EP1214720B1 - PROCEDE DE PRODUCTION D'AIMANTS PERMANENTS A PARTIR D'ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE - Google Patents

PROCEDE DE PRODUCTION D'AIMANTS PERMANENTS A PARTIR D'ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE Download PDF

Info

Publication number
EP1214720B1
EP1214720B1 EP00962502A EP00962502A EP1214720B1 EP 1214720 B1 EP1214720 B1 EP 1214720B1 EP 00962502 A EP00962502 A EP 00962502A EP 00962502 A EP00962502 A EP 00962502A EP 1214720 B1 EP1214720 B1 EP 1214720B1
Authority
EP
European Patent Office
Prior art keywords
eff
weight
content
blank
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00962502A
Other languages
German (de)
English (en)
Other versions
EP1214720A1 (fr
Inventor
Matthias Katter
Wilhelm Fernengel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1214720A1 publication Critical patent/EP1214720A1/fr
Application granted granted Critical
Publication of EP1214720B1 publication Critical patent/EP1214720B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B

Definitions

  • the invention relates to processes for the production of permanent magnets from a low-boron Nd-Fe-B alloy.
  • Such alloys and methods of making permanent magnets from this alloy for example, from the EP-A-0 680 054, EP-A-0 753 867, JP 10 289813A, JP 10 181010A and EP 0 124 655.
  • Procedure is first an alloy based on Neodymium, iron and boron melted. The alloy becomes one Discharge melted block, which then crushed into powder becomes. The powder becomes blanks in the magnetic field pressed, which are finally sintered.
  • the coercive force H cJ at 150 ° C is crucial for the quality of the permanent magnet.
  • At high background load even values above 13 kOe at 150 ° C are required.
  • such magnets should also have the highest possible remanence B r .
  • the remanence B r of Nd-Fe-B permanent magnets which have a coercive force H cJ in the range of 4.5 kOe at 150 ° C., should be at least 1.29 T, but more preferably more than 1.35 T, at room temperature ,
  • the reversible temperature coefficient of remanence TK (B r ) in the temperature range of 20 ° C to 150 ° C should be better than -0.11% / K.
  • such permanent magnets should have the best possible corrosion resistance in order to make expensive and expensive coatings superfluous.
  • the invention has for its object to produce an alloy for permanent magnets on the basis of at least one rare earth, at least one transition metal and boron, which has a higher coercive force H cJ than conventional alloys with the same remanence B r and a low temperature coefficient of remanence and corrosion resistant.
  • Nd-Fe-B alloys consist essentially of three phases: the hard magnetic ⁇ -phase with the composition Nd 2 Fe 14 B, the non-magnetic ⁇ -phase with the composition Nd 1,1 Fe 4 B 4 and the non-magnetic gusset phase consists almost entirely of Nd.
  • the Nd-rich gusset phase magnetically separates the grains of the ⁇ phase, resulting in a high coercive force H cJ .
  • the concentrations of B are too low, there is a risk that the soft magnetic Nd 2 Fe 17 phase may be formed instead of the non-magnetic ⁇ phase, thereby considerably reducing the coercive force H cJ .
  • the Nd 2 Fe 17 phase which is detrimental to the coercive force H cJ is not formed in the alloys produced according to the invention when falling below a critical B content in place of the non-magnetic ⁇ phase, but rather initially as a series of non-magnetic Ga-containing phases.
  • these Ga-containing phases contribute to the magnetic decoupling of the grains of the ⁇ phase, which improves the coercive field strength H cJ and also the temperature dependence of the alloy.
  • Figure 1 is a phase diagram showing the composition of a Nd-Fe-B alloy depending on the effective content of boron and rare earths.
  • the structure suitable for use as a permanent magnet occurs, above all, within a phase triangle 1.
  • the alloy consists of ⁇ -phase hard magnetic grains of composition Nd 2 Fe 14 B, as well as non-magnetic ⁇ -phase grains of composition Nd 1 , 1 Fe 4 B 4 and the nonmagnetic gusset phase, which are almost exclusively consists of Nd.
  • the Nd-rich gusset phase magnetically separates the grains of the ⁇ phase, which is necessary to achieve a high coercive force H cJ .
  • [O], [C] and [N] are the weight fractions of O, C and N. In the formulas mentioned, all data are concentration data in% by weight.
  • the effective content of rare earth and boron influences the structure of the structure.
  • the microstructure exists almost exclusively in the form of the ⁇ phase.
  • the alloy is in the ⁇ -phase, while at the point SE it consists essentially of the Nd-rich gusset phase.
  • the proportion of the ⁇ -phase can in principle be arbitrarily small.
  • the boron content is too low, there is a risk that the soft magnetic Nd 2 Fe 17 phase forms instead of the non-magnetic ⁇ phase, which considerably reduces the coercive force H cJ .
  • composition of the Nd-Fe-B permanent magnets is conventionally always chosen to be within the phase triangle 1, in particular above the anode 2.
  • the Werce for the respective points in the phase diagram of Figure 1 are listed in Table 1.
  • the coercive field strength H cJ of the Nd-Fe-B permanent magnets used should be at least 4.5 kOe, more preferably at least 5 kOe, at low counterfield loading. At higher opposing field load even higher values above 13 kOe at 150 ° C are required.
  • Nd-Fe-B permanent magnets should also have the highest possible remanence B r .
  • the reversible temperature coefficient of remanence TK (B r ) in the temperature range of 20 ° C to 150 ° C should be better than -0.11% / K.
  • Nd-Fe-B permanent magnets should be as good as possible Corrosion resistance have to be elaborate and expensive To make coatings unnecessary.
  • phase region 3 in which, in addition to the hard magnetic phase ⁇ and in addition to the non-magnetic Nd-rich phase, further Ga-containing phases are present.
  • a node 4 separates the phase region 3 from another phase region 5 in which the Nd 2 Fe 17 phase predominates.
  • the temperature coefficient of remanence TK (B r ) of Nd-Fe-B permanent magnets can be improved.
  • the temperature coefficient of remanence TK (B r ) is improved by adding 3 wt% Co from -0.12% / K to about -0.105% / K.
  • alloying only Co results in the formation of a soft magnetic SECo 2 Laves phase, which considerably reduces the coercive force H cJ .
  • the formation of this harmful Laves phase can be prevented by simultaneous alloying of Cu.
  • the addition of 0.05 to 0.2 wt.% Cu the addition of Cu-containing Nd-Fe-B permanent magnets can be cooled slowly after a heat treatment performed in the manufacturing process without significantly reducing the coercive force H cJ .
  • Nd-Fe-B permanent magnets to corrosion by water vapor is by additional Zulegieren of Co, Cu and Ga compared to conventional Nd-Fe-B permanent magnets improved by about three orders of magnitude. It will a particularly reactive Nd-rich gusset phase largely replaced by chemically nobler Co, Cu and Ga containing phases.
  • Nd-Fe-B permanent magnets having a mass loss of ⁇ 1 mg / cm 2 referred to the surface of the Nd-Fe-B permanent magnet in the so-called HAST test after ten days.
  • HAST test the Nd-Fe-B permanent magnets are exposed to a pressure of 2.7 bar at a temperature of 130 ° C. and a relative atmospheric humidity of 95%.
  • Alloys A1 to A4 are conventional alloys with the compositions given in Table 2.
  • the alloys B1 to B3 are alloys according to the invention. With reference to Figure 2 it is clear that with increasing content of Dy, although the coercive field strength increases, but the remanence decreases.
  • FIG. 2 shows that the alloys to which Co, Cu and Ga have been alloyed have a higher coercive force H cJ with the same remanence B r compared to conventional alloys.
  • H cJ coercive force
  • Nd-Fe-B alloys containing Dy in the range 3 % By weight have now been systematically investigated. The results These studies are listed in Tables 3 and 4. In the context of these investigations it has been found that the magnetic properties of the Nd-Fe-B permanent magnets much of the temperature control during the heat treatments performed during the manufacturing process depend.
  • Nd-Fe-B alloys are usually produced by that first the alloy with the desired compositions melted down and poured into a melt block.
  • the melted block is then comminuted to powder and optionally to correct the final composition with others Powders mixed.
  • the finished powder is then in a magnetic field aligned and parallel or perpendicular to the magnetic field direction or also by isostatic pressure to green bodies pressed.
  • the green compacts are then, as shown in FIG 3 and 4, subjected to a sintering process 6. at the example of the temperature control shown in Figure 3 After the sintering process 6, a heat treatment 7 is performed.
  • the cooling from the tempering temperature can be slow, as in FIG. 3, or quickly, as in FIG. 4.
  • FIG. 5 shows the dependence of the coercive force H cJ on the effective boron content and the cooling rate ⁇ T / ⁇ t. From Figure 5 shows that a high coercive force H cJ is achieved at a high boron content only in a narrow temperature window between 440 and 500 ° C. By contrast, with low effective boron content, high coercivities H cJ can be achieved in a larger temperature window . Thus, the coercive field strength H cJ increases with decreasing boron content by almost 3 kOe. By a rapid cooling below 750 ° C in the sintering process and by rapid cooling of the tempering temperature, the coercive force H cJ can be increased again by about 1 kOe.
  • Nd-Fe-B permanent magnets it is quite possible to cool Nd-Fe-B permanent magnets slowly after the heat treatment at cooling rates in the range of 1 to 2 K / min without substantial deterioration of the magnetic properties, if only the Nd-Fe-B alloy is boron-poor , A low-boron Nd-Fe-B alloy is to be understood as meaning an alloy whose effective boron content is below the Konode 2.
  • Tables 3 and 4 list compositions and magnetic properties of isostatically pressed Nd-Fe-B permanent magnets with different effective rare earth and boron content. The bold indications refer to the low-boron alloys according to the invention.
  • All Nd-Fe-B permanent magnets are produced by the conventional powder metallurgy process and sintered at about 1060 ° C to a density> 7.6 g / cm 3 .
  • the Nd-Fe-B permanent magnets listed in Table 3 were slowly cooled from sintering temperature to about room temperature at about 1 to 2 K / min. Thereafter, they were tempered at a temperature of 440 ° C to 560 ° C for one to two hours and again slowly cooled at about 1 to 2 K / min to room temperature.
  • the magnets listed in Table 4 were initially quenched from sintering temperature slowly to about 750 ° C at about 2 K / min and rapidly quenched to room temperature after about 1 hour holding at about 30 to 50 K / min. These Nd-Fe-B permanent magnets were after a subsequent annealing at 470 to 530 ° C again rapidly cooled at about 30 to 50 K / min to room temperature.
  • the values for the remanence B r for the alloys from Table 3 are plotted as a function of the effective content of boron and rare earths.
  • Two level lines illustrate the trend of increasing remanence B r with decreasing RDE content and increasing boron content.
  • an effective rare-earth content of ⁇ 30% by weight and an effective boron content of> 0.93% by weight a remanence B r of more than 1.35 T is obtained for isostatically pressed Nd-Fe-B permanent magnets reached.
  • the remanence B r passes just below the boundary line 2 to the phase triangle 1 by a maximum.
  • FIG. 7 shows the dependence of the coercive force at 150 ° C. for the slowly cooled Nd-Fe-B permanent magnets from Table 3. From Figure 7 it can be seen that increases with decreasing effective boron content, the coercive force H cJ at 150 ° C. The same applies to the coercive force at 20 ° C.
  • FIG. 8 shows the dependence of the temperature coefficient of H cJ on slowly cooled Nd-Fe-B permanent magnets as a function of the effective content of rare earths and boron.
  • Nd-Fe-B permanent magnets which were rapidly cooled from about 750 ° C and from annealing temperature. According to FIGS. 9 and 10, however, somewhat better values are achieved both for the temperature dependence and for the absolute values in comparison with the slowly cooled Nd-Fe-B permanent magnets. This extends the range in which the required properties, namely a remanence B r > 1.35 T at room temperature and a coercive force H cJ > 5 kOe at 150 ° C, are achieved.
  • Pr can be used in addition to Nd, without the magnetic properties of the permanent magnets are affected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Claims (14)

  1. Procédé de fabrication d'un aimant permanent à partir d'un alliage constitué d'au moins une terre rare, y compris de l'yttrium, du fer, des éléments B, Co, Cu, Ga et Al ainsi que d'impuretés dues à la fabrication, et dont la teneur effective en terres rares [SE]eff, la teneur effective en bore [B]eff, la teneur totale en Dy, Tb et Ho [Dy + Tb + Ho], la teneur en cobalt [Co], la teneur en cuivre [Cu] et la teneur en gallium [Ga] ainsi que la teneur en aluminium [Al], satisfont les relations suivantes
    26,9 % en poids ≤ [SE]eff ≤ 33 % en poids
    2,185 - 0,0442 [SE]eff ≤ [B]eff ≤ 1,363 - 0,0136 [SE]eff
    [Dy + Tb + Ho] ≤ 17 % en poids
    0,5 % en poids ≤ [Co] ≤ 5 % en poids
    0,05 % en poids ≤ [Cu] ≤ 0,3 % en poids
    0,05 % en poids ≤ [Ga] ≤ 0,35 % en poids
    0,02 en poids ≤ [Al] ≤ 0,3 % en poids
    comprenant les étapes consistant à :
    orienter dans le champ magnétique et presser de la poudre, qui a été produite par broyage d'au moins un corps en fusion, pour former une ébauche ;
    fritter l'ébauche à des températures comprises entre 1020°C et 1140°C ;
    refroidir l'ébauche à des températures inférieures à 300°C, le refroidissement à une température supérieure à 800°C étant effectué à une vitesse moyenne de refroidissement de ΔT1/Δt1 < 5 K/min., et
    recuire et refroidir l'ébauche, les relations suivantes étant valables pour la température de recuit TA en fonction d'une vitesse moyenne de refroidissement de ΔT2/Δt2 :
    pour ΔT2/Δt2 < 5k/min, 450°C ≤ TA ≤ 550°C pour [B]eff < 2,993 - 0,069 [SE]eff 460°C ≤ TA ≤ 510°C pour [B]eff> 2,993 - 0,069 [SE]eff
       pour 5 K/min. ≤ ΔT2/Δt2 ≤ 100 K/min. : 450°C ≤ TA ≤ 550°C
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    après le frittage, l'ébauche est conservée à une température comprise entre 700 et 800°C pendant une durée comprise entre une demi-heure et 2 heures.
  3. Procédé selon la revendication 2,
    caractérisé en ce que
    le corps brut, après le frittage, est refroidi depuis la température de maintien à une vitesse moyenne de refroidissement de ΔT3/Δt3 > 5 K/min.
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    les vitesses de refroidissement ΔT2/Δt2 et ΔT3/Δt3 se situent entre 30 et 50 K/min.
  5. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    le corps brut, après le frittage, est refroidi à partir de la température de maintien à une vitesse moyenne de refroidissement ΔT3/Δt3 < 5 K/min.
  6. Procédé selon la revendication 5,
    caractérisé en ce que
    les vitesses de refroidissement ΔT1/Δt1 à ΔT3/Δt3 se situent entre 1 et 2 K/min.
  7. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la relation suivante est valable pour la teneur effective en bore [B]eff : 1,814 - 0,0303 [SE]eff ≤ [B]eff ≤ 1,363 - 0,0136 [SE]eff.
  8. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la teneur en terres rares [SE]eff est supérieure à 28,9 % en poids, la relation suivante étant valable pour la teneur effective en bore : 1,814 - 0,0303 [SE]eff ≤ [B]eff ≤ 1,396 - 0,01491 [SE]eff.
  9. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la teneur en terres rares [SE]eff est supérieure à 28,5 % en poids, la relation suivante étant valable pour la teneur effective en bore : 1,814 - 0,0303 [SE]eff ≤ [B]eff ≤ 1,478 - 0,01801 [SE]eff.
  10. Procédé selon la revendication 9,
    caractérisé en ce que
    la teneur en terres rares [SE]eff est supérieure à 28,7 % en poids.
  11. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    l'alliage présente une teneur en Co comprise entre 2,5 et 3,5 % en poids.
  12. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la teneur en Cu se situe entre 0,1 et 0,2 % en poids.
  13. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    la teneur en Ga se situe entre 0,20 et 0,30 % en poids.
  14. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les terres rares sont choisies dans le groupe des éléments Nd, Pr, Dy, Tb.
EP00962502A 1999-09-24 2000-09-18 PROCEDE DE PRODUCTION D'AIMANTS PERMANENTS A PARTIR D'ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE Expired - Lifetime EP1214720B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19945942A DE19945942C2 (de) 1999-09-24 1999-09-24 Verfahren zur Herstellung von Dauermagneten aus einer borarmen Nd-Fe-B-Legierung
DE19945942 1999-09-24
PCT/EP2000/009128 WO2001024203A1 (fr) 1999-09-24 2000-09-18 ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE ET PROCEDE DE PRODUCTION D'AIMANTS PERMANENTS A PARTIR DE CET ALLIAGE

Publications (2)

Publication Number Publication Date
EP1214720A1 EP1214720A1 (fr) 2002-06-19
EP1214720B1 true EP1214720B1 (fr) 2005-03-09

Family

ID=7923255

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00962502A Expired - Lifetime EP1214720B1 (fr) 1999-09-24 2000-09-18 PROCEDE DE PRODUCTION D'AIMANTS PERMANENTS A PARTIR D'ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE

Country Status (4)

Country Link
EP (1) EP1214720B1 (fr)
JP (1) JP2003510467A (fr)
DE (2) DE19945942C2 (fr)
WO (1) WO2001024203A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102024544B (zh) * 2009-09-15 2012-09-05 比亚迪股份有限公司 一种稀土永磁材料及其制备方法
DE102012109929A1 (de) 2012-10-18 2014-05-08 Karlsruher Institut für Technologie Verfahren zur Herstellung einer magnetischen Legierung und mit diesem Verfahren hergestellte magnetische Legierung
CN105453194B (zh) 2013-08-12 2018-10-16 日立金属株式会社 R-t-b系烧结磁体
EP3043363B1 (fr) 2013-09-02 2018-11-07 Hitachi Metals, Ltd. Procédé de production d'un aimant fritté r-t-b
JP6229938B2 (ja) * 2013-11-26 2017-11-15 日立金属株式会社 R−t−b系焼結磁石
CN104674115A (zh) 2013-11-27 2015-06-03 厦门钨业股份有限公司 一种低b的稀土磁铁
DE112015001405B4 (de) 2014-03-26 2018-07-26 Hitachi Metals, Ltd. Verfahren zum Herstellen eines R-T-B-basierten Sintermagneten
CN104952574A (zh) 2014-03-31 2015-09-30 厦门钨业股份有限公司 一种含W的Nd-Fe-B-Cu系烧结磁铁
JP6555170B2 (ja) 2015-03-31 2019-08-07 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP6489052B2 (ja) * 2015-03-31 2019-03-27 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP6520789B2 (ja) * 2015-03-31 2019-05-29 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
EP3179487B1 (fr) 2015-11-18 2021-04-28 Shin-Etsu Chemical Co., Ltd. Aimant fritté r (fe-co)-b aux terres rares et procédé de fabrication
JP6724865B2 (ja) 2016-06-20 2020-07-15 信越化学工業株式会社 R−Fe−B系焼結磁石及びその製造方法
JP6614084B2 (ja) 2016-09-26 2019-12-04 信越化学工業株式会社 R−Fe−B系焼結磁石の製造方法
JP2018056188A (ja) 2016-09-26 2018-04-05 信越化学工業株式会社 R−Fe−B系焼結磁石
CN109997203B (zh) 2016-12-02 2021-12-03 信越化学工业株式会社 R-Fe-B系烧结磁铁及其制造方法
CN111048273B (zh) 2019-12-31 2021-06-04 厦门钨业股份有限公司 一种r-t-b系永磁材料、原料组合物、制备方法、应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1277159C (fr) * 1983-05-06 1990-12-04 Setsuo Fujimura Aimants permanents isotropes, et leur production
DE3740157A1 (de) * 1987-11-26 1989-06-08 Max Planck Gesellschaft Sintermagnet auf basis von fe-nd-b
US5472525A (en) * 1993-01-29 1995-12-05 Hitachi Metals, Ltd. Nd-Fe-B system permanent magnet
DE69423305T2 (de) * 1993-12-10 2000-11-30 Sumitomo Spec Metals Dauermagnet-Legierungspulver auf Eisenbasis für harzgebundene Magneten und daraus hergestellte Magneten
US5480471A (en) * 1994-04-29 1996-01-02 Crucible Materials Corporation Re-Fe-B magnets and manufacturing method for the same
JPH08181010A (ja) * 1994-12-22 1996-07-12 Hitachi Metals Ltd 希土類焼結磁石
US5858123A (en) * 1995-07-12 1999-01-12 Hitachi Metals, Ltd. Rare earth permanent magnet and method for producing the same
DE19541948A1 (de) * 1995-11-10 1997-05-15 Schramberg Magnetfab Magnetmaterial und Dauermagnet des NdFeB-Typs
DE19636285C2 (de) * 1996-09-06 1998-07-16 Vakuumschmelze Gmbh Verfahren zur Herstellung eines SE-Fe-B-Dauermagneten
JPH10289813A (ja) * 1997-04-16 1998-10-27 Hitachi Metals Ltd 希土類磁石

Also Published As

Publication number Publication date
JP2003510467A (ja) 2003-03-18
DE19945942A1 (de) 2001-04-12
DE19945942C2 (de) 2003-07-17
EP1214720A1 (fr) 2002-06-19
DE50009741D1 (de) 2005-04-14
WO2001024203A1 (fr) 2001-04-05

Similar Documents

Publication Publication Date Title
EP1214720B1 (fr) PROCEDE DE PRODUCTION D&#39;AIMANTS PERMANENTS A PARTIR D&#39;ALLIAGE Nd-Fe-B A FAIBLE TENEUR EN BORE
DE60118982T2 (de) Seltenerdelement-permanentmagnetmaterial
DE112015001405B4 (de) Verfahren zum Herstellen eines R-T-B-basierten Sintermagneten
DE102016001717B4 (de) Seltenerd-basierter Permanentmagnet
DE112012004288T5 (de) R-T-B-basiertes Legierungsband, R-T-B-basierter gesinterter Magnet und Verfahren zu deren Herstellung
DE60317767T2 (de) R-t-b-seltenerd-permanentmagnet
DE60319339T2 (de) Verfahren zur herstellung eines seltenerdelement-permanentmagneten auf r-t-b-basis
DE102014118984B4 (de) Seltenerdbasierter Magnet
DE102014119040B4 (de) Seltenerdbasierter Magnet
DE102014104425A1 (de) Seltenerdbasierter Magnet
DE4402783B4 (de) Nd-Fe-B-System-Dauermagnet
DE102016219533A1 (de) Sintermagnet auf R-T-B Basis
DE102017203073A1 (de) Permanentmagnet auf R-T-B Basis
DE112012004991B4 (de) Seltenerdbasierter gesinterter Magnet
DE112012003472T5 (de) Verfahren zur Herstellung von Seltenerdmagneten und Seltenerdmagnete
DE112013007128T5 (de) Seltenerd-Permanentmagnetpulver, dieses enthaltender gebundener Magnet und den gebundenen Magneten verwendende Vorrichtung
DE102017222062A1 (de) Permanentmagnet auf R-T-B-Basis
DE112016001090B4 (de) Verfahren zum Herstellen eines R-T-B-basierten Sintermagneten
DE102014119055B4 (de) Seltenerdbasierter Magnet
DE3884817T2 (de) Magnetisch anisotrope sintermagnete.
DE60317460T2 (de) Seltenerdelement-permanentmagnet auf r-t-b-basis
CH638566A5 (de) Material fuer permanente magneten und verfahren zu dessen herstellung.
DE102018107491A1 (de) R-t-b basierter permanentmagnet
DE102014104420A1 (de) Seltenerdbasierter Magnet
DE102018107429A1 (de) R-t-b basierter permanentmagnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020814

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING PERMANENT MAGNETS ON THE BASIS OF BORON-LOW ND-FE-B ALLOY

RBV Designated contracting states (corrected)

Designated state(s): DE FI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FI

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50009741

Country of ref document: DE

Date of ref document: 20050414

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051212

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20070920

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191129

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50009741

Country of ref document: DE