EP1216352A1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine

Info

Publication number
EP1216352A1
EP1216352A1 EP00945597A EP00945597A EP1216352A1 EP 1216352 A1 EP1216352 A1 EP 1216352A1 EP 00945597 A EP00945597 A EP 00945597A EP 00945597 A EP00945597 A EP 00945597A EP 1216352 A1 EP1216352 A1 EP 1216352A1
Authority
EP
European Patent Office
Prior art keywords
cylinders
air
cylinder
size
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00945597A
Other languages
German (de)
French (fr)
Other versions
EP1216352B1 (en
Inventor
Johann Graf
Michael Henn
Gerhard Schopp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1216352A1 publication Critical patent/EP1216352A1/en
Application granted granted Critical
Publication of EP1216352B1 publication Critical patent/EP1216352B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/187Circuit arrangements for generating control signals by measuring intake air flow using a hot wire flow sensor

Definitions

  • the invention relates to a method for controlling an internal combustion engine, in particular an internal combustion engine with quantity control, that is to say an internal combustion engine operating on the Otto principle.
  • the air ratio is determined individually for each cylinder using a lambda probe.
  • the object of the invention is to provide a method which ensures low-emission and at the same time comfortable control of an internal combustion engine.
  • FIG. 1 shows an internal combustion engine with a control device
  • FIG. 2 shows a flow chart for cylinder equalization
  • FIG. 3 shows a flow chart of a main control function in the control device 6
  • Figure 4 shows a further flow diagram for cylinder equalization.
  • An internal combustion engine (FIG. 1) comprises an intake tract, to which a throttle valve 10 and at least one injection valve 15 are assigned, and an engine block 2, which has a cylinder 20 and a crankshaft 23.
  • a piston 21 and a connecting rod 22 are assigned to the cylinder 20.
  • the connecting rod 22 is connected to the piston 21 and the crankshaft 23.
  • the injection valve 15 is provided either for injecting fuel into a plurality of cylinders of the internal combustion engine or only for injecting fuel into one cylinder of the internal combustion engine in each case. In the latter case an injection valve 15 is assigned to each cylinder 20 of the internal combustion engine.
  • the injection valve 15 can alternatively also be provided in a cylinder head 3 and be arranged such that the fuel is metered directly into the combustion chamber of the cylinder 20. Alternatively, the injection valve 15 can also be arranged towards a mixing chamber of a mixture injector, which blows the air / fuel mixture from the mixing chamber directly into the cylinder 20.
  • a valve train is also arranged in the cylinder head 3, with at least one inlet valve 30 and one outlet valve 31.
  • the valve train comprises at least one camshaft, not shown, with a transmission device which transmits the cam stroke to the inlet valve 30 or the outlet valve 31.
  • Devices for adjusting the valve lift times and / or the valve lift curve are preferably also provided.
  • Such a device for adjusting the valve stroke curve of a gas exchange valve is known from DE 42 44 550 AI. This device is preferably used for throttle-free load control of gasoline engines.
  • the device has two opposing camshafts, which act on the gas exchange valve via a rocker arm. One of the camshafts determines the open function and the other camshaft the closing function of the gas exchange valve.
  • valve stroke profile of the gas exchange valve i.e. the stroke and the opening duration
  • the valve stroke profile of the gas exchange valve can be changed over a wide range by a relative rotation of the two camshafts relative to one another by means of a four-wheel coupling gear, a corresponding actuator being provided for adjusting the relative rotation.
  • an electromechanical actuator can also be provided which controls the course of the valve lift of the intake or exhaust valve 30, 31.
  • Such an electromechanical actuator is known for example from DE 297 12 502 U1.
  • the actuator comprises a spring-mass oscillator with an armature.
  • the actuator also includes two electromagnets.
  • the arrival ker acts on the gas exchange valves, that is, the inlet valve 30 or the outlet valve 31. If an electromechanical actuator is provided for controlling the gas exchange valves, there is no camshaft.
  • a spark plug 34 is also introduced into the cylinder head 3.
  • the internal combustion engine is shown in FIG. 1 with a cylinder 20. However, it includes other cylinders Z2, Z3, Z4.
  • the cylinders Z2 to Z4 are preferably identical to the cylinder 20. Furthermore, they are each assigned at least one outlet valve 31 and one inlet valve 30.
  • An exhaust tract 4 with a catalyst 40 and an oxygen probe 41 is assigned to the internal combustion engine.
  • Control device 6 is provided, to which sensors are assigned, which record different measured variables and each determine the measured value of the measured variable.
  • the control device 6 determines one or more control signals depending on at least one measured variable, each of which controls an actuator.
  • Sensors are a pedal position sensor 71, which detects a pedal position of the accelerator pedal 7, a throttle valve position sensor 11, which detects an opening degree of the throttle valve 10, an air mass meter 12, which detects an air mass flow MAF, and / or an intake manifold pressure sensor 13, which detects an intake manifold pressure in the intake tract 1 , a first temperature sensor 14, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a second temperature sensor 25, which detects a coolant temperature TCO, a combustion chamber pressure sensor 26 which detects the pressure P_BR in the interior of the cylinder 20, that is to say in the combustion chamber, and the oxygen probe 41, which detects the residual oxygen content of the exhaust gas in the exhaust tract 4 and which assigns the measured value of the air ratio ⁇ to it.
  • the air ratio ⁇ is the ratio of the air mass supplied to the cylinder 20 to the theoretical air requirement for stoichiometric ratios for the amount of fuel injected.
  • a torque sensor 28 is preferably provided, which detects the torque that is generated in the individual cylinders 20, Z2-Z4 on the crankshaft 23.
  • any subset of the sensors mentioned or additional sensors can be present.
  • the actuators each include an actuator and an actuator.
  • the actuator is an electromotive drive, an electromagnetic drive or another drive known to those skilled in the art.
  • the actuators are designed as a throttle valve 10, as an injection valve 15, as a spark plug 34 or as a device for adjusting the valve lift of the intake or exhaust valves 30, 31 or as electromechanical actuators for controlling the valve lift of the intake and exhaust valves 30, 31.
  • the actuators are referred to below with the respectively associated actuator.
  • the throttle valve 10 may be dispensed with.
  • the control device 6 is preferably designed as an electronic engine control. However, it can also comprise several control devices which are connected to one another in an electrically conductive manner, for. B. via a bus system.
  • FIG. 2 shows a flowchart of a method for controlling the internal combustion engine, which effects an equalization of the cylinders 20, Z2 to Z4.
  • the program is stored in the control device 6 and is processed there.
  • the program can be executed either at predetermined time intervals during the operation of the internal combustion engine or in predetermined operating states of the internal combustion engine become.
  • Such an operating state can be, for example, a steady-state partial load operation or an idling operation, or it can be characterized in that the coolant temperature TCO exceeds a predetermined threshold value.
  • the program is started in a step S1.
  • the air ratio ⁇ is determined individually for the cylinder, which is represented by the ⁇ indicated by i.
  • the air ratio ⁇ that can be assigned to each cylinder 20, Z2 to Z4 is calculated at least once, which is then a measure of the respective air / fuel ratio in the respective cylinder 20, Z2 to Z4.
  • the cylinder-specific determination of the air ratio ⁇ _ for each cylinder can be carried out averaged over several work cycles.
  • a first correction value Kl x for each of the cylinders 20, Z2 to Z4 is determined as a function of the air ratio ⁇ x assigned to the respective cylinder and a target value ⁇ sp of the air ratio.
  • the target value ⁇ sp can be equal to one, for example, in order to ensure a stoichiometric air / fuel mixture in the cylinders 20, Z2 to Z4.
  • the first correction value Kl x is used in the program shown in FIG. 3 for the general control of the internal combustion engine and is described in more detail below.
  • step S4 the program can remain in a waiting state for a predetermined period of time or alternatively can go directly to step S5.
  • step S5 the torque TQ ⁇ for each cylinder 20, Z2 to Z4. determined, which is generated by him.
  • either the measurement signal of the torque sensor 28 or the measurement signal of the combustion chamber pressure sensor 26 is evaluated or, for example, the measurement signal of the speed sensor 24.
  • Average values of the respective cylinders can also be torque TQ X can be determined over several work cycles of the internal combustion engine.
  • a second correction value K2_ is calculated individually for each cylinder 20, Z2 to Z4 depending on the torque TQi assigned to each cylinder Z2 to Z4, 20 and an average value TQ_MV of the torques calculated by averaging all torques TQ X.
  • the second correction value K2 ⁇ . is used in the general program for controlling the internal combustion engine described in FIG. The program is then ended in a step S7.
  • a main program for controlling the internal combustion engine is started.
  • a setpoint TQI_SP of the torque to be generated by the internal combustion engine is calculated as a function of the rotational speed N, the accelerator pedal value PV and further operating variables of the internal combustion engine, such as the coolant temperature TCO, and further torque contributions, such as from an electronic transmission control or traction control system ,
  • a fuel injection period T K s ⁇ for the one or more injection valves 15 is calculated individually for each cylinder.
  • the fuel injection time period T K s ⁇ _ is calculated for each cylinder 20, Z2 to Z4 as a function of the setpoint value of the torque, the respectively assigned first correction value Kl_ and, if appropriate, further variables. Due to the dependence of the fuel injection time period T K s ⁇ _ on the correction value Klj assigned to each of the cylinders 20, Z2 to Z4. it is ensured that the air / fuel ratio in all cylinders is within narrow limits of the specified target value of the air / fuel ratio. As a result, different flow rates of the fuel in the injection valves 15 caused by manufacturing tolerances can be compensated for.
  • a valve lift period T VH _ is calculated for each individual cylinder 20, Z2 to Z4 as a function of the setpoint TQI_SP of the torque, the second correction value K2 X assigned to the respective cylinder 20, Z2 to Z4 and possibly further variables.
  • Dependent on the assigned to the respective cylinder Ventilhubzeitdauer T _ VH are then, depending on the embodiment of the internal combustion engine, the Dros ⁇ selklappe 10 or electromechanical actuators or the input device or the means for adjusting the Vent lhub- times driven.
  • a maximum valve lift or a valve lift profile can also be determined as a control variable for controlling the devices for adjusting the valve lift profile.
  • Steps S12 and S13 thus advantageously ensure that both the air / fuel ratio m in each cylinder 20, Z2 to Z4 of the internal combustion engine corresponds to the predetermined target value and that the torque generated in the respective cylinders is the same. On the one hand, this ensures efficient and gentle operation of the catalytic converter 14 with a corresponding emission reduction, and on the other hand ensures a high level of driving comfort for a vehicle in which the internal combustion engine is arranged.
  • the program is ended.
  • the program according to FIG. 3 is preferably called up at predetermined time intervals or as a function of the rotational speed N.
  • FIG. 4 shows a further method for equating the cylinders.
  • Steps S1 to S4 are identical to the speaking steps in FIG. 2.
  • the speed N x assigned to the respective cylinder is determined individually for each cylinder 20, Z2 to Z4. For example, the speed is determined during the expansion stroke of the respective cylinder or in a subsequent stroke or segment.
  • a segment is determined by the time interval between the top dead centers of two cylinders that follow one another in the firing order.
  • step S18 an uneven running value LUi is determined for each cylinder 20, Z2 to Z4 as a function of the rotational speed N x determined for the respective cylinder 17.
  • a dependency on the third power of the respective speed N x has proven to be particularly advantageous.
  • Uneven running is a measure of differences between the torques generated by the cylinders.
  • the rough running values LU X can also be determined as a function of a change in the rotational speed N x associated with the respective cylinder.
  • the second correction value K2_ is individual for each cylinder depending on the respective rough running value LU. determined. This is done in the sense of an adjustment of the torques generated by the individual cylinders. In the case of an existing torque sensor 28, a deviation of the individual torque from the torque averaged over all cylinders can also be calculated individually for each cylinder and then the second correction value K2 ⁇ can be calculated depending on this deviation.
  • a corresponding procedure is also advantageous if a combustion chamber pressure sensor 26 is present.
  • the program is then ended in a step S20.
  • the actuator for adjusting the air mass to be supplied to the cylinders 20, Z2 to Z4 Intake valves 30 are. This ensures that the respective air mass in the cylinders can be set with a very high temporal resolution and an extremely short dead time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

An internal combustion engine having multiple cylinders to which are associated at least one fuel injection valve and at least one regulating member to regulate the air mass which is supplied to the cylinders, whereby at least one sensor for the detection of a parameter characteristic of the air-fuel ratio in the individual cylinders and at least one sensor for the detection of a parameter characteristic of the torque generated in the individual cylinders or for the detection of a parameter characteristic of the differences in torque generated in the individual cylinders, are provided. The inventive method is according to the following steps: air-fuel ratio for the individual cylinders is determined; the control of at least one fuel injection valve of the individual cylinders is adjusted according to the detected air-fuel ratio and according to the desired parameter of said air-fuel ratio. The parameter which characterises the torque or the differences in torque is determined for the individual cylinders and the control of at least one regulating member which regulates the air mass in the individual cylinders is adjusted according to the torque-characteristic value detected or according to the difference in torque-characteristic parameter and indeed, according to an adjustment in torque generated by the individual cylinders.

Description

Beschreibungdescription
Verfahren zum Steuern einer BrennkraftmaschineMethod for controlling an internal combustion engine
Die Erfindung betrifft ein Verfahren zum Steuern einer Brennkraftmaschine, insbesondere einer Brennkraftmaschine mit Quantitatssteuerung, das heißt einer nach dem Otto-Prinzip arbeitenden Brennkraftmaschine.The invention relates to a method for controlling an internal combustion engine, in particular an internal combustion engine with quantity control, that is to say an internal combustion engine operating on the Otto principle.
Bei einem bekannten Verfahren zum Steuern einer Brennkraftmaschine (DE 38 39 611 AI) wird für jeden Zylinder einzeln die Luftzahl mit einer Lambdasonde bestimmt. Abhangig von der für den jeweiligen Zylinder bestimmten Luftzahl wird ein Korrektursignal zur Korrektur der Ansteuerung eines Brennstoffein- spritzventils bestimmt und zwar im Sinne einer Annäherung aller Luftzahlen m den jeweiligen Zylindern der Brennkraftmaschine an den Wert λ = 1 . Alternativ dazu ist es aus der DE 38 39 611 AI bekannt, abhangig von der jeweiligen zylinderin- dividuellen Luftzahl ein Korrektursignal für die Ansteuerung eines Stellers eines Drosselorgans der Brennkraftmaschine zu ermitteln. Der Nachteil beider Alternativen des bekannten Verfahrens ist jedoch, daß zwar das Luft-/Kraftstoff- Verhaltnis m den einzelnen Zylindern aneinander angenähert wird, jedoch die m den einzelnen Zylindern erzeugten Drehmo- mente variieren können, was von einem Fahrer eines Fahrzeugs, m dem die Brennkraftmaschine angeordnet ist, als ungleichförmig laufenden Brennkraftmaschine beziehungsweise als Ruk- keln wahrgenommen wird.In a known method for controlling an internal combustion engine (DE 38 39 611 AI), the air ratio is determined individually for each cylinder using a lambda probe. Depending on the air ratio determined for the respective cylinder, a correction signal for correcting the actuation of a fuel injection valve is determined, namely in the sense of an approximation of all air ratios m in the respective cylinders of the internal combustion engine to the value λ = 1. As an alternative to this, it is known from DE 38 39 611 AI to determine a correction signal for the control of an actuator of a throttle element of the internal combustion engine depending on the respective cylinder-specific air ratio. The disadvantage of both alternatives of the known method is, however, that although the air / fuel ratio in the individual cylinders is approximated to one another, the torques generated in the individual cylinders can vary, which is determined by a driver of a vehicle Internal combustion engine is arranged, is perceived as a non-uniformly running internal combustion engine or as a jerk.
Bei einem weiteren bekannten Verfahren (WO 90/07051) erfolgt eine Angleichung der Drehmomentbeitrage der einzelnen Zylinder der Brennkraftmaschine durch ein Überwachen der von den jeweiligen Zylindern abgegebenen Leistung und einer zylmde- nndividuellen Korrektur der Kraftstoffmasse abhangig von der jeweiligen Leistung n dem Zylinder. Durch dieses Verfahren wird zwar eine Angleichung der Drehmomentbeitrage der einzelnen Zylinder erreicht, jedoch kann dieses Verfahren zu Abwei- chungen der Luftzahl in einzelnen Zylindern von einem vorgegebenen Sollwert für die Luftzahl führen, die zu einer Schädigung eines in einem Abgastrakt der Brennkraftmaschine angeordneten Dreiwege-Katalysators führen können.In another known method (WO 90/07051), the torque contributions of the individual cylinders of the internal combustion engine are equalized by monitoring the power output by the respective cylinders and a cylinder-specific correction of the fuel mass depending on the respective power in the cylinder. Although this method brings about an equalization of the torque contributions of the individual cylinders, this method can lead to deviations The air ratio in individual cylinders leads to a predetermined setpoint for the air ratio, which can lead to damage to a three-way catalytic converter arranged in an exhaust tract of the internal combustion engine.
Die Aufgabe der Erfindung ist es, ein Verfahren zu schaffen, das eine emissionsarme und gleichzeitig komfortable Steuerung einer Brennkraftmaschine gewährleistet.The object of the invention is to provide a method which ensures low-emission and at the same time comfortable control of an internal combustion engine.
Die Aufgabe wird erfindungsgemäß gelöst durch die Merkmale der unabhängigen Patentansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.The object is achieved by the features of the independent claims. Advantageous embodiments of the invention are characterized in the subclaims.
Ausführungsbeispiele der Erfindung sind anhand der schemati- sehen Zeichnungen näher erläutert. Es zeigen:Exemplary embodiments of the invention are explained in more detail with reference to the schematic drawings. Show it:
Figur 1 eine Brennkraftmaschine mit einer Steuereinrichtung,FIG. 1 shows an internal combustion engine with a control device,
Figur 2 ein Ablaufdiagramm zur Zylindergleichstellung, Figur 3 ein Ablaufdiagramm einer Hauptsteuerfunktion in der Steuereinrichtung 6,FIG. 2 shows a flow chart for cylinder equalization, FIG. 3 shows a flow chart of a main control function in the control device 6,
Figur 4 ein weiteres Ablaufdiagramm zur Zylindergleichstellung.Figure 4 shows a further flow diagram for cylinder equalization.
Elemente gleicher Konstruktion und Funktion sind figurenübergreifend mit den gleichen Bezugszeichen versehen.Elements of the same construction and function are provided with the same reference symbols in all figures.
Eine Brennkraftmaschine (Figur 1) umfaßt einen Ansaugtrakt, dem eine Drosselklappe 10 und mindestens ein Einspritzventil 15 zugeordnet sind, und einen Motorblock 2, der einen Zylinder 20 und eine Kurbelwelle 23 aufweist. Ein Kolben 21 und eine Pleuelstange 22 sind dem Zylinder 20 zugeordnet. Die Pleuelstange 22 ist mit dem Kolben 21 und der Kurbelwelle 23 verbunden. Das Einspritzventil 15 ist entweder zum Einsprit- zen von Kraftstoff in mehrere Zylinder der Brennkraftmaschine oder, nur zum Einspritzen von Kraftstoff in jeweils einen Zylinder der Brennkraftmaschine vorgesehen. Im letzteren Fall ist jedem Zylinder 20 der Brennkraftmaschine ein Einspritzventil 15 zugeordnet. Das Einspritzventil 15 kann alternativ auch in einem Zylinderkopf 3 vorgesehen sein und so angeordnet sein, daß der Kraftstoff direkt in den Brennraum des Zy- linders 20 zugemessen wird. Alternativ kann das Einspritzventil 15 auch hin zu einer Mischkammer eines Gemischinjektors angeordnet sein, der das Luft-/Kraftstoff-Gemisch aus der Mischkammer direkt in den Zylinder 20 bläst.An internal combustion engine (FIG. 1) comprises an intake tract, to which a throttle valve 10 and at least one injection valve 15 are assigned, and an engine block 2, which has a cylinder 20 and a crankshaft 23. A piston 21 and a connecting rod 22 are assigned to the cylinder 20. The connecting rod 22 is connected to the piston 21 and the crankshaft 23. The injection valve 15 is provided either for injecting fuel into a plurality of cylinders of the internal combustion engine or only for injecting fuel into one cylinder of the internal combustion engine in each case. In the latter case an injection valve 15 is assigned to each cylinder 20 of the internal combustion engine. The injection valve 15 can alternatively also be provided in a cylinder head 3 and be arranged such that the fuel is metered directly into the combustion chamber of the cylinder 20. Alternatively, the injection valve 15 can also be arranged towards a mixing chamber of a mixture injector, which blows the air / fuel mixture from the mixing chamber directly into the cylinder 20.
In dem Zylinderkopf 3 ist ferner ein Ventiltrieb angeordnet, mit mindestens einem Einlaßventil 30 und einem Auslaßventil 31. Der Ventiltrieb umfaßt mindestens eine nicht dargestellte Nockenwelle mit einer Übertragungseinrichtung, die den Nokkenhub auf das Einlaßventil 30 oder das Auslaßventil 31 über- trägt. Vorzugsweise sind auch Einrichtungen zum Verstellen der Ventilhubzeiten und/oder des Ventilhubverlaufs vorgesehen. Eine derartige Vorrichtung zum Verstellen des Ventilhubverlaufs eines Gaswechselventils ist aus der DE 42 44 550 AI bekannt. Diese Vorrichtung wird vorzugsweise zur drosselfrei- en Laststeuerung von Ottomotoren eingesetzt. Die Vorrichtung hat zwei gegensinnig liegende Nockenwellen, welche über einen Schwinghebel auf das Gaswechselventil einwirken. Eine der Nockenwellen bestimmt die Offnen-Funktion und die andere Nokkenwelle die Schließt-Funktion des Gaswechselventils. Der Ventilhubverlauf des Gaswechselventils, das heißt der Hub und die Öffnungsdauer, kann in weiten Bereichen verändert werden durch eine relative Verdrehung der beiden Nockenwellen gegeneinander mittels eines vier-rädrigen Koppelgetriebes, wobei ein entsprechender Stellantrieb zum Einstellen der relativen Verdrehung vorgesehen ist.A valve train is also arranged in the cylinder head 3, with at least one inlet valve 30 and one outlet valve 31. The valve train comprises at least one camshaft, not shown, with a transmission device which transmits the cam stroke to the inlet valve 30 or the outlet valve 31. Devices for adjusting the valve lift times and / or the valve lift curve are preferably also provided. Such a device for adjusting the valve stroke curve of a gas exchange valve is known from DE 42 44 550 AI. This device is preferably used for throttle-free load control of gasoline engines. The device has two opposing camshafts, which act on the gas exchange valve via a rocker arm. One of the camshafts determines the open function and the other camshaft the closing function of the gas exchange valve. The valve stroke profile of the gas exchange valve, i.e. the stroke and the opening duration, can be changed over a wide range by a relative rotation of the two camshafts relative to one another by means of a four-wheel coupling gear, a corresponding actuator being provided for adjusting the relative rotation.
Alternativ kann auch ein elektromechanischer Aktuator vorgesehen sein, der den Ventilhubverlauf des Ein- oder Auslaßventils 30, 31 steuert. Ein derartiger elektromechanischer Ak- tuator ist beispielsweise aus der DE 297 12 502 Ul bekannt.Alternatively, an electromechanical actuator can also be provided which controls the course of the valve lift of the intake or exhaust valve 30, 31. Such an electromechanical actuator is known for example from DE 297 12 502 U1.
Der Aktuator umfaßt einen Feder-Masse-Schwinger mit einem Anker. Ferner umfaßt der Aktuator zwei Elektromagnete . Der An- ker wirkt auf die Gaswechselventile, also das Einlaßventil 30 oder das Auslaßventil 31 ein. Wenn ein elektromechanischer Aktuator zum Steuern der Gaswechselventile vorgesehen ist, so ist keine Nockenwelle vorhanden.The actuator comprises a spring-mass oscillator with an armature. The actuator also includes two electromagnets. The arrival ker acts on the gas exchange valves, that is, the inlet valve 30 or the outlet valve 31. If an electromechanical actuator is provided for controlling the gas exchange valves, there is no camshaft.
In den Zylinderkopf 3 ist ferner eine Zündkerze 34 eingebracht. Die Brennkraftmaschine ist in der Figur 1 mit einem Zylinder 20 dargestellt. Sie umfaßt jedoch weitere Zylinder Z2, Z3, Z4. Die Zylinder Z2 bis Z4 sind vorzugsweise iden- tisch zu dem Zylinder 20 ausgebildet. Ferner sind ihnen auch jeweils mindestens ein Auslaßventil 31 und ein Einlaßventil 30 zugeordnet.A spark plug 34 is also introduced into the cylinder head 3. The internal combustion engine is shown in FIG. 1 with a cylinder 20. However, it includes other cylinders Z2, Z3, Z4. The cylinders Z2 to Z4 are preferably identical to the cylinder 20. Furthermore, they are each assigned at least one outlet valve 31 and one inlet valve 30.
Ein Abgastrakt 4 mit einem Katalysator 40 und einer Sauer- stoffsonde 41 ist der Brennkraftmaschine zugeordnet. EineAn exhaust tract 4 with a catalyst 40 and an oxygen probe 41 is assigned to the internal combustion engine. A
Steuereinrichtung 6 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Meßgrößen erfassen und jeweils den Meßwert der Meßgröße ermitteln. Die Steuereinrichtung 6 ermittelt abhängig von mindestens einer Meßgröße ein oder meh- rere Stellsignale, die jeweils ein Stellgerät steuern. DieControl device 6 is provided, to which sensors are assigned, which record different measured variables and each determine the measured value of the measured variable. The control device 6 determines one or more control signals depending on at least one measured variable, each of which controls an actuator. The
Sensoren sind ein Pedalstellungsgeber 71, der eine Pedalstellung des Fahrpedals 7 erfaßt, ein Drosselklappenstellungsgeber 11, der ein Öffnungsgrad der Drosselklappe 10 erfaßt, ein Luftmassenmesser 12, der einen Luftmassenstrom MAF erfaßt und/oder ein Saugrohrdrucksensor 13, der einen Saugrohrdruck in dem Ansaugtrakt 1 erfaßt, ein erster Temperatursensor 14, der eine Ansauglufttemperatur erfaßt, ein Drehzahlsensor 24, der einen Drehzahl N der Kurbelwelle 23 erfaßt, ein zweiter Temperatursensor 25, der eine Kühlmitteltemperatur TCO er- faßt, ein Brennraumdrucksensor 26, der den Druck P_BR in dem Innenraum des Zylinders 20, also in dem Brennraum, erfaßt, und die Sauerstoffsonde 41, die den Restsauerstoffgehalt des Abgases in dem Abgastrakt 4 erfaßt und die diesem den Meßwert des Luftverhältnisses λ zuordnet. Das Luftverhältnis λ ist das Verhältnis aus der dem Zylinder 20 zugeführten Luftmasse zu dem theoretischen Luftbedarf für stöchiometrische Verhältnisse bei der eingespritzten Kraftstoffmenge. Das Luftver- hältnis ist somit eine das Luft-/Kraftstoff-Verhältnis charakterisierende Größe.Sensors are a pedal position sensor 71, which detects a pedal position of the accelerator pedal 7, a throttle valve position sensor 11, which detects an opening degree of the throttle valve 10, an air mass meter 12, which detects an air mass flow MAF, and / or an intake manifold pressure sensor 13, which detects an intake manifold pressure in the intake tract 1 , a first temperature sensor 14, which detects an intake air temperature, a speed sensor 24, which detects a rotational speed N of the crankshaft 23, a second temperature sensor 25, which detects a coolant temperature TCO, a combustion chamber pressure sensor 26 which detects the pressure P_BR in the interior of the cylinder 20, that is to say in the combustion chamber, and the oxygen probe 41, which detects the residual oxygen content of the exhaust gas in the exhaust tract 4 and which assigns the measured value of the air ratio λ to it. The air ratio λ is the ratio of the air mass supplied to the cylinder 20 to the theoretical air requirement for stoichiometric ratios for the amount of fuel injected. The air supply Ratio is therefore a variable that characterizes the air / fuel ratio.
Ferner ist vorzugsweise ein Drehmomentsensor 28 vorgesehen, der das Drehmoment, das in den einzelnen Zylindern 20, Z2 - Z4 erzeugt wird an der Kurbelwelle 23 erfaßt. Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren oder zusätzliche Sensoren vorhanden sein.Furthermore, a torque sensor 28 is preferably provided, which detects the torque that is generated in the individual cylinders 20, Z2-Z4 on the crankshaft 23. Depending on the embodiment of the invention, any subset of the sensors mentioned or additional sensors can be present.
Die Stellgeräte umfassen jeweils einen Stellantrieb und ein Stellglied. Der Stellantrieb ist ein elektromotorischer Antrieb, eine elektromagnetischer Antrieb oder ein weiterer dem Fachmann bekannter Antrieb. Die Stellglieder sind als Drosselklappe 10, als Einspritzventil 15, als Zündkerze 34 oder als eine Einrichtung zum Verstellen des Ventilhubs der Ein- oder Auslaßventile 30, 31 oder als elektromechanische Aktua- toren zum Steuern des Ventilhubs der Ein- und Auslaßventile 30, 31 ausgebildet. Auf die Stellgeräte wird im folgenden mit dem jeweils zugeordneten Stellglied bezug genommen.The actuators each include an actuator and an actuator. The actuator is an electromotive drive, an electromagnetic drive or another drive known to those skilled in the art. The actuators are designed as a throttle valve 10, as an injection valve 15, as a spark plug 34 or as a device for adjusting the valve lift of the intake or exhaust valves 30, 31 or as electromechanical actuators for controlling the valve lift of the intake and exhaust valves 30, 31. The actuators are referred to below with the respectively associated actuator.
Falls zum Einstellen der Luftmasse in den Zylindern 20, Z2 - Z4 ein oder mehrere Einrichtungen zum Verstellen des Ventilhubes der Ein- oder Auslaßventile 30, 31 oder elektromechani- schen Aktuatoren vorgesehen sind, so kann gegebenenfalls auf die Drosselklappe 10 verzichtet werden. Die Steuereinrichtung 6 ist vorzugsweise als elektronische Motorsteuerung ausgebildet. Sie kann jedoch auch mehrere Steuergeräte umfassen, die elektrisch leitend miteinander verbunden sind, so z. B. über ein Bussystem.If one or more devices for adjusting the valve stroke of the intake or exhaust valves 30, 31 or electromechanical actuators are provided for adjusting the air mass in the cylinders 20, Z2-Z4, then the throttle valve 10 may be dispensed with. The control device 6 is preferably designed as an electronic engine control. However, it can also comprise several control devices which are connected to one another in an electrically conductive manner, for. B. via a bus system.
In Figur 2 ist ein Ablaufdiagramm eines Verfahrens zum Steuern der Brennkraftmaschine dargestellt, das eine Gleichstellung der Zylinder 20, Z2 bis Z4 bewirkt. Das Programm ist in der Steuereinrichtung 6 gespeichert und wird dort abgearbei- tet. Das Programm kann entweder in vorgegebenen Zeitabständen während des Betriebs der Brennkraftmaschine oder in vorgegebenen Betriebszuständen der Brennkraftmaschine abgearbeitet werden. Ein derartiger Betriebszustand kann beispielsweise ein stationärer Teillastbetrieb oder ein Leerlauf sein oder dadurch charakterisiert sein, daß die Kühlmitteltemperatur TCO einen vorgegebenen Schwellenwert überschreitet.FIG. 2 shows a flowchart of a method for controlling the internal combustion engine, which effects an equalization of the cylinders 20, Z2 to Z4. The program is stored in the control device 6 and is processed there. The program can be executed either at predetermined time intervals during the operation of the internal combustion engine or in predetermined operating states of the internal combustion engine become. Such an operating state can be, for example, a steady-state partial load operation or an idling operation, or it can be characterized in that the coolant temperature TCO exceeds a predetermined threshold value.
In einem Schritt Sl wird das Programm gestartet. In einem Schritt S2 wird das Luftverhältnis λ zylinderindividuell bestimmt, was durch das mit i indizierte λ dargestellt ist. Dabei wird mindestens einmal für jeden Zylinder 20, Z2 bis Z4 das diesen zuordenbare Luftverhältnis λ berechnet, das dann ein Maß ist für das jeweilige Luft-/Kraftstoff-Verhältnis in dem jeweiligen Zylinder 20, Z2 bis Z4. Alternativ kann auch die zylinderindividuelle Bestimmung des Luftverhältnises λ _ für jeden Zylinder gemittelt über mehrere Arbeitsspiele er- folgen.The program is started in a step S1. In a step S2, the air ratio λ is determined individually for the cylinder, which is represented by the λ indicated by i. The air ratio λ that can be assigned to each cylinder 20, Z2 to Z4 is calculated at least once, which is then a measure of the respective air / fuel ratio in the respective cylinder 20, Z2 to Z4. Alternatively, the cylinder-specific determination of the air ratio λ _ for each cylinder can be carried out averaged over several work cycles.
In einem Schritt S3 wird ein erster Korrekturwert Klx für jeden der Zylinder 20, Z2 bis Z4 abhängig von dem dem jeweiligen Zylinder zugeordneten Luftverhältnis λ x und einen Soll- wert λ sp des Luftverhältnis ermittelt. Der Sollwert λ sp kann beispielsweise gleich eins sein, um ein stöchiometrische Luft-/Kraftstoff-Gemisch in den Zylindern 20, Z2 bis Z4 zu gewährleisten. Der erste Korrekturwert Klx wird verwendet in dem in Figur 3 dargestellten Programm zur allgemeinen Steue- rung der Brennkraftmaschine und wird weiter unten noch näher beschrieben.In a step S3, a first correction value Kl x for each of the cylinders 20, Z2 to Z4 is determined as a function of the air ratio λ x assigned to the respective cylinder and a target value λ sp of the air ratio. The target value λ sp can be equal to one, for example, in order to ensure a stoichiometric air / fuel mixture in the cylinders 20, Z2 to Z4. The first correction value Kl x is used in the program shown in FIG. 3 for the general control of the internal combustion engine and is described in more detail below.
In einem Schritt S4 kann das Programm für eine vorgegebene Zeitdauer in einen Wartezustand verharren oder alternativ di- rekt in den Schritt S5 gehen.In a step S4, the program can remain in a waiting state for a predetermined period of time or alternatively can go directly to step S5.
In dem Schritt S5 wird für jeden Zylinder 20, Z2 bis Z4 das Drehmoment TQ^. bestimmt, das jeweils durch ihn erzeugt wird. Dazu wird entweder das Meßsignal des Drehmomentsenors 28 oder das Meßsignal des Brennraumdrucksensors 26 ausgewertet oder beispielsweise das Meßsignal des Drehzahlgebers 24. Dabei können auch Mittelwerte der auf die jeweiligen Zylinder bezo- genen Drehmomente TQX über mehrere Arbeitsspiele der Brennkraftmaschine ermittelt werden.In step S5, the torque TQ ^ for each cylinder 20, Z2 to Z4. determined, which is generated by him. For this purpose, either the measurement signal of the torque sensor 28 or the measurement signal of the combustion chamber pressure sensor 26 is evaluated or, for example, the measurement signal of the speed sensor 24. Average values of the respective cylinders can also be torque TQ X can be determined over several work cycles of the internal combustion engine.
In einem Schritt S6 wird ein zweiter Korrekturwert K2_ ein- zeln für jeden Zylinder 20, Z2 bis Z4 abhängig von dem jeweils einem Zylinder Z2 bis Z4, 20 zugeordneten Drehmoment TQi und einem durch Mittelung aller Drehmomente TQX berechneten Mittelwert TQ_MV der Drehmomente berechnet. Der zweite Korrekturwert K2^. wird verwendet in dem in Figur 3 beschrie- benen allgemeinen Programm zum Steuern der Brennkraftmaschine. Das Programm wird anschließend in einem Schritt S7 beendet.In a step S6, a second correction value K2_ is calculated individually for each cylinder 20, Z2 to Z4 depending on the torque TQi assigned to each cylinder Z2 to Z4, 20 and an average value TQ_MV of the torques calculated by averaging all torques TQ X. The second correction value K2 ^ . is used in the general program for controlling the internal combustion engine described in FIG. The program is then ended in a step S7.
In einem Schritt S10 (Figur 3) wird ein Hauptprogramm zum Steuern der Brennkraftmaschine gestartet. In einem Schritt Sll wird ein Sollwert TQI_SP des von der Brennkraftmaschine zu erzeugenden Drehmoments abhängig von der Drehzahl N, dem Fahrpedalwert PV und weiteren Betriebsgrößen der Brennkraftmaschine, wie der Kühlmitteltemperatur TCO, und weiteren Drehmomentbeiträgen berechnet, wie zum Beispiel von einer elektronischen Getriebesteuerung oder einer Antriebsschlupfregelung .In a step S10 (FIG. 3), a main program for controlling the internal combustion engine is started. In a step S11, a setpoint TQI_SP of the torque to be generated by the internal combustion engine is calculated as a function of the rotational speed N, the accelerator pedal value PV and further operating variables of the internal combustion engine, such as the coolant temperature TCO, and further torque contributions, such as from an electronic transmission control or traction control system ,
In einem Schritt S12 wird eine Kraftstoffeinspritzzeitdauer TKsτι für das oder die Einspritzventile 15 zylinderindividuell berechnet. Dazu wird für jeden Zylinder 20, Z2 bis Z4 die Kraftstoffeinspritzzeitdauer TKsτ_ abhängig von dem Sollwert des Drehmoments, dem jeweils zugeordneten ersten Korrekturwert Kl_ und gegebenenfalls weiteren Größen berechnet. Durch die Abhängigkeit der Kraftstoffeinspritzzeitdauer TKsτ_ von dem jeweils dem Zylinder 20, Z2 bis Z4 zugeordneten Korrekturwert Klj. ist gewährleistet, daß das Luft-/Kraftstoff- Verhältnis in allen Zylindern dem vorgegebenen Sollwert des Luft-/Kraftstoff-Verhältnisses in engen Grenzen angenähert ist. Dadurch können durch Fertigungstoleranzen hervorgerufene unterschiedliche Durchflußmengen des Kraftstoffes in den Einspritzventilen 15 kompensiert werden. In einem Schritt Ξ13 wird für jeden einzelnen Zylinder 20, Z2 bis Z4 eine Ventilhubzeitdauer TVH_ abhangig von dem Sollwert TQI_SP des Drehmoments, dem dem jeweiligen Zylinder 20, Z2 bis Z4 zugeordneten zweiten Korrekturwert K2X und gegebenenfalls weiteren Großen berechnet. Abhangig von der dem jeweiligen Zylinder zugeordneten Ventilhubzeitdauer TVH_ werden dann je nach Ausfuhrungsform der Brennkraftmaschine die Dros¬ selklappe 10 oder elektromechanische Aktuatoren oder die Ein- richtung oder die Einrichtungen zum Verstellen der Vent lhub- zeiten angesteuert.In a step S12, a fuel injection period T K sτι for the one or more injection valves 15 is calculated individually for each cylinder. For this purpose, the fuel injection time period T K sτ_ is calculated for each cylinder 20, Z2 to Z4 as a function of the setpoint value of the torque, the respectively assigned first correction value Kl_ and, if appropriate, further variables. Due to the dependence of the fuel injection time period T K sτ_ on the correction value Klj assigned to each of the cylinders 20, Z2 to Z4. it is ensured that the air / fuel ratio in all cylinders is within narrow limits of the specified target value of the air / fuel ratio. As a result, different flow rates of the fuel in the injection valves 15 caused by manufacturing tolerances can be compensated for. In a step Ξ13, a valve lift period T VH _ is calculated for each individual cylinder 20, Z2 to Z4 as a function of the setpoint TQI_SP of the torque, the second correction value K2 X assigned to the respective cylinder 20, Z2 to Z4 and possibly further variables. Dependent on the assigned to the respective cylinder Ventilhubzeitdauer T _ VH are then, depending on the embodiment of the internal combustion engine, the Dros ¬ selklappe 10 or electromechanical actuators or the input device or the means for adjusting the Vent lhub- times driven.
Alternativ kann m dem Schritt S13 auch ein maximaler Ventilhub oder ein Ventilhubverlauf als Steuergroße zum Ansteuern der Einrichtungen zum Verstellen des Ventilhubverlaufs ermittelt werden.Alternatively, in step S13, a maximum valve lift or a valve lift profile can also be determined as a control variable for controlling the devices for adjusting the valve lift profile.
Durch die Abhängigkeit der Ventilhubzeitdauer TVHI von dem dem jeweiligen Zylinder zugeordneten zweiten Korrekturwert K2i ist gewährleistet, daß die in den jeweiligen Zylindern erzeugten Drehmomente gleich sind.The dependency of the valve lift period T VHI on the second correction value K2i assigned to the respective cylinder ensures that the torques generated in the respective cylinders are the same.
Durch die Schritte S12 und S13 ist somit vorteilhafterweise gewährleistet, daß sowohl das Luft-/Kraftstoff-Verhaltnis m jedem Zylinder 20, Z2 bis Z4 der Brennkraftmaschine dem vorgegebenen Sollwert entspricht als auch das m den jeweiligen Zylindern erzeugte Drehmoment gleich ist. Dadurch ist einerseits ein effizienter und schonender Betrieb des Katalysators 14 mit einer entsprechenden Emmissionsreduktion gewahrleistet und andererseits ein hoher Fahrkomfort eines Fahrzeugs gewährleistet, in dem die Brennkraftmaschine angeordnet ist. In einem Schritt S14 w rd das Programm beendet. Das Programm gemäß Figur 3 wird vorzugsweise in vorgegebenen Zeitabstanden oder abhangig von der Drehzahl N aufgerufen.Steps S12 and S13 thus advantageously ensure that both the air / fuel ratio m in each cylinder 20, Z2 to Z4 of the internal combustion engine corresponds to the predetermined target value and that the torque generated in the respective cylinders is the same. On the one hand, this ensures efficient and gentle operation of the catalytic converter 14 with a corresponding emission reduction, and on the other hand ensures a high level of driving comfort for a vehicle in which the internal combustion engine is arranged. In a step S14, the program is ended. The program according to FIG. 3 is preferably called up at predetermined time intervals or as a function of the rotational speed N.
Figur 4 zeigt ein weiteres Verfahren zum Gleichstellen der Zylinder. Die Schritte Sl bis S4 sind identisch zu den ent- sprechenden Schritten in Figur 2. In einem auf den Schritt S4 folgenden Schritt S17 wird einzelnen für jeden Zylinder 20, Z2 bis Z4 die dem jeweiligen Zylinder zugeordnete Drehzahl Nx bestimmt. Dabei wird beispielsweise jeweils die Drehzahl wah- rend des Expansionstaktes des jeweiligen Zylinders oder in einem darauf folgenden Takt oder Segment bestimmt. Ein Segment ist bestimmt durch den zeitlichen Abstand der oberen Totpunkte zweier Zylinder die in der Zündfolge aufeinander folgen.FIG. 4 shows a further method for equating the cylinders. Steps S1 to S4 are identical to the speaking steps in FIG. 2. In a step S17 following step S4, the speed N x assigned to the respective cylinder is determined individually for each cylinder 20, Z2 to Z4. For example, the speed is determined during the expansion stroke of the respective cylinder or in a subsequent stroke or segment. A segment is determined by the time interval between the top dead centers of two cylinders that follow one another in the firing order.
In einem Schritt S18 wird für jeden Zylinder 20, Z2 bis Z4 einzelnen ein Laufunruhewert LUi abhangig von der für den jeweiligen Zylinder 17 bestimmten Drehzahl Nx bestimmt. Als besonders vorteilhaft hat sich hierbei eine Abhängigkeit von der dritten Potenz der jeweiligen Drehzahl Nx erwiesen. DieIn step S18, an uneven running value LUi is determined for each cylinder 20, Z2 to Z4 as a function of the rotational speed N x determined for the respective cylinder 17. A dependency on the third power of the respective speed N x has proven to be particularly advantageous. The
Laufunruhe ist dabei ein Maß für Unterschiede zwischen den m den Zylindern erzeugten Drehmomenten. Alternativ können die Laufunruhewerte LUX auch abhangig von einer dem jeweiligen Zylinder zugeordneten Änderung der Drehzahl Nx ermittelt wer- den.Uneven running is a measure of differences between the torques generated by the cylinders. Alternatively, the rough running values LU X can also be determined as a function of a change in the rotational speed N x associated with the respective cylinder.
In einem Schritt S19 wird der zweite Korrekturwert K2_ einze- len für jeden Zylinder abhangig von dem jeweiligen Laufunruhewert LU. ermittelt. Dies erfolgt im Sinne einer Angleichung der von den einzelnen Zylindern erzeugten Drehmomente. Bei einem vorhandenen Drehmomentsensor 28 kann für jeden Zylinder einzeln auch e ne Abweichung des individuellen Drehmoments von dem über alle Zylinder gemittelte Drehmoment berechnet werden und dann der zweite Korrekturwert K2α abhangig von dieser Abweichung berechnet werden.In a step S19, the second correction value K2_ is individual for each cylinder depending on the respective rough running value LU. determined. This is done in the sense of an adjustment of the torques generated by the individual cylinders. In the case of an existing torque sensor 28, a deviation of the individual torque from the torque averaged over all cylinders can also be calculated individually for each cylinder and then the second correction value K2 α can be calculated depending on this deviation.
Ein entsprechendes Vorgehen ist auch bei Vorhandensein eines Brennraumdrucksensors 26 vorteilhaft. In einem Schritt S20 wird das Programm dann beendet.A corresponding procedure is also advantageous if a combustion chamber pressure sensor 26 is present. The program is then ended in a step S20.
Besonders vorteilhaft ist, wenn das Stellglied zum Einstellen der den Zylinder 20, Z2 bis Z4 zuzuführenden Luftmasse die Einlaßventile 30 sind. Dadurch ist gewährleistet, daß die jeweilige Luftmasse in den Zylindern mit sehr hoher zeitlicher Auflösung und einer äußerst geringen Totzeit eingestellt werden kann. It is particularly advantageous if the actuator for adjusting the air mass to be supplied to the cylinders 20, Z2 to Z4 Intake valves 30 are. This ensures that the respective air mass in the cylinders can be set with a very high temporal resolution and an extremely short dead time.

Claims

Patentansprüche claims
1. Verfahren zum Steuern einer Brennkraftmaschine mit mehre¬ ren Zylindern (20 , Z2, Z3, Z4 ) , denen mindestens ein Kraftstof- femspritzventil (15) und mindestens ein Stellglied zum Einstellen der den Zylindern zuzuführenden Luftmasse zugeordnet sind, wobei mindestens ein Sensor zum Erfassen einer das Luft-/Kraftstoff-Verhaltnis in den einzelnen Zylindern (20, Z2, Z3, Z4) charakterisierenden Große und mindestens ein Sensor zum Erfassen einer das Drehmoment, das in den einzelnen Zylindern (20 , Z2, Z3, Z4 ) erzeugt wird, charakterisierenden Große vorgesehen sind, mit folgenden Schritten:1. A method for controlling an internal combustion engine with several ¬ ren cylinders (20, Z2, Z3, Z4), which at least one fuel consum- associated femspritzventil (15) and at least one actuator for adjusting the cylinders supplied air mass, at least one sensor for Detecting a variable characterizing the air / fuel ratio in the individual cylinders (20, Z2, Z3, Z4) and at least one sensor for detecting a torque that is generated in the individual cylinders (20, Z2, Z3, Z4) , characterizing sizes are provided, with the following steps:
- die das Luft-/Kraftstoff-Verhaltnis charakterisierende Große wird zyl ndeπndividuell bestimmt, - die Ansteuerung des mindestens einen Kraftstoffemspπtz- ventils (15) wird zylmderindividuell korrigiert abhangig von der zylmderindividuell erfassten Große, die das Luft- /Kraftstoff-Verhaltnis charakterisiert, und einem Sollwert der Große, die das Luft-/Kraftstoff-Verhaltnis charakteri- siert,- The size that characterizes the air / fuel ratio is determined individually, - The actuation of the at least one fuel injection valve (15) is corrected individually for the cylinder, depending on the size that is individually determined for the cylinder, which characterizes the air / fuel ratio, and one Setpoint value of the size that characterizes the air / fuel ratio,
- die das Drehmoment charakterisierende Große wird für jeden Zylinder bestimmt,the size characterizing the torque is determined for each cylinder,
- die Ansteuerung des mindestens einen Stellgliedes zum Einstellen der Luftmasse wird zylmderindividuell korrigiert abhangig von dem erfassten Wert der das Drehmoment charakterisierenden Große und im Sinne einer Angleichung der von den einzelnen Zylindern (20, Z2, Z3, Z4 ) erzeugten Drehmomente.- The activation of the at least one actuator for adjusting the air mass is corrected individually for the cylinder depending on the detected value of the quantity characterizing the torque and in the sense of an approximation of the torques generated by the individual cylinders (20, Z2, Z3, Z4).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die das Drehmoment charakterisierende Große das Drehmoment2. The method according to claim 1, characterized in that the size characterizing the torque is the torque
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die das Drehmoment charakterisierende Große der Brennraum- druck (P BR) ist. 3. The method according to claim 1, characterized in that the size characterizing the torque is the combustion chamber pressure (P BR).
4. Verfahren zum Steuern einer Brennkraftmaschine mit mehreren Zylindern, denen mindestens ein Kraftstoffemspritzventil (15) und mindestens ein Stellglied zum Einstellen der den Zylindern (20, Z2,Z3,Z4) zuzuführenden Luftmasse zugeordnet sind, wobei mindestens ein Sensor zum Erfassen einer das4. A method for controlling an internal combustion engine with a plurality of cylinders, to which at least one fuel injection valve (15) and at least one actuator for adjusting the air mass to be supplied to the cylinders (20, Z2, Z3, Z4) are assigned, at least one sensor for detecting a
Luft-/Kraftstoff-Verhaltnιs m den einzelnen Zylindern charakterisierenden Große und mindestens ein Sensor zum Erfassen einer Große, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmo- menten, vorgesehen sind, mit folgenden Schritten:Air / fuel behavior in the individual cylinders characterizing variable and at least one sensor for detecting a variable, which is characteristic of differences between the torques generated in the cylinders (20, Z2, Z3, Z4), are provided, with the following steps:
- die das Luft-/Kraftstoff-Verhaltnis charakterisierende Große wird zylmderindividuell bestimmt,the size characterizing the air / fuel ratio is determined individually for the cylinder,
- die Ansteuerung des mindestens einen Kraftstoffeinspntz- ventils (15) wird zylmderindividuell korrigiert abhangig von der zylmderindividuell erfassten Große, die das Luft-- The actuation of the at least one fuel injection valve (15) is corrected individually for the cylinder depending on the size detected individually for the cylinder, which
/Kraftstoff-Verhaltnis charakterisiert, und einem Sollwert der Große, die das Luft-/Kraftstoff-Verhaltnis charakterisiert,/ Characterized fuel ratio, and a target value of the size that characterizes the air / fuel ratio,
- die Große, die charakteristisch ist für Unterschiede zwi- sehen den m den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten, wird für jeden Zylinder bestimmt,the size, which is characteristic of differences between the torques generated in the cylinders (20, Z2, Z3, Z4), is determined for each cylinder,
- die Ansteuerung des mindestens einen Stellgliedes zum Einstellen der Luftmasse wird zylmderindividuell korrigiert abhangig von der Große, die charakteristisch ist für Unter- schiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten, und zwar im Sinne einer Angleichung der von den einzelnen Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomente.- The activation of the at least one actuator for adjusting the air mass is corrected individually for the cylinder depending on the size, which is characteristic of differences between the torques generated in the cylinders (20, Z2, Z3, Z4), namely in the sense of an adjustment of the Torques generated by the individual cylinders (20, Z2, Z3, Z4).
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Große, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten von der Drehzahl (N) der Kurbelwelle (23) abgeleitet wird.5. The method according to claim 4, characterized in that the size, which is characteristic of differences between the torques generated in the cylinders (20, Z2, Z3, Z4) is derived from the speed (N) of the crankshaft (23).
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Große, die charakteristisch ist für Unterschiede zwischen den in den Zylindern (20, Z2,Z3,Z4) erzeugten Drehmomenten von einem Messsignal eines Brennraumdrucksensors (26) abgeleitet wird.6. The method according to claim 4, characterized in that the size, which is characteristic of differences between the torques generated in the cylinders (20, Z2, Z3, Z4) is derived from a measurement signal of a combustion chamber pressure sensor (26).
7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das Stellglied zum Einstellen der den Zylindern (20, Z2,Z3,Z4) zuzuführenden Luftmasse ein Gaswechselventil ist. 7. The method according to any one of the preceding claims, characterized in that the actuator for adjusting the air mass to be supplied to the cylinders (20, Z2, Z3, Z4) is a gas exchange valve.
EP00945597A 1999-09-30 2000-06-07 Method for controlling an internal combustion engine Expired - Lifetime EP1216352B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19947037A DE19947037C1 (en) 1999-09-30 1999-09-30 Control method for multi-cylinder IC engine
DE19947037 1999-09-30
PCT/DE2000/001846 WO2001023733A1 (en) 1999-09-30 2000-06-07 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1216352A1 true EP1216352A1 (en) 2002-06-26
EP1216352B1 EP1216352B1 (en) 2005-08-17

Family

ID=7923956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00945597A Expired - Lifetime EP1216352B1 (en) 1999-09-30 2000-06-07 Method for controlling an internal combustion engine

Country Status (4)

Country Link
US (1) US6619262B2 (en)
EP (1) EP1216352B1 (en)
DE (2) DE19947037C1 (en)
WO (1) WO2001023733A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101572A1 (en) 2007-02-23 2008-08-28 Khs Ag Method for filling bottles or similar containers with a liquid product under counterpressure and filling machine for carrying out this method

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10011690C2 (en) * 2000-03-10 2002-02-07 Siemens Ag Cylinder equalization procedure
JP3913986B2 (en) * 2001-01-09 2007-05-09 三菱電機株式会社 Air-fuel ratio control device for internal combustion engine
DE10106921A1 (en) * 2001-02-15 2002-08-22 Bayerische Motoren Werke Ag Method for synchronizing the filling of cylinders of an internal combustion engine, in particular a reciprocating piston internal combustion engine
DE10115902C1 (en) * 2001-03-30 2002-07-04 Siemens Ag Lambda cylinder adjustment method for multi-cylinder IC engine with exhaust gas catalyzer corrects fuel mixture for each 2 cylinders until detected exhaust gas parameter exhibits extreme value
JP3980424B2 (en) * 2002-07-03 2007-09-26 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
US6871617B1 (en) 2004-01-09 2005-03-29 Ford Global Technologies, Llc Method of correcting valve timing in engine having electromechanical valve actuation
US7031821B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromagnetic valve control in an internal combustion engine with an asymmetric exhaust system design
US7021289B2 (en) * 2004-03-19 2006-04-04 Ford Global Technology, Llc Reducing engine emissions on an engine with electromechanical valves
US7128043B2 (en) 2004-03-19 2006-10-31 Ford Global Technologies, Llc Electromechanically actuated valve control based on a vehicle electrical system
US7165391B2 (en) 2004-03-19 2007-01-23 Ford Global Technologies, Llc Method to reduce engine emissions for an engine capable of multi-stroke operation and having a catalyst
US7107946B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Electromechanically actuated valve control for an internal combustion engine
US6938598B1 (en) 2004-03-19 2005-09-06 Ford Global Technologies, Llc Starting an engine with electromechanical valves
US7028650B2 (en) * 2004-03-19 2006-04-18 Ford Global Technologies, Llc Electromechanical valve operating conditions by control method
US7032545B2 (en) * 2004-03-19 2006-04-25 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
US7017539B2 (en) * 2004-03-19 2006-03-28 Ford Global Technologies Llc Engine breathing in an engine with mechanical and electromechanical valves
US7055483B2 (en) * 2004-03-19 2006-06-06 Ford Global Technologies, Llc Quick starting engine with electromechanical valves
US7383820B2 (en) * 2004-03-19 2008-06-10 Ford Global Technologies, Llc Electromechanical valve timing during a start
US7107947B2 (en) * 2004-03-19 2006-09-19 Ford Global Technologies, Llc Multi-stroke cylinder operation in an internal combustion engine
DE102004030759B4 (en) * 2004-06-25 2015-12-17 Robert Bosch Gmbh Method for controlling an internal combustion engine
DE102005009101B3 (en) * 2005-02-28 2006-03-09 Siemens Ag Correction value determining method for internal combustion engine, involves determining correction value for controlling air/fuel-ratio based on adaptation values and temperatures of respective injection valves
WO2007036386A1 (en) * 2005-09-29 2007-04-05 Siemens Aktiengesellschaft Method and device for operating an internal combustion engine
DE102006012656A1 (en) * 2006-03-20 2007-09-27 Siemens Ag Method and device for operating an internal combustion engine
DE102007044937B4 (en) * 2007-09-20 2010-03-25 Continental Automotive Gmbh Method and device for operating an internal combustion engine
DE102007049615B4 (en) * 2007-10-17 2018-10-11 Bayerische Motoren Werke Aktiengesellschaft Electronic control device for controlling the internal combustion engine in a motor vehicle
US20120227690A1 (en) * 2011-03-09 2012-09-13 Giovanni Ferro Electronic Engine Control Unit And Method Of Operation
DE102013227023A1 (en) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Method for the cylinder equalization of a lambda-controlled internal combustion engine, in particular of a motor vehicle
DE102015218835B3 (en) * 2015-09-30 2016-11-24 Continental Automotive Gmbh Method and apparatus for injecting gaseous fuel

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6217342A (en) * 1985-07-17 1987-01-26 Toyota Motor Corp Fuel injection control system
JP2592075B2 (en) * 1987-10-19 1997-03-19 日産自動車株式会社 Control device for variable compression ratio internal combustion engine
DE3839611A1 (en) * 1988-11-24 1990-05-31 Pierburg Gmbh Method for controlling the exhaust gas composition
US4936277A (en) * 1988-12-19 1990-06-26 Motorola, Inc. System for monitoring and/or controlling multiple cylinder engine performance
JPH02181009A (en) * 1988-12-28 1990-07-13 Isuzu Motors Ltd Controller for electromagnetic valve
US5067460A (en) * 1990-06-22 1991-11-26 Massachusetts Institute Of Technology Variable air/fuel ratio engine control system with closed-loop control around maximum efficiency and combination of Otto-diesel throttling
US5107815A (en) * 1990-06-22 1992-04-28 Massachusetts Institute Of Technology Variable air/fuel engine control system with closed-loop control around maximum efficiency and combination of otto-diesel throttling
DE4244550C2 (en) * 1992-12-30 1998-05-28 Meta Motoren Energietech Device for rotating camshafts of internal combustion engines
US5515828A (en) * 1994-12-14 1996-05-14 Ford Motor Company Method and apparatus for air-fuel ratio and torque control for an internal combustion engine
DE29712502U1 (en) * 1997-07-15 1997-09-18 FEV Motorentechnik GmbH & Co. KG, 52078 Aachen Electromagnetic actuator with housing
JP3910692B2 (en) * 1997-08-25 2007-04-25 株式会社日立製作所 Engine control device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0123733A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101572A1 (en) 2007-02-23 2008-08-28 Khs Ag Method for filling bottles or similar containers with a liquid product under counterpressure and filling machine for carrying out this method

Also Published As

Publication number Publication date
US20020121268A1 (en) 2002-09-05
WO2001023733A1 (en) 2001-04-05
DE50010987D1 (en) 2005-09-22
EP1216352B1 (en) 2005-08-17
US6619262B2 (en) 2003-09-16
DE19947037C1 (en) 2000-10-05

Similar Documents

Publication Publication Date Title
EP1216352B1 (en) Method for controlling an internal combustion engine
DE10131937B4 (en) Device and method for the reduction of motor vehicle emissions
DE102010054599B4 (en) EGR control in HCCI engines
DE10066178B4 (en) Method and device for controlling the cylinder filling of an internal combustion engine
DE10011690C2 (en) Cylinder equalization procedure
EP1660766B1 (en) Method for controlling the transition of a direct-injection spark-ignition engine
DE112009000607B4 (en) Method for operating an internal combustion engine using a control strategy for switching between combustion modes
EP1115964B1 (en) Method for controlling an internal combustion engine according to an exhaust gas pressure
WO1999062735A1 (en) Method and device for controlling a prime mover
EP1649153B1 (en) Method and device for controlling the transition between normal operation and overrun fuel cut-off operation of an otto engine operated with direct fuel injection
DE102006023473B3 (en) Internal combustion engine operating method for motor vehicle, involves adapting control variable for controlling unit to given sequence of combustion for adjusting sequence of combustion in reference cylinder
DE102004022593B4 (en) Method and device for controlling an internal combustion engine
EP0875673B1 (en) Method for controlling an internal combustion engine
DE10259846B3 (en) Cylinder equalizing process for internal combustion engine involves first step of individual correction of amount of fuel injected into each cylinder
WO2009033950A2 (en) Method for regulating a combustion process and control device
DE19711146A1 (en) Intake device of a multi-cylinder internal combustion engine
WO1999018343A1 (en) Method and device for supervising an internal combustion engine
DE19812485B4 (en) Method and device for operating an internal combustion engine
DE4334864C2 (en) Method and device for controlling an internal combustion engine
EP1697624A1 (en) Method and device for controlling an internal combustion engine
DE10033946B4 (en) Fuel injection control system for a direct injection internal combustion engine
DE19537381A1 (en) Control of IC engine
WO2000017494A1 (en) Method for controlling an internal combustion engine
DE102006030192A1 (en) Method for operating combustion engine of motor vehicle, requires influencing fuel amount during air supply for individual cylinders of engine
DE10156409A1 (en) Method for improving smooth running, and corresponding motor, with which air mass flow control includes provision for controlling inlet valve stroke

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20040210

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050818

REF Corresponds to:

Ref document number: 50010987

Country of ref document: DE

Date of ref document: 20050922

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 9

Ref country code: SE

Payment date: 20080612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090607

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090608