EP1222399B1 - Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines - Google Patents

Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines Download PDF

Info

Publication number
EP1222399B1
EP1222399B1 EP99947180A EP99947180A EP1222399B1 EP 1222399 B1 EP1222399 B1 EP 1222399B1 EP 99947180 A EP99947180 A EP 99947180A EP 99947180 A EP99947180 A EP 99947180A EP 1222399 B1 EP1222399 B1 EP 1222399B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cooling fluid
radial
stator part
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947180A
Other languages
German (de)
English (en)
Other versions
EP1222399A1 (fr
Inventor
Dirk Wunderwald
Mihajlo-Rüdiger BOTHIEN
Ulf Christian MÜLLER
Joachim Bremer
Jürg Greber
Helmut Gieszauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Publication of EP1222399A1 publication Critical patent/EP1222399A1/fr
Application granted granted Critical
Publication of EP1222399B1 publication Critical patent/EP1222399B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors

Definitions

  • the invention relates to a method and a device for cooling the flow in radial gaps formed between rotors and stators of turbomachinery, according to the preamble of claim 1 and the preamble of Claim 7, but especially for cooling the flow in the radial gap between the compressor wheel and the housing of a radial compressor.
  • turbomachinery Seals especially labyrinth seals, are widely used.
  • fluid flow Separation gap between rotating and standing parts occurs as a result of forming flow boundary layers on a high friction. This leads to heating of the fluid in the separation gap and thus also to heating the components surrounding the separation gap.
  • the high material temperatures result in a reduction in the lifespan of the corresponding components.
  • a simple radial compressor without one in the separating gap Sealing geometry is known from DE 195 48 852 A1. This also ensures that of flow shear layers on the rear wall of the compressor wheel Frictional heat for heating the compressor wheel and thus for a reduction in its lifespan.
  • Air cooling for radial compressors with a sealing geometry is known from EP 0 518 027 B1 known on the back of the compressor wheel. This is between the individual sealing elements an additional annulus on the housing wall side of the radial compressor. A cold gas is introduced into this annulus which is higher than that prevailing at the outlet of the compressor wheel Has pressure. The air supplied acts as impingement cooling. In doing so, she shares in the sealing area and flows mainly radially inwards and outwards. This should also have a blocking effect against the flow of Separation gap achieved with hot compressor air from the outlet of the compressor wheel become.
  • the cooling effect that can be achieved in this way is due to several factors limited.
  • the air injection leads to an increase in pressure and thrust, which increases the bearing load. It also sets the temperature the available air is a limiting element.
  • this type of cooling is not sufficient.
  • DE 196 52 754 A1 also includes indirect cooling Cooling the rear wall of the compressor wheel or the one flowing through the separation gap Known medium. For this is on or in the back wall and with this housing part forming the separation gap, one with the lubricating oil system of the turbocharger connected supply and distribution device.
  • the oil used for bearing lubrication, including the lubricating oil circuit of the turbocharger is tapped.
  • a disadvantage of this cooling is the relatively high level Oil requirement and the additional amount of heat to be dissipated by the oil cooler. This leads to an increased volume of the cooler. There is also one Accident with damage to the corresponding components increases the risk of deflagration.
  • direct cooling is the same with indirect cooling Cooling achievable cooling effect is limited, for which in addition to the temperature of the in cooling fluids that can be used in practice, in particular the small amount available Construction volume can be identified as the cause.
  • the invention tries to avoid all these disadvantages. You have the task is based on a method for cooling that is improved with regard to its cooling effect the flow in between rotors and stators of turbomachinery Creating radial gaps. In addition, a simple, inexpensive and robust device for implementing the method can be specified.
  • Partial flow of the working fluid of the turbomachine can be clearly improved cooling effect and also a better cooling effectiveness can be achieved. It is only this double cooling of the radial gap that enables another Lowering the temperature of the thermally heavily loaded rotor down to temperature ranges, which cannot be achieved with conventional cooling configurations were.
  • stator part adjacent to the radial gap Recess formed or arranged at least one cavity on the stator.
  • the recess or cavity is both with a feed line as well connected to a discharge line for the first cooling fluid.
  • Water is particularly advantageous as the first cooling fluid and water as the second cooling fluid Air used.
  • Cooling fluid has a slightly higher density than the known lubricating oils as well a specific heat capacity that is about twice as large. Because of a cooling medium dissipated heat flow proportional to the product of density and specific heat capacity is the first thing to appear when using water Cooling fluid is a clear advantage over oil cooling. With the same mass flow and the same temperature of the water can thus be obtained from the Radial gap flowing medium over the stator to be cooled larger Amount of heat is withdrawn. The cooling effect on those adjacent to the radial gap Areas of the rotor are therefore also larger. Conversely becomes a smaller one for dissipating the same amount of heat compared to lubricating oil Mass flow of cooling water needed, which means the supply and discharge for the cooling fluid can be dimensioned correspondingly smaller.
  • air as the second cooling fluid proves to be particularly so as beneficial because it is both in the environment and in the turbomachine even in sufficient quantity, with sufficient pressure and with suitably lower Temperature is available.
  • a charge air cooler and an exhaust gas turbocharger existing system is either fresh water from outside the System or advantageously water present in the system is used as the first cooling fluid. In the latter case, this takes place in a cooling water circuit of the charge air cooler located cooling water use, which is upstream of the charge air cooler is branched off.
  • the fixed stator part is a housing part of a Radial compressor, which the radial gap to the rotor, i.e. for rotating Compressor wheel of an exhaust gas turbocharger limited.
  • oil is used as the first cooling fluid
  • this can be advantageous the lubricating oil system that is already present in the bearing housing of the turbomachine be branched off. In this way it can be a relatively simple and therefore inexpensive device can be created. Is it the first cooling fluid a gaseous medium, this can be used for both direct and can be used for indirect cooling.
  • FIG. 1 shows a schematic illustration of one with a diesel engine trained internal combustion engine 1 interacting exhaust gas turbocharger 2.
  • the latter consists of a radial compressor 3 and an exhaust gas turbine 4, which have a common shaft 5.
  • the radial compressor 3 is via a charge air line 6 and the exhaust gas turbine 4 via an exhaust gas line 7 with the internal combustion engine 1 connected.
  • a charge air cooler 8 is arranged in the charge air line 6, i.e. between the radial compressor 3 and the internal combustion engine 1.
  • the charge air cooler 8 has a cooling water circuit 9 with one, not shown Supply or discharge.
  • the radial compressor 3 is equipped with a compressor housing 10 in which a rotor 11 designed as a compressor wheel and connected to the shaft 5 is arranged is.
  • the compressor wheel 11 has one with a large number of moving blades 12 occupied hub 13.
  • a flow channel 14 is formed between the hub 13 and the compressor housing 10 .
  • bladed diffuser 15 on the flow channel 14 which in turn opens into a spiral 16 of the radial compressor 3.
  • the compressor housing 10 mainly consists of an air inlet housing 17, a Air outlet housing 18, a diffuser plate 19 and one as a partition to one Bearing housing 21 of the exhaust gas turbocharger 2 designed stator part 20 (Fig. 2).
  • the hub 13 has a rear wall 22 and a fastening sleeve on the turbine side 23 for shaft 5.
  • the fastening sleeve 23 is from the intermediate wall 20th of the compressor housing 10 added.
  • another suitable one Compressor wheel-shaft connection can be selected. The same is true Use of a non-bladed diffuser possible.
  • a separation gap which is formed as a radial gap 24 in a radial compressor 3 is.
  • the radial gap 24 is with a between the fastening sleeve 23 and the intermediate wall 20 arranged sealing ring 34 opposite the bearing housing 21 sealed.
  • this seal can also be made in a Radial gap 24 arranged labyrinth seal can be realized (not shown).
  • a circumferential recess 26 designed and with both a supply and a discharge line 27, 28 connected for a first cooling fluid 29.
  • the partition 20 on the compressor wheel side of the recess 26 is made as thin as possible. This is done at the manufacture of the intermediate wall 20 is cast in a corresponding core, which must then be removed again. Of course, can be in the partition 20 also cast a thin-walled tube sealed at both ends be, the interior of which then forms the recess 26 (not shown).
  • the compressor wheel 11 When the exhaust gas turbocharger 2 is operating, the compressor wheel 11 sucks as the working medium 31 ambient air acting as a main flow 32 through the flow channel 14 and the diffuser 15 elongated in the spiral 16, further compressed there and finally via the charge air line 6 for charging the turbocharger 2 connected internal combustion engine 1 is used. Before that, however, takes place in the charge air cooler 8 a corresponding cooling of the heated during the compression process Working medium 31.
  • cooling fluid 29 is downstream via the discharge line 28 of the charge air cooler 8 fed back into the cooling water circuit 9 (Fig. 1).
  • intercooler 8 and Exhaust gas turbocharger 2 existing cooling water and fresh water from outside of the system are supplied as cooling fluid 29 (not shown).
  • the leakage flow 33 is provided.
  • feed channels 40 for a second cooling fluid 41 both the bearing housing 21 and the diffuser plate 19 arranged penetrating (Fig. 2).
  • the feed channels 40 are downstream of the charge air cooler 8 connected to the charge air line 6, so that second Cooling fluid 41 cooled charge air is used (Fig. 1).
  • the second cooling fluid 41 is also introduced into the radial gap at another point (not shown).
  • the tangential introduction of the second cooling fluid 41 results in pure film cooling the entire rear wall 22 of the compressor wheel 11 realized.
  • the second Cooling fluid 41 replaces the hot leakage flow 33, so that the Back wall 22 of the boundary layer forming the compressor wheel 11 from the very beginning is mainly formed by the cooled charge air.
  • the subsequent one The second cooling fluid 41 is discharged via a in the intermediate wall 20 of the Compressor housing 10 attacking discharge device, not shown 42.
  • This combination of indirect and direct cooling has a special one Cooling effect because the two cooling options complement each other in their effect and thus for a very high temperature reduction in the compressor wheel 11 to care.
  • cooling media such as helium or gases from cryogenic fluids (e.g. liquid nitrogen, carbon tetrachloride, benzene nitride, etc.) can be used.
  • cryogenic fluids e.g. liquid nitrogen, carbon tetrachloride, benzene nitride, etc.
  • oil is used as the first cooling fluid 29, this can be supplied externally or advantageously from the in the bearing housing 21 of the exhaust gas turbocharger 2 anyway existing lubricating oil system can be branched off (not shown). To this A relatively simple and therefore inexpensive supply is also possible suitable cooling fluids possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Claims (10)

  1. Procédé de refroidissement de l'écoulement dans des interstices radiaux formés entre des rotors et des stators de turbomachines, caractérisé en ce qu'une partie (20) de stator voisine de l'interstice radial (24) reçoit un premier fluide de refroidissement (29), un deuxième fluide de refroidissement (41) gazeux étant injecté dans l'interstice radial (24).
  2. Procédé selon la revendication 1, caractérisé en ce que le premier fluide de refroidissement (29) est introduit dans une découpe (26) formée dans la pièce de stator (20) ou dans un espace creux disposé sur la pièce de stator (20).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'on utilise de l'eau comme premier fluide de refroidissement (29).
  4. Procédé selon la revendication 3, caractérisé en ce que l'on utilise comme premier fluide de refroidissement (29) de l'eau fraíche qui provient de l'extérieur d'un système constitué d'un moteur à combustion interne (1), d'un refroidisseur (8) d'air de suralimentation et d'un turbochargeur (2) sur gaz d'échappement.
  5. Procédé selon la revendication 3, caractérisé en ce que l'on utilise comme premier fluide de refroidissement (29) l'eau présente dans un système constitué d'un moteur à combustion interne (1), d'un refroidisseur (8) d'air de suralimentation et d'un turbochargeur (2) sur gaz d'échappement.
  6. Procédé selon la revendication 5, caractérisé en ce que l'on utilise comme premier fluide de refroidissement (29) l'eau de refroidissement présente dans un circuit (9) d'eau de refroidissement du refroidisseur (8) d'air de suralimentation et que l'on soutire ce fluide de refroidissement en amont du refroidisseur (8) d'air de suralimentation.
  7. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme premier fluide de refroidissement (29) de l'huile, de l'hélium ou des gaz provenant de fluides à basse température.
  8. Procédé selon la revendication 1, caractérisé en ce que l'on utilise comme deuxième fluide de refroidissement (41) gazeux de l'air, de l'hélium ou des gaz provenant de fluides à basse température.
  9. Dispositif en vue de la mise en oeuvre du procédé selon la revendication 1, dans lequel une partie fixe de stator (20) est disposée de manière à limiter l'interstice radial (24) par rapport au rotor (11), caractérisé en ce que
    a) au moins une découpe (26) est formée à l'intérieur de la partie (20) de stator ou sur la partie (20) de stator au moins un espace creux est disposé, la découpe (26) ou l'espace creux étant relié à la fois à un conduit d'amenée (27) et à un conduit d'évacuation (28) du premier fluide de refroidissement (29) et
    b) au moins un canal d'amenée (40) et un dispositif d'évacuation (42) du deuxième fluide de refroidissement (41) sont disposés sur l'interstice radial (24).
  10. Dispositif selon la revendication 9, caractérisé en ce que la partie fixe de stator (20) est configurée comme partie d'un boítier (10) de compresseur d'un compresseur radial (3) qui délimite l'interstice radial (24) par rapport à une roue tournante de compresseur (11) d'un turbochargeur (2) sur gaz d'échappement.
EP99947180A 1999-10-20 1999-10-20 Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines Expired - Lifetime EP1222399B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1999/000496 WO2001029425A1 (fr) 1999-10-20 1999-10-20 Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines

Publications (2)

Publication Number Publication Date
EP1222399A1 EP1222399A1 (fr) 2002-07-17
EP1222399B1 true EP1222399B1 (fr) 2003-08-13

Family

ID=4551726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947180A Expired - Lifetime EP1222399B1 (fr) 1999-10-20 1999-10-20 Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines

Country Status (7)

Country Link
EP (1) EP1222399B1 (fr)
JP (1) JP2003515690A (fr)
KR (1) KR100637643B1 (fr)
CN (1) CN1258648C (fr)
AU (1) AU6075799A (fr)
DE (1) DE59906615D1 (fr)
WO (1) WO2001029425A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018771B4 (de) * 2005-04-22 2015-06-18 Man Diesel & Turbo Se Brennkraftmaschine
DE102007001487B4 (de) * 2007-01-10 2015-07-16 Caterpillar Energy Solutions Gmbh Verfahren und Vorrichtung zur Verdichterradkühlung eines Verdichters
EP2067999A1 (fr) * 2007-12-06 2009-06-10 Napier Turbochargers Limited Rotor de turbocompresseur de suralimentation refroidi par liquide et procédé de refroidissement d'un rotor
EP2090788A1 (fr) 2008-02-14 2009-08-19 Napier Turbochargers Limited Rotor et turbocompresseur
CN105143636B (zh) * 2013-02-21 2018-01-09 丰田自动车株式会社 具备窜缸混合气环流装置的内燃机的增压器的冷却装置
CN104595246A (zh) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN104595247A (zh) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 一种具有再冷却结构的离心压缩机
CN106286338A (zh) * 2015-06-02 2017-01-04 上海优耐特斯压缩机有限公司 对采用高速电机的离心压缩机泄漏空气进行冷却的结构
CN111720331B (zh) * 2020-05-22 2022-08-09 洛阳瑞华新能源技术发展有限公司 设置集排液流道分流隔板有至少2个排液口的单级离心泵

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191114702A (en) * 1910-06-22 1912-07-22 Hugo Junkers Improvements in or relating to Centrifugal or Turbo-compressors.
US2384251A (en) * 1943-01-14 1945-09-04 Wright Aeronautical Corp Liquid cooled supercharger
DE968742C (de) * 1944-09-22 1958-03-27 Daimler Benz Ag Mehrstufiges Radialgeblaese, vorzugsweise Ladegeblaese fuer Flugmotoren
US3966351A (en) * 1974-05-15 1976-06-29 Robert Stanley Sproule Drag reduction system in shrouded turbo machine
JPS61112737A (ja) * 1984-11-08 1986-05-30 Mitsubishi Heavy Ind Ltd 過給機
JPS6434435A (en) * 1987-07-06 1989-02-03 Agency Ind Science Techn Temperature sensitive gel and manufacture thereof
JPH0333431A (ja) * 1989-06-30 1991-02-13 Hitachi Ltd 内燃機関用過給機
JP2934530B2 (ja) * 1991-06-14 1999-08-16 三菱重工業株式会社 遠心圧縮機
JP2924363B2 (ja) * 1991-09-18 1999-07-26 石川島播磨重工業株式会社 過給機の水冷軸受ハウジング構造
JP2918773B2 (ja) * 1993-11-08 1999-07-12 株式会社日立製作所 遠心式圧縮機
JPH07208189A (ja) * 1994-01-10 1995-08-08 Hino Motors Ltd エンジンの過給機冷却装置
DE19548852A1 (de) 1995-12-27 1997-07-03 Asea Brown Boveri Radialverdichter für Abgasturbolader
JP3606293B2 (ja) * 1996-02-14 2005-01-05 石川島播磨重工業株式会社 排気タービン過給機
DE19652754A1 (de) 1996-12-18 1998-06-25 Asea Brown Boveri Abgasturbolader

Also Published As

Publication number Publication date
CN1375041A (zh) 2002-10-16
KR20020041437A (ko) 2002-06-01
JP2003515690A (ja) 2003-05-07
EP1222399A1 (fr) 2002-07-17
DE59906615D1 (de) 2003-09-18
WO2001029425A1 (fr) 2001-04-26
CN1258648C (zh) 2006-06-07
KR100637643B1 (ko) 2006-10-23
AU6075799A (en) 2001-04-30

Similar Documents

Publication Publication Date Title
DE19845375A1 (de) Verfahren und Vorrichtung zur indirekten Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten
DE602004000527T2 (de) Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk
DE60221558T2 (de) Turbinenmotor mit luftgekühlter turbine
EP1222400B1 (fr) Procede et dispositif de refroidissement indirect de l'ecoulement dans des entrefers radiaux formes entre les rotors et les stators de turbomachines
DE3447740C2 (de) Gasturbinentriebwerk
DE60029487T2 (de) Pfufferdichtung für ölwanne
DE69914199T2 (de) Langsamlaufender hochdruckturbolader
EP0961033B1 (fr) Compresseur radial
DE1951356C3 (de) Gasturbinentriebwerk für Flugzeuge
DE69838201T2 (de) Einteiliger Blisk einer Gasturbine
EP3059433B1 (fr) Turbine a gaz avec refroidisseur d'huile dans l'habillage de la turbine
DE3447717C2 (de) Axial durchströmtes Bläsertriebwerk
DE60318792T2 (de) Zapfluft-Gehäuse für einen Verdichter
DE60031744T2 (de) Turbinenbrennkammeranordnung
EP1736635B1 (fr) Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz
EP0961034B1 (fr) Compresseur radial
DE112011104298B4 (de) Gasturbinenmotor mit Sekundärluftstromkreis
DE1601555A1 (de) Gekuehlter Turbinenleitkranz fuer bei hohen Temperaturen arbeitende Turbinen
EP1222399B1 (fr) Procede et dispositif de refroidissement de l'ecoulement dans les fentes radiales formees entre les rotors et les stators de turbomachines
DE102019108588A1 (de) Verbrennungsmotor
WO1998013584A1 (fr) Compensation de la perte de pression d'une conduite d'air de refroidissement dans une installation de turbine a gaz
DE69824505T2 (de) Gasturbine mit Dampfkühlung
DE833879C (de) Abgas-Turbolader fuer Brennkraftmaschinen
DE19652754A1 (de) Abgasturbolader
DE19735172A1 (de) Verbessertes Turbinenscheiben-Eintrittsverhinderungsverfahren und -vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIESZAUF, HELMUT

Inventor name: GREBER, JUERG

Inventor name: BREMER, JOACHIM

Inventor name: MUELLER, ULF, CHRISTIAN

Inventor name: BOTHIEN, MIHAJLO-RUEDIGER

Inventor name: WUNDERWALD, DIRK

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59906615

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031222

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030813

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091020