EP1216352A1 - Procede pour commander un moteur a combustion interne - Google Patents

Procede pour commander un moteur a combustion interne

Info

Publication number
EP1216352A1
EP1216352A1 EP00945597A EP00945597A EP1216352A1 EP 1216352 A1 EP1216352 A1 EP 1216352A1 EP 00945597 A EP00945597 A EP 00945597A EP 00945597 A EP00945597 A EP 00945597A EP 1216352 A1 EP1216352 A1 EP 1216352A1
Authority
EP
European Patent Office
Prior art keywords
cylinders
air
cylinder
size
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00945597A
Other languages
German (de)
English (en)
Other versions
EP1216352B1 (fr
Inventor
Johann Graf
Michael Henn
Gerhard Schopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1216352A1 publication Critical patent/EP1216352A1/fr
Application granted granted Critical
Publication of EP1216352B1 publication Critical patent/EP1216352B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the invention relates to a method for controlling an internal combustion engine, in particular an internal combustion engine with quantity control, that is to say an internal combustion engine operating on the Otto principle.
  • the air ratio is determined individually for each cylinder using a lambda probe.
  • the object of the invention is to provide a method which ensures low-emission and at the same time comfortable control of an internal combustion engine.
  • FIG. 1 shows an internal combustion engine with a control device
  • FIG. 2 shows a flow chart for cylinder equalization
  • FIG. 3 shows a flow chart of a main control function in the control device 6
  • Figure 4 shows a further flow diagram for cylinder equalization.
  • An internal combustion engine (FIG. 1) comprises an intake tract, to which a throttle valve 10 and at least one injection valve 15 are assigned, and an engine block 2, which has a cylinder 20 and a crankshaft 23.
  • a piston 21 and a connecting rod 22 are assigned to the cylinder 20.
  • the connecting rod 22 is connected to the piston 21 and the crankshaft 23.
  • the injection valve 15 is provided either for injecting fuel into a plurality of cylinders of the internal combustion engine or only for injecting fuel into one cylinder of the internal combustion engine in each case. In the latter case an injection valve 15 is assigned to each cylinder 20 of the internal combustion engine.
  • the injection valve 15 can alternatively also be provided in a cylinder head 3 and be arranged such that the fuel is metered directly into the combustion chamber of the cylinder 20. Alternatively, the injection valve 15 can also be arranged towards a mixing chamber of a mixture injector, which blows the air / fuel mixture from the mixing chamber directly into the cylinder 20.
  • a valve train is also arranged in the cylinder head 3, with at least one inlet valve 30 and one outlet valve 31.
  • the valve train comprises at least one camshaft, not shown, with a transmission device which transmits the cam stroke to the inlet valve 30 or the outlet valve 31.
  • Devices for adjusting the valve lift times and / or the valve lift curve are preferably also provided.
  • Such a device for adjusting the valve stroke curve of a gas exchange valve is known from DE 42 44 550 AI. This device is preferably used for throttle-free load control of gasoline engines.
  • the device has two opposing camshafts, which act on the gas exchange valve via a rocker arm. One of the camshafts determines the open function and the other camshaft the closing function of the gas exchange valve.
  • valve stroke profile of the gas exchange valve i.e. the stroke and the opening duration
  • the valve stroke profile of the gas exchange valve can be changed over a wide range by a relative rotation of the two camshafts relative to one another by means of a four-wheel coupling gear, a corresponding actuator being provided for adjusting the relative rotation.
  • an electromechanical actuator can also be provided which controls the course of the valve lift of the intake or exhaust valve 30, 31.
  • Such an electromechanical actuator is known for example from DE 297 12 502 U1.
  • the actuator comprises a spring-mass oscillator with an armature.
  • the actuator also includes two electromagnets.
  • the arrival ker acts on the gas exchange valves, that is, the inlet valve 30 or the outlet valve 31. If an electromechanical actuator is provided for controlling the gas exchange valves, there is no camshaft.
  • a spark plug 34 is also introduced into the cylinder head 3.
  • the internal combustion engine is shown in FIG. 1 with a cylinder 20. However, it includes other cylinders Z2, Z3, Z4.
  • the cylinders Z2 to Z4 are preferably identical to the cylinder 20. Furthermore, they are each assigned at least one outlet valve 31 and one inlet valve 30.
  • An exhaust tract 4 with a catalyst 40 and an oxygen probe 41 is assigned to the internal combustion engine.
  • Control device 6 is provided, to which sensors are assigned, which record different measured variables and each determine the measured value of the measured variable.
  • the control device 6 determines one or more control signals depending on at least one measured variable, each of which controls an actuator.
  • Sensors are a pedal position sensor 71, which detects a pedal position of the accelerator pedal 7, a throttle valve position sensor 11, which detects an opening degree of the throttle valve 10, an air mass meter 12, which detects an air mass flow MAF, and / or an intake manifold pressure sensor 13, which detects an intake manifold pressure in the intake tract 1 , a first temperature sensor 14, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a second temperature sensor 25, which detects a coolant temperature TCO, a combustion chamber pressure sensor 26 which detects the pressure P_BR in the interior of the cylinder 20, that is to say in the combustion chamber, and the oxygen probe 41, which detects the residual oxygen content of the exhaust gas in the exhaust tract 4 and which assigns the measured value of the air ratio ⁇ to it.
  • the air ratio ⁇ is the ratio of the air mass supplied to the cylinder 20 to the theoretical air requirement for stoichiometric ratios for the amount of fuel injected.
  • a torque sensor 28 is preferably provided, which detects the torque that is generated in the individual cylinders 20, Z2-Z4 on the crankshaft 23.
  • any subset of the sensors mentioned or additional sensors can be present.
  • the actuators each include an actuator and an actuator.
  • the actuator is an electromotive drive, an electromagnetic drive or another drive known to those skilled in the art.
  • the actuators are designed as a throttle valve 10, as an injection valve 15, as a spark plug 34 or as a device for adjusting the valve lift of the intake or exhaust valves 30, 31 or as electromechanical actuators for controlling the valve lift of the intake and exhaust valves 30, 31.
  • the actuators are referred to below with the respectively associated actuator.
  • the throttle valve 10 may be dispensed with.
  • the control device 6 is preferably designed as an electronic engine control. However, it can also comprise several control devices which are connected to one another in an electrically conductive manner, for. B. via a bus system.
  • FIG. 2 shows a flowchart of a method for controlling the internal combustion engine, which effects an equalization of the cylinders 20, Z2 to Z4.
  • the program is stored in the control device 6 and is processed there.
  • the program can be executed either at predetermined time intervals during the operation of the internal combustion engine or in predetermined operating states of the internal combustion engine become.
  • Such an operating state can be, for example, a steady-state partial load operation or an idling operation, or it can be characterized in that the coolant temperature TCO exceeds a predetermined threshold value.
  • the program is started in a step S1.
  • the air ratio ⁇ is determined individually for the cylinder, which is represented by the ⁇ indicated by i.
  • the air ratio ⁇ that can be assigned to each cylinder 20, Z2 to Z4 is calculated at least once, which is then a measure of the respective air / fuel ratio in the respective cylinder 20, Z2 to Z4.
  • the cylinder-specific determination of the air ratio ⁇ _ for each cylinder can be carried out averaged over several work cycles.
  • a first correction value Kl x for each of the cylinders 20, Z2 to Z4 is determined as a function of the air ratio ⁇ x assigned to the respective cylinder and a target value ⁇ sp of the air ratio.
  • the target value ⁇ sp can be equal to one, for example, in order to ensure a stoichiometric air / fuel mixture in the cylinders 20, Z2 to Z4.
  • the first correction value Kl x is used in the program shown in FIG. 3 for the general control of the internal combustion engine and is described in more detail below.
  • step S4 the program can remain in a waiting state for a predetermined period of time or alternatively can go directly to step S5.
  • step S5 the torque TQ ⁇ for each cylinder 20, Z2 to Z4. determined, which is generated by him.
  • either the measurement signal of the torque sensor 28 or the measurement signal of the combustion chamber pressure sensor 26 is evaluated or, for example, the measurement signal of the speed sensor 24.
  • Average values of the respective cylinders can also be torque TQ X can be determined over several work cycles of the internal combustion engine.
  • a second correction value K2_ is calculated individually for each cylinder 20, Z2 to Z4 depending on the torque TQi assigned to each cylinder Z2 to Z4, 20 and an average value TQ_MV of the torques calculated by averaging all torques TQ X.
  • the second correction value K2 ⁇ . is used in the general program for controlling the internal combustion engine described in FIG. The program is then ended in a step S7.
  • a main program for controlling the internal combustion engine is started.
  • a setpoint TQI_SP of the torque to be generated by the internal combustion engine is calculated as a function of the rotational speed N, the accelerator pedal value PV and further operating variables of the internal combustion engine, such as the coolant temperature TCO, and further torque contributions, such as from an electronic transmission control or traction control system ,
  • a fuel injection period T K s ⁇ for the one or more injection valves 15 is calculated individually for each cylinder.
  • the fuel injection time period T K s ⁇ _ is calculated for each cylinder 20, Z2 to Z4 as a function of the setpoint value of the torque, the respectively assigned first correction value Kl_ and, if appropriate, further variables. Due to the dependence of the fuel injection time period T K s ⁇ _ on the correction value Klj assigned to each of the cylinders 20, Z2 to Z4. it is ensured that the air / fuel ratio in all cylinders is within narrow limits of the specified target value of the air / fuel ratio. As a result, different flow rates of the fuel in the injection valves 15 caused by manufacturing tolerances can be compensated for.
  • a valve lift period T VH _ is calculated for each individual cylinder 20, Z2 to Z4 as a function of the setpoint TQI_SP of the torque, the second correction value K2 X assigned to the respective cylinder 20, Z2 to Z4 and possibly further variables.
  • Dependent on the assigned to the respective cylinder Ventilhubzeitdauer T _ VH are then, depending on the embodiment of the internal combustion engine, the Dros ⁇ selklappe 10 or electromechanical actuators or the input device or the means for adjusting the Vent lhub- times driven.
  • a maximum valve lift or a valve lift profile can also be determined as a control variable for controlling the devices for adjusting the valve lift profile.
  • Steps S12 and S13 thus advantageously ensure that both the air / fuel ratio m in each cylinder 20, Z2 to Z4 of the internal combustion engine corresponds to the predetermined target value and that the torque generated in the respective cylinders is the same. On the one hand, this ensures efficient and gentle operation of the catalytic converter 14 with a corresponding emission reduction, and on the other hand ensures a high level of driving comfort for a vehicle in which the internal combustion engine is arranged.
  • the program is ended.
  • the program according to FIG. 3 is preferably called up at predetermined time intervals or as a function of the rotational speed N.
  • FIG. 4 shows a further method for equating the cylinders.
  • Steps S1 to S4 are identical to the speaking steps in FIG. 2.
  • the speed N x assigned to the respective cylinder is determined individually for each cylinder 20, Z2 to Z4. For example, the speed is determined during the expansion stroke of the respective cylinder or in a subsequent stroke or segment.
  • a segment is determined by the time interval between the top dead centers of two cylinders that follow one another in the firing order.
  • step S18 an uneven running value LUi is determined for each cylinder 20, Z2 to Z4 as a function of the rotational speed N x determined for the respective cylinder 17.
  • a dependency on the third power of the respective speed N x has proven to be particularly advantageous.
  • Uneven running is a measure of differences between the torques generated by the cylinders.
  • the rough running values LU X can also be determined as a function of a change in the rotational speed N x associated with the respective cylinder.
  • the second correction value K2_ is individual for each cylinder depending on the respective rough running value LU. determined. This is done in the sense of an adjustment of the torques generated by the individual cylinders. In the case of an existing torque sensor 28, a deviation of the individual torque from the torque averaged over all cylinders can also be calculated individually for each cylinder and then the second correction value K2 ⁇ can be calculated depending on this deviation.
  • a corresponding procedure is also advantageous if a combustion chamber pressure sensor 26 is present.
  • the program is then ended in a step S20.
  • the actuator for adjusting the air mass to be supplied to the cylinders 20, Z2 to Z4 Intake valves 30 are. This ensures that the respective air mass in the cylinders can be set with a very high temporal resolution and an extremely short dead time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

L'invention concerne un procédé pour commander un moteur à combustion interne qui comporte plusieurs cylindres, auxquels sont associés au moins une soupape d'injection de carburant et au moins un organe de commande servant à régler la masse d'air à conduire aux cylindres, ce moteur étant pourvu d'au moins un capteur servant à mesurer une grandeur caractérisant le rapport air/carburant dans les cylindres individuels, et au moins d'un capteur servant à mesurer une grandeur caractérisant le couple produit dans chaque cylindre, ou bien à mesurer une grandeur caractéristique des différences entre les couples produits dans les cylindres. Le procédé comprend les étapes suivantes: le rapport air/carburant est défini individuellement pour chaque cylindre; la commande de la ou des soupape(s) d'injection de carburant est corrigée individuellement pour chaque cylindre, en fonction du rapport air/carburant mesuré et d'une valeur de consigne du rapport air/carburant; la grandeur caractérisant le couple ou la différence entre les couples est déterminée pour chaque cylindre; et la commande du ou des organe(s) de commande servant au réglage de la masse d'air est corrigée en fonction de la valeur mesurée de la grandeur caractérisant le couple ou de la grandeur caractérisant la différence entre les couples, cela pour équilibrer les couples produits par les cylindres individuels.
EP00945597A 1999-09-30 2000-06-07 Procede pour commander un moteur a combustion interne Expired - Lifetime EP1216352B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947037 1999-09-30
DE19947037A DE19947037C1 (de) 1999-09-30 1999-09-30 Verfahren zum Steuern einer Brennkraftmaschine
PCT/DE2000/001846 WO2001023733A1 (fr) 1999-09-30 2000-06-07 Procede pour commander un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1216352A1 true EP1216352A1 (fr) 2002-06-26
EP1216352B1 EP1216352B1 (fr) 2005-08-17

Family

ID=7923956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945597A Expired - Lifetime EP1216352B1 (fr) 1999-09-30 2000-06-07 Procede pour commander un moteur a combustion interne

Country Status (4)

Country Link
US (1) US6619262B2 (fr)
EP (1) EP1216352B1 (fr)
DE (2) DE19947037C1 (fr)
WO (1) WO2001023733A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101572A1 (fr) 2007-02-23 2008-08-28 Khs Ag Procédé pour remplir des bouteilles ou récipients similaires d'un produit liquide par contre-pression, et machine de remplissage pour la mise en oeuvre de ce procédé

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011690C2 (de) * 2000-03-10 2002-02-07 Siemens Ag Verfahren zur Zylindergleichstellung
JP3913986B2 (ja) * 2001-01-09 2007-05-09 三菱電機株式会社 内燃機関の空燃比制御装置
DE10106921A1 (de) * 2001-02-15 2002-08-22 Bayerische Motoren Werke Ag Verfahren zum Synchronisieren der Füllung von Zylindern einer Brennkraftmaschine, insbesondere eines Hubkolben-Verbrennungsmotors
DE10115902C1 (de) * 2001-03-30 2002-07-04 Siemens Ag Lambda-Zylindergleichstellungsverfahren
JP3980424B2 (ja) * 2002-07-03 2007-09-26 本田技研工業株式会社 内燃機関の空燃比制御装置
US6871617B1 (en) 2004-01-09 2005-03-29 Ford Global Technologies, Llc Method of correcting valve timing in engine having electromechanical valve actuation
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7032545B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7028650B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7383820B2 (en) 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
DE102004030759B4 (de) * 2004-06-25 2015-12-17 Robert Bosch Gmbh Verfahren zur Steuerung einer Brennkraftmaschine
DE102005009101B3 (de) * 2005-02-28 2006-03-09 Siemens Ag Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
WO2007036386A1 (fr) * 2005-09-29 2007-04-05 Siemens Aktiengesellschaft Procede et dispositif pour commander un moteur a combustion interne
DE102006012656A1 (de) * 2006-03-20 2007-09-27 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007044937B4 (de) * 2007-09-20 2010-03-25 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007049615B4 (de) * 2007-10-17 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Elektronische Steuereinrichtung zur Steuerung der Brennkraftmaschine in einem Kraftfahrzeug
US20120227690A1 (en) * 2011-03-09 2012-09-13 Giovanni Ferro Electronic Engine Control Unit And Method Of Operation
DE102013227023A1 (de) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Verfahren zur Zylindergleichstellung einer lambdageregelten Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102015218835B3 (de) * 2015-09-30 2016-11-24 Continental Automotive Gmbh Verfahren und Vorrichtung zum Einspritzen eines gasförmigen Kraftstoffs

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217342A (ja) * 1985-07-17 1987-01-26 Toyota Motor Corp 燃料噴射制御方式
JP2592075B2 (ja) * 1987-10-19 1997-03-19 日産自動車株式会社 可変圧縮比型内燃機関の制御装置
DE3839611A1 (de) * 1988-11-24 1990-05-31 Pierburg Gmbh Verfahren zur regelung der abgaszusammensetzung
US4936277A (en) * 1988-12-19 1990-06-26 Motorola, Inc. System for monitoring and/or controlling multiple cylinder engine performance
JPH02181009A (ja) * 1988-12-28 1990-07-13 Isuzu Motors Ltd 電磁駆動バルブ制御装置
US5067460A (en) * 1990-06-22 1991-11-26 Massachusetts Institute Of Technology Variable air/fuel ratio engine control system with closed-loop control around maximum efficiency and combination of Otto-diesel throttling
US5107815A (en) * 1990-06-22 1992-04-28 Massachusetts Institute Of Technology Variable air/fuel engine control system with closed-loop control around maximum efficiency and combination of otto-diesel throttling
DE4244550C2 (de) * 1992-12-30 1998-05-28 Meta Motoren Energietech Vorrichtung zur Verdrehung von Nockenwellen von Brennkraftmaschinen
US5515828A (en) * 1994-12-14 1996-05-14 Ford Motor Company Method and apparatus for air-fuel ratio and torque control for an internal combustion engine
DE29712502U1 (de) * 1997-07-15 1997-09-18 Fev Motorentech Gmbh & Co Kg Elektromagnetischer Aktuator mit Gehäuse
JP3910692B2 (ja) * 1997-08-25 2007-04-25 株式会社日立製作所 エンジンの制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0123733A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101572A1 (fr) 2007-02-23 2008-08-28 Khs Ag Procédé pour remplir des bouteilles ou récipients similaires d'un produit liquide par contre-pression, et machine de remplissage pour la mise en oeuvre de ce procédé

Also Published As

Publication number Publication date
US20020121268A1 (en) 2002-09-05
US6619262B2 (en) 2003-09-16
WO2001023733A1 (fr) 2001-04-05
EP1216352B1 (fr) 2005-08-17
DE19947037C1 (de) 2000-10-05
DE50010987D1 (de) 2005-09-22

Similar Documents

Publication Publication Date Title
EP1216352B1 (fr) Procede pour commander un moteur a combustion interne
DE10131937B4 (de) Einrichtung und Verfahren zur Reduktion von Kraftfahrzeugemissionen
DE102010054599B4 (de) AGR-Steuerung in HCCI-Motoren
DE10066178B4 (de) Verfahren und Vorrichtung zur Steuerung der Zylinderbefüllung eines Verbrennungsmotors
DE10011690C2 (de) Verfahren zur Zylindergleichstellung
EP1660766B1 (fr) Procede pour commander le passage entre deux modes de fonctionnement d'un moteur a etincelles et a injection directe
DE112009000607B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors mittels einer Steuerstrategie für das Überführen zwischen Verbrennungsmodi
EP1115964B1 (fr) Procede pour commander un moteur a combustion interne en fonction d'une pression de gaz d'echappement
EP1082231A1 (fr) Procede et dispositif pour piloter une machine motrice
EP1649153B1 (fr) Procédé et dispositif pour commander le passage du fonctionnement normal à un fonctionnement avec coupure d'alimentation en poussée sur un moteur à combustion interne et injection directe de carburant
DE102006023473B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102004022593B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
EP0875673B1 (fr) Méthode de commande d'un moteur à combustion interne
DE10259846B3 (de) Verfahren zur Zylindergleichstellung
WO2009033950A2 (fr) Procédé de régulation d'un processus de combustion et dispositif de combustion
DE19711146A1 (de) Einlaßvorrichtung eines Mehrzylinder-Verbrennungsmotors
DE19812485B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE4334864C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1697624A1 (fr) Procede et dispositif pour commander un moteur a combustion interne
DE10033946B4 (de) Kraftstoffeinspritzsteuersystem für eine Brennkraftmaschine mit Direkteinspritzung
DE19537381A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO2000017494A1 (fr) Procede permettant de commander un moteur a combustion interne
DE102007045264B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006030192A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE10156409A1 (de) Verfahren zur Verbesserung der Laufruhe und entsprechender Motor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050818

REF Corresponds to:

Ref document number: 50010987

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 9

Ref country code: SE

Payment date: 20080612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090607

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090608