EP1225235B1 - Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech - Google Patents

Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech Download PDF

Info

Publication number
EP1225235B1
EP1225235B1 EP02000584A EP02000584A EP1225235B1 EP 1225235 B1 EP1225235 B1 EP 1225235B1 EP 02000584 A EP02000584 A EP 02000584A EP 02000584 A EP02000584 A EP 02000584A EP 1225235 B1 EP1225235 B1 EP 1225235B1
Authority
EP
European Patent Office
Prior art keywords
sheet
annealing
strip
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02000584A
Other languages
English (en)
French (fr)
Other versions
EP1225235A3 (de
EP1225235A2 (de
Inventor
Klaus Dr.-Ing Freier
Volker Dr.-Ing. Flaxa
Birgit Dr.-Ing. Reichert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter AG
Original Assignee
Salzgitter AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter AG filed Critical Salzgitter AG
Publication of EP1225235A2 publication Critical patent/EP1225235A2/de
Publication of EP1225235A3 publication Critical patent/EP1225235A3/de
Application granted granted Critical
Publication of EP1225235B1 publication Critical patent/EP1225235B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/663Bell-type furnaces

Definitions

  • the invention relates to a method for producing a cold-rolled, readily deformable Steel strip or sheet after hot rolling, coiling and cold rolling a recrystallizing anneal in a hood furnace in the Fixed bundle with subsequent cooling to ⁇ 150 ° C and possibly a skin pass is subjected to and after deformation a bake-hardening potential for having a subsequent temperature treatment.
  • the invention furthermore relates to a readily deformable, special cold-rolled sheet which can be produced by the process and has a bake-hardening potential after subsequent deformation and for a subsequent temperature treatment (BH 2 potential).
  • BH 2 potential bake-hardening potential after subsequent deformation and for a subsequent temperature treatment
  • Such steel sheets are generally in the form of a Bandes produced by casting a steel slab, hot rolled and at a certain intermediate temperature is reeled. After cooling the coiled Bandes at substantially ambient temperature, the sheet is on the Final thickness cold rolled. To eliminate the resulting tensions within The material is subjected to recrystallizing annealing. Subsequently In general, the band becomes weak again with a degree of deformation between rolled about 0.5 and 2% (temper rolling).
  • the slight deformability of the steels is an increase in the strength values of Steel grade basically contrary, because the increased strength in principle with an impairment the easy deformability goes hand in hand.
  • They are higher-strength steel grades have been developed (eg ZStE and ZStEi), despite higher strength values are relatively well deformable.
  • Such steel grades are for example as ZStE steel iron material sheet SEW093 and 094 and known as isotropic steel ZStEi while the conventional "soft" steel grades as St12 to St15 (corresponding to DC01, DC03, DC04, DC05 according to DIN EN 10130) are known.
  • the steel types differ with regard to the addition of micro-alloying elements and in terms of process management.
  • a special steel of this kind is, for example the isotropic steel ZstEi, as described in DE 38 03 064 C2, EP 0 400 031 B1 or DD 285 298 B5 is described.
  • bake hardening potential For many steel grades, one way to combine good ductility with increased yield strength after completion is to produce the steel with a so-called bake hardening potential.
  • the effect of the bake hardening effect is that a hardening, ie an increase in the yield strength, is brought about in the case of a temperature treatment of the steel, as is the case, for example, in the case of body paneling. This is an artificial aging of the steel, which causes the additional increase in strength.
  • the increase in strength is thus achieved after the deformation of the sheet to produce the desired component, so that the increase in strength does not interfere with the deformation of the sheet. It has been found that the previous deformation of the sheet affects the bake hardening effect.
  • the bake-hardening effect caused only by the heat treatment without deformation is given as a BH 0 value, while a measure of the bake-hardening effect after deformation is the BH 2 value after deformation of the sheet 2% indicates the increase in strength due to a subsequent temperature treatment - standardized at 170 ° C for 20 min. - Indicates.
  • the bake-hardening effect is based on a content of dissolved carbon in the Steel that is above the state of equilibrium.
  • the recrystallization annealing is followed performed on the cold rolling with a continuous annealing.
  • carbon goes into solution.
  • the sheet is only heated for a short time, is a recrystallization for a well above A, lying temperature used.
  • the fast Cooling of the steel strip produces the proportion of dissolved C atoms, some of them Orders of magnitude above the equilibrium state.
  • the steel strip remains in equilibrium, so that no aging potential (bake hardening potential) is formed when the content of carbon ⁇ 0.02%.
  • an aging potential can be produced because the C atoms in solution due to their low density and the associated longer diffusion paths only difficult to get an Eisenkarbidausscheidung (cementite) and therefore a Part remains supersaturated in solution.
  • the slow cooling causes the carbon to precipitate, so that no dissolved carbon is available for the aging potential.
  • the temperature treatment causes the carbon atoms in the solution to diffuse into dislocation regions of the matrix.
  • the dislocations are thereby blocked, so that an increased amount of stress is required to re-create a plastic flow in the material.
  • This effect is greatly increased by a prior deformation of the dissolved C-supersaturated steel strip.
  • the deformation process for example by deep drawing, leads to a significant increase in the dislocation density.
  • temperature treatment as is the case, for example, in stove-enamelling, the carbon atoms diffuse into the dilated regions of the dislocations.
  • the bake-hardening effect after a previous deformation characterized by BH 2
  • the deformation of the sheets leads to a degree of deformation Work hardening.
  • bake hardening steels For the application of bake hardening steels is the total strength resulting from cold working through forming and Bake hardening results from the temperature treatment, relevant.
  • the well-known bake hardening steels which are produced with a continuous annealing, over the degree of pre-strain as a variable an approximately constant yield strength curve for the sum of work hardening and bake hardening on.
  • the bake hardening effect is therefore at larger strains due to the vast majority Proportion of work hardening hardly relevant. It is therefore known that the application of bake-hardening steels mainly for large-area components interesting which are only weakly shaped, such as fenders, hoods, Car doors and roofs.
  • This cooling rate is about four times as high as the annealing rate of the annealed one Festbundes, from which the initially mentioned procedure emanates.
  • the invention is therefore based on the object, the production of tapes or Sheet steel of the type mentioned above with a bake hardening potential to allow a simple temperature control to ensure the Bake-hardening effect is possible.
  • a method of the invention mentioned above is according to the invention Art characterized in that for adjusting the bake hardening potential the band cooled down in the bundle and unwound to a temperature T with 200 ° C ⁇ T ⁇ A, reheated, at the temperature T for an annealing time ⁇ 20 minute annealed and from the temperature T at a cooling rate ⁇ 1 ° C / s is cooled.
  • This inventive method thus allows the production of a bake hardening steel strip or sheet recrystallizing in a hood furnace in a tight coil has been annealed, even if the C content in the Steel is ⁇ 0.02%.
  • the short-term annealing according to the invention after cooling of the recrystallizing annealed strip or sheet to ⁇ 150 ° C, preferably to about room temperature, possible to bring C precipitated as carbides back into solution.
  • this annealing does not substantially change the technological properties of the steel, particularly its texture. Due to the short-term annealing and the subsequent cooling, which can be carried out in a conventional manner with air, but also with water, a part of the dissolved C remains in solution and leads to the aging potential for the subsequent temperature treatment, for example during a stoving.
  • the short-term annealing is preferably effected in a continuous annealing furnace.
  • a sufficient bake-hardening effect must be at a low level Annealing temperature T a relatively long annealing time are met while higher annealing temperatures significantly reduce the required annealing time. It is therefore, it is preferable to use a temperature T of short-time annealing of ⁇ 450 ° C. Furthermore, it is preferred that the annealing time of the short-term annealing between 2 Min. And 5 min.
  • the strip or sheet produced by the process according to the invention differs from conventional tapes or sheets with a bake hardening potential in that the total hardening of the steel (work-hardening + bake-hardening) increases with greater previous deformation of the sheet.
  • the steel according to the invention contains cementite precipitates in the matrix and at the grain boundaries. Conventional, continuously annealed bake hardening steels are virtually free of cementites. If these steels are subjected to an overaging treatment, Although cementite forms, but with the loss of the bake-hardening effect. In contrast, the steel according to the invention has cementite precipitates and a bake-hardening effect. This is true even if the steel has a C content ⁇ 0.02%. After baking, the sheet has a through the bake-hardening effect clearly, i. around at least 30 MPa, increased yield strength.
  • the steel according to the invention may have a hot-dip galvanized surface and have been trained after hot dip galvanizing.
  • the "soft" grades St15 and St14 have no relevant amounts of micro-alloying elements (Ti, V, Nb, Mo).
  • the isotropic steel grade ZSt220 characterized by a titanium content of between 0.01 and 0.04% can be and is set to about 0.02% in the experimental examples.
  • the higher strength Goodness ZSt340 has a similar titanium content and beyond a significant niobium content.
  • All steel grades used are in the usual way at the required temperatures poured into the slab and then hot rolled. After one Coiling at a suitable intermediate temperature is carried out a cooling in air Service. Subsequently, the cold rolling steps have been carried out. Thereafter, the steel strip has been annealed recrystallizing in the hood furnace, wherein the usual annealing time is between 20 and 70 hours.
  • the steel strip cooled to about room temperature has been partially dressed and partially undressed for the tests carried out here before the short-term annealing according to the invention is carried out, preferably in a continuous furnace.
  • the material has been pre-stretched.
  • the cooled material is dressed Service.
  • FIG. 1 shows the measurement results for the BH 2 effect for the steel St15 as a function of the annealing temperature and the annealing time, each of which has been set at 0.5 min, 2 min and 5 min.
  • the non-annealed samples were said to be " 1 x " due to the post-anneal annealing, the pre-stressed samples were termed " 2 x dressed ".
  • Figure 2 shows the results for the same tests on steel ZStE220i.
  • a very large BH 2 effect is achieved at an annealing temperature of 700 ° C and an annealing time of 2 min.
  • An extension of the annealing time at this temperature leads to a reduction of the BH 2 effect.
  • the tempering before the premature annealing for the size of the BH 2 effect is rather harmful.
  • Figures 4 to 6 illustrate the dependence of the BH value on the degree of prior stretching of the material. In all cases, a more or less pronounced maximum sets in at about 2% degree of stretching, whereas conventional bake-hardening steels have a decreasing BH value with increasing degree of stretching.
  • Figure 4 shows the results for undisturbed ZSt220i, St14 and ZSt340 grades, annealed at 500 ° C for 5 min and deformed between 0.5 and 1% depending on the steel grade of the skin pass.
  • the bake hardening annealing has taken place according to the test specifications at 170 ° for 20 min.
  • results shown in FIG. 5 relate to the same steels with the same degree of temper rolling, but the short-term annealing has been carried out at 500 ° C. for an annealing time of 15 minutes.
  • the sum of deformation hardening (work hardening WH) and bake hardening strengthening (BH) as a function of the degree of stretching is indicated for the three steel grades. While conventional bake hardening grades show a substantially constant sum of yield strength increase across the different degrees of stretch, the grades of the invention exhibit a yield strength increase that increases with the degree of stretch.
  • the steels treated according to the invention therefore differ in their mechanical properties from the conventionally produced bake hardening steels.
  • FIGS. 8 to 10 illustrate the course of the work hardening curve and the bake hardening curve as a function of the degree of pre-strain for the steel grades St 15 (FIG. 8), ZStE 220i (FIG. 9) and ZStE 340 (FIG. 10). While the pure bake-hardening effect tends to decrease with increasing pre-strain, the work-hardening effect increases disproportionately, resulting in the increasing cumulative curve for the steel according to the invention.
  • FIG. 11 illustrates the dependence of the sum of the yield strength increase on the annealing temperatures and the annealing times.
  • the highest yield strength increase is achieved at the highest (permissible) annealing temperature of approx. 700 ° C with long annealing time (5 min.).
  • a further increase in the annealing temperature is not possible because the A 1 value (about 720 ° C) must not be exceeded during the annealing process. Exceeding the A 1 temperature would cause transformations that would adversely affect the properties of the steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Lubricants (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines kaltgewalzten, gut verformbaren Bandes oder Bleches aus Stahl, das nach einem Warmwalzen, Aufhaspeln und Kaltwalzen einem rekristallisierenden Glühen in einem Haubenofen im Festbund mit anschließender Abkühlung auf ≤ 150 °C und ggf. einem Dressiervorgang unterzogen wird und nach einer Verformung ein Bake-Hardening-Potential für eine anschließende Temperaturbehandlung aufweist.
Die Erfindung betrifft ferner ein nach dem Verfahren herstellbares, gut verformbares, spezielles kaltgewalztes Blech mit einem Bake-Hardening-Potential nach einer anschließenden Verformung und für eine anschließende Temperaturbehandlung (BH2 - Potential)
Beispielsweise im Automobilbau werden leicht verformbare Bleche benötigt, die relativ dünn ausgebildet sein müssen, um das Gewicht des Fahrzeugs nicht zu hoch werden zu lassen. Derartige Bleche aus Stahl werden im Allgemeinen in Form eines Bandes hergestellt, indem eine Stahlbramme gegossen, warmgewalzt und bei einer bestimmten Zwischentemperatur gehaspelt wird. Nach dem Abkühlen des gehaspelten Bandes auf im wesentlichen Umgebungstemperatur wird das Blech auf die Enddicke kaltgewalzt. Zur Beseitigung der dabei entstandenen Spannungen innerhalb des Materials wird ein rekristallisierendes Glühen durchgeführt. Anschließend wird das Band im Allgemeinen nochmals schwach mit einem Verformungsgrad zwischen etwa 0,5 und 2 % gewalzt (Dressieren).
Die leichte Verformbarkeit der Stähle steht einer Erhöhung der Festigkeitswerte der Stahlsorte grundsätzlich entgegen, da die erhöhte Festigkeit prinzipiell mit einer Beeinträchtigung der leichten Verformbarkeit einher geht. Es sind höherfeste Stahlsorten entwickelt worden (z. B. ZStE und ZStEi), die trotz höherer Festigkeitswerte relativ gut verformbar sind. Derartige Stahlgüten sind beispielsweise als ZStE Stahleisen-Werkstoffblatt SEW093 und 094 und als isotroper Stahl ZStEi bekannt, während die herkömmlichen "weichen" Stahlgüten als St12 bis St15 (entsprechend DC01, DC03, DC04, DC05 gemäß DIN EN 10130) bekannt sind. Die Stahltypen unterscheiden sich dabei hinsichtlich der Zugabe von Mikrolegierungselementen und hinsichtlich der Verfahrensführung. Ein besonderer Stahl dieser Art ist beispielsweise der isotrope Stahl ZstEi, wie er in DE 38 03 064 C2, EP 0 400 031 B1 oder DD 285 298 B5 beschrieben ist.
Für viele Stahlsorten besteht eine Möglichkeit, eine gute Verformbarkeit mit einer erhöhten Streckgrenze nach der Fertigstellung zu kombinieren, darin, den Stahl mit einem sogenannten Bake-Hardening-Potential zu produzieren. Der Bake-Hardening-Effekt bewirkt, dass bei einer Temperaturbehandlung des Stahls, wie sie beispielsweise beim Einbrennlackieren von Karosserieblechen vorgenommen wird, eine Verfestigung, also eine Erhöhung der Streckgrenze, hervorgerufen wird. Es handelt sich dabei um eine künstliche Alterung des Stahls, die die zusätzliche Festigkeitssteigerung bewirkt. Die Festigkeitssteigerung wird also nach der durchgeführten Verformung des Bleches zur Erstellung des gewünschten Bauteils erreicht, sodass die Festigkeitserhöhung nicht die Verformung des Bleches stört. Es hat sich herausgestellt, dass die vorherige Verformung des Bleches den Bake-Hardening-Effekt beeinflusst. Der nur durch die Temperaturbehandlung bewirkte Bake-Hardening-Effekt ohne vorherige Verformung wird als BH0-Wert angegeben, während ein Maß für den Bake-Hardening-Effekt nach einer vorgenommenen Verformung der BH2-Wert ist, der nach einer Verformung des Bleches um 2 % die Festigkeitserhöhung aufgrund einer anschließenden Temperaturbehandlung - genormt bei 170 °C für 20 Min. - angibt.
Der Bake-Hardening-Effekt beruht auf einem Gehalt an gelöstem Kohlenstoff im Stahl, der über dem Gleichgewichtszustand liegt. Zur Herstellung dieser Übersättigung des Stahls mit gelösten C-Atomen wird das Rekristallisationsglühen im Anschluss an das Kaltwalzen mit einer Durchlaufglühe durchgeführt. Durch die Temperaturerhöhung in der Durchlaufglühe geht Kohlenstoff in Lösung. Da in der Durchlaufglühe das Blech nur kurzzeitig aufgeheizt wird, wird für die Rekristallisation eine deutlich über A, liegende Temperatur verwendet. In Verbindung mit dem schnellen Abkühlen des Stahlbandes entsteht der Anteil an gelösten C-Atomen, der einige Größenordnungen über dem Gleichgewichtszustand liegt.
Wird hingegen das Glühen des gewickelten Stahlbandes im Haubenofen, d.h. für eine vergleichsweise lange Zeit, durchgeführt und die dazugehörige langsame Abkühlung an Luft vorgenommen, verbleibt das Stahlband im Gleichgewichtszustand, sodass kein Alterungspotential (Bake-Hardening-Potential) entsteht, wenn der Gehalt an Kohlenstoff ≥ 0,02 % ist. Nur bei geringeren Kohlenstoffgehalten, die nur durch eine aufwändige Vakuumbehandlung einstellbar sind, lässt sich ein Alterungspotential herstellen, da die in Lösung befindlichen C-Atome aufgrund ihrer geringen Dichte und der damit verbundenen längeren Diffusionswege nur erschwert zu einer Eisenkarbidausscheidung (Zementit) gelangen und daher ein Teil übersättigt in Lösung bleibt. Für C-Gehalte ≥ 0,02 % findet beim langsamen Abkühlen die Ausscheidung des Kohlenstoffs statt, sodass kein gelöster Kohlenstoff für das Alterungspotential zur Verfügung steht. Durch die Temperaturbehandlung diffundieren die in der Lösung befindlichen Kohlenstoffatome in Versetzungbereiche der Matrix. Die Versetzungen werden dadurch blockiert, sodass ein erhöhter Spannungsbetrag erforderlich ist, um erneut ein plastisches Fließen im Werkstoff zu erzeugen. Dieser Effekt wird erheblich vergrößert durch eine vorherige Verformung des mit gelöstem C übersättigten Stahlbandes. Der Verformungsvorgang, beispielsweise durch Tiefziehen, führt zu einer signifikanten Erhöhung der Versetzungsdichte. Bei der Temperaturbehandlung, wie sie beispielsweise beim Einbrennlackieren vorgenommen wird, diffundieren die Kohlenstoffatome in die dilatierten Bereiche der Versetzungen. In der Praxis ist daher der Bake-Hardening-Effekt nach einer vorherigen Verformung (charakterisiert durch BH2) relevant.
Die Umformung der Bleche führt in Abhängigkeit vom Verformungsgrad zu einer Kaltverfestigung (Work-Hardening). Für die Anwendung der Bake-Hardening-Stähle ist die Gesamtfestigkeit, die sich aus der Kaltverformung durch die Umformung und Bake-Hardening aus der Temperaturbehandlung ergibt, relevant. Die bekannten Bake-Hardening-Stähle, die mit einer Durchlaufglühe hergestellt werden, weisen über den Grad der Vordehnung als Variable einen annähernd konstanten Streckgrenzenverlauf für die Summe aus Work-Hardening und Bake-Hardening auf. Der Bake-Hardening-Effekt ist daher bei größeren Dehnungen aufgrund des stark überwiegenden Anteils der Kaltverfestigung kaum relevant. Es ist daher bekannt, dass die Anwendung von Bake-Hardening-Stählen vorwiegend für großflächige Bauteile interessant ist, die nur schwach umgeformt werden, wie beispielsweise Kotflügel, Motorhauben, PKW-Türen und -Dächer.
Bekannt ist ferner, dass der Bake-Hardening-Effekt mit dem Gehalt gelöster Atome bis zu einem Sättigungswert ansteigt. Ein zu großer Gehalt gelöster C-Atome führt zu einer fehlenden Alterungsbeständigkeit des Stahlbleches bei Auslagerung. Für Bake-Hardening-Stähle wird daher ein Gehalt an gelöstem Kohlenstoff zwischen 5 und 10 ppm als optimal angesehen.
Die Beschränkung der Ausnutzung des Bake-Hardening-Effektes auf Nicht-Vakuumstähle, die in einer Durchlaufglühe rekristallisierend geglüht worden sind, führt zu erheblichen Restriktionen für die Herstellung geeigneter Stahlbleche. Vorteilhafte Eigenschaften von Stahlblechen, die vorzugsweise die rekristallisierende Glühung in Haubenglühöfen benötigen, wie beispielsweise die Herstellung von Stahlblechen mit einer planaren Isotropie oder Quasi-lsotropie, lassen sich daher bisher nicht mit einem Bake-Hardening-Effekt herstellen.
In dem Konferenzpapier zur International Conference "Steel and Motor Vehicle Manufacture" XX, Seiten 85-94 berichten Mizui et al. von der Herstellung von sogenanntem "pre-batch annealed and galvannealed" Stahl. Da die zum Galvanisieren verwendete kontinuierliche Galvanisierlinie keinen Überalterungsofen aufweist, wird die Überalterungsbehandlung ersetzt durch ein Vorglühen (pre-batch annealing), bei dem der Stahl auf 690°C im offenen Bund erhitzt wird. Anschließend kühlt der Stahl wieder ab, bevor er vor dem Einfahren in das Galvanisierbad nochmals auf 600°C aufgeheizt wird und nach Durchlaufen des Galvanisierbades nochmals erhitzt wird, um eine Legierungsverbindung zwischen der Zinkschicht und dem Stahl zu erzeugen. Als Abkühlrate für den im offenen Bund geglühten Stahl ist 80°C/h angegeben. Diese Abkühlrate ist etwa viermal so hoch wie die Abkühlrate des geglühten Festbundes, von dem das eingangs erwähnte Verfahren ausgeht. Durch das Glühen im offenen Bund, bei dem zwischen den Wickellagen Zwischenräume ausgebildet werden, werden die gattungsgemäß angestrebten Eigenschaften des Bandes oder Bleches aus Stahl nicht in der gewünschten Weise erzielt.
Der Erfindung liegt daher die Aufgabe zugrunde, die Herstellung von Bändern oder Blechen aus Stahl der eingangs erwähnten Art mit einem Bake-Hardening-Potential zu ermöglichen, wobei eine einfache Temperaturführung zur Sicherstellung des Bake-Hardening-Effektes möglich ist.
Zur Lösung dieser Aufgabe ist erfindungsgemäß ein Verfahren der eingangs erwähnten Art dadurch gekennzeichnet, dass zur Einstellung des Bake-Hardening-Potentials das im Bund abgekühlte Band abgehaspelt und auf eine Temperatur T mit 200 °C ≤ T ≤ A, wieder erwärmt, bei der Temperatur T für eine Glühdauer ≤ 20 min. geglüht und von der Temperatur T mit einer Abkühlgeschwindigkeit ≥ 1 °C/s abgekühlt wird.
Dieses erfindungsgemäße Verfahren erlaubt somit die Herstellung eines Bake-Hardening-Stahlbandes oder -bleches, das in einem Haubenofen im Festbund rekristallisierend geglüht worden ist, und zwar auch dann, wenn der C-Gehalt in dem Stahl ≥ 0,02 % ist.
Überraschender Weise ist es durch das erfindungsgemäße kurzzeitige Glühen nach der Abkühlung des rekristallisierend geglühten Bandes oder Bleches auf ≤ 150 °C, vorzugsweise auf etwa Raumtemperatur, möglich, als Karbide ausgeschiedenes C wieder in Lösung zu bringen. Da die Temperatur des kurzzeitigen Glühens unter der A1-Temperatur des Stahles liegt, werden durch dieses Glühen die technologischen Eigenschaften des Stahls im Übrigen, insbesondere seine Textur, nicht wesentlich geändert. Aufgrund des kurzzeitigen Glühens und der anschließenden Abkühlung, die in üblicher Weise mit Luft, aber auch mit Wasser erfolgen kann, verbleibt ein Teil des gelösten C in Lösung und führt zu dem Alterungspotential für die nachfolgende Temperaturbehandlung, beispielsweise während eines Einbrennlackierens.
Das kurzzeitige Glühen wird vorzugsweise in einem Durchlaufglühofen bewirkt. Für die Erzeugung eines ausreichenden Bake-Hardening-Effektes muss bei einer niedrigen Glühtemperatur T eine relativ lange Glühdauer eingehalten werden, während höhere Glühtemperaturen die erforderliche Glühdauer erheblich herabsetzen. Es ist daher bevorzugt, eine Temperatur T des kurzzeitigen Glühens ≥ 450 °C zu verwenden. Bevorzugt ist ferner, die Glühdauer des kurzzeitigen Glühens zwischen 2 Min. und 5 Min. einzustellen.
Es wird im Allgemeinen sinnvoll sein, das Band oder Blech nach dem kurzzeitigen Glühen zu dressieren, also in üblicher Weise schwach zu verformen. Es kann auch sinnvoll sein, wenn das Band oder Blech vor dem kurzzeitigen Glühen bereits dressiert worden ist, obwohl dies nicht immer erforderlich erscheint.
Für die Herstellung von verzinkten Blechen oder Bändern ist es besonders zweckmäßig, eine Feuerverzinkung des Bleches oder Bandes zumindest als Teil des kurzzeitigen Glühens zu benutzen. Allerdings kann das erfindungsgemäße Verfahren auch für gar nicht oder elektrolytisch, d.h. ohne Wärmeeinwirkung, zu verzinkende Bleche eingesetzt werden.
Das nach dem erfindungsgemäßen Verfahren hergestellte Band oder Blech unterscheidet sich von herkömmlichen Bändern oder Blechen mit einem Bake-Hardening-Potential dadurch, dass die Gesamtverfestigung des Stahls (Work-Hardening + Bake-Hardening) mit größerer vorheriger Verformung des Bleches zunimmt. Ferner enthält der erfindungsgemäße Stahl Zementitausscheidungen in der Matrix und an den Korngrenzen. Herkömmliche, durchlaufgeglühte Bake-Hardening-Stähle sind praktisch zementitfrei. Werden diese Stähle einer Überalterungsbehandlung ausgesetzt, bildet sich zwar Zementit, allerdings unter Verlust des Bake-Hardening-Effekts. Demgegenüber weist der erfindungsgemäße Stahl Zementitausscheidungen und einen Bake-Hardening-Effekt auf. Dies gilt auch dann, wenn der Stahl einen C-Gehalt ≥ 0,02 % aufweist. Nach dem Einbrennlackieren weist das Blech eine durch den Bake-Hardening-Effekt deutlich, d.h. um mindestens 30 MPa, erhöhte Streckgrenze auf.
Ein erfindungsgemäßes gut verformbares, kalt gewalztes Band oder Blech weist erfindungsgemäß die folgende Zusammensetzung auf
  • 0,02 bis 0,12 % C
  • max. 0,50 % Si
  • 0,1 bis 1,2 % Mn
  • max. 0,1 % P
  • max. 0,025 % S
  • max. 0,009 % N
  • 0,01 bis 0,08 % Al
  • 0,01 bis 0,04 % Ti
  • Rest Eisen und nicht vermeidbare Verunreinigungen
  • und ist mit dem erfindungsgemäßen Verfahren herstellbar sowie mit einem Bake-Hardening-Potential nach einer Verformung und für eine anschließende Temperaturbehandlung und mit Zementitausscheidungen in der Matrix und an den Korngrenzen versehen.
    Soweit untere Grenzen für die o.a. Bestandteile nicht angegeben worden sind, ergeben sich diese aus nicht vermeidbaren Verunreinigungen mit diesen Elementen.
    Der erfindungsgemäße Stahl kann eine feuerverzinkte Oberfläche aufweisen und nach der Feuerverzinkung dressiert worden sein.
    Die Erfindung soll im Folgenden anhand einiger Beispiele näher erläutert werden.
    Entsprechende Versuche sind durchgeführt worden mit Stählen der Güten St15, St14, zwei Varianten der Güte ZStE220i und der Güte ZStE340, deren chemische Zusammensetzungen der beigefügten Tabelle 1 zu entnehmen sind.
    Für die Versuche sind somit Stahlsorten verwendet worden, die alle einen C-Gehalt von ≥ 0,02 % aufweisen. Im Falle des Stahls ZStE340 beträgt der C-Gehalt sogar 0,075 %.
    Die "weichen" Güten St15 und St14 weisen keine relevanten Mengen an Mikrolegierungselementen (Ti, V, Nb, Mo) auf. Demgegenüber ist die isotrope Stahlsorte ZSt220 gekennzeichnet durch einen Titangehalt, der zwischen 0,01 und 0,04 % liegen kann und in den Versuchsbeispielen auf etwa 0,02 % eingestellt ist. Die höherfeste Güte ZSt340 weist einen ähnlichen Titangehalt und darüber hinaus einen deutlichen Niobgehalt auf.
    Die Untersuchung der Stahlgüten St14 und St15 haben für die hier interessierenden Parameter keine relevanten Unterschiede ergeben. Gleiches gilt für die Versuche mit den beiden Kaltbändern der Sorte ZStE220i. Im Folgenden wird daher jeweils das Ergebnis nur eines Vertreters dieser Güten angegeben und diskutiert.
    Da die verwendeten Stahlsorten im Markt geläufig und daher dem Fachmann hinlänglich bekannt sind, kennt der Fachmann die für die Herstellung der Stahlsorten erforderlichen Verfahrensschritte und deren Besonderheiten zur Erzielung der gewünschten Stahlgüten. Auf eine detaillierte Beschreibung kann daher hier verzichtet werden. Für die isotropen Stahlsorten wird auf die in DE 38 03 064 C2, EP 0 400 031 B1 und DD 285 298 B5 beschriebenen Herstellungsverfahren verwiesen.
    Alle verwendeten Stahlgüten sind in üblicher Weise bei den erforderlichen Temperaturen zur Bramme gegossen und anschließend warmgewalzt worden. Nach einem Haspeln bei einer geeigneten Zwischentemperatur ist eine Abkühlung an Luft vorgenommen worden. Anschließend sind die Kaltwalzschritte durchgeführt worden. Danach ist das Stahlband im Haubenofen rekristallisierend geglüht worden, wobei die übliche Glühdauer zwischen 20 und 70 Stunden liegt.
    Das auf etwa Raumtemperatur abgekühlte Stahlband ist für die hier durchgeführten Versuche teilweise dressiert und teilweise undressiert verwendet worden, bevor das erfindungsgemäße kurzzeitige Glühen, vorzugsweise in einem Durchlaufofen, vorgenommen wird. Um den BH2-Effekt, der in der Praxis allein von Bedeutung ist, feststellen zu können, ist das Material vorgereckt worden.
    In allen Fällen ist nach dem kurzzeitigen Glühen das abgekühlte Material dressiert worden.
    Figur 1 zeigt die Messergebnisse für den BH2-Effekt für den Stahl St15 in Abhängigkeit von der Glühtemperatur und der Glühdauer, die jeweils mit 0,5 Min., 2 Min. und 5 Min. eingestellt worden ist. Die vor dem Glühen nicht dressierten Proben sind wegen des Dressierens nach dem Glühen als "1 x dressiert", die vordressierten Proben als "2 x dressiert" bezeichnet worden.
    Es zeigt sich, dass bereits bei der Glühtemperatur von 200 °C und einer geringen Glühdauer ein erhöhtes BH2-Potential vorliegt, das für alle Proben mit zunehmender Glühtemperatur und zunehmender Glühdauer ansteigt, wobei bei der Glühtemperatur von 700 °C durch eine Verlängerung der Glühdauer über 2 Min. keine oder keine wesentliche Erhöhung des BH2-Potentials mehr erreicht wird.
    Für alle Proben erbringt das Dressieren des Materials vor dem kurzzeitigen Glühen keine merkliche Erhöhung des BH2-Effektes, in einigen Fällen ist sogar eine merkliche Erniedrigung festzustellen.
    Figur 2 zeigt die Ergebnisse für die gleichen Untersuchungen bei dem Stahl ZStE220i. Ein sehr großer BH2-Effekt wird bei einer Glühtemperatur von 700 °C und einer Glühdauer von 2 Min. erzielt. Eine Verlängerung der Glühdauer bei dieser Temperatur führt zu einer Verringerung des BH2-Effektes. Auch hier ist das Dressieren vor dem vorzeitigen Glühen für die Größe des BH2-Effektes eher schädlich.
    Die in Figur 3 dargestellten Ergebnisse für die Stahlgüte ZStE340 verdeutlicht, dass für diesen Fall das Dressieren vor dem kurzzeitigen Glühen, jedenfalls für mittlere Glühtemperaturen günstig ist. Bei der niedrigen Glühtemperatur von 200 °C bildet sich ein Maximum bei der Glühtemperatur von 2 Min. für den 1 x dressierten Stahl aus. Für kürzere und längere Glühdauern geht der BH2-Effekt sogar auf O zurück.
    Die Figuren 4 bis 6 verdeutlichen die Abhängigkeit des BH-Wertes von dem Grad der vorherigen Reckung des Materials. In allen Fällen stellt sich ein mehr oder weniger deutlich ausgeprägtes Maximum bei etwa 2 % Reckgrad ein, während herkömmliche Bake-Hardening-Stähle einen mit zunehmenden Reckgrad abfallenden BH-Wert aufweisen.
    Figur 4 zeigt die Ergebnisse für undressierte Proben der Güten ZSt220i, St14 und ZSt340, die 5 Min. bei 500 °C geglüht und in Abhängigkeit von der Stahlgüte beim Dressieren zwischen 0,5 und 1 % verformt worden sind. Die Bake-Hardening-Glühung hat gemäß den Prüfvorschriften bei 170° für 20 Min. stattgefunden.
    Die in Figur 5 dargestellten Ergebnisse beziehen sich auf die gleichen Stähle mit gleichen Dressiergraden, wobei jedoch die kurzfristige Glühung bei 500 °C für eine Glühdauer von 15 Min. vorgenommen worden ist.
    Die in Figur 6 dargestellten Ergebnisse betreffen die in gleicher Weise behandelten Stahlgüten, die bei 700 °C für 5 Min. geglüht worden sind. Auffallend ist dabei das hohe Bake-Hardening-Potential für die isotrope Stahlgüte ZStE220i, die mit einem Verformungsgrad zwischen 2 und 3 % vorgereckt worden ist.
    In Figur 7 ist für die drei Stahlgüten die Summe aus der Verformungsverfestigung (Work-Hardening WH) und der Bake-Hardening-Verfestigung (BH) in Abhängigkeit vom Reckgrad angegeben. Während herkömmliche Bake-Hardening-Stahlgüten eine im Wesentlichen konstante Summe des Streckgrenzenanstiegs über die unterschiedlichen Reckgrade zeigen, weisen die erfindungsgemäßen Stahlsorten einen mit dem Reckgrad wachsenden Streckgrenzenanstieg auf. Die erfindungsgemäß behandelten Stähle unterscheiden sich daher in ihren mechanischen Eigenschaften erkennbar von den herkömmlich produzierten Bake-Hardening-Stählen.
    Die Figuren 8 bis 10 verdeutlichen den Verlauf der Work-Hardening-Kurve und der Bake-Hardening-Kurve in Abhängigkeit vom Vordehnungsgrad für die Stahlsorten St 15 (Figur 8), ZStE 220i (Figur 9) und ZStE 340 (Figur 10). Während der reine Bake-Hardening-Effekt mit zunehmender Vordehnung eher wieder abnimmt, nimmt der Work-Hardening-Effekt überproportional zu, woraus sich die ansteigende Summenkurve für den erfindungsgemäßen Stahl ergibt.
    Figur 11 verdeutlicht die Abhängigkeit der Summe des Streckgrenzenanstiegs von den Glühtemperaturen und den Glühdauern. Für alle Stahlsorten wird der höchste Streckgrenzenanstieg bei der höchsten (zulässigen) Glühtemperatur von ca. 700 °C bei langer Glühdauer (5 Min.) erzielt. Eine weitere Erhöhung der Glühtemperatur ist nicht möglich, da der A1-Wert (ca. 720 °C) während des Glühvorganges nicht überschritten werden darf. Eine Überschreitung der A1-Temperatur würde Umwandlungen verursachen, die die Eigenschaften des Stahls negativ verändern würden.
    In Tabelle 2 sind die wesentlichen mechanischen Werte für erfindungsgemäß behandelte Stähle mit BH2-Effekt verglichen mit den mechanischen Eigenschaften der Stahlsorten, wie sie in der Euronorm EN 10 130, in einem Werkstoffblatt W5/94 der Anmelderin oder in den Stahleisenwerkstoffblättern SEW 093 und SEW 094 dargestellt sind.
    Alle Prozentangaben betreffen Gew.%.
    Figure 00140001

    Claims (13)

    1. Verfahren zur Herstellung eines kaltgewalzten, gut verformbaren Bandes oder Bleches aus Stahl, das nach einem Warmwalzen, Aufhaspeln und Kaltwalzen einem rekristallisierenden Glühen in einem Haubenofen im Festbund mit anschließender Abkühlung auf ≤ 150 °C und ggf. einem Dressiervorgang unterzogen wird und nach einer Verformung ein Bake-Hardening-Potential für eine anschließende Temperaturbehandlung aufweist, wobei zur Einstellung des Bake-Hardening-Potentials das im Bund abgekühlte Band abgehaspelt und auf eine Temperatur T mit 200 °C ≤ T ≤ A1 wieder erwärmt, bei der Temperatur T für eine Glühdauer ≤ 20 min. geglüht und von der Temperatur T mit einer Abkühlgeschwindigkeit ≥ 1 °C/s abgekühlt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur T ≥ 450 °C ist.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Glühdauer des kurzzeitigen Glühens zwischen 2 min. und 5 min. gewählt wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Abkühlung von der Temperatur T mit einer Abkühlgeschwindigkeit ≥ 2 °C/s vorgenommen wird.
    5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Band oder Blech vor dem kurzzeitigen Glühen dressiert wird.
    6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Band oder Blech nach dem kurzzeitigen Glühen dressiert wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Feuerverzinkung des Bleches oder Bandes als Teil des kurzzeitigen Glühens benutzt wird.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass ein Stahl mit einem C-Gehalt ≥ 0,02 % verwendet wird.
    9. Verfahren nach einem der Ansprüche 1 bis 8, gekennzeichnet durch die Verwendung einer Stahlsorte, die aus den Stahlsorten St12 bis St15, ZStE und ZStEi ausgewählt worden ist.
    10. Gut verformbares, kaltgewalztes Band oder Blech mit der Zusammensetzung
      0,02 bis 0,12 % C
      max. 0,50 % Si
      0,1 bis 1,2 % Mn
      max. 0,1 % P
      max. 0,025 % S
      max. 0,009 % N
      0,01 bis 0,08 % Al
      0,01 bis 0,04 % Ti
      Rest Eisen und nicht vermeidbare Verunreinigungen;
      herstellbar mit dem Verfahren nach einem des Ansprüche 1 bis 9, mit einem Bake-Hardenening-Potential von 30 MPa nach einer Verformung und für eine anschließende Temperaturbehandlung und mit Zementitausscheidungen in der Matrix und an den Korngrenzen.
    11. Band oder Blech nach Anspruch 10, dadurch gekennzeichnet, dass es eine feuerverzinkte Oberfläche aufweist.
    12. Band oder Blech nach Anspruch 11, dadurch gekennzeichnet, dass es nach der Feuerverzinkung der Oberfläche dressiert ist.
    13. Einbrennlackiertes Blech, hergestellt aus einem Band oder Blech nach Anspruch 10 oder 11, mit einer durch das Einbrennlackieren deutlich erhöhten Streckgrenze.
    EP02000584A 2001-01-23 2002-01-10 Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech Expired - Lifetime EP1225235B1 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10102932A DE10102932C1 (de) 2001-01-23 2001-01-23 Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech
    DE10102932 2001-01-23

    Publications (3)

    Publication Number Publication Date
    EP1225235A2 EP1225235A2 (de) 2002-07-24
    EP1225235A3 EP1225235A3 (de) 2002-08-07
    EP1225235B1 true EP1225235B1 (de) 2005-08-31

    Family

    ID=7671474

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02000584A Expired - Lifetime EP1225235B1 (de) 2001-01-23 2002-01-10 Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech

    Country Status (7)

    Country Link
    US (1) US6749696B2 (de)
    EP (1) EP1225235B1 (de)
    JP (1) JP2002302717A (de)
    AT (1) ATE303453T1 (de)
    DE (2) DE10102932C1 (de)
    PL (1) PL351778A1 (de)
    RU (1) RU2002102055A (de)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20150170505A1 (en) * 2013-12-17 2015-06-18 At&T Mobility Ii Llc Method, computer-readable storage device and apparatus for providing a collaborative standalone area monitor

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005058658A1 (de) * 2005-12-07 2007-06-14 Kermi Gmbh Verfahren zur Wanddickenreduzierung von Stahlheizkörpern
    EP1972699A1 (de) * 2007-03-20 2008-09-24 ArcelorMittal France Verfahren zur Beschichtung eines Substrats unter Vakuum
    US8876990B2 (en) * 2009-08-20 2014-11-04 Massachusetts Institute Of Technology Thermo-mechanical process to enhance the quality of grain boundary networks
    DE102009051673B3 (de) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Herstellung von Galvannealed-Blechen durch Wärmebehandlung elektrolytisch veredelter Bleche
    KR101330396B1 (ko) * 2010-06-25 2013-11-15 엘지디스플레이 주식회사 표시장치와 그의 콘트라스트 향상 방법
    RU2479640C1 (ru) * 2012-02-29 2013-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства низкоуглеродистой холоднокатаной тонколистовой стали
    CN102755992B (zh) * 2012-07-30 2015-08-12 武汉钢铁(集团)公司 一种药芯焊丝用冷轧钢带生产方法
    CN104313297A (zh) * 2014-11-10 2015-01-28 芜湖双源管业有限公司 一种冷轧钢带退火炉余热循环再利用方法
    RU2623572C1 (ru) * 2016-08-31 2017-06-27 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ термической обработки холоднокатаного проката из низкоуглеродистой стали
    RU2755132C1 (ru) * 2020-10-08 2021-09-13 Федеральное Государственное Унитарное Предприятие "Центральный научно-исследовательский институт черной металлургии им. И.П. Бардина" (ФГУП "ЦНИИчермет им. И.П. Бардина") Способ производства холоднокатаного непрерывно отожженного листового проката из if-стали

    Family Cites Families (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE285298C (de)
    JPS5937333B2 (ja) * 1980-10-02 1984-09-08 住友金属工業株式会社 合金化処理溶融亜鉛メツキ鋼板の製造法
    JPS59173240A (ja) * 1983-03-22 1984-10-01 Nippon Steel Corp 開缶性の優れた高強度イ−ジ−オ−プン缶蓋用鋼板
    DE3803064C2 (de) * 1988-01-29 1995-04-20 Preussag Stahl Ag Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
    JP3537477B2 (ja) * 1994-01-31 2004-06-14 新日本製鐵株式会社 優れた伸びフランジ性と安定した塗装焼付け硬化性を有する連続焼鈍によって製造された冷延鋼板
    DE19547181C1 (de) * 1995-12-16 1996-10-10 Krupp Ag Hoesch Krupp Verfahren zur Herstellung eines kaltgewalzten, höherfesten Bandstahles mit guter Umformbarkeit bei isotropen Eigenschaften
    DE19622164C1 (de) * 1996-06-01 1997-05-07 Thyssen Stahl Ag Verfahren zur Erzeugung eines kaltgewalzten Stahlbleches oder -bandes mit guter Umformbarkeit
    US5795410A (en) * 1997-01-23 1998-08-18 Usx Corporation Control of surface carbides in steel strip
    US6143100A (en) * 1998-09-29 2000-11-07 National Steel Corporation Bake-hardenable cold rolled steel sheet and method of producing same
    RU2165465C1 (ru) * 1999-08-30 2001-04-20 Открытое акционерное общество "Магнитогорский металлургический комбинат" Способ производства черной жести

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20150170505A1 (en) * 2013-12-17 2015-06-18 At&T Mobility Ii Llc Method, computer-readable storage device and apparatus for providing a collaborative standalone area monitor
    US9870697B2 (en) * 2013-12-17 2018-01-16 At&T Mobility Ii Llc Method, computer-readable storage device and apparatus for providing a collaborative standalone area monitor

    Also Published As

    Publication number Publication date
    ATE303453T1 (de) 2005-09-15
    EP1225235A3 (de) 2002-08-07
    US20030145919A1 (en) 2003-08-07
    PL351778A1 (en) 2002-07-29
    JP2002302717A (ja) 2002-10-18
    DE10102932C1 (de) 2002-08-22
    DE50204048D1 (de) 2005-10-06
    RU2002102055A (ru) 2003-08-10
    EP1225235A2 (de) 2002-07-24
    US6749696B2 (en) 2004-06-15

    Similar Documents

    Publication Publication Date Title
    EP2028282B1 (de) Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
    EP2031081B1 (de) Dualphasenstahl, Flachprodukt aus einem solchen Dualphasenstahl und Verfahren zur Herstellung eines Flachprodukts
    DE2551791C3 (de) Anwendung eines Verfahrens zur Herstellung von Kaltbändern
    EP2836614B1 (de) Hochfester mehrphasenstahl und verfahren zur herstellung eines bandes aus diesem stahl
    DE2362658C3 (de) Verfahren zum Herstellen von Stahlblech mit hervorragender Preßverformbarkeit
    DE3046941C2 (de) Verfahren zur Herstellung eines Stahlblechs mit Zweiphasen-Struktur
    EP2524970A1 (de) Hochfestes Stahlflachprodukt und Verfahren zu dessen Herstellung
    DE19610675C1 (de) Mehrphasenstahl und Verfahren zu seiner Herstellung
    EP2840159B1 (de) Verfahren zum Herstellen eines Stahlbauteils
    EP2924141A1 (de) Kaltgewalztes Stahlflachprodukt und Verfahren zu seiner Herstellung
    DE3126386C3 (de)
    DE3803064C2 (de) Kaltgewalztes Blech oder Band und Verfahren zu seiner Herstellung
    EP1225235B1 (de) Verfahren zur Herstellung eines kalt gewalzten Bandes oder Bleches aus Stahl und nach dem Verfahren herstellbares Band oder Blech
    DE69104747T2 (de) Kaltgewalzte Stahlbleche oder kaltgewalzte und feuerverzinkte Stahlbleche zum Tiefziehen.
    DE3440752C2 (de)
    DE68908991T2 (de) Eine mit Zink beschichtete Stahlplatte mit einer Alterungsbeständigkeit beim Feuerverzinken und Verfahren für ihre Herstellung.
    DE3024303C2 (de)
    DE3147584C2 (de) Verfahren zur Herstellung von kornorientiertem Siliciumstahl in Band- oder Blechform
    DE112020006043T5 (de) Kaltgewalztes stahlblech mit ultrahoher festigkeit und verfahren zu dessen herstellung
    EP3332048B1 (de) Verfahren zum erzeugen eines zink-magnesium-galvannealed-schmelztauchüberzugs und mit einem solchen überzug versehenes stahlflachprodukt
    DE69117876T2 (de) Kaltgewalztes Stahlband mit hervorragender Pressverformbarkeit und Verfahren zur Herstellung
    DE2348062C3 (de) Verfahren zur Herstellung eines unberuhigten alterungsbeständigen Tiefziehstahles
    DE2316324A1 (de) Stahl zum herstellen von kaltverformtem stahlblech
    EP1411140B1 (de) Verfahren zum Herstellen eines besonders gut verformbaren kaltgewalzten Stahlbands oder -blechs
    DE102017209982A1 (de) Hochfestes Stahlblech mit verbesserter Umformbarkeit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20021017

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20030724

    RIN1 Information on inventor provided before grant (corrected)

    Inventor name: FREIER, KLAUS, DR.-ING

    Inventor name: FLAXA, VOLKER, DR.-ING.

    Inventor name: REICHERT, BIRGIT, DR.-ING.

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REF Corresponds to:

    Ref document number: 50204048

    Country of ref document: DE

    Date of ref document: 20051006

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050917

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: TR

    Payment date: 20051121

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20051130

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060110

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20060112

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20060113

    Year of fee payment: 5

    Ref country code: NL

    Payment date: 20060113

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20060120

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20060131

    Year of fee payment: 5

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20060207

    Year of fee payment: 5

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20060222

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20060601

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070111

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20070110

    NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

    Effective date: 20070801

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20070930

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070110

    BERE Be: lapsed

    Owner name: *SALZGITTER A.G.

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070801

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060131

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20070110

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050831

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50204048

    Country of ref document: DE

    Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170120

    Year of fee payment: 16

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50204048

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180801