includes, but is not limited to, anti-GBM nephritis, Heymann nephritis, and antibodies against planted antigens, circulating immune complex nephritis, antibodies to glomerular cells, cell-mediated immunity in glomerulonephritis, activation of alternative
  • Testis and epididymis disorders involving the testis and epididymis include, but are not limited to, congenital anomalies such as cryptorchidism, regressive changes such as atrophy, inflammations such as nonspecific epididymitis and orchitis, granulomatous (autoimmune) orchitis, and specific inflammations including, but not limited to, gonorrhea, mumps, tuberculosis, and syphilis, vascular disturbances including torsion, testicular tumors including germ cell tumors that include, but are not limited to, seminoma, spermatocytic seminoma, embryonal carcinoma, yolk sac tumor choriocarcinoma, teratoma, and mixed tumors, tumore of sex cord-gonadal stroma including, but not limited to, leydig (interstitial) cell tumors and sertoli cell tumors
  • Disorders involving the skeletal muscle include tumors such as rhabdomyosarcoma.
  • disorders involving the pancreas include those of the exocrine pancreas such as congenital anomalies, including but not limited to, ectopic pancreas; pancreatitis, including but not limited to, acute pancreatitis; cysts, including but not limited to, pseudocysts; tumors, including but not limited to, cystic tumors and carcinoma of the pancreas; and disorders of the endocrine pancreas such as, diabetes mellitus; islet cell tumors, including but not limited to, insulinomas, gastrinomas, and other rare islet cell tumors.
  • Preferred disorders include those involving the central nervous system and particularly the brain. With regard to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics.
  • “Pharmacogenomics”, as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market.
  • the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's "drug response phenotype", or "drug response genotype”.)
  • a drug e.g., a patient's "drug response phenotype", or "drug response genotype”.
  • another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with the molecules of the present invention or modulators according to that individual's drug response genotype.
  • Pharmacogenomics allows a clinician or physician to target prophylactic or therapeutic treatments to patients who will most benefit from the treatment and to avoid treatment of patients who will experience toxic drug related side effects.
  • the invention provides a method for preventing in a subject, a disease or condition associated with aberrant expression or activity of genes or proteins of the present invention, by administering to the subject an agent which modulates expression or at least one activity of a gene or protein of the invention.
  • Subjects at risk for a disease that is caused or contributed to by aberrant gene expression or protein activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein.
  • Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the aberrancy, such that a disease or disorder is prevented or, alternatively, delayed in its progression.
  • an agonist or antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein. 2.
  • the modulatory method of the invention involves contacting a cell with an agent that modulates one or more of the activities of the specified protein associated with the cell.
  • An agent that modulates protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a protein described herein, a polypeptide, a peptidomimetic, or other small molecule.
  • the agent stimulates one or more protein activities. Examples of such stimulatory agents include active protein as well as a nucleic acid molecule encoding the protein that has been introduced into the cell.
  • the agent inhibits one or more protein activities.
  • inhibitory agents include antisense nucleic acid molecules and anti-protein antibodies. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject).
  • the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant expression or activity of a protein or nucleic acid molecule of the invention.
  • the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., upregulates or downregulates) expression or activity of a gene or protein of the invention.
  • the method involves administering a protein or nucleic acid molecule of the invention as therapy to compensate for reduced or aberrant expression or activity of the protein or nucleic acid molecule.
  • Stimulation of protein activity is desirable in situations in which the protein is abnormally downregulated and/or in which increased protein activity is likely to have a beneficial effect.
  • inhibition of protein activity is desirable in situations in which the protein is abnormally upregulated and/or in which decreased protein activity is likely to have a beneficial effect.
  • a subject has a disorder characterized by aberrant development or cellular differentiation.
  • the subject has a proliferative disease (e.g., cancer) or a disorder characterized by an aberrant hematopoietic response.
  • it is desirable to achieve tissue regeneration in a subject e.g., where a subject has undergone brain or spinal cord injury and it is desirable to regenerate neuronal tissue in a regulated manner).
  • nucleic acid molecules, protein modulators of the protein, and antibodies can be inco ⁇ orated into pharmaceutical compositions suitable for administration to a subject, e.g., a human.
  • Such compositions typically comprise the nucleic acid molecule, protein, modulator, or antibody and a pharmaceutically acceptable carrier.
  • administer is used in its broadest sense and includes any method of introducing the compositions of the present invention into a subject. This includes producing polypeptides or polynucleotides in vivo as by transcription or translation, in vivo, of polynucleotides that have been exogenously introduced into a subject. Thus, polypeptides or nucleic acids produced in the subject from the exogenous compositions are encompassed in the term "administer.”
  • pharmaceutically acceptable carrier is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and abso ⁇ tion delaying agents, and the like, compatible with pharmaceutical administration.
  • the use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media can be used in the compositions of the invention. Supplementary active compounds can also be inco ⁇ orated into the compositions.
  • a pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration.
  • routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration.
  • Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide.
  • the parenteral preparation can be enclosed in ampules
  • compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.
  • suitable carriers include physiological saline, bacteriostatic water, Cremophor ELTM (BASF, Parsippany, NJ) or phosphate buffered saline (PBS).
  • the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof.
  • the proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.
  • Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, fhimerosal, and the like.
  • isotonic agents for example, sugars, polyalcohols such as mannitol, sorbitol, sodium chloride in the composition.
  • Prolonged abso ⁇ tion of the injectable compositions can be brought about by including in the composition an agent which delays abso ⁇ tion, for example, aluminum monostearate and gelatin.
  • Sterile injectable solutions can be prepared by inco ⁇ orating the active compound (e.g., a ubiquitin protease protein or anti- ubiquitin protease antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization.
  • the active compound e.g., a ubiquitin protease protein or anti- ubiquitin protease antibody
  • dispersions are prepared by inco ⁇ orating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above.
  • the preferred methods of preparation are vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof
  • Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets.
  • the agent can be contained in enteric forms to survive the stomach or further coated or mixed to be released in a particular region of the GI tract by known methods.
  • the active compound can be inco ⁇ orated with excipients and used in the form of tablets, troches, or capsules.
  • Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed.
  • compositions can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanfh or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or com starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
  • a binder such as microcrystalline cellulose, gum tragacanfh or gelatin
  • an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or com starch
  • a lubricant such as magnesium stearate or Sterotes
  • a glidant such as colloidal silicon dioxide
  • a sweetening agent such as sucrose or sac
  • the compounds are delivered in the form of an aerosol spray from pressured container or dispenser, which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.
  • a suitable propellant e.g., a gas such as carbon dioxide, or a nebulizer.
  • Systemic administration can also be by transmucosal or transdermal means.
  • penetrants appropriate to the barrier to be permeated are used in the formulation.
  • penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives.
  • Transmucosal administration can be accomplished through the use of nasal sprays or suppositories.
  • the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.
  • the compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.
  • the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems.
  • Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid.
  • Dosage unit form refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.
  • the specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.
  • the nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors.
  • Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) PNAS 97:3054-3057).
  • the pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded.
  • the pharmaceutical preparation can include one or more cells which produce the gene delivery system.
  • the pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.
  • a therapeutically effective amount of protein or polypeptide ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight.
  • treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.
  • a subject is treated with antibody, protein, or polypeptide in the range of between about 0.1 to 20 mg/kg body weight, one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks.
  • the effective dosage of antibody, protein, or polypeptide used for treatment may increase or decrease over the course of a particular treatment. Changes in dosage may result and become apparent from the results of diagnostic assays as described herein.
  • An agent may, for example, be a small molecule.
  • small molecules include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1 ,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.
  • doses of small molecule agents depends upon a number of factors within the ken of the ordinarily skilled physician, veterinarian, or researcher.
  • the dose(s) of the small molecule will vary, for example, depending upon the identity, size, and condition of the subject or sample being treated, further depending upon the route by which the composition is to be administered, if applicable, and the effect which the practitioner desires the small molecule to have upon the nucleic acid or polypeptide of the invention.
  • Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 microgram per kilogram to about 500 milligrams per kilogram, about 100 micrograms per kilogram to about 5 milligrams per kilogram, or about 1 microgram per kilogram to about 50 micrograms per kilogram. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. Such appropriate doses may be determined using the assays described herein.
  • a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained.
  • the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.
  • the molecules of the present invention as well as agents, or modulators which have a stimulatory or inhibitory effect on the protein activity (e.g., gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) disorders (e.g., proliferative or developmental disorders) associated with aberrant protein activity.
  • pharmacogenomics i.e., the study of the relationship between an individual's genotype and that individual's response to a foreign compound or drug
  • Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug.
  • a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a molecule of the invention or modulator thereof, as well as tailoring the dosage and/or therapeutic regimen of treatment with such a molecule or modulator.
  • Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See e.g., Eichelbaum (1996) Clin Exp. Pharmacol. Physiol.
  • G6PD glucose-6-phosphate dehydrogenase deficiency
  • oxidant drugs anti-malarials, sulfonamides, analgesics, nitrofurans
  • a genome- wide association relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a "bi-allelic" gene marker map which consists of 60,000-100,000 polymo ⁇ hic or variable sites on the human genome, each of which has two variants).
  • gene-related markers e.g., a "bi-allelic” gene marker map which consists of 60,000-100,000 polymo ⁇ hic or variable sites on the human genome, each of which has two variants.
  • Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect.
  • such a high resolution map can be generated from a combination of some ten-million known single nucleotide polymo ⁇ hisms (SNPs) in the human genome.
  • SNP single nucleotide polymo ⁇ hisms
  • a "SNP" is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1,000 bases of DNA. A SNP may be involved in a disease process, however, the vast majority may not be disease-associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome.
  • treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.
  • a method termed the "candidate gene approach” can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a drug's target is known (e.g., a protein or a polypeptide of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.
  • the activity of drug metabolizing enzymes is a major determinant of both the intensity and duration of drug action.
  • drug metabolizing enzymes e.g., N-acetyltransferase 2(NAT 2) and cytochrome P450 enzymes C YP2D6 and CYP2C 19
  • NAT 2 N-acetyltransferase 2
  • cytochrome P450 enzymes C YP2D6 and CYP2C 19 has provided an explanation as to why some patients do not obtain the expected drug effects or show exaggerated drug response and serious toxicity after taking the standard and safe dose of a drug.
  • These polymo ⁇ hisms are expressed in two phenotypes in the population, the extensive metabolizer (EM) and poor metabolizer (PM). The prevalence of PM is different among different populations.
  • EM extensive metabolizer
  • PM poor metabolizer
  • the gene coding for CYP2D6 is highly polymo ⁇ hic and several mutations have been identified in PM, which all lead to the absence of functional CYP2D6. Poor metabolizers of CYP2D6 and CYP2C19 quite frequently experience exaggerated drug response and side effects when they receive standard doses. If a metabolite is the active therapeutic moiety, PM show no therapeutic response, as demonstrated for the analgesic effect of codeine mediated by its CYP2D6-formed metabolite mo ⁇ hine. The other extreme is the so called ultra-rapid metabolizers who do not respond to standard doses.
  • a method termed the "gene expression profiling" can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug (e.g., a molecule or modulator of the present invention) can given an indication whether gene pathways related to toxicity have been turned on. Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment an individual.
  • a drug e.g., a molecule or modulator of the present invention
  • disorders which may be treated or diagnosed by methods described herein include, but are not limited to disorders involving apoptosis. Certain disorders are associated with an increased number of surviving cells, which are produced and continue to survive or proliferate when apoptosis is inhibited.
  • programmed cell death refers to a genetically regulated process involved in the normal development of multicellular organisms. This process occurs in cells destined for removal in a variety of normal situations, including larval development of the nematode C. elegans, insect metamo ⁇ hosis, development in mammalian embryos, including the nephrogenic zone in the developing kidney, and regression or atrophy (e.g., in the prostate after castration).
  • Programmed cell death can occur following the withdrawal of growth and trophic factors in many cells, nutritional deprivation, hormone treatment, ultraviolet irradiation, and exposure to toxic and infectious agents including reactive oxygen species and phosphatase inhibitors, e.g., okadaic acid, calcium ionophores, and a number of cancer chemotherapeutic agents. See Wilson (1998) Biochem. Cell Biol. 76:573-582 and Hetts (1998) JAMA 279:300-30 , the contents of which are inco ⁇ orated herein by reference.
  • the proteins of the invention by being differentially expressed during programmed cell death, e.g., neuronal programmed cell death, can modulate a programmed cell death pathway activity and provide novel diagnostic targets and therapeutic agents for disorders characterized by deregulated programmed cell death, particularly in cells that express the protein.
  • programmed cell death e.g., neuronal programmed cell death
  • a "disorder characterized by deregulated programmed cell death” refers to a disorder, disease or condition which is characterized by a deregulation, e.g., an upregulation or a downregulation, of programmed cell death.
  • a deregulation e.g., an upregulation or a downregulation
  • programmed cell death deregulation can lead to deregulation of cellular proliferation and/or cell cycle progression.
  • disorders characterized by deregulated programmed cell death include, but are not limited to, neurodegenerative disorders, e.g., Alzheimer's disease, dementias related to Alzheimer's disease (such as Pick's disease), Parkinson's and other Lewy diffuse body diseases, multiple sclerosis, amyotrophic lateral sclerosis, progressive supranuclear palsy, epilepsy, Jakob- Creutzfieldt disease, or AIDS related dementias; myelodysplastic syndromes, e.g., aplastic anemia; ischemic injury, e.g., myocardial infarction, stroke, or reperfusion injury; autoimmune disorders, e.g., systemic lupus erythematosus, or immune- mediated glomerulonephritis; or profilerative disorders, e.g., cancer, such as follicular lymphomas, carcinomas with p53 mutations, or hormone-dependent tumors, e.g., breast cancer, prostate cancer, or ovarian cancer
  • autoimmune disease failure to remove autoimmune cells that arise during development or that develop as a result of somatic mutation during an immune response can result in autoimmune disease.
  • One of the molecules that plays a critical role in regulating cell death in lymphocytes is the cell surface receptor for Fas.
  • Viral infections such as those caused by he ⁇ esviruses, poxviruses, and adenoviruses, may result in aberrant apoptosis.
  • Populations of cells are often depleted in the event of viral infection, with perhaps the most dramatic example being the cell depletion caused by the human immunodeficiency virus (HIV).
  • HIV human immunodeficiency virus
  • Most T cells that die during HIV infections do not appear to be infected with HIV. Stimulation of the CD4 receptor may result in the enhanced susceptibility of uninfected T cells to undergo apoptosis.
  • Apoptosis may be involved in acute trauma, myocardial infarction, stroke, and infectious diseases, such as viral hepatitis and acquired immunodeficiency syndrome.
  • Primary apoptosis deficiencies include graft rejection. Accordingly, the invention is relevant to the identification of genes useful in inhibiting graft rejection. Primary apoptosis deficiencies also include autoimmune diabetes.
  • the invention is relevant to the identification of genes involved in autoimmune diabetes and accordingly, to the identification of agents that act on these targets to modulate the expression of these genes and hence, to treat or diagnose this disorder. Further, it has been suggested that all autoimmune disorders can be viewed as primary deficiencies of apoptosis (Hetts, above). Accordingly, the invention is relevant for screening for gene expression and transcriptional profiling in any autoimmune disorder and for screening for agents that affect the expression or transcriptional profile of these genes. Primary apoptosis deficiencies also include local self reactive disorder. This includes Hashimoto thyroiditis.
  • Primary apoptosis deficiencies also include lymphoproliferation and autoimmunity. This includes, but is not limited to, Canale-Smith syndrome. Primary apoptosis deficiencies also include cancer. For example, p53 induces apoptosis by acting as a transcription factor that activates expression of various apoptosis-mediating genes or by upregulating apoptosis-mediating genes such as Bax.
  • apoptosis excesses are associated with neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, spinal muscular atrophy, and amyotrophic lateral sclerosis.
  • apoptosis excesses are also associated with heart disease including idiopathic dilated cardiomyopathy, ischemic cardiomyopathy, and valvular heart disease. Evidence has also been shown of apoptosis in heart failure resulting from arrhythmogenic right ventricular dysplasia. For all these disorders, see Hetts, above.
  • Death receptors also include the TNF receptor- 1 and hence, TNF acts as a death ligand.
  • a wide variety of neurological diseases are characterized by the gradual loss of specific sets of neurons. Such disorders include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS) retinitis pigmentosa, spinal muscular atrophy, and various forms of cerebellar degeneration.
  • ALS amyotrophic lateral sclerosis
  • the cell loss in these diseases does not induce an inflammatory response, and apoptosis appears to be the mechanism of cell death.
  • hematologic diseases are associated with a decreased production of blood cells. These disorders include anemia associated with chronic disease, aplastic anemia, chronic neutropenia, and the myelodysplastic syndromes. Disorders of blood cell production, such as myelodysplastic syndrome and some forms of aplastic anemia, are associated with increased apoptotic cell death within the bone marrow.
  • myocardial infarctions and stroke Two common disorders associated with cell death are myocardial infarctions and stroke. In both disorders, cells within the central area of ischemia, which is produced in the event of acute loss of blood flow, appear to die rapidly as a result of necrosis. However, outside the central ischemic zone, cells die over a more protracted time period and mo ⁇ hologically appear to die by apoptosis.
  • the invention also pertains to disorders of the central nervous system (CNS).
  • CNS central nervous system
  • These disorders include, but are not limited to cognitive and neurodegenerative disorders such as Alzheimer's disease, senile dementia, Huntington's disease, amyotrophic lateral sclerosis, and Parkinson's disease, as well as Gilles de la Tourette's syndrome, autonomic function disorders such as hypertension and sleep disorders, and neuropsychiatric disorders that include, but are not limited to schizophrenia, schizoaffective disorder, attention deficit disorder, dysthymic disorder, major depressive disorder, mania, obsessive-compulsive disorder, psychoactive substance use disorders, anxiety, panic disorder, as well as bipolar affective disorder, e.g., severe bipolar affective (mood) disorder (BP-I), bipolar affective (mood) disorder with hypomania and major depression (BP-II).
  • CNS-related disorders include, for example, those listed in the American Psychiatric Association's Diagnostic and Statistical manual of
  • differential expression includes both quantative and qualitative differences in the temporal and/or cellular expression pattern of a gene, e.g., the programmed cell death genes disclosed herein, among, for example, normal cells and cells undergoing programmed cell death. Genes which are differentially expressed can be used as part of a prognostic or diagnostic marker for the evaluation of subjects at risk for developing a disorder characterized by deregulated programmed cell death. Depending on the expression level of the gene, the progression state of the disorder can also be evaluated.
  • array refers to a set of nucleic acid sequences that comprise at least one of SEQ ID NOS: 1-6, 8, and 10. Preferred arrays contain numerous genes. The term can refer to all of the sequences in SEQ ID NOS: 1-6, 8, and 10 but could also include additional sequences, for example, sequences included as controls for specific biological processes.
  • a "subarray” is also an array but is obtained by creating an array of less than all of the sequences in a starting array.
  • the functional subarray comprises nucleic acid sequences expressed in programmed cell death as disclosed herein.
  • the array comprises not only the specific designated sequences but also variants of these sequences, as described herein.
  • variants include, allelic variants, homologs from other loci in the same animal, orthologs, and sequences sufficiently similar such that they fulfill the requisites for sequence similarity/homology as described herein.
  • the array not only comprises the specific designated sequences, but also comprises fragments thereof.
  • the range of fragments will vary depending upon the specific sequence involved. Accordingly, the range of fragments is considerable, for example, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 etc.
  • the array can be used to assay expression of one or more genes in the array.
  • the array can be used to assay gene expression in a tissue to ascertain tissue specificity of genes in the array.
  • the invention allows the quantitation of gene expression.
  • tissue specificity but also the level of expression of a battery of genes in the tissue is ascertainable.
  • genes can be grouped on the basis of their tissue expression per se and level of expression in that tissue. This is useful, for example, in ascertaining the relationship of gene expression between or among tissues.
  • one tissue can be perturbed and the effect on gene expression in a second tissue can be determined.
  • the effect of one cell type on another cell type in response to a biological stimulus can be determined.
  • Such a determination is useful, for example, to know the effect of cell-cell interaction at the level of gene expression.
  • the invention provides an assay to determine the molecular basis of the undesirable effect and thus provides the opportunity to co-administer a counteracting agent or otherwise treat the undesired effect.
  • undesirable biological effects can be determined at the molecular level.
  • the array can be used to monitor the time course of expression of one or more genes in the array.
  • the array is also useful for ascertaining the effect of the expression of a gene on the expression of other genes in the same cell or in different cells. This provides, for example, for a selection of alternate molecular targets for therapeutic intervention if the ultimate or downstream target cannot be regulated.
  • the array is also useful for ascertaining differential expression patterns of one or more genes in normal and abnormal cells. This provides a battery of genes that could serve as a molecular target for diagnosis or therapeutic intervention.
  • the array, and particularly subarrays containing one or more of the nucleic acid sequences related to programmed cell death are useful for diagnosing disease or predisposition to disease involving apoptosis. These disorders include, but are not limited to, those discussed in detail herein.
  • the array or subarrays created therefrom are useful for diagnosing active disorders of the central nervous system or for predicting the tenancy to develop such disorders. Disorders of the central nervous system include, but are not limited to, those disclosed in detail herein.
  • the array and subarrays thereof are useful for diagnosing an active disorder or predicting the tendency to develop a disorder including, but not limited to, disorders involving secretion/synaptic vesicle release, cell proliferation, cytoskeletal reorganization, stress response/hormone response; and calcium signal transduction.
  • the array is also useful for ascertaining expression of one or more genes in model systems in vitro or in vivo.
  • Various model systems have been developed to study normal and abnormal processes, including, but not limited to, apoptosis.
  • Apoptosis can be actively induced in animal cells by a diverse array of triggers that range from ionizing radiation to hypothermia to viral infections to immune reactions.
  • Transgenic mouse models have been developed for familial amyotrophic lateral sclerosis, familial Alzheimer's disease and Huntington's disease, reviewed in Price et al. (1998) Science 252:1079-1083.
  • Amyotrophic lateral sclerosis is the most common adult onset motor neuron disease.
  • Alzheimer's disease is the most common cause of dementia in adult life. It is associated with the damage of regions and neurocircuits critical for cognition and memory, including neurons in the neocortex, hippocampus, amygdala, basal forebrain cholinergic system, and brain stem monoaminergic nuclei.
  • Neurological diseases that are associated with autosomal dominant trinucleotide repeat mutations include Huntington's disease, several spinal cerebellar ataxias and dentatorubral pallidoluysian atrophy. SCA-1 and SCA-3 or Machado-Joseph disease are characterized by ataxia and lack of coordination.
  • mice have been developed for non-obese diabetic mice, to study disease progression for the treatment of autoimmune diabetes mellitus. Bellgrau et al. (1995) Nature 577:630-632. Models have also been developed in mice wherein the mice lack one or two copies of the p53 gene. Study of these mice has shown that apoptosis is involved in suppressing tumor development in vivo. Lozano et al. (1998) Semin. Cane. Biol. 5:337-344. Another animal model relevant to the study of apoptosis involves the targeted gene disruption of caspase genes creating caspase gene knockout mice. Colussi et ⁇ /.( 1999) J. Immun. Cell. Biol. 77:58-63. A further mouse model pertains to cold injury in mice, such injury inducing neuronal apoptosis. Murakami et al. (1999) Prog. Neurobiol. 57:289-299.
  • Knockout mice have been created for Apaf 1. In these mice, defects are found in essentially all tissues whose development depends on cell death, including loss of interdigital webs, formation of the palate, control of neuron cell number, and development of the lens and retina. Cecconi et al. (1998) Cell 94:727-737.
  • Caspase knockout mice have also been achieved for caspase 1, 2, 3, and 9. Green (1998) Cell 94:695-698.
  • the array allows the simultaneous determination of a battery of genes involved in these processes and thus provides multiple candidates for in vivo verification and clinical testing. Because the array allows the determination of expression of multiple genes, it provides a powerful tool to ascertain coordinate gene expression, that is co-expression of two or more genes in a time and/or tissue-specific manner, both qualitatively and quantitatively. Thus, genes can be grouped on the basis of their expression per se and/or level of expression. This allows the classification of genes into functional categories even when the gene is completely uncharacterized with respect to function.
  • a first gene is expressed coordinately with a second gene whose function is known, a putative function can be assigned to that first gene.
  • This first gene thus provides a new target for affecting that function in a diagnostic or therapeutic context.
  • the coordinate expression of one or more novel genes strongly allows discovery of genes in the same functional category as the known genes.
  • the array of the invention provides for "internal control" groups of genes whose functions are known and can thus be used to identify genes as being in the same functional category of the control group if they are coordinated expressed.
  • internal control groups can be added to the array.
  • the genes in such a group would have a known function. Genes coordinately expressed with these genes would thus be prima facie involved in the same function.
  • the array provides a method not only for discovering novel genes having a specific function but also for assigning function to genes whose function is unknown or assigning to a known gene an additional function, previously unknown for that gene.
  • genes related to programmed cell death in brain were selected.
  • the array could, accordingly be used to select for genes related to other important biological processes, such as those disclosed herein.
  • Nucleic acid from any tissue in any biological process is hybridized to nucleic acid sequences in an array.
  • the expression pattern of genes in the array allows for their classification into functional groups based on specific expression patterns.
  • Internal or external control genes i.e. genes known to be expressed in the specific tissue/biological process
  • the array is also useful for drug discovery.
  • Candidate compounds can be used to screen cells and tissues in any of the biological contexts disclosed herein, such as pathology, development, differentiation, etc.
  • the expression of one or more genes in the array can be monitored by using the array to screen for RNA expression in a cell or tissue exposed to a candidate compound.
  • Compounds can be selected on the basis of the overall effect on gene expression, not necessarily on the basis of its effect on a single gene. Thus, for example, where a compound is desired that affects a particular first gene or genes but has no effect on a second gene or genes, the array provides a way to globally monitor the effect on gene expression of a compound. Alternatively, it may be desirable to target more than one gene, i.e.
  • the array provides a way to discover compounds that will modulate a set of genes. All genes of the set can be upregulated or downregulated. Alternatively, some of the genes may be upregulated and others downregulated by the same compound. Moreover, compounds are discoverable that modulate desired genes to desired degrees.
  • subarrays of genes are especially useful.
  • groups of genes can be assembled based on their relationships to a specific biological function.
  • the expression of this group of genes can be used for diagnostic pu ⁇ oses and to discover compounds relevant to the biological function.
  • the subarray can provide the basis for discovering drugs relevant to treatment and diagnosis of disease, for example those disclosed herein.
  • the group of genes whose expression is correlated with programmed cell death can be used to discover compounds that affect programmed cell death, and especially disorders in which programmed cell death is involved. These include but are not limited to those disclosed herein.
  • Apoptosis can be triggered by the addition of apoptosis-promoting ligands to a cell in culture or in vivo.
  • the arrays and subarrays described herein are useful to identify genes that respond to apoptosis- promoting ligands and conversely to identify ligands that act on genes involved in apoptosis.
  • Apoptosis can also be triggered by decreasing or removing an apoptosis- inhibiting or survival-promoting ligand. Accordingly, apoptosis is triggered in view of the fact that the cell lacks a signal from a cell surface survival factor receptor.
  • Ligands include, but are not limited to, FasL.
  • Death-inhibiting ligands include, but are not limited to, IL-2.
  • IL-2 IL-2
  • Central in the pathway, and also serving as potential molecules for inducing (or releasing from inhibition) apoptosis pathways include FADD, caspases, human CED4 homolog (also called apoptotic protease activating factor 1), the Bcl-2 family of genes including, but not limited to, apoptosis promoting (for example, Bax and Bad) and apoptosis inhibiting (for example, Bcl-2 and Bcl-xi) molecules. See Hetts et al. , above.
  • caspases upstream of caspase-3 can be inhibited by viral proteins such as cowpox, CrmA, and baculovirus, p35, synthetic tripeptides and tetrapeptides inhibit casepase-3 specifically (Hetts, above). Accordingly, the arrays and subarrays are useful for determining the modulation of gene expression in response to these agents.
  • viral proteins such as cowpox, CrmA, and baculovirus, p35
  • synthetic tripeptides and tetrapeptides inhibit casepase-3 specifically (Hetts, above). Accordingly, the arrays and subarrays are useful for determining the modulation of gene expression in response to these agents.
  • the array is also useful for obtaining a set of human (or other animal) orthologs that can be used for drug discovery, treatment, diagnosis, and the other uses disclosed herein.
  • the subarrays can be used to specifically create a corresponding human (or other animal) subarray that is relevant to a specific biological function. Accordingly, a method is provided for obtaining sets of genes from other organisms, which sets are correlated with, for example, disease or developmental disorders.
  • the arrays and subarrays disclosed herein are in a "microarray".
  • microarray is intended to designate an array of nucleic acid sequences on a chip. This includes in situ synthesis of desired nucleic acid sequences directly on the chip material, or affixing previously chemically synthesized nucleic acid sequences or nucleic acid sequences produced by recombinant DNA methodology onto the chip material.
  • nucleic acids can include whole vectors containing desired inserts, such as phages and plasmids, the desired inserts removed from the vector as by, PCR cloning, cDNA synthesized from mRNA, mRNA modified to avoid degradation, and the like.
  • microarray substrates methods for processing the substrates to affix the nucleic acids onto the substrates, processes for hybridization of the nucleic acid on the substrate to an external nucleic acid sample, methods for detection, and methods for analyzing expression data using specific algorithms have been widely disclosed in the art. References disclosing various microarray technologies are listed below.
  • the microarray contains nucleic acid sequences on a Biodyne B filter.
  • any medium including those that are well-known and available to the person of ordinary skill in the art, to which nucleic acids can be affixed in a manner suitable to allow hybridization, are encompassed by the invention.
  • This includes, but is not limited to, any of the membranes disclosed in the references above, which are inco ⁇ orated herein for reference to those membranes, and other membranes that are commercially available, including but not limited to, nitrocellulose- 1, supported nitrocellulose- 1, and Biodyne A, which is a neutrally- charged nylon membrane suitable for Southern transfer and dot blotting procedures. (All are available from Life Technologies.) EXAMPLE Summary
  • PCD Programmed cell death
  • CGNs rat cerebellar granule neurons
  • K + potassium
  • the inventors characterized this transcriptional component of CGN programmed cell death using a custom-built brain-biased cDNA array representing over 7000 different rat genes. Consistent with carefully orchestrated mRNA regulation, the profiles of 234 differentially expressed genes segregated into distinct temporal groups (immediate early, early, middle, and late) encompassing genes involved in distinct physiological responses including cell-cell signaling, nuclear reorganization, apoptosis, and differentiation. A set of 64 genes, including 22 novel genes, were regulated by both K + withdrawal and kainate treatment.
  • Human homologs were isolated for 8 of these novel regulated genes: The sequences of these human homologs are shown in SEQ ID NOS: 1 (human NARC 9B), 2 (human NARC 8B), 3 (human NARC 2 A), 4 (human NARC 16B), 5 (human NARC 10C), 6 (human NARC IC), 8 (human NARC 1 A), and 10 (human NARC 25).
  • array technology was used to broadly characterize physiological responses at the transcriptional level and identify novel genes induced by multiple models of programmed cell death.
  • High-density cDNA arrays have been successfully used to characterize genome-wide mRNA expression in yeast (Lashkari et al. (1997) Proc. Natl. Acad. Sci. USA 94:13057-13062; Wodicka et al. (1997) Nature Biotechnology 75:1997).
  • the strategy has been to array as many sequences as possible from known genes, from expressed sequence tags (ESTs), or from uncharacterized cDNA clones from a library (Bowtell (1999) Nature Genetics 27:25-32; Duggan et al.
  • the inventors constructed a brain-biased and programmed cell death- enriched clone set by arraying -7300 consolidated ESTs from two cDNA libraries cloned from rat frontal cortex and differentiated PC 12 cells deprived of nerve growth factor (NGF), and >300 genes that are known markers for the central nervous system and/or programmed cell death. They reproducibly and simultaneously monitored the expression of the genes at 1, 3, 6, 12, and 24 hours after K withdrawal. They then categorized the regulated genes by time course expression pattern to identify cellular processes mobilized by CGN programmed cell death at the RNA level.
  • NGF nerve growth factor
  • FIG. 1 shows a schematic representation of the construction of the microarray.
  • Two cDNA libraries were cloned from rat frontal cortex and nerve growth factor-deprived rat PC 12 cells to enrich for cDNAs expressed in the central nervous system and in one in vitro model of neuronal apoptosis.
  • Expressed sequence tags (ESTs) from the 5 '-end were identified for 8,304 clones in the cortical library and 5,680 in the PC 12 library.
  • ESTs were condensed into 7,399 unique sequence clusters by using the Basic Local Alignment Search Tool (BLAST) sequence comparison analysis (Altschul et al. 1990) to identify ESTs with overlapping sequence.
  • BLAST Basic Local Alignment Search Tool
  • One representative clone was chosen from each of 7,296 of the unique sequence clusters and prepared for PCR amplification using a robotic sample processor.
  • PCR templates were prepared for 289 known DNA sequences, including negative controls, genes with known function in the CNS and/or during programmed cell death, and genes previously identified as regulated by CGN programmed cell death using differential display (data not shown).
  • a robotic sample processor was used to randomly choose 212 clones for sequencing.
  • RNA samples designated "treated”, were isolated at 1, 3, 6, 12, and 24 hours after switching post-natal day eight CGNs from medium containing 5%> serum and 25 mM KCl to serum-free medium with 5 mM KCl. For controls, the 5%> serum/25 mM KCl medium was replaced, and "sham" RNA at 1, 3, 6, 12, and 24 hours was isolated.
  • Figure 3 shows the expression pattern of 234 programmed cell death-induced genes that were regulated by KCI/serum-withdrawal only, and were not regulated by serum-add-back in the sham experiments. Their coefficient of variation in expression level throughout the five serum-add-back experiments was less than 20%. Since the serum-add-back experiments were non-discriminating for these genes, the serum-add- back data were averaged to generate a single control data set for clustering with the KCl/serum withdrawal time course.
  • Four apparent temporal regulation classes were designated immediate early (peaking at 1 hour followed by rapid decay), early (peaking at 3-6 hours), middle (peaking at 6-12 hours), and late (up-regulated at 24 hours).
  • Histones 1 , 2A, and 3 fell in the early class.
  • Middle genes comprised several known genes induced by programmed cell death or stress, including caspase 3, the mammalian oxy R homolog, cytochrome c oxidase and protein phosphatase Wip-1.
  • Functions encoded for by late genes could be effectors of survival mechanisms including inhibitory neurotransmission (GAD, GABA-A receptor, GABA transporter), cell adhesion (nexin, basement membrane protein 40, phosphacan, rat GRASP), down-regulation of excitatory neurotransmission (glutamate transporter, sodium-dependent glutamate/aspartate transporter), leukotriene metabolism (dithiolethione-induced NADP-dependent leukotriene B4 12- hydroxydegydrogenase, leukotriene A-4 hydrolase), protein stabilization (cysteine proteinase inhibitor cystatin C, N-alpha-acetyl transferase, CaBP2, elongation factor 1 -gamma, APG-1), and ionic balance and cell volume (SLC12A integral membrane protein transporter).
  • GAD inhibitory neurotransmission
  • GABA transporter GABA-A receptor
  • GABA transporter cell adhesion
  • nexin basement membrane protein 40
  • the major transcriptional reponses observed for KCI/serum-withdrawal included initial up- regulation of synaptic vesicle release/recycling, then, of histone biosynthesis, followed by various constituents of programmed cell death regulation and stress- response signaling, and finally, of multiple survival mechanisms.
  • the apparent changes in transcription most likely also reflect changes in the relative cell populations, since late mRNAs may be markers of neurons and non-neuronal cells which have survived KCI/serum-withdrawal at 24 hours.
  • Another contributing factor may be the presence of two populations of dying neurons that respond with different kinetics to serum versus KCl withdrawal, as has been described by other groups.
  • NARCs Neuronal apoptosis regulated candidates
  • CGN programmed cell death induced by glutamate (excitatory neurotransmitter) toxicity was studied.
  • the effect of KCl- withdrawal alone on gene expression was examined. This was done under defined medium conditions to minimize the effect of serum on the sham and treated samples.
  • Rat CGNs from post-natal day seven pups were isolated as before and plated into basal medium Eagle containing "high”, 10% dialysed fetal bovine serum, and "high”, 25 mM KCl. After two days in culture, the medium was replaced with neurobasal medium supplemented with "low”, 0.5% serum, and high KCl. To initiate KCl-withdrawal on day eight, the KCl concentration was switched to 5 mM for the treated samples. The same low serum, high KCl, neurobasal medium was replaced in the controls to minimize gene induction by high serum. For the glutamate toxicity experiment, the cells were treated for 30 min in sodium-free Locke's medium with'or without 100 ⁇ M kainate for treated samples and controls, respectively.
  • Figure 4 illustrates the changes in gene expression that occur over time when CGNs are induced to undergo programmed cell death by KCI/serum-withdrawal, KCl-withdrawal alone, or kainate treatment.
  • W withdrawn
  • T treated
  • C control
  • Figure 4 shows expression clusters generated by one hierarchical clustering algorithm.
  • the inset shows a specific group of genes having similar expression patterns.
  • This group includes genes known to be regulated in programmed cell death, for example caspase 3 and Wip 1, as well as other nucleic acid sequences on the array not previously known to be regulated. Those sequences meeting specific criteria were designated "neuronal apoptosis regulated candidate" (NARC). Criteria for designating such genes were based on specific expression criteria as shown in Figure 4. Nucleic acid sequences having an expression pattern similar to genes known to be involved in apoptosis were designated as NARC sequences.
  • N is an abbreviation of the acronym “NARC” which is an abbreviation of "neuronal apoptosis regulated candidate" as described in the Examples section.
  • NARC1 and NARC2 Two novel neuronal apoptosis regulated candidates, were validated by in situ hybridization and shown to be coordinately up-regulated with caspase 3 during postnatal development when increased apoptosis is associated with synapse consolidation in the cerebellum (not shown).
  • BLAST sequence comparison analysis ESTs determined for the 5 '-end of cDNA clones picked from two cDNA libraries, rat frontal cortex (8,304 clones) and NGF-deprived differentiated PC 12 cells (5,680 clones), ranged from 100-1000 nt in sequence length and averaged 500 nt (data not shown). Sequence comparisons were done using BLAST (Altschul et al. 1990). Contiguous matches defined a sequence cluster. Large clusters were checked by hand to eliminate apparent chimeras. From 13,984 sequences inputted, the analysis identified 5,779 singletons and 1,620 larger clusters (data not shown). The 5 '-most clone was selected from the larger clusters. Because two 96-well microtiter plates of clones were missing, a total of 7,296 out of the 7,399 identified were selected for Smart ChipTM I.
  • oligonucleotide primers specific for vector sequences up- and downstream of the cloning site were used to amplify the cDNA insert by PCR.
  • the array element templates were resuspended in 3X SSC (IX SSC: 150 mM sodium chloride, 15 mM sodium citrate, pH 7.0).
  • a sample volume of 20 nl from each template was arrayed onto nylon filters (Biodyne B, Gibco BRL Life Technologies, Gaithersburg, MD) at a density of ⁇ 64/cm using a 96-well format pin robot (THOR). After the filters were dry, the arrayed DNA was denatured in 0.4 M sodium hydroxide, neutralized in 0.1 M Tris-HCl, pH 7.5, rinsed in 2X SSC, and dried to completion.
  • Rat poly A + RNA was purchased from Clontech (Palo Alto, CA) for the organ recital ( Figure 8) or was isolated as total RNA from cultured CGNs using RNA
  • the labeled cDNA was annealed with 10 ⁇ g poly(dA) >200 and 10 ⁇ g rat Cot-1 DNA (prepared as described in Britten et al. (1974) Methods in Enzymology 29:263-418).
  • the annealed cDNA mixture was added to array filters in pre-annealing solution containing 100 mg/ml sheared salmon sperm DNA in 7%> SDS (sodium dodecyl sulfate), 0.25 M sodium phosphate, 1 mM ethylenediaminetetraacetic acid, and 10% formamide.
  • the array filters were washed twice for 15 min at 22°C in 2X SSC, 1% SDS, twice for 30 min at 65°C in 0.2X SSC, 0.5% SDS, and twice for 15 min at 22°C in 2X SSC.
  • the array filters were then dried and exposed to phosphoimage screens for 48 h.
  • the radioactive hybridization signals were captured with a Fuji BAS 2500 phosphoimager and quantified using Array VisionTM software (Imaging Research Inc., Canada).
  • Array hybridizations for the organ recital, the CGN KCl only-withdrawal, and the CGN kainate treatment experiments were performed in triplicate; for the CGN KCI/serum-withdrawal, they were performed in duplicate.
  • CGNs were prepared from seven day old rat pups as previously described
  • cerebella were isolated, and meningeal layers and blood vessels were removed under a dissecting scope.
  • Dissociated cells were plated at a density of 2.3 x 10 5 cells/cm 2 in basal medium Eagle (BME; Gibco) supplemented with 25 mM KCl, 10%) dialyzed fetal bovine serum (Summit Biotechnology lot #04D35, Ft. Collins, CO), 100 U/ml penicillin, and 100 ⁇ g/ml streptomycin.
  • BME basal medium Eagle
  • Aphidicolin Sigma, St. Louis, MO was added to the cultures at 3.3 ⁇ g/ml, 24 hours after initial plating to reduce the number of non-neuronal cells to less than l-5%>.
  • KCl-withdrawal alone and kainate treatment experiments on day two in culture, the medium was replaced with neurobasal medium (Gibco) supplemented with 25 mM KCl, 0.5%> dialyzed fetal bovine serum, B27 supplement (Gibco), 0.5 mM L-glutamine (Gibco), 0.1 mg/ml AlbuMAX I (Gibco), 100 U/ml penicillin, 100 ⁇ g/ml streptomycin, and 3.3 ⁇ g/ml aphidicolin.
  • KCl-withdrawal was initiated by replacing the medium with 5 mM KCl while the shams received 25 mM.
  • Oligonucleotide primer sequences specific for each EST validated by RT-PCR were selected from quality sequence regions and designed to obtain a melting temperature of 55-60°C as predicted by PrimerSelect software (DNASTAR, Inc., Madison, WI) based on DNA stability measurements by ( Breslauer et al. (1986) Proc. Natl. Acad. Sci. USA 55:3746-3750).
  • the Stratagene Opti-PrimeTM Kit was used to determine optimal RT-PCR amplification conditions for each primer pair.
  • RT-PCR reactions on 2-fold serially diluted CGN programmed cell death cDNA were set up using the Genesis RSP 150 robotic sample processor and inco ⁇ orating the optimal buffer conditions for each primer pair.
  • the reaction was incubated for 30 minutes at 50°C.
  • the hybridization chamber was preheated to 65°C.
  • Sheared salmon sperm DNA was denatured at 95 °C for 5 minutes, placed on ice, and then added to the hybridization mixture at a final concentration of 100 ug/mL. Prehybridization was for 1.5 hours.
  • the amount of probe was calculated necessary to achieve 2 x 10 6 cpm/mL for lO mL.
  • Human probe with Human Filters 10ug Poly dA (>200nt) lOug Human Cot 1 DNA 25uL 20 x SSC probe + water to 1 OOuL The probe was heated to 95°C, and then probe was allowed to preanneal at 65°C, for 1.5 hours.
  • the probe was added to prehybridizing filters (directly to the solution and not onto the filters) and hybridization was for approximately 20 hours.
  • the filters were removed from the 2 x SSC and placed on Whatman filter paper. Filters were baked at 85°C for 1 hour or longer. Screens were protected against any moisture. Filters were placed on a blank phosphorimager screen. No yellowed phosphoimager screens were used since they may not respond to exposure linearly. Screens had been erased on a light box for no less than 20 minutes.
  • Cerebellar granule cell isolation was performed according to the method disclosed in Johnson et al. (1996) J. Neurosci. 76:74877-7495.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Cardiology (AREA)
  • Zoology (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
EP00972316A 1999-10-22 2000-10-20 Nukleinesäuremolekulen abgeleitet von ratgehirn und programmierten zelltotmodellen Withdrawn EP1226243A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16118899P 1999-10-22 1999-10-22
US161188P 1999-10-22
PCT/US2000/029132 WO2001031007A2 (en) 1999-10-22 2000-10-20 Nucleic acid molecules derived from rat brain and programmed cell death models

Publications (1)

Publication Number Publication Date
EP1226243A2 true EP1226243A2 (de) 2002-07-31

Family

ID=22580209

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00972316A Withdrawn EP1226243A2 (de) 1999-10-22 2000-10-20 Nukleinesäuremolekulen abgeleitet von ratgehirn und programmierten zelltotmodellen

Country Status (5)

Country Link
EP (1) EP1226243A2 (de)
JP (1) JP2003512840A (de)
AU (1) AU1099601A (de)
CA (1) CA2388617A1 (de)
WO (1) WO2001031007A2 (de)

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020081679A1 (en) * 1999-10-22 2002-06-27 Millennium Pharmaceuticals, Inc. NARC8 programmed cell-death-associated molecules and uses thereof
AU2001241461A1 (en) * 2000-02-07 2001-08-14 Millennium Pharmaceuticals, Inc. Narc-1, novel subtilase-like homologs
US20030165863A1 (en) * 2001-01-16 2003-09-04 Millennium Pharmaceuticals, Inc. NARC10 and NARC16, programmed cell death-associated molecules and uses thereof
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
WO2008057459A2 (en) 2006-11-07 2008-05-15 Merck & Co., Inc. Antagonists of pcsk9
WO2008109871A2 (en) * 2007-03-08 2008-09-12 Irm Llc Crystal structure of proprotein convertase 9 (pcsk9) and uses thereof
US8263353B2 (en) 2007-03-27 2012-09-11 Merck Sharp & Dohme Corp. Method for detecting autoprocessed, secreted PCSK9
JOP20080381B1 (ar) 2007-08-23 2023-03-28 Amgen Inc بروتينات مرتبطة بمولدات مضادات تتفاعل مع بروبروتين كونفيرتاز سيتيليزين ككسين من النوع 9 (pcsk9)
AR070316A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Antagonistas de pcsk9 (proproteina subtilisina-kexina tipo 9)
AR070315A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Anticuerpos 1b20 antagonistas de pcsk9
WO2010068526A1 (en) 2008-12-12 2010-06-17 Merck Sharp & Dohme Corp. Pcsk9 immunoassay
JP2013509191A (ja) 2009-10-30 2013-03-14 メルク・シャープ・エンド・ドーム・コーポレイション Ax1およびax189pcsk9アンタゴニストおよびバリアント
CN102639150A (zh) 2009-10-30 2012-08-15 默沙东公司 Ax213和ax132 pcsk9拮抗剂和变体
AR087715A1 (es) 2011-09-16 2014-04-09 Lilly Co Eli Anticuerpos anti pcsk9 y usos de los mismos
EP4234694A3 (de) 2012-11-21 2023-09-06 Amgen Inc. Arzneimittelabgabevorrichtung
TWI639453B (zh) 2013-03-15 2018-11-01 美商安美基公司 用於注射器之匣盒
TWI592183B (zh) 2013-03-15 2017-07-21 安美基公司 本體輪廓可調適之自動注射器裝置
JP6336564B2 (ja) 2013-03-15 2018-06-06 アムゲン・インコーポレーテッド 薬物カセット、自動注入器、および自動注入器システム
EP2976117B1 (de) 2013-03-22 2020-12-30 Amgen Inc. Injektor und verfahren zur montage
EP3501575B1 (de) 2013-10-24 2021-12-01 Amgen Inc. Arzneimittelabgabesystem mit temperaturempfindlicher steuerung
AU2014340171B2 (en) 2013-10-24 2019-05-30 Amgen Inc. Injector and method of assembly
US8945560B1 (en) 2014-07-15 2015-02-03 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US9045548B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment
US9017678B1 (en) 2014-07-15 2015-04-28 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US8992927B1 (en) 2014-07-15 2015-03-31 Kymab Limited Targeting human NAV1.7 variants for treatment of pain
US9023359B1 (en) 2014-07-15 2015-05-05 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US9045545B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
US9034332B1 (en) 2014-07-15 2015-05-19 Kymab Limited Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment
US8986694B1 (en) 2014-07-15 2015-03-24 Kymab Limited Targeting human nav1.7 variants for treatment of pain
US9067998B1 (en) 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US9914769B2 (en) 2014-07-15 2018-03-13 Kymab Limited Precision medicine for cholesterol treatment
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8883157B1 (en) 2013-12-17 2014-11-11 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US9051378B1 (en) 2014-07-15 2015-06-09 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US10994112B2 (en) 2014-02-05 2021-05-04 Amgen Inc. Drug delivery system with electromagnetic field generator
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
MX2016014561A (es) 2014-05-07 2017-06-21 Amgen Inc Autoinyetor con elementos reductores del shock.
MX2016015854A (es) 2014-06-03 2017-07-19 Amgen Inc Sistema de suministro de farmacos controlable y metodo de uso.
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
US9150660B1 (en) 2014-07-15 2015-10-06 Kymab Limited Precision Medicine by targeting human NAV1.8 variants for treatment of pain
EP3943135A3 (de) 2014-10-14 2022-06-29 Amgen Inc. Arzneimittelinjektionsvorrichtung mit visuellen und hörbaren indikatoren
ES2785311T3 (es) 2014-12-19 2020-10-06 Amgen Inc Dispositivo de administración de fármacos con botón móvil o campo de interfaz de usuario
EP3233163B1 (de) 2014-12-19 2021-10-13 Amgen Inc. Medikamentenabgabevorrichtung mit näherungssensor
WO2016133947A1 (en) 2015-02-17 2016-08-25 Amgen Inc. Drug delivery device with vacuum assisted securement and/or feedback
JP2018512184A (ja) 2015-02-27 2018-05-17 アムジエン・インコーポレーテツド 針ガードの移動に対する抵抗力の閾値が調整可能な針ガード機構を備えた薬物送達装置
WO2017039786A1 (en) 2015-09-02 2017-03-09 Amgen Inc. Syringe assembly adapter for a syringe
EP3386573B1 (de) 2015-12-09 2019-10-02 Amgen Inc. Autoinjektor mit signalhaube
US11154661B2 (en) 2016-01-06 2021-10-26 Amgen Inc. Auto-injector with signaling electronics
WO2017160799A1 (en) 2016-03-15 2017-09-21 Amgen Inc. Reducing probability of glass breakage in drug delivery devices
WO2017189089A1 (en) 2016-04-29 2017-11-02 Amgen Inc. Drug delivery device with messaging label
WO2017192287A1 (en) 2016-05-02 2017-11-09 Amgen Inc. Syringe adapter and guide for filling an on-body injector
MX2018013616A (es) 2016-05-13 2019-02-21 Amgen Inc Montaje de cubierta protectora de vial.
EP3458988B1 (de) 2016-05-16 2023-10-18 Amgen Inc. Datenverschlüsselung in medizinischen vorrichtungen mit eingeschränkter rechenfähigkeit
EP3465124A1 (de) 2016-06-03 2019-04-10 Amgen Inc. Wirkungstestvorrichtungen und verfahren für wirkstofffreisetzungsvorrichtungen
WO2018004842A1 (en) 2016-07-01 2018-01-04 Amgen Inc. Drug delivery device having minimized risk of component fracture upon impact events
US20190328965A1 (en) 2016-08-17 2019-10-31 Amgen Inc. Drug delivery device with placement detection
US20200261643A1 (en) 2016-10-25 2020-08-20 Amgen Inc. On-body injector
EP3534947A1 (de) 2016-11-03 2019-09-11 Kymab Limited Antikörper, kombinationen mit antikörpern, biomarker, verwendungen und verfahren
GB2572918B (en) 2016-12-23 2023-02-15 Harvard College Gene editing of PCSK9
JP2020503976A (ja) 2017-01-17 2020-02-06 アムジエン・インコーポレーテツド 注入デバイスならびに関連する使用および組立方法
EP3582825A1 (de) 2017-02-17 2019-12-25 Amgen Inc. Wirkstofffreisetzungsvorrichtung mit steriler fluidströmung und zugehöriges verfahren zur montage
AU2018221351B2 (en) 2017-02-17 2023-02-23 Amgen Inc. Insertion mechanism for drug delivery device
JP2020508803A (ja) 2017-03-06 2020-03-26 アムジエン・インコーポレーテツド 作動防止特徴部を備える薬物送達デバイス
AU2018230546B2 (en) 2017-03-07 2024-03-21 Amgen Inc. Needle insertion by overpressure
US11986624B2 (en) 2017-03-09 2024-05-21 Amgen Inc. Insertion mechanism for drug delivery device
DK3600491T3 (da) 2017-03-28 2023-10-23 Amgen Inc Stempelstang og sprøjtekonstruktionssystem samt fremgangsmåde
EP3634539A1 (de) 2017-06-08 2020-04-15 Amgen Inc. Spritzenanordnung für eine wirkstofffreisetzungsvorrichtung und verfahren zur montage
MX2019014615A (es) 2017-06-08 2020-02-07 Amgen Inc Dispositivo de administracion de farmacos accionado por par de torsion.
WO2018236619A1 (en) 2017-06-22 2018-12-27 Amgen Inc. REDUCING THE IMPACTS / IMPACTS OF ACTIVATION OF A DEVICE
US11395880B2 (en) 2017-06-23 2022-07-26 Amgen Inc. Electronic drug delivery device
EP3651832B1 (de) 2017-07-14 2023-12-13 Amgen Inc. Nadeleinführ-retraktionssystem mit doppeltorsionsfedersystem
US11672733B2 (en) 2017-07-21 2023-06-13 Amgen Inc. Gas permeable sealing member for drug container and methods of assembly
EP4085942A1 (de) 2017-07-25 2022-11-09 Amgen Inc. Arzneimittelabgabevorrichtung mit getriebemodul und verwandtes verfahren zur montage
EP3658206A1 (de) 2017-07-25 2020-06-03 Amgen Inc. Arzneimittelabgabevorrichtung mit behälterzugangssystem und zugehörigem verfahren zur montage
WO2019032482A2 (en) 2017-08-09 2019-02-14 Amgen Inc. HYDRAULIC-PNEUMATIC PRESSURE CHAMBER DELIVERY SYSTEM
EP3668567A1 (de) 2017-08-18 2020-06-24 Amgen Inc. Am körper tragbarer injektor mit sterilem klebepflaster
US11103636B2 (en) 2017-08-22 2021-08-31 Amgen Inc. Needle insertion mechanism for drug delivery device
EP3691717B1 (de) 2017-10-04 2023-02-08 Amgen Inc. Durchflussadapter für arzneimittelabgabevorrichtung
ES2971450T3 (es) 2017-10-06 2024-06-05 Amgen Inc Dispositivo de administración de fármacos con conjunto de enclavamiento y procedimiento de montaje correspondiente
MA50348A (fr) 2017-10-09 2020-08-19 Amgen Inc Dispositif d'administration de médicament comprenant un ensemble d'entraînement et procédé d'assemblage associé
US11305026B2 (en) 2017-11-03 2022-04-19 Amgen Inc. Systems and approaches for sterilizing a drug delivery device
EP3706830B1 (de) 2017-11-06 2024-08-07 Amgen Inc. Arzneimittelabgabevorrichtung mit positionierungs- und durchflussmessung
WO2019090303A1 (en) 2017-11-06 2019-05-09 Amgen Inc. Fill-finish assemblies and related methods
CA3079665A1 (en) 2017-11-10 2019-05-16 Amgen Inc. Plungers for drug delivery devices
MA50903A (fr) 2017-11-16 2021-05-12 Amgen Inc Auto-injecteur avec détection de décrochage et de point d'extrémité
JP7370969B2 (ja) 2017-11-16 2023-10-30 アムジエン・インコーポレーテツド 薬物送達デバイスの扉ラッチ機構
US10835685B2 (en) 2018-05-30 2020-11-17 Amgen Inc. Thermal spring release mechanism for a drug delivery device
US11083840B2 (en) 2018-06-01 2021-08-10 Amgen Inc. Modular fluid path assemblies for drug delivery devices
US12115360B2 (en) 2018-07-24 2024-10-15 Amgen Inc. Hybrid drug delivery devices with grip portion
MA53375A (fr) 2018-07-24 2021-06-02 Amgen Inc Dispositifs d'administration pour l'administration de médicaments
US12042645B2 (en) 2018-07-24 2024-07-23 Amgen Inc. Delivery devices for administering drugs
US20210260279A1 (en) 2018-07-24 2021-08-26 Amgen Inc. Hybrid drug delivery devices with optional grip portion and related method of preparation
CA3103105A1 (en) 2018-07-31 2020-02-06 Amgen Inc. Fluid path assembly for a drug delivery device
JP2022500095A (ja) 2018-09-24 2022-01-04 アムジエン・インコーポレーテツド インターベンション投薬システム及び方法
IL281469B2 (en) 2018-09-28 2024-08-01 Amgen Inc Assembling a memory alloy ejector activation assembly for a drug delivery device
WO2020072577A1 (en) 2018-10-02 2020-04-09 Amgen Inc. Injection systems for drug delivery with internal force transmission
MA53818A (fr) 2018-10-05 2022-01-12 Amgen Inc Dispositif d'administration de médicament ayant un indicateur de dose
AR116704A1 (es) 2018-10-15 2021-06-02 Amgen Inc Dispositivo de administración de fármacos con mecanismo de amortiguación
EA202191038A1 (ru) 2018-10-15 2021-07-06 Эмджен Инк. Способ платформенной сборки для устройства доставки лекарственного средства
TWI831847B (zh) 2018-11-01 2024-02-11 美商安進公司 部分針頭縮回之藥物遞送裝置及其操作方法
US11213620B2 (en) 2018-11-01 2022-01-04 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
AU2019370159A1 (en) 2018-11-01 2021-04-22 Amgen Inc. Drug delivery devices with partial drug delivery member retraction
MX2021012557A (es) 2019-04-24 2021-11-12 Amgen Inc Conjuntos y metodos de verificacion de esterilizacion de jeringuillas.
WO2021041067A2 (en) 2019-08-23 2021-03-04 Amgen Inc. Drug delivery device with configurable needle shield engagement components and related methods
AU2021253959A1 (en) 2020-04-09 2022-11-17 Verve Therapeutics, Inc. Base editing of PCSK9 and methods of using same for treatment of disease
US20240208680A1 (en) 2021-05-21 2024-06-27 Amgen Inc. Method of optimizing a filling recipe for a drug container

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT977846E (pt) * 1997-04-25 2002-11-29 Wyeth Corp Isoformas de morti neuronal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0131007A2 *

Also Published As

Publication number Publication date
JP2003512840A (ja) 2003-04-08
CA2388617A1 (en) 2001-05-03
WO2001031007A3 (en) 2001-11-29
WO2001031007A9 (en) 2002-05-10
AU1099601A (en) 2001-05-08
WO2001031007A2 (en) 2001-05-03

Similar Documents

Publication Publication Date Title
US20110230392A1 (en) Novel narc sc1, narc 10a, narc 1, narc 12, narc 13, narc17, narc 25, narc 3, narc 4, narc 7, narc 8, narc 11, narc 14a, narc 15, narc 16, narc 19, narc 20, narc 26, narc 27, narc 28, narc 30, narc 5, narc 6, narc 9, narc 10c, narc 8b, narc 9, narc2a, narc 16b, narc 1c, narc 1a, and narc 25 molecules and uses therefor
WO2001031007A2 (en) Nucleic acid molecules derived from rat brain and programmed cell death models
JP2010011853A (ja) Crspタンパク質(システインに富む分泌性タンパク質)、それらをコードする核酸分子およびその用途
JP2002502590A (ja) Card関連蛋白質ファミリーの新規分子とその使用
US6756196B2 (en) Molecules of the card-related protein family and uses thereof
JP2001512002A (ja) Tango−77関連蛋白質ファミリーの新規分子およびその使用
US20020081679A1 (en) NARC8 programmed cell-death-associated molecules and uses thereof
JP4495961B2 (ja) 新規なpgc−1イソフォームおよびその使用
EP1515981A2 (de) Neue moleküle der pyrin/nbs/lrr-proteinfamilie und deren verwendungen
JP2002534114A (ja) 新規lrsgタンパク質および核酸分子ならびにそのための用途
US20020076784A1 (en) 40322, a novel human dynamin
WO2000000633A1 (en) OCT1p, A PROTEIN HAVING HOMOLOGY TO THE ORGANIC AND SUGAR TRANSPORTER FAMILY OF PROTEINS, AND USES THEREOF
US20030017983A1 (en) Novel molecules of the pyrin/NBS/LRR protein family and uses thereof
WO2003045970A1 (en) Novel molecules of the card related protein family and uses thereof
US20030165863A1 (en) NARC10 and NARC16, programmed cell death-associated molecules and uses thereof
WO1999062943A2 (en) Novel molecules of the aip-related protein family and uses thereof
WO2001064887A2 (en) 32705, 23224, 27423, 32700, 32712, novel human g-proteins
WO2001030813A9 (en) Novel molecules of the card-related protein family and uses thereof
US20020081651A1 (en) 26649, a novel human GTPase activating molecule and uses therefor
US20020086357A1 (en) 32591, a novel human GTPase activating molecule and uses therefor
US20020177148A1 (en) FBH58295FL, a novel human amino acid transporter and uses thereof
US20020115185A1 (en) Neuronal cell death associated molecules and uses therefor
US20040209287A1 (en) OCT1p, a protein having homology to the organic and sugar transporter family of proteins, and uses thereof
WO2001057185A2 (en) Novel molecules of the card-related protein family and uses thereof
JP2002516335A (ja) Alg−2lp、alg−2様分子及びそれらの使用

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080501