EP1222399B1 - Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines - Google Patents

Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines Download PDF

Info

Publication number
EP1222399B1
EP1222399B1 EP99947180A EP99947180A EP1222399B1 EP 1222399 B1 EP1222399 B1 EP 1222399B1 EP 99947180 A EP99947180 A EP 99947180A EP 99947180 A EP99947180 A EP 99947180A EP 1222399 B1 EP1222399 B1 EP 1222399B1
Authority
EP
European Patent Office
Prior art keywords
cooling
cooling fluid
radial
stator part
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99947180A
Other languages
German (de)
French (fr)
Other versions
EP1222399A1 (en
Inventor
Dirk Wunderwald
Mihajlo-Rüdiger BOTHIEN
Ulf Christian MÜLLER
Joachim Bremer
Jürg Greber
Helmut Gieszauf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accelleron Industries AG
Original Assignee
ABB Turbo Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Turbo Systems AG filed Critical ABB Turbo Systems AG
Publication of EP1222399A1 publication Critical patent/EP1222399A1/en
Application granted granted Critical
Publication of EP1222399B1 publication Critical patent/EP1222399B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • F04D29/584Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors

Definitions

  • the invention relates to a method and a device for cooling the flow in radial gaps formed between rotors and stators of turbomachinery, according to the preamble of claim 1 and the preamble of Claim 7, but especially for cooling the flow in the radial gap between the compressor wheel and the housing of a radial compressor.
  • turbomachinery Seals especially labyrinth seals, are widely used.
  • fluid flow Separation gap between rotating and standing parts occurs as a result of forming flow boundary layers on a high friction. This leads to heating of the fluid in the separation gap and thus also to heating the components surrounding the separation gap.
  • the high material temperatures result in a reduction in the lifespan of the corresponding components.
  • a simple radial compressor without one in the separating gap Sealing geometry is known from DE 195 48 852 A1. This also ensures that of flow shear layers on the rear wall of the compressor wheel Frictional heat for heating the compressor wheel and thus for a reduction in its lifespan.
  • Air cooling for radial compressors with a sealing geometry is known from EP 0 518 027 B1 known on the back of the compressor wheel. This is between the individual sealing elements an additional annulus on the housing wall side of the radial compressor. A cold gas is introduced into this annulus which is higher than that prevailing at the outlet of the compressor wheel Has pressure. The air supplied acts as impingement cooling. In doing so, she shares in the sealing area and flows mainly radially inwards and outwards. This should also have a blocking effect against the flow of Separation gap achieved with hot compressor air from the outlet of the compressor wheel become.
  • the cooling effect that can be achieved in this way is due to several factors limited.
  • the air injection leads to an increase in pressure and thrust, which increases the bearing load. It also sets the temperature the available air is a limiting element.
  • this type of cooling is not sufficient.
  • DE 196 52 754 A1 also includes indirect cooling Cooling the rear wall of the compressor wheel or the one flowing through the separation gap Known medium. For this is on or in the back wall and with this housing part forming the separation gap, one with the lubricating oil system of the turbocharger connected supply and distribution device.
  • the oil used for bearing lubrication, including the lubricating oil circuit of the turbocharger is tapped.
  • a disadvantage of this cooling is the relatively high level Oil requirement and the additional amount of heat to be dissipated by the oil cooler. This leads to an increased volume of the cooler. There is also one Accident with damage to the corresponding components increases the risk of deflagration.
  • direct cooling is the same with indirect cooling Cooling achievable cooling effect is limited, for which in addition to the temperature of the in cooling fluids that can be used in practice, in particular the small amount available Construction volume can be identified as the cause.
  • the invention tries to avoid all these disadvantages. You have the task is based on a method for cooling that is improved with regard to its cooling effect the flow in between rotors and stators of turbomachinery Creating radial gaps. In addition, a simple, inexpensive and robust device for implementing the method can be specified.
  • Partial flow of the working fluid of the turbomachine can be clearly improved cooling effect and also a better cooling effectiveness can be achieved. It is only this double cooling of the radial gap that enables another Lowering the temperature of the thermally heavily loaded rotor down to temperature ranges, which cannot be achieved with conventional cooling configurations were.
  • stator part adjacent to the radial gap Recess formed or arranged at least one cavity on the stator.
  • the recess or cavity is both with a feed line as well connected to a discharge line for the first cooling fluid.
  • Water is particularly advantageous as the first cooling fluid and water as the second cooling fluid Air used.
  • Cooling fluid has a slightly higher density than the known lubricating oils as well a specific heat capacity that is about twice as large. Because of a cooling medium dissipated heat flow proportional to the product of density and specific heat capacity is the first thing to appear when using water Cooling fluid is a clear advantage over oil cooling. With the same mass flow and the same temperature of the water can thus be obtained from the Radial gap flowing medium over the stator to be cooled larger Amount of heat is withdrawn. The cooling effect on those adjacent to the radial gap Areas of the rotor are therefore also larger. Conversely becomes a smaller one for dissipating the same amount of heat compared to lubricating oil Mass flow of cooling water needed, which means the supply and discharge for the cooling fluid can be dimensioned correspondingly smaller.
  • air as the second cooling fluid proves to be particularly so as beneficial because it is both in the environment and in the turbomachine even in sufficient quantity, with sufficient pressure and with suitably lower Temperature is available.
  • a charge air cooler and an exhaust gas turbocharger existing system is either fresh water from outside the System or advantageously water present in the system is used as the first cooling fluid. In the latter case, this takes place in a cooling water circuit of the charge air cooler located cooling water use, which is upstream of the charge air cooler is branched off.
  • the fixed stator part is a housing part of a Radial compressor, which the radial gap to the rotor, i.e. for rotating Compressor wheel of an exhaust gas turbocharger limited.
  • oil is used as the first cooling fluid
  • this can be advantageous the lubricating oil system that is already present in the bearing housing of the turbomachine be branched off. In this way it can be a relatively simple and therefore inexpensive device can be created. Is it the first cooling fluid a gaseous medium, this can be used for both direct and can be used for indirect cooling.
  • FIG. 1 shows a schematic illustration of one with a diesel engine trained internal combustion engine 1 interacting exhaust gas turbocharger 2.
  • the latter consists of a radial compressor 3 and an exhaust gas turbine 4, which have a common shaft 5.
  • the radial compressor 3 is via a charge air line 6 and the exhaust gas turbine 4 via an exhaust gas line 7 with the internal combustion engine 1 connected.
  • a charge air cooler 8 is arranged in the charge air line 6, i.e. between the radial compressor 3 and the internal combustion engine 1.
  • the charge air cooler 8 has a cooling water circuit 9 with one, not shown Supply or discharge.
  • the radial compressor 3 is equipped with a compressor housing 10 in which a rotor 11 designed as a compressor wheel and connected to the shaft 5 is arranged is.
  • the compressor wheel 11 has one with a large number of moving blades 12 occupied hub 13.
  • a flow channel 14 is formed between the hub 13 and the compressor housing 10 .
  • bladed diffuser 15 on the flow channel 14 which in turn opens into a spiral 16 of the radial compressor 3.
  • the compressor housing 10 mainly consists of an air inlet housing 17, a Air outlet housing 18, a diffuser plate 19 and one as a partition to one Bearing housing 21 of the exhaust gas turbocharger 2 designed stator part 20 (Fig. 2).
  • the hub 13 has a rear wall 22 and a fastening sleeve on the turbine side 23 for shaft 5.
  • the fastening sleeve 23 is from the intermediate wall 20th of the compressor housing 10 added.
  • another suitable one Compressor wheel-shaft connection can be selected. The same is true Use of a non-bladed diffuser possible.
  • a separation gap which is formed as a radial gap 24 in a radial compressor 3 is.
  • the radial gap 24 is with a between the fastening sleeve 23 and the intermediate wall 20 arranged sealing ring 34 opposite the bearing housing 21 sealed.
  • this seal can also be made in a Radial gap 24 arranged labyrinth seal can be realized (not shown).
  • a circumferential recess 26 designed and with both a supply and a discharge line 27, 28 connected for a first cooling fluid 29.
  • the partition 20 on the compressor wheel side of the recess 26 is made as thin as possible. This is done at the manufacture of the intermediate wall 20 is cast in a corresponding core, which must then be removed again. Of course, can be in the partition 20 also cast a thin-walled tube sealed at both ends be, the interior of which then forms the recess 26 (not shown).
  • the compressor wheel 11 When the exhaust gas turbocharger 2 is operating, the compressor wheel 11 sucks as the working medium 31 ambient air acting as a main flow 32 through the flow channel 14 and the diffuser 15 elongated in the spiral 16, further compressed there and finally via the charge air line 6 for charging the turbocharger 2 connected internal combustion engine 1 is used. Before that, however, takes place in the charge air cooler 8 a corresponding cooling of the heated during the compression process Working medium 31.
  • cooling fluid 29 is downstream via the discharge line 28 of the charge air cooler 8 fed back into the cooling water circuit 9 (Fig. 1).
  • intercooler 8 and Exhaust gas turbocharger 2 existing cooling water and fresh water from outside of the system are supplied as cooling fluid 29 (not shown).
  • the leakage flow 33 is provided.
  • feed channels 40 for a second cooling fluid 41 both the bearing housing 21 and the diffuser plate 19 arranged penetrating (Fig. 2).
  • the feed channels 40 are downstream of the charge air cooler 8 connected to the charge air line 6, so that second Cooling fluid 41 cooled charge air is used (Fig. 1).
  • the second cooling fluid 41 is also introduced into the radial gap at another point (not shown).
  • the tangential introduction of the second cooling fluid 41 results in pure film cooling the entire rear wall 22 of the compressor wheel 11 realized.
  • the second Cooling fluid 41 replaces the hot leakage flow 33, so that the Back wall 22 of the boundary layer forming the compressor wheel 11 from the very beginning is mainly formed by the cooled charge air.
  • the subsequent one The second cooling fluid 41 is discharged via a in the intermediate wall 20 of the Compressor housing 10 attacking discharge device, not shown 42.
  • This combination of indirect and direct cooling has a special one Cooling effect because the two cooling options complement each other in their effect and thus for a very high temperature reduction in the compressor wheel 11 to care.
  • cooling media such as helium or gases from cryogenic fluids (e.g. liquid nitrogen, carbon tetrachloride, benzene nitride, etc.) can be used.
  • cryogenic fluids e.g. liquid nitrogen, carbon tetrachloride, benzene nitride, etc.
  • oil is used as the first cooling fluid 29, this can be supplied externally or advantageously from the in the bearing housing 21 of the exhaust gas turbocharger 2 anyway existing lubricating oil system can be branched off (not shown). To this A relatively simple and therefore inexpensive supply is also possible suitable cooling fluids possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Supercharger (AREA)

Description

Technisches GebietTechnical field

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten, gemäss dem Oberbegriff des Anspruchs 1 und dem Oberbegriff des Anspruchs 7, insbesondere jedoch zur Kühlung der Strömung im Radialspalt zwischen dem Verdichterrad und dem Gehäuse eines Radialverdichters.The invention relates to a method and a device for cooling the flow in radial gaps formed between rotors and stators of turbomachinery, according to the preamble of claim 1 and the preamble of Claim 7, but especially for cooling the flow in the radial gap between the compressor wheel and the housing of a radial compressor.

Stand der TechnikState of the art

Zur Abdichtung rotierender Systeme sind im Turbomaschinenbau berührungsfreie Dichtungen, insbesondere Labyrinthdichtungen weit verbreitet. Im fluiddurchströmten Trennspalt zwischen rotierenden und stehenden Teilen tritt infolge der sich ausbildenden Strömungsgrenzschichten eine hohe Reibleistung auf. Dies führt zu einer Erwärmung des Fluids im Trennspalt und damit auch zur Erwärmung der den Trennspalt umgebenden Bauteile. Die hohen Materialtemperaturen haben eine Reduktion der Lebensdauer der entsprechenden Bauteile zur Folge.To seal rotating systems, non-contact is used in turbomachinery Seals, especially labyrinth seals, are widely used. In fluid flow Separation gap between rotating and standing parts occurs as a result of forming flow boundary layers on a high friction. This leads to heating of the fluid in the separation gap and thus also to heating the components surrounding the separation gap. The high material temperatures result in a reduction in the lifespan of the corresponding components.

Ein einfach aufgebauter Radialverdichter ohne eine im Trennspalt ausgebildete Dichtgeometrie ist aus der DE 195 48 852 A1 bekannt. Auch dabei sorgt die infolge von Strömungsscherschichten an der Rückwand des Verdichterrades entstehende Reibungswärme für eine Erwärmung des Verdichterrades und damit für eine Reduktion seiner Lebensdauer.A simple radial compressor without one in the separating gap Sealing geometry is known from DE 195 48 852 A1. This also ensures that of flow shear layers on the rear wall of the compressor wheel Frictional heat for heating the compressor wheel and thus for a reduction in its lifespan.

Aus der EP 0 518 027 B1 ist eine Luftkühlung für Radialverdichter mit einer Dichtgeometrie auf der Rückseite des Verdichterrades bekannt. Dazu ist zwischen den einzelnen Dichtelementen ein zusätzlicher Ringraum auf der Gehäusewandseite des Radialverdichters ausgebildet. In diesen Ringraum wird ein kaltes Gas eingeführt, welches einen höheren als den am Austritt des Verdichterrades herrschenden Druck aufweist. Die zugeführte Luft wirkt als Prallkühlung. Dabei teilt sie sich im Dichtungsbereich und strömt hauptsächlich radial nach innen sowie nach aussen. Dadurch soll ausserdem eine Sperrwirkung gegen die Durchströmung des Trennspaltes mit heisser Verdichterluft vom Austritt des Verdichterrades erzielt werden.Air cooling for radial compressors with a sealing geometry is known from EP 0 518 027 B1 known on the back of the compressor wheel. This is between the individual sealing elements an additional annulus on the housing wall side of the radial compressor. A cold gas is introduced into this annulus which is higher than that prevailing at the outlet of the compressor wheel Has pressure. The air supplied acts as impingement cooling. In doing so, she shares in the sealing area and flows mainly radially inwards and outwards. This should also have a blocking effect against the flow of Separation gap achieved with hot compressor air from the outlet of the compressor wheel become.

Die auf diese Weise erreichbare Kühlwirkung ist jedoch aufgrund mehrerer Faktoren begrenzt. Beispielsweise führt die Lufteinblasung zu einer Druck- und Schuberhöhung, wodurch die Lagerbelastung steigt. Ausserdem stellt auch die Temperatur der zur Verfügung stehenden Luft ein limitierendes Element dar. Insbesondere bei schnelllaufenden Verdichterrädern und bei hohen Druckverhältnissen, wie sie im modernen Turboladerbau üblich sind, kann es somit zu Situationen kommen, bei denen diese Art der Kühlung nicht ausreicht.However, the cooling effect that can be achieved in this way is due to several factors limited. For example, the air injection leads to an increase in pressure and thrust, which increases the bearing load. It also sets the temperature the available air is a limiting element. In particular with high-speed compressor wheels and with high pressure ratios, As they are common in modern turbocharger construction, situations can arise come where this type of cooling is not sufficient.

Neben der direkten Kühlung ist aus der DE 196 52 754 A1 auch eine indirekte Kühlung der Rückwand des Verdichterrades bzw. des durch den Trennspalt strömenden Mediums bekannt. Dazu ist am oder im an der Rückwand stehenden und mit dieser den Trennspalt bildenden Gehäuseteil eine mit dem Schmierölsystem des Turboladers verbundene Zuführ- und Verteileinrichtung angeordnet. Als Kühlmedium dient das zur Lagerschmierung eingesetzte Öl, wozu der Schmierölkreislauf des Turboladers angezapft wird. Ein Nachteil dieser Kühlung ist der relativ hohe Ölbedarf und die vom Ölkühler zusätzlich abzuführende Wärmemenge. Dies führt zu einem vergrösserten Bauvolumen des Kühlers. Zudem besteht bei einer Havarie mit Beschädigung der entsprechenden Bauteile eine erhöhte Verpuffungsgefahr. Ebenso wie bei der direkten Kühlung ist auch die bei der indirekten Kühlung erreichbare Kühlwirkung begrenzt, wofür neben der Temperatur der in der Praxis nutzbaren Kühlfluide insbesondere das zur Verfügung stehende geringe Bauvolumen als Ursache auszumachen ist.In addition to direct cooling, DE 196 52 754 A1 also includes indirect cooling Cooling the rear wall of the compressor wheel or the one flowing through the separation gap Known medium. For this is on or in the back wall and with this housing part forming the separation gap, one with the lubricating oil system of the turbocharger connected supply and distribution device. As a cooling medium the oil used for bearing lubrication, including the lubricating oil circuit of the turbocharger is tapped. A disadvantage of this cooling is the relatively high level Oil requirement and the additional amount of heat to be dissipated by the oil cooler. This leads to an increased volume of the cooler. There is also one Accident with damage to the corresponding components increases the risk of deflagration. Just as with direct cooling is the same with indirect cooling Cooling achievable cooling effect is limited, for which in addition to the temperature of the in cooling fluids that can be used in practice, in particular the small amount available Construction volume can be identified as the cause.

Aus der US 2,384,251 A ist ein Verdichter bekannt, bei dem das eine Statorbeschaufelung aufnehmende Gehäuse Hohlräume für die Durchleitung einer Kühlflüssigkeit aufweist. From US 2,384,251 A a compressor is known in which one Stator blading-receiving housing cavities for the passage a coolant.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, ein bezüglich seiner Kühlwirkung verbessertes Verfahren zur Kühlung der Strömung in zwischen Rotoren und Statoren von Turbomaschinen ausgebildeten Radialspalten zu schaffen. Zudem soll eine einfache, kostengünstige und robuste Vorrichtung zur Umsetzung des Verfahrens angegeben werden.The invention tries to avoid all these disadvantages. You have the task is based on a method for cooling that is improved with regard to its cooling effect the flow in between rotors and stators of turbomachinery Creating radial gaps. In addition, a simple, inexpensive and robust device for implementing the method can be specified.

Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Verfahren gemäss dem Oberbegriff des Anspruchs 1, sowohl ein dem Radialspalt benachbartes Statorteil mit einem ersten Kühlfluid beaufschlagt als auch ein zweites, gasförmiges Kühlfluid in den Radialspalt eingeleitet wird.According to the invention, this is achieved in that in a method according to the preamble of claim 1, both a stator part adjacent to the radial gap acted upon with a first cooling fluid as well as a second, gaseous one Cooling fluid is introduced into the radial gap.

Aufgrund der Verwendung eines ersten Kühlfluides zur indirekten und zusätzlich eines zweiten Kühlfluides zur direkten Kühlung der den Radialspalt beaufschlagenden Teilströmung des Arbeitsmittels der Turbomaschine können eine deutlich verbesserte Kühlwirkung und auch eine bessere Kühleffektivität erzielt werden. Somit ermöglicht erst diese zweifache Kühlung des Radialspaltes eine weitere Senkung der Temperatur des thermisch stark belasteten Rotors bis in Temperaturbereiche, welche mit den herkömmlichen Kühlkonfigurationen nicht erreichbar waren.Due to the use of a first cooling fluid for indirect and additional a second cooling fluid for direct cooling of the radial gap Partial flow of the working fluid of the turbomachine can be clearly improved cooling effect and also a better cooling effectiveness can be achieved. It is only this double cooling of the radial gap that enables another Lowering the temperature of the thermally heavily loaded rotor down to temperature ranges, which cannot be achieved with conventional cooling configurations were.

Dazu ist im Inneren des dem Radialspalt benachbarten Statorteils zumindest eine Ausnehmung ausgebildet oder am Statorteil zumindest ein Hohlraum angeordnet. Die Ausnehmung bzw. der Hohlraum ist sowohl mit einer Zufuhrleitung als auch mit einer Abfuhrleitung für das erste Kühlfluid verbunden. Zudem sind am Radialspalt zumindest ein Zuführkanal sowie eine Abführeinrichtung für das zweite Kühlfluid angeordnet.For this purpose, there is at least one inside the stator part adjacent to the radial gap Recess formed or arranged at least one cavity on the stator. The recess or cavity is both with a feed line as well connected to a discharge line for the first cooling fluid. In addition, are at the radial gap at least one feed channel and a discharge device for the second cooling fluid arranged.

Besonders vorteilhaft wird als erstes Kühlfluid Wasser und als zweites Kühlfluid Luft eingesetzt.Water is particularly advantageous as the first cooling fluid and water as the second cooling fluid Air used.

Wasser besitzt eine etwas höhere Dichte als die bekannten Schmieröle sowie eine etwa doppelt so grosse spezifische Wärmekapazität. Da der über ein Kühlmedium abzuführende Wärmestrom proportional dem Produkt aus Dichte und spezifischer Wärmekapazität ist, ergibt sich bei Verwendung von Wasser als erstes Kühlfluid ein deutlicher Vorteil gegenüber einer Ölkühlung. Bei gleichem Massenstrom und-gleicher Temperatur des Wassers kann somit aus dem durch den Radialspalt strömenden Medium über das zu kühlende Statorteil eine grössere Wärmemenge entzogen werden. Der Kühleffekt auf die an den Radialspalt angrenzenden Bereiche des Rotors ist daher ebenfalls grösser. Im Umkehrschluss wird zum Ableiten der gleichen Wärmemenge gegenüber Schmieröl ein kleinerer Massenstrom an Kühlwasser benötigt, wodurch die Zu- und Abfuhreinrichtung für das Kühlfluid entsprechend geringer dimensioniert sein kann.Water has a slightly higher density than the known lubricating oils as well a specific heat capacity that is about twice as large. Because of a cooling medium dissipated heat flow proportional to the product of density and specific heat capacity is the first thing to appear when using water Cooling fluid is a clear advantage over oil cooling. With the same mass flow and the same temperature of the water can thus be obtained from the Radial gap flowing medium over the stator to be cooled larger Amount of heat is withdrawn. The cooling effect on those adjacent to the radial gap Areas of the rotor are therefore also larger. Conversely becomes a smaller one for dissipating the same amount of heat compared to lubricating oil Mass flow of cooling water needed, which means the supply and discharge for the cooling fluid can be dimensioned correspondingly smaller.

In Abhängigkeit von der rotorseitigen Wanddicke, welche möglichst gering gehalten werden soll, kann durch die dem Radialspalt unmittelbar benachbarte Wasserführung im Inneren des Statorteils eine verbesserte Kühlwirkung erzielt werden. Wird jedoch statt der Ausnehmung im Statorteil der beschriebene Hohlraum am Statorteil ausgebildet, so kann bei ebenfalls guter Kühlwirkung eine einfachere und kostengünstigere Herstellung realisiert werden.Depending on the wall thickness on the rotor side, which is kept as low as possible can be, by the water gap immediately adjacent to the radial gap an improved cooling effect can be achieved inside the stator part. However, instead of the recess in the stator part, the cavity described on Stator part formed, so with a good cooling effect, a simpler and cheaper production can be realized.

Die Verwendung von Luft als zweites Kühlfluid erweist sich insbesondere deshalb als vorteilhaft, weil sie sowohl in der Umgebung als auch in der Turbomaschine selbst in ausreichender Menge, mit ausreichendem Druck und mit geeignet niedriger Temperatur zur Verfügung steht.The use of air as the second cooling fluid proves to be particularly so as beneficial because it is both in the environment and in the turbomachine even in sufficient quantity, with sufficient pressure and with suitably lower Temperature is available.

In einem aus einer Brennkraftmaschine, einem Ladeluftkühler und einem Abgasturbolader bestehenden System wird entweder Frischwasser von ausserhalb des Systems oder vorteilhaft im System vorhandenes Wasser als erstes Kühlfluid verwendet. Im letzteren Fall findet dazu das in einem Kühlwasserkreislauf des Ladeluftkühlers befindliche Kühlwasser Verwendung, welches stromauf des Ladeluftkühlers abgezweigt wird. Dabei ist das feststehende Statorteil ein Gehäuseteil eines Radialverdichters, welches den Radialspalt zum Rotor, d.h. zum rotierenden Verdichterrad eines Abgasturboladers begrenzt. In one of an internal combustion engine, a charge air cooler and an exhaust gas turbocharger existing system is either fresh water from outside the System or advantageously water present in the system is used as the first cooling fluid. In the latter case, this takes place in a cooling water circuit of the charge air cooler located cooling water use, which is upstream of the charge air cooler is branched off. The fixed stator part is a housing part of a Radial compressor, which the radial gap to the rotor, i.e. for rotating Compressor wheel of an exhaust gas turbocharger limited.

Wird dagegen Öl als erstes Kühlfiuid eingesetzt, so kann dieses vorteilhaft aus dem im Lagergehäuse der Turbomaschine ohnehin vorhandenen Schmierölsystem abgezweigt werden. Auf diese Weise kann eine relativ einfachere und damit kostengünstige Vorrichtung erstellt werden. Handelt es sich beim ersten Kühlfluid um ein gasförmiges Medium, so kann dieses sowohl für die direkte als auch für die indirekte Kühlung verwendet werden.If, on the other hand, oil is used as the first cooling fluid, this can be advantageous the lubricating oil system that is already present in the bearing housing of the turbomachine be branched off. In this way it can be a relatively simple and therefore inexpensive device can be created. Is it the first cooling fluid a gaseous medium, this can be used for both direct and can be used for indirect cooling.

Bei Verwendung von Helium oder Gasen aus Tieftemperaturfluiden, wie beispielsweise flüssiger Stickstoff, Tetrachlorkohlenstoff und Benzolnitrid als erstes und/oder zweites Kühlfluid kann eine besonders gute Kühlwirkung erzielt werden.When using helium or gases from low-temperature fluids, such as liquid nitrogen, carbon tetrachloride and benzene nitride first and / or second cooling fluid, a particularly good cooling effect can be achieved.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines mit einer Brennkraftmaschine verbundenen Abgasturboladers dargestellt.In the drawing is an embodiment of the invention using one with a Internal combustion engine connected exhaust gas turbocharger shown.

Es zeigen:

Fig. 1
eine schematische Darstellung des mit der Brennkraftmaschine verbundene Abgasturboladers;
Fig. 2
einen Teillängsschnitt durch den Radialverdichter des Abgasturboladers;
Show it:
Fig. 1
a schematic representation of the exhaust gas turbocharger connected to the internal combustion engine;
Fig. 2
a partial longitudinal section through the radial compressor of the exhaust gas turbocharger;

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Arbeitsmittel ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The direction of flow of the work equipment is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Figur 1 zeigt in einer schematischen Darstellung einen mit einer als Dieselmotor ausgebildeten Brennkraftmaschine 1 zusammenwirkenden Abgasturbolader 2. Letzterer besteht aus einem Radialverdichter 3 und einer Abgasturbine 4, welche eine gemeinsame Welle 5 aufweisen. Der Radialverdichter 3 ist über eine Ladeluftleitung 6 und die Abgasturbine 4 über eine Abgasleitung 7 mit der Brennkraftmaschine 1 verbunden. In der Ladeluftleitung 6, d.h. zwischen dem Radialverdichter 3 und der Brennkraftmaschine 1, ist ein Ladeluftkühler 8 angeordnet. Der Ladeluftkühler 8 besitzt einen Kühlwasserkreislauf 9 mit einer nicht dargestellten Zu- bzw. Abfuhr.FIG. 1 shows a schematic illustration of one with a diesel engine trained internal combustion engine 1 interacting exhaust gas turbocharger 2. The latter consists of a radial compressor 3 and an exhaust gas turbine 4, which have a common shaft 5. The radial compressor 3 is via a charge air line 6 and the exhaust gas turbine 4 via an exhaust gas line 7 with the internal combustion engine 1 connected. In the charge air line 6, i.e. between the radial compressor 3 and the internal combustion engine 1, a charge air cooler 8 is arranged. The charge air cooler 8 has a cooling water circuit 9 with one, not shown Supply or discharge.

Der Radialverdichter 3 ist mit einem Verdichtergehäuse 10 ausgestattet, in dem ein als Verdichterrad ausgebildeter und mit der Welle 5 verbundener Rotor 11 angeordnet ist. Das Verdichterrad 11 besitzt eine mit einer Vielzahl von Laufschaufeln 12 besetzte Nabe 13. Zwischen der Nabe 13 und dem Verdichtergehäuse 10 ist ein Strömungskanal 14 ausgebildet. Stromab der Laufschaufeln 12 schliesst an den Strömungskanal 14 ein radial angeordneter, beschaufelter Diffusor 15 an, welcher seinerseits in eine Spirale 16 des Radialverdichters 3 mündet. Das Verdichtergehäuse 10 besteht hauptsächlich aus einem Lufteintrittgehäuse 17, einem Luftaustrittgehäuse 18, einer Diffusorplatte 19 und einem als Zwischenwand zu einem Lagergehäuse 21 des Abgasturboladers 2 ausgebildeten Statorteil 20 (Fig. 2).The radial compressor 3 is equipped with a compressor housing 10 in which a rotor 11 designed as a compressor wheel and connected to the shaft 5 is arranged is. The compressor wheel 11 has one with a large number of moving blades 12 occupied hub 13. Between the hub 13 and the compressor housing 10 a flow channel 14 is formed. Connects downstream of the blades 12 a radially arranged, bladed diffuser 15 on the flow channel 14, which in turn opens into a spiral 16 of the radial compressor 3. The compressor housing 10 mainly consists of an air inlet housing 17, a Air outlet housing 18, a diffuser plate 19 and one as a partition to one Bearing housing 21 of the exhaust gas turbocharger 2 designed stator part 20 (Fig. 2).

Die Nabe 13 weist turbinenseitig eine Rückwand 22 sowie eine Befestigungsmuffe 23 für die Welle 5 auf. Die Befestigungsmuffe 23 wird von der Zwischenwand 20 des Verdichtergehäuses 10 aufgenommen. Natürlich kann auch eine andere geeignete Verdichterrad-Wellen-Verbindung gewählt werden. Ebenso ist auch der Einsatz eines unbeschaufelten Diffusors möglich.The hub 13 has a rear wall 22 and a fastening sleeve on the turbine side 23 for shaft 5. The fastening sleeve 23 is from the intermediate wall 20th of the compressor housing 10 added. Of course, another suitable one Compressor wheel-shaft connection can be selected. The same is true Use of a non-bladed diffuser possible.

Zwischen dem rotierenden Verdichterrad 11, d.h. seiner Rückwand 22 und der feststehenden Zwischenwand 20 des Verdichtergehäuses 10 existiert zwangsläufig ein Trennspalt, welcher bei einem Radialverdichter 3 als Radialspalt 24 ausgebildet ist. Der Radialspalt 24 ist mit einem zwischen der Befestigungsmuffe 23 und dem Zwischenwand 20 angeordneten Dichtungsring 34 gegenüber dem Lagergehäuse 21 abgedichtet. Natürlich kann diese Abdichtung auch über eine im Radiaispalt 24 angeordnete Labyrinthdichtung realisiert werden (nicht dargestellt). In der Zwischenwand 20 des Verdichtergehäuses 10 ist eine umlaufende Ausnehmung 26 ausgebildet und sowohl mit einer Zufuhr- als auch mit einer Abfuhrleitung 27, 28 für ein erstes Kühlfiuid 29 verbunden. Um eine möglichst hohe Kühlwirkung beim benachbarten Verdichterrad 11 zu erzielen, ist die Zwischenwand 20 verdichterradseitig der Ausnehmung 26 möglichst dünn ausgebildet. Dazu wird bei der Herstellung der Zwischenwand 20 ein entsprechender Kern eingegossen, welcher anschliessend wieder entfernt werden muss. Natürlich kann in die Zwischenwand 20 auch ein dünnwandiges und an beiden Enden verschlossenes Rohr eingegossen werden, dessen Innenraum dann die Ausnehmung 26 bildet (nicht dargestellt).Between the rotating compressor wheel 11, i.e. its rear wall 22 and the fixed partition 20 of the compressor housing 10 inevitably exists a separation gap, which is formed as a radial gap 24 in a radial compressor 3 is. The radial gap 24 is with a between the fastening sleeve 23 and the intermediate wall 20 arranged sealing ring 34 opposite the bearing housing 21 sealed. Of course, this seal can also be made in a Radial gap 24 arranged labyrinth seal can be realized (not shown). In the intermediate wall 20 of the compressor housing 10 is a circumferential recess 26 designed and with both a supply and a discharge line 27, 28 connected for a first cooling fluid 29. To achieve the highest possible cooling effect To achieve the adjacent compressor wheel 11, the partition 20 on the compressor wheel side of the recess 26 is made as thin as possible. This is done at the manufacture of the intermediate wall 20 is cast in a corresponding core, which must then be removed again. Of course, can be in the partition 20 also cast a thin-walled tube sealed at both ends be, the interior of which then forms the recess 26 (not shown).

Beim Betrieb des Abgasturboladers 2 saugt das Verdichterrad 11 als Arbeitsmedium 31 Umgebungsluft an, die als eine Hauptströmung 32 über den Strömungskanal 14 sowie den Diffusor 15 in die Spirale 16 gelängt, dort weiter verdichtet und schliesslich über die Ladeluftleitung 6 zur Aufladung der mit dem Abgasturbolader 2 verbundenen Brennkraftmaschine 1 eingesetzt wird. Zuvor erfolgt jedoch im Ladeluftkühler 8 eine entsprechende Abkühlung des beim Verdichtungsvorgang aufgeheizten Arbeitsmediums 31.When the exhaust gas turbocharger 2 is operating, the compressor wheel 11 sucks as the working medium 31 ambient air acting as a main flow 32 through the flow channel 14 and the diffuser 15 elongated in the spiral 16, further compressed there and finally via the charge air line 6 for charging the turbocharger 2 connected internal combustion engine 1 is used. Before that, however, takes place in the charge air cooler 8 a corresponding cooling of the heated during the compression process Working medium 31.

Auf ihrem Weg vom Strömungskanal 14 zum Diffusor 15 beaufschlagt die im Radialverdichter 3 erhitzte Hauptströmung 32 des Arbeitsmediums 31 als Leckageströmung 33 auch den Radialspalt 24, wodurch das Verdichterrad 11 zusätzlich erhitzt wird. Weil jedoch die Betriebstemperatur im äusseren Bereich des Verdichterrades 11 am grössten ist, tritt insbesondere dort eine grosse Materialbelastung auf. In die unmittelbar benachbart zu diesem kritischen Bereich angeordneteAusnehmung 26 der Zwischenwand 20 wird als Kühlfluid 29 aus dem Kühlwasserkreislauf 9 des Ladeluftkühlers 8 abgezweigtes Kühlwasser eingeleitet. Es kommt somit zu einer indirekten Kühlung der im Radialspalt 24 befindlichen Leckageströmung 33 und damit auch des Verdichterrades 11. Dabei erfolgt die Abzweigung des Kühlfluids 29 stromauf des Ladeluftkühlers 8, so dass mit dem relativ kalten Kühlwasser eine effektive Kühlung erzielt werden kann. Nach dem Kühlvorgang wird das nunmehr erwärmte Kühlfluid 29 über die Abfuhrleitung 28 stromab des Ladeluftkühlers 8 in den Kühlwasserkreislauf 9 rückgespeist (Fig. 1). Natürlich kann statt dem im System von Brennkraftmaschine 1, Ladeluftkühler 8 und Abgasturbolader 2 vorhandenen Kühlwasser auch Frischwasser von ausserhalb des Systems als Kühlfluid 29 zugeführt werden (nicht dargestellt).On its way from the flow channel 14 to the diffuser 15, it acts on the radial compressor 3 heated main flow 32 of the working medium 31 as a leakage flow 33 also the radial gap 24, whereby the compressor wheel 11 additionally is heated. However, because the operating temperature in the outer area of the compressor wheel 11 is largest, there is a particularly high material load there on. In the recess immediately adjacent to this critical area 26 of the intermediate wall 20 is used as cooling fluid 29 from the cooling water circuit 9 of the intercooler 8 branched cooling water. It is coming thus for indirect cooling of the leakage flow located in the radial gap 24 33 and thus also the compressor wheel 11. The branching takes place of the cooling fluid 29 upstream of the charge air cooler 8, so that with the relative cold cooling water effective cooling can be achieved. After the cooling process the now heated cooling fluid 29 is downstream via the discharge line 28 of the charge air cooler 8 fed back into the cooling water circuit 9 (Fig. 1). Naturally can instead of in the system of internal combustion engine 1, intercooler 8 and Exhaust gas turbocharger 2 existing cooling water and fresh water from outside of the system are supplied as cooling fluid 29 (not shown).

Zusätzlich zur bisher beschriebenen indirekten Kühlung ist eine direkte Kühlung der Leckageströmung 33 vorgesehen. Dazu sind mehrere tangential zur Rückwand 22 des Verdichterrades 11 in den Radialspalt 24 mündende Zuführkanäle 40 für ein zweites Kühlfluid 41 sowohl das Lagergehäuse 21 als auch die Diffusorplatte 19 durchdringend angeordnet (Fig. 2). Die Zuführkanäle 40 sind stromab des Ladeluftkühlers 8 mit der Ladeluftleitung 6 verbunden, so dass als zweites Kühlfluid 41 gekühlte Ladeluft Verwendung findet (Fig. 1). Selbstverständlich kann das zweite Kühlfluid 41 auch an einer anderen Stelle in den Radialspalt eingeleitet werden (nicht dargestellt).In addition to the indirect cooling described so far, there is direct cooling the leakage flow 33 is provided. There are several tangential to the back wall 22 of the compressor wheel 11 in the radial gap 24 opening feed channels 40 for a second cooling fluid 41 both the bearing housing 21 and the diffuser plate 19 arranged penetrating (Fig. 2). The feed channels 40 are downstream of the charge air cooler 8 connected to the charge air line 6, so that second Cooling fluid 41 cooled charge air is used (Fig. 1). Of course you can the second cooling fluid 41 is also introduced into the radial gap at another point (not shown).

Durch die tangentiale Einleitung des zweiten Kühlfluids 41 wird eine reine Filmkühlung der gesamten Rückwand 22 des Verdichterrades 11 realisiert. Das zweite Kühlfluid 41 ersetzt die heisse Leckageströmung 33, so dass die sich an der Rückwand 22 des Verdichterrades 11 ausbildende Grenzschicht bereits von Beginn an vor allem durch die gekühlte Ladeluft gebildet wird. Die anschliessende Ableitung des zweiten Kühlfluids 41 erfolgt über eine in der Zwischenwand 20 des Verdichtergehäuses 10 angreifende, nicht weiter dargestellte Abführeinrichtung 42. Diese Kombination von indirekter und direkter Kühlung hat einen besonderen Kühleffekt zur Folge, weil sich die beiden Kühlmöglichkeiten in ihrer Wirkung ergänzen und somit für eine sehr hohe Temperaturreduktion im Verdichterrad 11 sorgen.The tangential introduction of the second cooling fluid 41 results in pure film cooling the entire rear wall 22 of the compressor wheel 11 realized. The second Cooling fluid 41 replaces the hot leakage flow 33, so that the Back wall 22 of the boundary layer forming the compressor wheel 11 from the very beginning is mainly formed by the cooled charge air. The subsequent one The second cooling fluid 41 is discharged via a in the intermediate wall 20 of the Compressor housing 10 attacking discharge device, not shown 42. This combination of indirect and direct cooling has a special one Cooling effect because the two cooling options complement each other in their effect and thus for a very high temperature reduction in the compressor wheel 11 to care.

Natürlich können als erstes und als zweites Kühlfluid 29, 41 auch andere Kühlmedien, wie beispielsweise Helium oder Gase aus Tieftemperaturfluiden (z.B. flüssiger Stickstoff, Tetrachlorkohlenstoff, Benzolnitrid u.a.) verwendet werden.Of course, other cooling media, such as helium or gases from cryogenic fluids (e.g. liquid nitrogen, carbon tetrachloride, benzene nitride, etc.) can be used.

Wird Öl als erstes Kühlfluid 29 eingesetzt, so kann dieses von extern zugeführt oder vorteilhaft aus dem im Lagergehäuse 21 des Abgasturboladers 2 ohnehin vorhandenen Schmierölsystem abgezweigt werden (nicht dargestellt). Auf diese Weise ist eine relativ einfachere und damit kostengünstige Zufuhr dieses ebenfalls geeigneten Kühlfluides möglich.If oil is used as the first cooling fluid 29, this can be supplied externally or advantageously from the in the bearing housing 21 of the exhaust gas turbocharger 2 anyway existing lubricating oil system can be branched off (not shown). To this A relatively simple and therefore inexpensive supply is also possible suitable cooling fluids possible.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
BrennkraftmaschineInternal combustion engine
22
Abgasturboladerturbocharger
33
Radialverdichtercentrifugal compressors
44
Abgasturbineexhaust turbine
55
Wellewave
66
LadeluftleitungTurbo pipe
77
Abgasleitungexhaust pipe
88th
LadeluftkühlerIntercooler
99
KühlwasserkreislaufCooling water circuit
1010
Verdichtergehäusecompressor housing
1111
Rotor, VerdichterradRotor, compressor wheel
1212
Laufschaufelblade
1313
Nabehub
1414
Strömungskanalflow channel
1515
Diffusordiffuser
1616
Spiralespiral
1717
LufteintrittgehäuseAir intake housing
1818
LuftaustrittgehäuseAir outlet housing
1919
Diffusorplattediffuser plate
2020
Statorteil, ZwischenwandStator part, partition
2121
Lagergehäusebearing housing
2222
Rückwandrear wall
2323
Befestigungsmuffemounting sleeve
2424
Radialspalt, TrennspaltRadial gap, separation gap
2525
Labyrinthdichtung labyrinth seal
2626
Ausnehmungrecess
2727
Zufuhrleitungsupply line
2828
Abfuhrleitungdischarge line
2929
erstes Kühlfluidfirst cooling fluid
3131
Arbeitsmediumworking medium
3232
Hauptströmungmainstream
3333
Leckageströmungleakage flow
3434
Dichtungsringsealing ring
4040
Zuführkanalfeed
4141
zweites Kühlfluidsecond cooling fluid
4242
Abführeinrichtungremoval device

Claims (10)

  1. Method for cooling the flow in radial gaps formed between rotors and stators of turbomachines, characterized in that a first cooling fluid (29) is admitted to a stator part (20) adjacent to the radial gap (24) and a second, gaseous cooling fluid (41) is introduced into the radial gap (24).
  2. Method according to Claim 1, characterized in that the first cooling fluid (29) is introduced into a recess (26) formed in the stator part (20) or into a cavity arranged at the stator part (20).
  3. Method according to Claim 1 or 2, characterized in that water is used as first cooling fluid (29).
  4. Method according to Claim 3, characterized in that fresh water from outside a system consisting of an internal combustion engine (1), a charge-air cooler (8) and an exhaust-gas turbocharger (2) is used as first cooling fluid (29).
  5. Method according to Claim 3, characterized in that water present in a system consisting of an internal combustion engine (1), a charge-air cooler (8) and an exhaust-gas turbocharger (2) is used as first cooling fluid (29).
  6. Method according to Claim 5, characterized in that cooling water present in a cooling-water circuit (9) of the charge-air cooler (8) is used as first cooling fluid (29) and the latter is branched off upstream of the charge-air cooler (8).
  7. Method according to Claim 1, characterized in that oil, helium or gases from very-low-temperature fluids are used as first cooling fluid (29).
  8. Method according to Claim 1, characterized in that air, helium or gases from very-low-temperature fluids are used as second, gaseous cooling fluid (41).
  9. Arrangement for carrying out the method according to Claim 1, in which a fixed stator part (20) is arranged so as to define the radial gap (24) relative to the rotor (11), characterized in that
    a) at least one recess (26) is formed in the interior of the stator part (20) or at least one cavity is arranged at the stator part (20), and the recess (26) or the cavity is connected to both a feed line (27) and a discharge line (28) for the first cooling fluid (29) and
    b) at least one feed passage (40) as well as a discharge device (42) for the second cooling fluid (41) are arranged at the radial gap (24).
  10. Arrangement according to Claim 9, characterized in that the fixed stator part (20) is designed as part of a compressor casing (10) of a radial compressor (3), and this part bounds the radial gap (24) relative to a rotating compressor impeller (11) of an exhaust-gas turbocharger (2).
EP99947180A 1999-10-20 1999-10-20 Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines Expired - Lifetime EP1222399B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1999/000496 WO2001029425A1 (en) 1999-10-20 1999-10-20 Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines

Publications (2)

Publication Number Publication Date
EP1222399A1 EP1222399A1 (en) 2002-07-17
EP1222399B1 true EP1222399B1 (en) 2003-08-13

Family

ID=4551726

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99947180A Expired - Lifetime EP1222399B1 (en) 1999-10-20 1999-10-20 Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines

Country Status (7)

Country Link
EP (1) EP1222399B1 (en)
JP (1) JP2003515690A (en)
KR (1) KR100637643B1 (en)
CN (1) CN1258648C (en)
AU (1) AU6075799A (en)
DE (1) DE59906615D1 (en)
WO (1) WO2001029425A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018771B4 (en) * 2005-04-22 2015-06-18 Man Diesel & Turbo Se Internal combustion engine
DE102007001487B4 (en) * 2007-01-10 2015-07-16 Caterpillar Energy Solutions Gmbh Method and device for compressor wheel cooling of a compressor
EP2067999A1 (en) 2007-12-06 2009-06-10 Napier Turbochargers Limited Liquid cooled turbocharger impeller and method for cooling an impeller
EP2090788A1 (en) 2008-02-14 2009-08-19 Napier Turbochargers Limited Impeller and turbocharger
EP2960464A4 (en) * 2013-02-21 2016-02-10 Toyota Motor Co Ltd Cooling device of supercharger of internal combustion engine comprising blow-by gas circulation device
CN104595247A (en) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 Centrifugal compressor with recooling structure
CN104595246A (en) * 2015-01-05 2015-05-06 珠海格力电器股份有限公司 Centrifugal compressor with recooling structure
CN106286338A (en) * 2015-06-02 2017-01-04 上海优耐特斯压缩机有限公司 The structure that the centrifugal compressor leakage air using high-speed electric expreess locomotive is cooled down
CN111720331B (en) * 2020-05-22 2022-08-09 洛阳瑞华新能源技术发展有限公司 Single-stage centrifugal pump with liquid collecting and draining flow channel and flow dividing partition plate having at least 2 liquid draining ports

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191114702A (en) * 1910-06-22 1912-07-22 Hugo Junkers Improvements in or relating to Centrifugal or Turbo-compressors.
US2384251A (en) * 1943-01-14 1945-09-04 Wright Aeronautical Corp Liquid cooled supercharger
DE968742C (en) * 1944-09-22 1958-03-27 Daimler Benz Ag Multi-stage radial blower, preferably loading blower for aircraft engines
US3966351A (en) * 1974-05-15 1976-06-29 Robert Stanley Sproule Drag reduction system in shrouded turbo machine
JPS61112737A (en) * 1984-11-08 1986-05-30 Mitsubishi Heavy Ind Ltd Supercharger
JPS6434435A (en) * 1987-07-06 1989-02-03 Agency Ind Science Techn Temperature sensitive gel and manufacture thereof
JPH0333431A (en) * 1989-06-30 1991-02-13 Hitachi Ltd Supercharger for internal combustion engine
JP2934530B2 (en) * 1991-06-14 1999-08-16 三菱重工業株式会社 Centrifugal compressor
JP2924363B2 (en) * 1991-09-18 1999-07-26 石川島播磨重工業株式会社 Water-cooled bearing housing structure for turbocharger
JP2918773B2 (en) * 1993-11-08 1999-07-12 株式会社日立製作所 Centrifugal compressor
JPH07208189A (en) * 1994-01-10 1995-08-08 Hino Motors Ltd Supercharger cooling device of engine
DE19548852A1 (en) 1995-12-27 1997-07-03 Asea Brown Boveri Radial compressor for exhaust gas turbo-supercharger
JP3606293B2 (en) * 1996-02-14 2005-01-05 石川島播磨重工業株式会社 Exhaust turbine turbocharger
DE19652754A1 (en) 1996-12-18 1998-06-25 Asea Brown Boveri Exhaust gas supercharger

Also Published As

Publication number Publication date
KR20020041437A (en) 2002-06-01
KR100637643B1 (en) 2006-10-23
AU6075799A (en) 2001-04-30
WO2001029425A1 (en) 2001-04-26
CN1375041A (en) 2002-10-16
CN1258648C (en) 2006-06-07
EP1222399A1 (en) 2002-07-17
DE59906615D1 (en) 2003-09-18
JP2003515690A (en) 2003-05-07

Similar Documents

Publication Publication Date Title
DE19845375A1 (en) Indirect cooling process for flow in gap between turbine rotor and stator, involving use of water to cool stator part adjacent to gap
DE602004000527T2 (en) Method for cooling hot turbine components by means of a partially cooled in an external heat exchanger air flow and so cooled turbine engine
EP1222400B1 (en) Method and device for the indirect cooling of a flow regime in radial slits formed between the rotors and stators of turbomachines
DE3447740C2 (en) Gas turbine engine
DE60029487T2 (en) PFUFFER SEAL FOR OIL PAN
EP0961033B1 (en) Radial compressor
DE1951356C3 (en) Gas turbine engine for aircraft
DE69838201T2 (en) One-piece blisk of a gas turbine
EP3059433B1 (en) Gas turbine engine with oil cooler in the engine cladding
DE3447717C2 (en) Blower engine with axial flow
DE60318792T2 (en) Bleed air housing for a compressor
DE60031744T2 (en) Turbine combustor assembly
EP1736635B1 (en) Air transfer system between compressor and turbine of a gas turbine engine
EP0961034B1 (en) Radial compressor
DE112011104298B4 (en) Gas turbine engine with secondary air circuit
DE1601555A1 (en) Cooled turbine guide ring for turbines working at high temperatures
DE2812051A1 (en) RING SEAL FOR A GAS TURBINE ENGINE
DE2616031A1 (en) TURBINE COVERING STRUCTURES
EP1222399B1 (en) Method and device for cooling the flow in the radial gaps formed between rotors and stators of turbine-type machines
WO1998013584A1 (en) Method of compensating pressure loss in a cooling air guide system in a gas turbine plant
DE69824505T2 (en) Gas turbine with steam cooling
DE833879C (en) Exhaust gas turbocharger for internal combustion engines
DE1926423A1 (en) Schleider compactor
DE19652754A1 (en) Exhaust gas supercharger
DE69112370T2 (en) Turbopump with a positive pressure pump driven by axial flow.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GIESZAUF, HELMUT

Inventor name: GREBER, JUERG

Inventor name: BREMER, JOACHIM

Inventor name: MUELLER, ULF, CHRISTIAN

Inventor name: BOTHIEN, MIHAJLO-RUEDIGER

Inventor name: WUNDERWALD, DIRK

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59906615

Country of ref document: DE

Date of ref document: 20030918

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031222

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20030813

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081022

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081021

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091020