EP1209215A2 - Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv - Google Patents

Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv Download PDF

Info

Publication number
EP1209215A2
EP1209215A2 EP01126254A EP01126254A EP1209215A2 EP 1209215 A2 EP1209215 A2 EP 1209215A2 EP 01126254 A EP01126254 A EP 01126254A EP 01126254 A EP01126254 A EP 01126254A EP 1209215 A2 EP1209215 A2 EP 1209215A2
Authority
EP
European Patent Office
Prior art keywords
weight
und
oder
carbon atoms
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01126254A
Other languages
English (en)
French (fr)
Other versions
EP1209215A3 (de
EP1209215B1 (de
Inventor
Matthias Dr. Krull
Werner Dr. Reimann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Clariant Produkte Deutschland GmbH
Original Assignee
Clariant Produkte Deutschland GmbH
Clariant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7664508&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1209215(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Clariant Produkte Deutschland GmbH, Clariant GmbH filed Critical Clariant Produkte Deutschland GmbH
Priority to EP07005870A priority Critical patent/EP1803791B1/de
Priority to EP07005871A priority patent/EP1801188B1/de
Publication of EP1209215A2 publication Critical patent/EP1209215A2/de
Publication of EP1209215A3 publication Critical patent/EP1209215A3/de
Application granted granted Critical
Publication of EP1209215B1 publication Critical patent/EP1209215B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/08Use of additives to fuels or fires for particular purposes for improving lubricity; for reducing wear
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/14Use of additives to fuels or fires for particular purposes for improving low temperature properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • C10L1/1855Cyclic ethers, e.g. epoxides, lactides, lactones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1881Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom
    • C10L1/1883Carboxylic acids; metal salts thereof carboxylic group attached to an aliphatic carbon atom polycarboxylic acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1885Carboxylic acids; metal salts thereof resin acid
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/188Carboxylic acids; metal salts thereof
    • C10L1/1888Carboxylic acids; metal salts thereof tall oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • C10L1/191Esters ester radical containing compounds; ester ethers; carbonic acid esters of di- or polyhydroxyalcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1981Condensation polymers of aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2364Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amide and/or imide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/2383Polyamines or polyimines, or derivatives thereof (poly)amines and imines; derivatives thereof (substituted by a macromolecular group containing 30C)
    • C10L1/2387Polyoxyalkyleneamines (poly)oxyalkylene amines and derivatives thereof (substituted by a macromolecular group containing 30C)

Definitions

  • the present invention relates to mixtures of fatty acids and Paraffin dispersants with improved low-temperature stability, and their use for Improvement of the lubricating effect of middle distillate fuel oils.
  • Mineral oils and mineral oil distillates used as fuel oils generally contain 0.5 wt .-% and more sulfur, when burning causes the formation of sulfur dioxide. To the resulting To reduce environmental pollution, the sulfur content of fuel oils lowered further and further.
  • the diesel fuel standard EN 590 writes in Germany currently has a maximum sulfur content of 350 ppm. In Scandinavia already comes in with fuel oils with less than 50 ppm Exceptional cases with less than 10 ppm sulfur for use.
  • This Fuel oils are usually made by taking those from petroleum Fractions obtained by distillation hydrogenated refined. In the Desulphurization also removes other substances that Give fuel oils a natural lubricating effect. About these substances include polyaromatic and polar compounds.
  • EP-A-0 798 364 discloses salts and amides from mono- to tetracarboxylic acids 2 to 50 carbon atoms and aliphatic mono- / polyamines with 2 to 50 carbon atoms and 1 to 10 N atoms as lubricity additives for low-sulfur diesel fuel.
  • Preferred amines have 8-20 C atoms, e.g. Coconut fatty amine, tallow fatty amine and Oleylamine.
  • WO-A-95/33805 discloses the use of cold flow improvers to improve the lubricating effect of low-sulfur middle distillates.
  • Polar nitrogen-containing compounds which contain a group NR 13 , where R 13 is a hydrocarbon radical having 8 to 40 carbon atoms and which can be in the form of a cation, are also mentioned as suitable substances.
  • WO-A-96/18706 in analogy to WO-A-95/33805, discloses the use of those therein mentioned nitrogenous compounds in combination with lubricity additives.
  • WO-A-96/23855 in analogy to WO-A-95/33805, discloses the use of those therein mentioned nitrogenous compounds in combination with detergent additives.
  • the fatty acids used according to the prior art have the disadvantage that when stored at low temperatures, i.e. often at room temperature, mostly solidify at temperatures of 0 ° C at the latest at -5 ° C, or that separate crystalline components and cause handling problems. This Problem is also only partially due to dilution with organic solvents solve, since portions crystallize from these solutions or the solution gelled and froze. So they have to be strong for use as lubricity additives diluted, or held in heated storage containers and over heated Lines are dosed.
  • the object underlying the present invention was to provide lubricity additives find that reduced the lubricating effect of middle distillates Improve dosing rates, but homogeneous, clear and in particular even in the cold remain fluid.
  • Another object of the invention are cold stabilized solutions of Additives according to the invention in organic solvents, the solutions 1 to Contain 90 wt .-% solvent.
  • Suitable solvents are aliphatic and / or aromatic hydrocarbons or hydrocarbon mixtures.
  • the cold stabilized solutions according to the invention have an own pour point of below -40 ° C, preferably -45 ° C, especially -50 ° C.
  • Another object of the invention is the use of the above Mixtures of components A and B to improve the Lubrication properties of low-sulfur middle distillates with up to 0.05% by weight Sulfur content.
  • Preferred fatty acids are those with 8-40 carbon atoms, especially 12 - 22 carbon atoms.
  • the alkyl residues of the fatty acids consist of essentially from carbon and hydrogen. However, you can choose more Substituents such as Hydroxy, halogen, amino or nitro groups, provided these do not affect the predominant hydrocarbon character.
  • Component A2) can contain one or more double bonds and more natural or synthetic origin. With polyunsaturated carboxylic acids whose double bonds can be isolated or conjugated.
  • the proportion of saturated Fatty acids A1) in the mixture of A1) and A2) is preferably below 20% by weight, in particular below 10% by weight, especially below 5% by weight.
  • preferred Fatty acid mixtures which here means the combination of A1) and A2) contain at least 50% by weight, in particular at least 75% by weight, especially at least 90% by weight of the components one or more Double bonds.
  • These preferred fatty acids (blends) have iodine numbers of at least 40 g I / 100 g, preferably at least 80 g I / 100 g, in particular at least 125 g I / 100 g.
  • Suitable fatty acids are, for example, lauric, tridecane, myristic, pentadecane, Palmitic, margarine, stearic, isostearic, arachic and behenic acid, oleic and Erucic acid, palmitoleic, myristoleic, linoleic, linolenic, elaeosteric and Arachidonic acid, ricinoleic acid and those obtained from natural fats and oils Fatty acid mixtures, e.g. Coconut oil, peanut oil, fish, linseed oil, palm oil, Rapeseed oil, castor oil, castor oil, rapeseed oil, soybean oil, sunflower oil and tall oil fatty acid.
  • Fatty acid mixtures e.g. Coconut oil, peanut oil, fish, linseed oil, palm oil, Rapeseed oil, castor oil, castor oil, rapeseed oil, soybean oil, sunflower oil and tall oil fatty acid.
  • dicarboxylic acids such as dimer fatty acids and alkyl and alkenylsuccinic acids with C 8 -C 50 alk (en) yl radicals, preferably with C 8 -C 40 , in particular with C 12 -C 22 alkyl radicals.
  • the alkyl radicals can be linear or branched (oligomerized alkenes, PIB).
  • the fatty acids may further contain 1-40, especially 1-25% by weight of resin acids, based on the weight of A1) and A2) together.
  • the additives according to the invention contain as component B at least one as Paraffin dispersant in middle distillates effective polar nitrogenous compound.
  • Paraffin dispersants reduce the size of those that precipitate in the cold Paraffin crystals and cause the paraffin particles not to settle, but to colloidal with significantly reduced sedimentation efforts, remain dispersed.
  • Paraffin dispersants have become oil-soluble polar compounds with ionic or polar groups, e.g. Amine salts and / or amides proven by reaction aliphatic or aromatic amines, preferably long-chain aliphatic Amines, with aliphatic or aromatic mono-, di-, tri- or tetracarboxylic acids or their anhydrides are obtained.
  • Paraffin dispersants also contain reaction products of secondary fatty amines 8 to 36 carbon atoms, especially dicocos fatty amine, ditallow fatty amine and Distearyl.
  • Other paraffin dispersants are copolymers of Maleic anhydride and ⁇ , ⁇ -unsaturated compounds, optionally with primary monoalkylamines and / or aliphatic alcohols are implemented can, the reaction products of alkenylspirobislactones with amines and Reaction products of terpolymers based on ⁇ , ⁇ -unsaturated Dicarboxylic anhydrides, ⁇ , ⁇ -unsaturated compounds and polyoxyalkylene ethers lower unsaturated alcohols.
  • Alkylphenol-formaldehyde resins are also available Paraffin dispersants suitable. The following are some suitable ones Paraffin dispersants listed.
  • alkyl, cycloalkyl and aryl radicals can optionally be substituted.
  • Suitable substituents of the alkyl and aryl radicals are, for example, (C 1 -C 6 ) alkyl, halogens such as fluorine, chlorine, bromine and iodine, preferably chlorine and (C 1 -C 6 ) alkoxy.
  • Alkyl here stands for a straight-chain or branched Hydrocarbon radical. The following may be mentioned in detail: n-butyl, tert-butyl, n-hexyl, n-octyl, decyl, dodecyl, tetradecyl, hexadecyl, octadecyl, dodecenyl, Tetrapropenyl, tetradecenyl, pentapropenyl, hexadecenyl, octadecenyl and Eicosanyl or mixtures such as cocoalkyl, tallow fatty alkyl and behenyl.
  • Cycloalkyl here stands for a cyclic aliphatic radical with 5-20 Carbon atoms. Preferred cycloalkyl radicals are cyclopentyl and Cyclohexyl.
  • Aryl here stands for an optionally substituted aromatic Ring system with 6 to 18 carbon atoms.
  • the terpolymers consist of the bivalent structural units of the formulas 12 and 14 and 15 and 16 and possibly 13. They only contain in known in the polymerization by initiation, inhibition and chain termination end groups.
  • Structural units of the formulas 12 to 14 are derived in particular from ⁇ , ⁇ -unsaturated dicarboxylic acid anhydrides of the formulas 17 and 18 such as maleic anhydride, itaconic anhydride, citraconic anhydride, preferably maleic anhydride.
  • the structural units of the formula 15 are derived from the ⁇ , ⁇ -unsaturated compounds of the formula 19.
  • ⁇ , ⁇ -unsaturated olefins may be mentioned by way of example: styrene, ⁇ -methylstyrene, dimethylstyrene, ⁇ -ethylstyrene, diethylstyrene, i-propylstyrene, tert-butylstyrene, diisobutylene and ⁇ -olefins, such as decene, dodecene, tetradecene, pentadecene, Hexadecene, octadecene, C 20 - ⁇ -olefin, C 24 - ⁇ -olefin, C 30 - ⁇ -olefin, tripropenyl, tetrapropenyl, pentapropenyl and mixtures thereof.
  • Alpha-olefins having 10 to 24 carbon atoms and styrene are preferred, alpha-olefin
  • the structural units of the formula 16 are derived from polyoxyalkylene ethers of lower, unsaturated alcohols of the formula 20.
  • ⁇ -olefin oxides such as ethylene oxide, propylene oxide and / or butylene oxide
  • polymerizable lower unsaturated alcohols are, for example, allyl alcohol, methallyl alcohol, butenols, such as 3-buten-1-ol and 1-buten-3-ol, or methylbutenols, such as 2-methyl-3-buten-1-ol, 2-methyl-3 -buten-2-ol and 3-methyl-3-buten-1-ol. Addition products of ethylene oxide and / or propylene oxide onto allyl alcohol are preferred.
  • etherification products of the polyoxyalkylene ethers can also be prepared by adding ⁇ -olefin oxides, preferably ethylene oxide, propylene oxide and / or butylene oxide, to alcohols of the formula 22 R 32 - OH wherein R 32 is equal to C 1 -C 24 alkyl, C 5 -C 20 cycloalkyl or C 6 -C 18 aryl, by known methods and with polymerizable lower, unsaturated halides of the formula 23 implemented, where W stands for a halogen atom.
  • the chlorides and bromides are preferably used as halides. Suitable production processes are mentioned, for example, in J. March, Advanced Organic Chemistry, 2nd edition, p.357f (1977).
  • the esterification of the polyoxyalkylene ethers takes place by reaction with common esterification agents, such as carboxylic acids, carboxylic acid halides, carboxylic acid anhydrides or carboxylic acid esters with C 1 -C 4 alcohols.
  • esterification agents such as carboxylic acids, carboxylic acid halides, carboxylic acid anhydrides or carboxylic acid esters with C 1 -C 4 alcohols.
  • the halides and anhydrides of C 1 -C 40 alkyl, C 5 -C 10 cycloalkyl or C 6 -C 18 aryl carboxylic acids are preferably used.
  • the esterification is generally carried out at temperatures from 0 to 200 ° C., preferably 10 to 100 ° C.
  • the index m indicates the degree of alkoxylation, i.e. the number of moles of ⁇ -olefin, the per mole of formula 20 or 21 be attached.
  • Suitable primary amines suitable for the preparation of the terpolymers are the following: n-hexylamine, n-octylamine, n-tetradecylamine, n-hexadecylamine, n-stearylamine or also N, N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
  • Secondary amines which are suitable for the preparation of the terpolymers are for example: didecylamine, ditetradecylamine, distearylamine, Dicocos fatty amine, ditallow fatty amine and mixtures thereof.
  • the terpolymers have K values (measured according to Ubbelohde in a 5% strength by weight solution in toluene at 25 ° C.) of 8 to 100, preferably 8 to 50, corresponding to average molecular weights (M w ) of between approximately 500 and 100,000. Suitable examples are listed in EP 606 055.
  • the structural units of the formula 15 are derived from the ⁇ , ⁇ -unsaturated ones Olefins of the formula 19.
  • the aforementioned alkyl, cycloalkyl and aryl radicals have the same meanings as under 8.
  • radicals R 37 and R 38 in formula 25 and R 39 in formula 27 are derived from polyetheramines or alkanolamines of the formulas 28 a) and b), amines of the formula NR 6 R 7 R 8 and, if appropriate, from alcohols having 1 to 30 carbon atoms from.
  • the preparation of the polyetheramines used is, for example, by reductive amination of polyglycols possible. Furthermore, it succeeds Production of polyetheramines with a primary amino group by Addition of polyglycols to acrylonitrile and subsequent catalytic Hydrogenation.
  • polyetheramines are produced by the reaction of Polyethers with phosgene or thionyl chloride and subsequent amination accessible to polyetheramine.
  • Polyetheramines are (e.g.) under the name ® Jeffamine (Texaco) commercially available. Their molecular weight is up to 2000 g / mol and the ethylene oxide / propylene oxide ratio is from 1:10 to 6: 1.
  • Another way to derivatize the structural units of the Formulas 17 and 18 is that instead of the polyether amines Alkanolamine of the formulas 28a) or 28b) used and subsequently one Oxalkylation is subjected.
  • 0.01 to 2 mol, preferably 0.01 to 1 mol, are used per mole of anhydride Alkanolamine used.
  • the reaction temperature is between 50 and 100 ° C (amide formation). In the case of primary amines, the conversion takes place at temperatures above 100 ° C (imide formation).
  • the oxyalkylation is usually carried out at temperatures between 70 and 170 ° C. with catalysis of bases, such as NaOH or NaOCH 3 , by gassing up alkylene oxides, such as ethylene oxide (EO) and / or propylene oxide (PO).
  • bases such as NaOH or NaOCH 3
  • alkylene oxides such as ethylene oxide (EO) and / or propylene oxide (PO).
  • EO ethylene oxide
  • PO propylene oxide
  • 1 to 500, preferably 1 to 100, moles of alkylene oxide are added per mole of hydroxyl groups.
  • alkanolamines Monoethanolamine, diethanolamine, N-methylethanolamine, 3-aminopropanol, Isopropanol, diglycolamine, 2-amino-2-methylpropanol and their mixtures.
  • n-hexylamine n-octylamine, n-tetradecylamine, n-hexadecylamine, n-stearylamine or also N, N-dimethylaminopropylenediamine, cyclohexylamine, dehydroabietylamine and mixtures thereof.
  • secondary amines examples include: Didecylamine, Ditetradecylamine, Distearylamine, Dicocosfettamin, Ditalgfettamin and their mixtures.
  • alcohols examples include: Methanol, ethanol, propanol, isopropanol, n-, sec-, tert-butanol, octanol, tetradecanol, hexadecanol, octadecanol, tallow fatty alcohol, behenyl alcohol and mixtures thereof. Suitable examples are listed in EP-A-688 796.
  • Preferred dicarboxylic acid is maleic acid or maleic anhydride.
  • Copolymers of 10 to 90% by weight of C 6 -C 24 - ⁇ -olefins and 90 to 10% by weight of NC 6 -C 22 alkylmaleimide are preferred.
  • the mixing ratio between A and B can vary within wide limits. So even small amounts B of 100 ppm to 50,000 ppm, preferably 1,000 ppm, are effective up to 10,000 ppm, in fatty acid solutions as a cold additive for A. They can do that Prevent self-crystallization of the fatty acid, which leads to a lowering of the Cloud Points leads, or to prevent the sedimentation of formed crystals and enable easy handling at reduced temperatures. For special solutions to problems can also range from 5% to 50%, in particular Cases up to 90% of ingredient B based on the amount of ingredient A. to be present. In particular, the additive's own pour point lowered and the lubricity of the additive oil improved. As a result, the preferred mixing ratio of A: B is between 1:10 and 1: 0.0001, in particular between 1: 4 and 1: 0.0005, especially between 1: 1 and 1: 0.001.
  • the additives according to the invention are oils in amounts of 0.001 to 0.5% by weight, preferably 0.001 to 0.1 wt .-% added. They can be as such or also dissolved in solvents such as aliphatic and / or aromatic Hydrocarbons or hydrocarbon mixtures such as e.g. Toluene, xylene, Ethylbenzene, decane, pentadecane, gasoline fractions, kerosene or commercial Solvent mixtures such as Solvent Naphtha, ® Shellsol AB, ® Solvesso 150, ® Solvesso 200, ® Exxsol, ® Isopar and ® Shellsol D types can be used.
  • solvents such as aliphatic and / or aromatic Hydrocarbons or hydrocarbon mixtures such as e.g. Toluene, xylene, Ethylbenzene, decane, pentadecane, gasoline fractions, kerosene or commercial Solvent mixtures such as
  • the additives even at low Temperatures of, for example, -40 ° C and lower are easily used can improve the lubricity of the additive oils and their Cold and corrosion protection properties.
  • additives according to the invention also together with one or more oil-soluble Co-additives are used, which alone have the cold flow properties and / or improve the lubricating effect of crude oils, lubricating oils or fuel oils.
  • oil-soluble Co-additives are copolymers containing vinyl acetate or Terpolymers of ethylene, comb polymers, alkylphenol-aldehyde resins and oil-soluble amphiphiles.
  • the additives according to the invention in a mixture with ethylene / vinyl acetate / Vinyl neononanoic acid terpolymers or ethylene vinyl acetate / Vinyl neodecanoate terpolymers to improve the flowability of Mineral oils or mineral oil distillates.
  • the terpolymers of Besides contain neononanoic acid vinyl ester or the neodecanoic acid vinyl ester Ethylene 10 to 35 wt .-% vinyl acetate and 1 to 25 wt .-% of the respective Neo compound.
  • other preferred copolymers contain up to 35% by weight vinyl esters still 0.5 to 20% by weight olefin such as diisobutylene, 4-methylpentene or norbornene.
  • the mixing ratio of the invention Additives with the ethylene / vinyl acetate copolymers described above or the terpolymers of ethylene, vinyl acetate and the vinyl esters of Neononanoic or neodecanoic acid is (in parts by weight) 20: 1 to 1:20, preferably 10: 1 to 1:10.
  • alkylphenol-formaldehyde resins are those of the formula wherein R 50 is C 4 -C 50 alkyl or alkenyl, R 51 is ethoxy and / or propoxy, n is a number from 5 to 100 and p is a number from 0 to 50.
  • the additives according to the invention are used together with comb polymers.
  • comb polymers This is understood to mean polymers in which hydrocarbon radicals having at least 8, in particular at least 10, carbon atoms are bonded to a polymer backbone. They are preferably homopolymers whose alkyl side chains contain at least 8 and in particular at least 10 carbon atoms. In copolymers, at least 20%, preferably at least 30%, of the monomers have side chains (cf. Comb-like Polymers-Structure and Properties; NA Platé and VP Shibaev, J. Polym. Sci. Macromolecular Revs. 1974, 8, 117 ff).
  • Suitable comb polymers are, for example, fumarate / vinyl acetate copolymers (cf. EP 0 153 176 A1), copolymers of a C 6 -C 24 - ⁇ -olefin and an NC 6 -C 22 -alkylmaleimide (cf. EP 0 320 766) , also esterified olefin / maleic anhydride copolymers, polymers and copolymers of ⁇ -olefins and esterified copolymers of styrene and maleic anhydride.
  • fumarate / vinyl acetate copolymers cf. EP 0 153 176 A1
  • copolymers of a C 6 -C 24 - ⁇ -olefin and an NC 6 -C 22 -alkylmaleimide cf. EP 0 320 766
  • esterified olefin / maleic anhydride copolymers polymers and copoly
  • the additives according to the invention are suitable for the lubricating properties of animal, vegetable, mineral or synthetic fuel oils with only to improve low dosing rates. Due to their improved cold properties Can be heated and / or thinned during storage and use to be dispensed with. In addition, they improve the cold and Corrosion protection properties of the additive oils. The The emulsifying properties of the additive oils are less impaired than with the State-of-the-art lubricating additives are the case.
  • the invention Additives are particularly well suited for use in middle distillates. As Middle distillates are referred to as those mineral oils that pass through Distillation of crude oil and boiling in the range of 120 to 450 ° C, for example kerosene, jet fuel, diesel and heating oil.
  • the oils can also contain alcohols contain or consist of such as methanol and / or ethanol.
  • the additives of the invention are used in such middle distillates that 0.05% by weight of sulfur and less, particularly preferably less than 350 ppm Sulfur, especially less than 200 ppm sulfur and in special cases contain less than 50 ppm sulfur. It is generally about those middle distillates which have been subjected to hydrogenating refining, and which therefore only contains small amounts of polyaromatic and polar compounds contain, which give them a natural lubricating effect.
  • the Additives according to the invention are also preferably used in such Middle distillates used, the 95% distillation points below 370 ° C, in particular 350 ° C and in special cases below 330 ° C. You can also use it as a Components are used in lubricating oils.
  • the mixtures can be used alone or together with other additives be used, e.g. with other pour point depressors or Dewaxing aids, with corrosion inhibitors, antioxidants, Sludge inhibitors, dehazers, conductivity improvers, lubricity additives, and Additions to lower the cloud point. Furthermore, they become successful used together with additive packages that include known ashless Contain dispersing additives, detergents, defoamers and corrosion inhibitors.
  • MS is a mixture of a number of aliphatic and cyclic, non-aromatic hydrocarbons.
  • the main components of MS can be found in the following table: Table 6: Components of MS component Concentration range (% by weight) Di-2-ethylhexyl 10 - 25 2-ethylhexyl acid-2-ethylhexyl 10 - 25 C 16 lactones 4 - 20 2-Ethylhexylbutyrat 3 - 10 2-ethylhexanediol- (1,3) glycol mono-n-butyrate 5 - 15 2-ethylhexanol 4 - 10 C 4 to C 8 acetates 2 - 10 2-ethylhexanediol- (1,3) 2 - 5 Ethers and esters ⁇ C 20 0 - 20
  • the lubricating effect of the additives was carried out using an HFRR device from PCS Instruments on additive oils at 60 ° C.
  • the High Frequency Reciprocating Rig Test (HFRR) is described in D. Wei, H. Spikes, Wear, Vol. 111, No.2, p.217, 1986.
  • the results are given as the coefficient of friction and wear scar (WS1.4) , A low coefficient of friction and a low wear scar show a good lubricating effect.
  • Test oils with the following characteristics were used to test the lubricating effect: Test oil 1 Test oil 2 boiling range: 170-344 ° C 182-304 ° C density 0.830 g / cm 3 0.821 g / cm 3 Cloud point -9 ° C -33 ° C sulfur content 45 ppm 6 ppm
  • the boiling data are determined in accordance with ASTM D-86 and the cloud point in accordance with ISO 3015.
  • Wear Scar in Test Oil 1 example additive Wear scar Friction V15 Without 555 ⁇ m 0.33 63 100 ppm according to Ex. 37 385 ⁇ m 0.18 64 100 ppm A1 + 150 ppm B4 381 ⁇ m 0.18 V16 100 ppm A1 421 ⁇ m 0.18 V17 150 ppm B4 549 ⁇ m 0.34 Wear Scar in Test Oil 2 example additive Wear scar Friction V18 without 637 ⁇ m 0.30 65 200 ppm according to Ex. 42 386 0.18 66 200 ppm according to Ex. 48 395 0.18 V19 200 ppm according to example V13 405 0.19

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Lubricants (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Gegenstand der Erfindung sind kältestabilisierte Additive für Brennstofföle mit bis zu 0,05 Gew.-% Schwefelgehalt, enthaltend Fettsäuregemische aus A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen, A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen, sowie B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B), sowie die Verwendung der genannten Mischungen zur Verbesserung der Schmiereigenschaften schwefelarmer Mitteldestillate.

Description

Die vorliegende Erfindung betrifft Mischungen aus Fettsäuren und Paraffindispergatoren mit verbesserter Kältestabilität, sowie deren Verwendung zur Verbesserung der Schmierwirkung von Mitteldestillat-Brennstoffölen.
Mineralöle und Mineralöldestillate, die als Brennstofföle verwendet werden, enthalten im allgemeinen 0,5 Gew.-% und mehr Schwefel, der bei der Verbrennung die Bildung von Schwefeldioxid verursacht. Um die daraus resultierenden Umweltbelastungen zu vermindern, wird der Schwefelgehalt von Brennstoffölen immer weiter abgesenkt. Die Dieseltreibstoffe betreffende Norm EN 590 schreibt in Deutschland zur Zeit einen maximalen Schwefelgehalt von 350 ppm vor. In Skandinavien kommen bereits Brennstofföle mit weniger als 50 ppm und in Ausnahmefällen mit weniger als 10 ppm Schwefel zur Anwendung. Diese Brennstofföle werden in der Regel dadurch hergestellt, dass man die aus dem Erdöl durch Destillation erhaltenen Fraktionen hydrierend raffiniert. Bei der Entschwefelung werden aber auch andere Substanzen entfernt, die den Brennstoffölen eine natürliche Schmierwirkung verleihen. Zu diesen Substanzen zählen unter anderem polyaromatische und polare Verbindungen.
Es hat sich nun aber gezeigt, dass die reibungs- und verschleißmindernden Eigenschaften von Brennstoffölen mit zunehmendem Entschwefelungsgrad schlechter werden. Oftmals sind diese Eigenschaften so mangelhaft, dass an den vom Kraftstoff geschmierten Materialien, wie z.B. den Verteiler-Einspritzpumpen von Dieselmotoren schon nach kurzer Zeit mit Fraßerscheinungen gerechnet werden muss. Der gemäß EN 590 seit dem Jahr 2000 festgesetzte Maximalwert für den 95%-Destillationspunkt von maximal 360°C und die mittlerweile in Skandinavien vorgenommene weitere Absenkung des 95%-Destillationspunkts auf unter 350°C und teilweise unter 330°C verschärft diese Problematik weiter.
Im Stand der Technik sind daher Ansätze beschrieben, die eine Lösung dieses Problems darstellen sollen (sogenannte Lubricity-Additive).
EP-A-0 798 364 offenbart Salze und Amide aus Mono- bis Tetracarbonsäuren mit 2 bis 50 C-Atomen und aliphatischen Mono-/Polyaminen mit 2 bis 50 C-Atomen und 1 bis 10 N-Atomen als Lubricity-Additive für schwefelarmen Dieselkraftstoff. Bevorzugte Amine haben 8 - 20 C-Atome, wie z.B. Cocosfettamin, Talgfettamin und Oleylamin.
WO-A-95/33805 offenbart die Verwendung von Kaltfließverbesserern zur Verbesserung der Schmierwirkung von schwefelarmen Mitteldestillaten. Als geeignete Substanzen werden auch polare stickstoffhaltige Verbindungen genannt, die eine Gruppe NR13 enthalten, wobei R13 einen Kohlenwasserstoffrest mit 8 bis 40 C-Atomen darstellt, und in Form eines Kations vorliegen kann.
WO-A-96/18706 offenbart in Analogie zu WO-A-95/33805 die Verwendung der dort genannten stickstoffhaltigen Verbindungen in Kombination mit Lubricity-Additiven.
WO-A-96/23855 offenbart in Analogie zu WO-A-95/33805 die Verwendung der dort genannten stickstoffhaltigen Verbindungen in Kombination mit Detergent-Additiven.
Die nach dem Stand der Technik verwendeten Fettsäuren haben den Nachteil, dass sie bei der Lagerung bei niedrigen Temperaturen, d.h. oftmals bei Raumtemperatur, meistens bei Temperaturen von 0°C spätestens bei -5°C erstarren, bzw. dass sich kristalline Anteile abscheiden und Probleme beim Handling bereiten. Dieses Problem ist auch durch Verdünnen mit organischen Lösemitteln nur teilweise zu lösen, da auch aus diesen Lösungen Anteile auskristallisieren bzw. die Lösung geliert und erstarrt. Sie müssen für den Einsatz als Lubricity-Additive also stark verdünnt, oder in beheizten Lagerbehältern vorgehalten und über beheizte Leitungen dosiert werden.
Die Wirksamkeit von Kaltfließverbesserern als Lubricity-Additive ist alleine nicht ausreichend, so dass entweder sehr hohe Dosierraten oder Synergisten eingesetzt werden müssen.
Die vorliegender Erfindung zugrunde liegende Aufgabe bestand darin, Lubricity-Additive aufzufinden, die die Schmierwirkung von Mitteldestillaten mit verringerten Dosierraten verbessern, aber selbst in der Kälte homogen, klar und insbesondere fließfähig bleiben.
Es wurde gefunden, dass Mischungen von Fettsäuren mit als Paraffindispergatoren in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindungen auch bei deutlich niedrigeren Temperaturen, teilweise bis unter -20°C, in besonderen Fällen bis unter -30°C und in speziellen Fällen bis unter -40°C über längere Zeit fließfähig und klar bleiben und zudem die Schmierwirkung von Mitteldestillaten effizienter verbessern als reine Fettsäuren des Standes der Technik.
Gegenstand der Erfindung sind somit kältestabilisierte Additive für Brennstofföle mit bis zu 0,05 Gew.-% Schwefelgehalt, enthaltend Fettsäuregemische aus
  • A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
  • A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen, sowie
  • B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B).
  • Ein weiterer Gegenstand der Erfindung sind kältestabilisierte Lösungen der erfindungsgemäßen Additive in organischen Lösemitteln, wobei die Lösungen 1 bis 90 Gew.-% Lösemittel enthalten. Geeignete Lösemittel sind aliphatische und/oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische. Bevorzugt enthalten die erfindungsgemäßen Additive 1 - 80%, speziell 10 - 70%, insbesondere 25 - 60 % Lösemittel. Die erfindungsgemäßen kältestabilisierten Lösungen haben einen Eigenstockpunkt (Pour Point) von unter -40°C, vorzugsweise -45°C, insbesondere -50°C.
    Ein weiterer Gegenstand der Erfindung sind kältestabilisierte Fettsäuregemische aus
  • A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
  • A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen, sowie
  • B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B).
  • Ein weiterer Gegenstand der Erfindung sind Brennstofföle, enthaltend neben einem Mitteldestillat mit bis zu 0,05 Gew.-% Schwefelgehalt Fettsäuregemische aus
  • A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
  • A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen, sowie
  • B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B).
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung der genannten Mischungen aus den Bestandteilen A und B zur Verbesserung der Schmiereigenschaften schwefelarmer Mitteldestillate mit bis zu 0,05 Gew.-% Schwefelgehalt.
    Bevorzugte Fettsäuren (Bestandteil A) sind solche mit 8 - 40 C-Atomen, insbesondere 12 - 22 C-Atomen. Die Alkylreste der Fettsäuren bestehen im wesentlichen aus Kohlenstoff und Wasserstoff. Sie können jedoch weitere Substituenten wie z.B. Hydroxy-, Halogen-, Amino- oder Nitrogruppen tragen, sofern diese den vorwiegenden Kohlenwasserstoffcharakter nicht beeinträchtigen.
    Bestandteil A2) kann eine oder mehrere Doppelbindungen enthalten und natürlicher oder synthetischer Herkunft sein. Bei mehrfach ungesättigten Carbonsäuren können deren Doppelbindungen isoliert oder auch konjugiert sein. Der Anteil der gesättigten Fettsäuren A1) in der Mischung aus A1) und A2) liegt bevorzugt unter 20 Gew.-%, insbesondere unter 10 Gew.-%, speziell unter 5 Gew.-%. In bevorzugten Fettsäuremischungen, worunter hier die Kombination aus A1) und A2) verstanden wird, enthalten mindestens 50 Gew.-%, insbesondere mindestens 75 Gew.-%, speziell mindestens 90 Gew.-% der Bestandteile eine oder mehrere Doppelbindungen. Diese bevorzugten Fettsäure(mischungen) haben Jodzahlen von mindestens 40 g I/100 g, bevorzugt mindestens 80 g I/100 g, insbesondere mindestens 125 g I/100 g.
    Geeignete Fettsäuren sind beispielsweise Laurin-, Tridecan-, Myristin-, Pentadecan, Palmitin-, Margarin-, Stearin-, Isostearin-, Arachin- und Behensäure, Öl- und Erucasäure, Palmitolein-, Myristolein-, Linolsäure, Linolen-, Elaeosterin- und Arachidonsäure, Ricinolsäure sowie aus natürlichen Fetten und Ölen gewonnene Fettsäuremischungen, wie z.B. Cocosöl-, Erdnussöl-, Fisch-, Leinöl-, Palmöl-, Rapsöl-, Ricinen-, Ricinusöl-, Rüböl-, Sojaöl-, Sonnenblumenöl- und Tallölfettsäure.
    Geeignet sind ebenfalls Dicarbonsäuren, wie Dimerfettsäuren und Alkyl- sowie Alkenylbernsteinsäuren mit C8-C50-Alk(en)ylresten, bevorzugt mit C8-C40-, insbesondere mit C12-C22-Alkylresten. Die Alkylreste können linear wie auch verzweigt (oligomerisierte Alkene, PIB) sein.
    Die Fettsäuren können weiterhin 1-40, speziell 1-25 Gew.-% Harzsäuren enthalten, bezogen auf das Gewicht von A1) und A2) zusammen.
    Die erfindungsgemäßen Additive enthalten als Bestandteil B mindestens eine als Paraffindispergator in Mitteldestillaten wirksame polare stickstoffhaltige Verbindung. Paraffindispergatoren reduzieren die Größe der in der Kälte ausfallenden Paraffinkristalle und bewirken, dass die Paraffinpartikel sich nicht absetzen, sondern kolloidal mit deutlich reduziertem Sedimentationsbestreben, dispergiert bleiben. Als Paraffindispergatoren haben sich öllösliche polare Verbindungen mit ionischen oder polaren Gruppen, z.B. Aminsalze und/oder Amide bewährt, die durch Reaktion aliphatischer oder aromatischer Amine, vorzugsweise langkettiger aliphatischer Amine, mit aliphatischen oder aromatischen Mono-, Di-, Tri- oder Tetracarbonsäuren oder deren Anhydriden erhalten werden. Besonders bevorzugte Paraffindispergatoren enthalten Umsetzungsprodukte sekundärer Fettamine mit 8 bis 36 C-Atomen, insbesondere Dicocosfettamin, Ditalgfettamin und Distearylamin. Andere Paraffindispergatoren sind Copolymere des Maleinsäureanhydrids und α,β-ungesättigten Verbindungen, die gegebenenfalls mit primären Monoalkylaminen und/oder aliphatischen Alkoholen umgesetzt werden können, die Umsetzungsprodukte von Alkenylspirobislactonen mit Aminen und Umsetzungsprodukte von Terpolymerisaten auf Basis α,β-ungesättigter Dicarbonsäureanhydride, α,β-ungesättigter Verbindungen und Polyoxyalkylenether niederer ungesättigter Alkohole. Auch Alkylphenol-Formaldehydharze sind als Paraffindispergatoren geeignet. Im folgenden werden einige geeignete Paraffindispergatoren aufgeführt.
    Die nachfolgend genannten Paraffindispergatoren werden zum Teil durch Reaktion von Verbindungen, die eine Acylgruppe enthalten, mit einem Amin hergestellt. Bei diesem Amin handelt es sich um eine Verbindung der Formel NR6R7R8, worin R6, R7 und R8 gleich oder verschieden sein können, und wenigstens eine dieser Gruppen für C8-C36-Alkyl, C6-C36-Cycloalkyl, C8-C36-Alkenyl, insbesondere C12-C24-Alkyl, C12-C24-Alkenyl oder Cyclohexyl steht, und die übrigen Gruppen entweder Wasserstoff, C1-C36-Alkyl, C2-C36-Alkenyl, Cyclohexyl, oder eine Gruppe der Formeln -(A-O)x-E oder -(CH2)n-NYZ bedeuten, worin A für eine Ethylen- oder Propylengruppe steht, x eine Zahl von 1 bis 50, E = H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl, und n 2, 3 oder 4 bedeuten, und Y und Z unabhängig voneinander H, C1-C30-Alkyl oder -(A-O)x bedeuten. Unter Acylgruppe wird hier eine funktionelle Gruppe folgender Formel verstanden: >C=O
  • 1. Umsetzungsprodukte von Alkenyl-spirobislactonen der Formel 4
    Figure 00070001
    wobei R jeweils C8-C200-Alkenyl bedeutet, mit Aminen der Formel NR6R7R8. Geeignete Umsetzungsprodukte sind in EP-A-0 413 279 aufgeführt. Je nach Reaktionsbedingung erhält man bei der Umsetzung von Verbindungen der Formel (4) mit den Aminen Amide oder Amid-Ammoniumsalze.
  • 2. Amide bzw. Ammoniumsalze von Aminoalkylenpolycarbonsäuren mit sekundären Aminen der Formeln 5 und 6
    Figure 00070002
    Figure 00070003
    in denen
    R10 einen geradkettigen oder verzweigten Alkylenrest mit 2 bis 6 Kohlenstoffatomen oder den Rest der Formel 7
    Figure 00070004
    in der R6 und R7 insbesondere Alkylreste mit 10 bis 30, bevorzugt 14 bis 24 C-Atomen bedeuten, wobei die Amidstrukturen auch zum Teil oder vollständig in Form der Ammoniumsalzstruktur der Formel 8
    Figure 00080001
    vorliegen können. Die Amide bzw. Amid-Ammoniumsalze bzw. Ammoniumsalze z.B. der Nitrilotriessigsäure, der Ethylendiamintetraessigsäure oder der Propylen-1,2-diamintetraessigsäure werden durch Umsetzung der Säuren mit 0,5 bis 1,5 Mol Amin, bevorzugt 0,8 bis 1,2 Mol Amin pro Carboxylgruppe erhalten. Die Umsetzungstemperaturen betragen etwa 80 bis 200°C, wobei zur Herstellung der Amide eine kontinuierliche Entfernung des entstandenen Reaktionswasser erfolgt. Die Umsetzung muß jedoch nicht vollständig zum Amid geführt werden, vielmehr können 0 bis 100 Mol-% des eingesetzten Amins in Form des Ammoniumsalzes vorliegen. Unter analogen Bedingungen können auch die unter B1) genannten Verbindungen hergestellt werden.Als Amine der Formel 9
    Figure 00080002
    kommen insbesondere Dialkylamine in Betracht, in denen R6, R7 einen geradkettigen Alkylrest mit 10 bis 30 Kohlenstoffatomen, vorzugsweise 14 bis 24 Kohlenstoffatomen, bedeutet. Im einzelnen seien Dioleylamin, Dipalmitinamin, Dikokosfettamin und Dibehenylamin und vorzugsweise Ditalgfettamin genannt.
  • 3. Quartäre Ammoniumsalze der Formel 10 +NR6R7R8R11 X- wobei R6, R7, R8 die oben gegebene Bedeutung haben und R11 für C1-C30-Alkyl, bevorzugt C1-C22-Alkyl, C1-C30-Alkenyl, bevorzugt C1-C22-Alkenyl, Benzyl oder einen Rest der Formel -(CH2-CH2-O)n-R12 steht, wobei R12 Wasserstoff oder ein Fettsäurerest der Formel C(O)-R13 ist, mit R13 = C6-C40-Alkenyl, n eine Zahl von 1 bis 30 und X für Halogen, bevorzugt Chlor, oder ein Methosulfat steht. Beispielhaft für derartige quartäre Ammoniumsalze seien genannt: Dihexadecyl-dimethylammoniumchlorid, Distearyldimethylammoniumchlorid, Quaternisierungsprodukte von Estern des Di- und Triethanolamins mit langkettigen Fettsäuren (Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Behensäure, Ölsäure und Fettsäuremischungen, wie Cocosfettsäure, Talgfettsäure, hydrierte Talgfettsäure, Tallölfettsäure), wie N-Methyltriethanolammoniumdistearylester-chlorid, N-Methyltriethanolammoniumdistearylestermethosulfat, N,N-Dimethyldiethanolammoniumdistearylesterchlorid, N-Methyltriethanolammoniumdioleylester-chlorid, N-Methyltriethanolammoniumtrilaurylestermethosulfat, N-Methyltriethanolammoniumtristearylestermethosulfat und deren Mischungen.
  • 4. Verbindungen der Formel 11
    Figure 00090001
    in denen R14 für CONR6R7 oder CO2 - +H2NR6R7 steht,
    R15 und R16 für H, CONR17 2, CO2R17 oder OCOR17, -OR17, -R17 oder -NCOR17 stehen, und
    R17 Alkyl, Alkoxyalkyl oder Polyalkoxyalkyl ist und mindestens 10 Kohlenstoffatome aufweist. Bevorzugte Carbonsäuren bzw. Säurederivate sind Phthalsäure(anhydrid), Trimellit, Pyromellitsäure(dianhydrid), Isophthalsäure, Terephthalsäure, Cyclohexan-dicarbonsäure(anhydrid), Maleinsäure(anhydrid), Alkenylbernsteinsäure(anhydrid). Die Formulierung (anhydrid) bedeutet, dass auch die Anhydride der genannten Säuren bevorzugte Säurederivate sind.Wenn die Verbindungen der Formel (11) Amide oder Aminsalze sind, sind sie vorzugsweise von einem sekundären Amin, das eine Wasserstoff und Kohlenstoff enthaltende Gruppe mit mindestens 10 Kohlenstoffatomen enthält, erhalten.Es ist bevorzugt, dass R17 10 bis 30, insbesondere 10 bis 22, z.B. 14 bis 20 Kohlenstoffatome enthält und vorzugsweise geradkettig oder an der 1- oder 2-Position verzweigt ist. Die anderen Wasserstoff und Kohlenstoff enthaltenden Gruppen können kürzer sein, z.B. weniger als 6 Kohlenstoffatome enthalten, oder können, falls gewünscht, mindestens 10 Kohlenstoffatome aufweisen. Geeignete Alkylgruppen schließen Methyl, Ethyl, Propyl, Hexyl, Decyl, Dodecyl, Tetradecyl, Eicosyl und Docosyl (Behenyl) ein.Des weiteren sind Polymere geeignet, die mindestens eine Amid- oder Ammoniumgruppe direkt an das Gerüst des Polymers gebunden enthalten, wobei die Amid- oder Ammoniumgruppe mindestens eine Alkylgruppe von mindestens 8 C-Atomen am Stickstoffatom trägt. Derartige Polymere können auf verschiedene Arten hergestellt werden. Eine Art ist, ein Polymer zu verwenden, das mehrere Carbonsäure oder -Anhydridgruppen enthält, und dieses Polymer mit einem Amin der Formel NHR6R7 umzusetzen, um das gewünschte Polymer zu erhalten. Als Polymere sind dazu allgemein Copolymere aus ungesättigten Estern wie C1-C40-Alkyl(meth)acrylaten, Fumarsäuredi(C1-C40-alkylestern), C1-C40-Alkylvinylethern, C1-C40-Alkylvinylestern oder C2-C40-Olefinen (linear, verzweigt, aromatisch) mit ungesättigten Carbonsäuren bzw. deren reaktiven Derivaten, wie z.B. Carbonsäureanhydriden (Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure, Tetrahydrophthalsäure, Citraconsäure, bevorzugt Maleinsäureanhydrid) geeignet.Carbonsäuren werden vorzugsweise mit 0,1 bis 1,5 mol, insbesondere 0,5 bis 1,2 mol Amin pro Säuregruppe, Carbonsäureanhydride vorzugsweise mit 0,1 bis 2,5, insbesondere 0,5 bis 2,2 mol Amin pro Säureanhydridgruppe umgesetzt, wobei je nach Reaktionsbedingungen Amide, Ammoniumsalze, Amid-Ammoniumsalze oder Imide entstehen. So ergeben Copolymere, die ungesättigte Carbonsäureanhydride enthalten, bei der Umsetzung mit einem sekundären Amin auf Grund der Reaktion mit der Anhydridgruppe zur Hälfte Amid und zur Hälfte Aminsalze. Durch Erhitzen kann unter Bildung des Diamids Wasser abgespalten werden.Besonders geeignete Beispiele amidgruppenhaltiger Polymere zur erfindungsgemäßen Verwendung sind:
  • 5. Copolymere (a) eines Dialkylfumarats, -maleats, -citraconats oder -itaconats mit Maleinsäureanhydrid, oder (b) von Vinylestern, z.B. Vinylacetat oder Vinylstearat mit Maleinsäureanhydrid, oder (c) eines Dialkylfumarats, -maleats, -citraconats oder -itaconats mit Maleinsäureanhydrid und Vinylacetat. Besonders geeignete Beispiele für diese Polymere sind Copolymere von Didodecylfumarat, Vinylacetat und Maleinsäureanhydrid; Ditetradecylfumarat, Vinylacetat und Maleinsäureanhydrid; Di-hexadecylfumarat, Vinylacetat und Maleinsäureanhydrid; oder den entsprechenden Copolymeren, bei denen anstelle des Fumarats das Itaconat verwendet wird. In den oben genannten Beispielen geeigneter Polymere wird das gewünschte Amid durch Umsetzung des Polymers, das Anhydridgruppen enthält, mit einem sekundären Amin der Formel HNR6R7 (gegebenenfalls außerdem mit einem Alkohol, wenn ein Esteramid gebildet wird) erhalten. Wenn Polymere, die eine Anhydridgruppe enthalten, umgesetzt werden, werden die resultierenden Aminogruppen Ammoniumsalze und Amide sein. Solche Polymere können verwendet werden, mit der Maßgabe, dass sie mindestens zwei Amidgruppen enthalten.Es ist wesentlich, dass das Polymer, das mindestens zwei Amidgruppen enthält, mindestens eine Alkylgruppe mit mindestens 10 Kohlenstoffatomen enthält. Diese langkettige Gruppe, die eine geradkettige oder verzweigte Alkylgruppe sein kann, kann über das Stickstoffatom der Amidgruppe gebunden vorliegen.Die dafür geeigneten Amine können durch die Formel R6R7NH und die Polyamine durch R6NH[R19NH]xR7 wiedergegeben werden, wobei R19 eine zweiwertige Kohlenwasserstoffgruppe, vorzugsweise eine Alkylen- oder kohlenwasserstoffsubstituierte Alkylengruppe, und x eine ganze Zahl, vorzugsweise zwischen 1 und 30 ist. Vorzugsweise enthalten einer der beiden oder beide Reste R6 und R7 mindestens 10 Kohlenstoffatome, beispielsweise 10 bis 20 Kohlenstoffatome, zum Beispiel Dodecyl, Tetradecyl, Hexadecyl oder Octadecyl. Beispiele geeigneter sekundärer Amine sind Dioctylamin und solche, die Alkylgruppen mit mindestens 10 Kohlenstoffatomen enthalten, beispielsweise Didecylamin, Didodecylamin, Dicocosamin (d.h. gemischte C12-C14-Amine), Dioctadecylamin, Hexadecyloctadecylamin, Di-(hydriertes Talg)-Amin (annähernd 4 Gew.-% n-C14-Alkyl, 30 Gew.-% n-C10-Alkyl, 60 Gew.-% n-C18-Alkyl, der Rest ist ungesättigt).Beispiele geeigneter Polyamine sind N-Octadecylpropandiamin, N,N'-Dioctadecylpropandiamin, N-Tetradecylbutandiamin und N,N'-Dihexadecylhexandiamin. N-Cocospropylendiamin (C12/C14-Alkylpropylen-diamin), N-Talgpropylendiamin (C16/C18-Alkylpropylendiamin).Die amidhaltigen Polymere haben üblicherweise ein durchschnittliches Molekulargewicht (Zahlenmittel) von 1000 bis 500 000, zum Beispiel 10 000 bis 100 000.
  • 6. Copolymere des Styrols, seiner Derivate oder aliphatischer Olefine mit 2 bis 40 C-Atomen, bevorzugt mit 6 bis 20 C-Atomen und olefinisch ungesättigten Carbonsäuren oder Carbonsäureanhydriden, die mit Aminen der Formel HNR6R7 umgesetzt sind. Die Umsetzung kann vor oder nach der Polymerisation vorgenommen werden. Im einzelnen leiten sich die Struktureinheiten der Copolymere von z.B. Maleinsäure, Fumarsäure, Tetrahydrophthalsäure, Citraconsäure, bevorzugt Maleinsäureanhydrid ab. Sie können sowohl in Form ihrer Homopolymeren als auch der Copolymeren eingesetzt werden. Als Comonomere sind geeignet: Styrol und Alkylstyrole, geradkettige und verzweigte Olefine mit 2 bis 40 Kohlenstoffatomen, sowie deren Mischungen untereinander. Beispielsweise seien genannt: Styrol, α-Methylstyrol, Dimethylstyrol, α-Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Ethylen, Propylen, n-Butylen, Diisobutylen, Decen, Dodecen, Tetradecen, Hexadecen, Octadecen. Bevorzugt sind Styrol und Isobuten, besonders bevorzugt ist Styrol.Als Polymere seien beispielsweise im einzelnen genannt: Polymaleinsäure, ein molares, alternierend aufgebautes Styrol/Maleinsäure-Copolymer, statistisch aufgebaute Styrol/Maleinsäure-Copolymere im Verhältnis 10:90 und ein alternierendes Copolymer aus Maleinsäure und i-Buten. Die molaren Massen der Polymeren betragen im allgemeinen 500 g/mol bis 20 000 g/mol, bevorzugt 700 bis 2000 g/mol.Die Umsetzung der Polymeren oder Copolymeren mit den Aminen erfolgt bei Temperaturen von 50 bis 200°C im Verlauf von 0,3 bis 30 Stunden. Das Amin wird dabei in Mengen von ungefähr einem Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, d.i. ca.0,9 bis 1,1 Mol/Mol, angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil. Werden größere Mengen als ein Mol angewandt, erhält man zum Teil Ammoniumsalze, da die Bildung einer zweiten Amidgruppierung höhere Temperaturen, längere Verweilzeiten und Wasserauskreisen erfordert. Werden geringere Mengen als ein Mol angewandt, findet keine vollständige Umsetzung zum Monoamid statt und man erhält eine dementsprechend verringerte Wirkung.Anstelle der nachträglichen Umsetzung der Carboxylgruppen in Form des Dicarbonsäureanhydrids mit Aminen zu den entsprechenden Amiden kann es manchmal von Vorteil sein, die Monoamide der Monomeren herzustellen und dann bei der Polymerisation direkt einzupolymerisieren. Meist ist das jedoch technisch viel aufwendiger, da sich die Amine an die Doppelbindung der monomeren Mono- und Dicarbonsäure anlagern können und dann keine Copolymerisation mehr möglich ist.
  • 7. Copolymere, bestehend aus 10 bis 95 Mol-% eines oder mehrerer Alkylacrylate oder Alkylmethacrylate mit C1-C26-Alkylketten und aus 5 bis 90 Mol-% einer oder mehrerer ethylenisch ungesättigter Dicarbonsäuren oder deren Anhydriden, wobei das Copolymere weitgehend mit einem oder mehreren primären oder sekundären Aminen zum Monoamid oder Amid/Ammoniumsalz der Dicarbonsäure umgesetzt ist. Die Copolymeren bestehen zu 10 bis 95 Mol-%, bevorzugt zu 40 bis 95 Mol-% und besonders bevorzugt zu 60 bis 90 Mol-% aus Alkyl(meth)acrylaten und zu 5 bis 90 Mol-%, bevorzugt zu 5 bis 60 Mol-% und besonders bevorzugt zu 10 bis 40 Mol-% aus den olefinisch ungesättigten Dicarbonsäurederivaten. Die Alkylgruppen der Alkyl(meth)acrylate enthalten aus 1 bis 26, bevorzugt 4 bis 22 und besonders bevorzugt 8 bis 18 Kohlenstoffatome. Sie sind bevorzugt geradkettig und unverzweigt. Es können jedoch auch bis zu 20 Gew.-% cyclische und/oder verzweigte Anteile enthalten sein.Beispiele für besonders bevorzugte Alkyl(meth)acrylate sind n-Octyl(meth)acrylat, n-Decyl(meth)acrylat, n-Dodecyl(meth)acrylat, n-Tetradecyl(meth)acrylat, n-Hexadecyl(meth)acrylat und n-Octadecyl(meth)acrylat sowie Mischungen davon.Beispiele ethylenisch ungesättigter Dicarbonsäuren sind Maleinsäure, Tetrahydrophthalsäure, Citraconsäure und Itaconsäure bzw. deren Anhydride sowie Fumarsäure. Bevorzugt ist Maleinsäureanhydrid.Als Amine kommen Verbindungen der Formel HNR6R7 in Betracht.In der Regel ist es von Vorteil, die Dicarbonsäuren in Form der Anhydride, soweit verfügbar, bei der Copolymerisation einzusetzen, z.B. Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid und Tetrahydrophthalsäureanhydrid, da die Anhydride in der Regel besser mit den (Meth)acrylaten copolymerisieren. Die Anhydridgruppen der Copolymeren können dann direkt mit den Aminen umgesetzt werden.
    Die Umsetzung der Polymeren mit den Aminen erfolgt bei Temperaturen von 50 bis 200°C im Verlauf von 0,3 bis 30 Stunden. Das Amin wird dabei in Mengen von ungefähr einem bis zwei Mol pro Mol einpolymerisiertem Dicarbonsäureanhydrid, d.i. ca. 0,9 bis 2,1 Mol/Mol angewandt. Die Verwendung größerer oder geringerer Mengen ist möglich, bringt aber keinen Vorteil. Werden größere Mengen als zwei Mol angewandt, liegt freies Amin vor. Werden geringere Mengen als ein Mol angewandt, findet keine vollständige Umsetzung zum Monoamid statt und man erhält eine dementsprechend verringerte Wirkung.In einigen Fällen kann es von Vorteil sein, wenn die Amid/Ammoniumsalzstruktur aus zwei unterschiedlichen Aminen aufgebaut wird. So kann beispielsweise ein Copolymer aus Laurylacrylat und Maleinsäureanhydrid zuerst mit einem sekundären Amin, wie hydriertem Ditalgfettamin zum Amid umgesetzt werden, wonach die aus dem Anhydrid stammende freie Carboxylgruppe mit einem anderen Amin, z.B. 2-Ethylhexylamin zum Ammoniumsalz neutralisiert wird. Genauso ist die umgekehrte Vorgehensweise denkbar: Zuerst wird mit Ethylhexylamin zum Monoamid, dann mit Ditalgfettamin zum Ammoniumsalz umgesetzt. Vorzugsweise wird dabei mindestens ein Amin verwendet, welches mindestens eine geradkettige, unverzweigte Alkylgruppe mit mehr als 16 Kohlenstoffatomen besitzt. Es ist dabei nicht erheblich, ob dieses Amin am Aufbau der Amidstruktur oder als Ammoniumsalz der Dicarbonsäure vorliegt.Anstelle der nachträglichen Umsetzung der Carboxylgruppen bzw. des Dicarbonsäureanhydrids mit Aminen zu den entsprechenden Amiden oder Amid/Ammoniumsalzen, kann es manchmal von Vorteil sein, die Monoamide bzw. Amid/Ammoniumsalze der Monomeren herzustellen und dann bei der Polymerisation direkt einzupolymerisieren. Meist ist das jedoch technisch viel aufwendiger, da sich die Amine an die Doppelbindung der monomeren Dicarbonsäure anlagern können und dann keine Copolymerisation mehr möglich ist.
  • 8. Terpolymere auf Basis von α,β-ungesättigten Dicarbonsäureanhydriden, α,β-ungesättigten Verbindungen und Polyoxyalkylenethern von niederen, ungesättigten Alkoholen, die dadurch gekennzeichnet sind, dass sie 20 - 80, bevorzugt 40 - 60 Mol-% an bivalenten Struktureinheiten der Formeln 12 und/oder 14, sowie gegebenenfalls 13 enthalten, wobei die Struktureinheiten 13 von nicht umgesetzten Anhydridresten stammen,
    Figure 00160001
    Figure 00170001
    Figure 00170002
    wobei
    R22 und R23 unabhängig voneinander Wasserstoff oder Methyl,
    a, b gleich Null oder Eins und a + b gleich Eins,
    R24 und R25 gleich oder verschieden sind und für die Gruppen -NHR6, N(R6)2 und/oder -OR27 stehen, und R27 für ein Kation der Formel H2N(R6)2 oder H3NR6 steht,
    19 - 80 Mol-%, bevorzugt 39-60 Mol-% an bivalenten Struktureinheiten der Formel 15
    Figure 00170003
    worin
    R28 Wasserstoff oder C1-C4-Alkyl und
    R29 C6-C60-Alkyl oder C6-C18-Aryl bedeuten und
    1 - 30 Mol-%, bevorzugt 1 - 20 Mol-% an bivalenten Struktureinheiten der Formel 16
    Figure 00180001
  • worin
    R30 Wasserstoff oder Methyl,
    R31 Wasserstoff oder C1-C4-Alkyl,
    R33 C1-C4-Alkylen,
    m eine Zahl von 1 bis 100,
    R32 C1-C24-Alkyl, C5-C20-Cycloalkyl, C6-C18-Aryl oder -C(O)-R34, wobei
    R34 C1-C40-Alkyl, C5-C10-Cycloalkyl oder C6-C18-Aryl,
    enthalten.
    Die vorgenannten Alkyl-, Cycloalkyl- und Arylreste können gegebenenfalls substituiert sein. Geeignete Substituenten der Alkyl- und Arylreste sind beispielsweise (C1-C6)-Alkyl, Halogene, wie Fluor, Chlor, Brom und Jod, bevorzugt Chlor und (C1-C6)-Alkoxy.
    Alkyl steht hier für einen geradkettigen oder verzweigten Kohlenwasserstoffrest. Im einzelnen seien genannt: n-Butyl, tert.-Butyl, n-Hexyl, n-Octyl, Decyl, Dodecyl, Tetradecyl, Hexadecyl, Octadecyl, Dodecenyl, Tetrapropenyl, Tetradecenyl, Pentapropenyl, Hexadecenyl, Octadecenyl und Eicosanyl oder Mischungen, wie Cocosalkyl, Talgfettalkyl und Behenyl.
    Cycloalkyl steht hier für einen cyclischen aliphatischen Rest mit 5 - 20 Kohlenstoffatomen. Bevorzugte Cycloalkylreste sind Cyclopentyl und Cyclohexyl.
    Aryl steht hier für einen gegebenenfalls substituiertes aromatisches Ringsystem mit 6 bis 18 Kohlenstoffatomen.
    Die Terpolymere bestehen aus den bivalenten Struktureinheiten der Formeln 12 und 14 sowie 15 und 16 und ggf. 13. Sie enthalten lediglich noch in an sich bekannter Weise die bei der Polymerisation durch Initiierung, Inhibierung und Kettenabbruch entstandenen Endgruppen.
    Im einzelnen leiten sich Struktureinheiten der Formeln 12 bis 14 von α,β-ungesättigten Dicarbonsäureanhydriden der Formeln 17 und 18
    Figure 00190001
    Figure 00190002
    wie Maleinsäureanhydrid, Itaconsäureanhydrid, Citraconsäureanhydrid, bevorzugt Maleinsäureanhydrid, ab.
    Die Struktureinheiten der Formel 15 leiten sich von den α,β-ungesättigten Verbindungen der Formel 19 ab.
    Figure 00190003
    Beispielhaft seien die folgenden α,β-ungesättigten Olefine genannt: Styrol, α-Methylstyrol, Dimethylstyrol, α-Ethylstyrol, Diethylstyrol, i-Propylstyrol, tert.-Butylstyrol, Diisobutylen und α-Olefine, wie Decen, Dodecen, Tetradecen, Pentadecen, Hexadecen, Octadecen, C20-α-Olefin, C24-α-Olefin, C30-α-Olefin, Tripropenyl, Tetrapropenyl, Pentapropenyl sowie deren Mischungen. Bevorzugt sind α-Olefine mit 10 bis 24 C-Atomen und Styrol, besonders bevorzugt sind α-Olefine mit 12 bis 20 C-Atomen.
    Die Struktureinheiten der Formel 16 leiten sich von Polyoxyalkylenethern niederer, ungesättigter Alkohole der Formel 20 ab.
    Figure 00200001
    Bei den Monomeren der Formel 20 handelt es sich um Veretherungsprodukte (R32 = -C(O)R34) oder Veresterungsprodukte (R32 = -C(O)R34) von Polyoxyalkylenethern (R32 = H).
    Die Polyoxyalkylenether (R32 = H) lassen sich nach bekannten Verfahren durch Anlagerung von α-Olefinoxiden, wie Ethylenoxid, Propylenoxid und/oder Butylenoxid an polymerisierbare niedere, ungesättigte Alkohole der Formel 21
    Figure 00200002
    herstellen. Solche polymerisierbaren niederen ungesättigten Alkohole sind z.B. Allylalkohol, Methallylalkohol, Butenole, wie 3-Buten-1-ol und 1-Buten-3-ol oder Methylbutenole, wie 2-Methyl-3-buten-1-ol, 2-Methyl-3-buten-2-ol und 3-Methyl-3-buten-1-ol. Bevorzugt sind Anlagerungsprodukte von Ethylenoxid und/oder Propylenoxid an Allylalkohol.
    Eine nachfolgende Veretherung dieser Polyoxyalkylenether zu Verbindungen der Formel 20 mit R32 = C1-C24-Alkyl, Cycloalkyl oder Aryl erfolgt nach an sich bekannten Verfahren. Geeignete Verfahren sind z.B. aus J. March, Advanced Organic Chemistry, 2. Auflage, S. 357f (1977) bekannt. Diese Veretherungsprodukte der Polyoxyalkylenether lassen sich auch herstellen, indem man α-Olefinoxide, bevorzugt Ethylenoxid, Propylenoxid und/oder Butylenoxid an Alkohole der Formel 22 R32 - OH worin R32 gleich C1-C24-Alkyl, C5-C20-Cycloalkyl oder C6-C18-Aryl, nach bekannten Verfahren anlagert und mit polymerisierbaren niederen, ungesättigten Halogeniden der Formel 23
    Figure 00210001
    umsetzt, wobei W für ein Halogenatom steht. Als Halogenide werden bevorzugt die Chloride und Bromide eingesetzt. Geeignete Herstellungsverfahren werden z.B. in J. March, Advanced Organic Chemistry, 2.Auflage, S.357f (1977) genannt. Die Veresterung der Polyoxyalkylenether (R32 = -C(O)-R34) erfolgt durch Umsetzung mit gängigen Veresterungsmitteln, wie Carbonsäuren, Carbonsäurehalogeniden, Carbonsäureanhydriden oder Carbonsäureestern mit C1-C4-Alkoholen. Bevorzugt werden die Halogenide und Anhydride von C1-C40-Alkyl-, C5-C10-Cycloalkyl- oder C6-C18Arylcarbonsäuren verwendet. Die Veresterung wird im allgemeinen bei Temperaturen von 0 bis 200°C, vorzugsweise 10 bis 100°C durchgeführt.
    Bei den Monomeren der Formel 20 gibt der Index m den Alkoxylierungsgrad, d.h. die Anzahl der Mole an α-Olefin an, die pro Mol der Formel 20 oder 21 angelagert werden.
    Als zur Herstellung der Terpolymere geeignete primäre Amine seien beispielsweise die folgenden genannt:
    n-Hexylamin, n-Octylamin, n-Tetradecylamin, n-Hexadecylamin, n-Stearylamin oder auch N,N-Dimethylaminopropylendiamin, Cyclohexylamin, Dehydroabietylamin sowie deren Mischungen.
    Als zur Herstellung der Terpolymere geeignete sekundäre Amine seien beispielsweise genannt: Didecylamin, Ditetradecylamin, Distearylamin, Dicocosfettamin, Ditalgfettamin und deren Mischungen.
    Die Terpolymeren besitzen K-Werte (gemessen nach Ubbelohde in 5 gew.-%iger Lösung in Toluol bei 25°C) von 8 bis 100, bevorzugt 8 bis 50, entsprechend mittleren Molekulargewichten (Mw) zwischen ca. 500 und 100.000. Geeignete Beispiele sind in EP 606 055 aufgeführt.
    Umsetzungsprodukte von Alkanolaminen und/oder Polyetheraminen mit Polymeren enthaltend Dicarbonsäureanhydridgruppen, dadurch gekennzeichnet, dass sie 20 - 80, bevorzugt 40 - 60 Mol-% an bivalenten Struktureinheiten der Formeln 25 und 27 und gegebenenfalls 26
    Figure 00220001
    Figure 00220002
    Figure 00230001
    wobei
    R22 und R23
    unabhängig voneinander Wasserstoff oder Methyl,
    a, b
    gleich Null oder 1 und a + b gleich 1,
    R37 =
    -OH, -O-[C1-C30-Alkyl], -NR6R7, -OsNrR6R7H2
    R38 =
    R37 oder NR6R39
    R39 =
    -(A-O)x-E
    mit
    A =
    Ethylen- oder Propylengruppe
    x =
    1 bis 50
    E =
    H, C1-C30-Alkyl, C5-C12-Cycloalkyl oder C6-C30-Aryl
    bedeuten, und
    80 - 20 Mol-%, bevorzugt 60 - 40 Mol-% an bivalenten Struktureinheiten der Formel 15 enthalten.
    Im einzelnen leiten sich die Struktureinheiten der Formeln 25; 26 und 27 von α,β-ungesättigten Dicarbonsäureanhydriden der Formeln 17 und/oder 18 ab.
    Die Struktureinheiten der Formel 15 leiten sich von den α,β-ungesättigten Olefinen der Formel 19 ab. Die vorgenannte Alkyl-, Cycloalkyl- und Arylreste haben die gleichen Bedeutungen wie unter 8.
    Die Reste R37 und R38 in Formel 25 bzw. R39 in Formel 27 leiten sich von Polyetheraminen oder Alkanolaminen der Formeln 28 a) und b), Aminen der Formel NR6R7R8 sowie gegebenenfalls von Alkoholen mit 1 bis 30 Kohlenstoffatomen ab.
    Figure 00240001
    Figure 00240002
    Darin bedeuten
    R53
    Wasserstoff, C6-C40-Alkyl oder
    Figure 00240003
    R54
    Wasserstoff, C1-C4-Alkyl
    R55
    Wasserstoff, C1- bis C4-Alkyl, C5- bis C12-Cycloalkyl oder C6- bis C30-Aryl
    R56, R57
    unabhängig voneinander Wasserstoff, C1- bis C22-Alkyl, C2- bis C22-Alkenyl oder Z - OH
    Z
    C2- bis C4-Alkylen
    n
    eine Zahl zwischen 1 und 1000.
    Zur Derivatisierung der Struktureinheiten der Formeln 17 und 18 wurden vorzugsweise Gemische aus mindestens 50 Gew.-% Alkylaminen der Formel HNR6R7R8 und höchstens 50 Gew.-% Polyetheraminen, Alkanolaminen der Formeln 28 a) und b) verwendet.
    Die Herstellung der eingesetzten Polyetheramine ist beispielsweise durch reduktive Aminierung von Polyglykolen möglich. Des weiteren gelingt die Herstellung von Polyetheraminen mit einer primären Aminogruppe durch Addition von Polyglykolen an Acrylnitril und anschließende katalytische Hydrierung. Darüber hinaus sind Polyetheramine durch Umsetzung von Polyethern mit Phosgen bzw. Thionylchlorid und anschließende Aminierung zum Polyetheramin zugänglich. Die erfindungsgemäß eingesetzten Polyetheramine sind (z.B.) unter der Bezeichnung ® Jeffamine (Texaco) kommerziell erhältlich. Ihr Molekulargewicht beträgt bis zu 2000 g/mol und das Ethylenoxid-/Propylenoxid-Verhältnis beträgt von 1:10 bis 6:1. Eine weitere Möglichkeit zur Derivatisierung der Struktureinheiten der Formeln 17 und 18 besteht darin, dass anstelle der Polyetheramine ein Alkanolamin der Formeln 28a) oder 28b) eingesetzt und nachfolgend einer Oxalkylierung unterworfen wird.
    Pro Mol Anhydrid werden 0,01 bis 2 Mol, bevorzugt 0,01 bis 1 Mol Alkanolamin eingesetzt. Die Reaktionstemperatur beträgt zwischen 50 und 100°C (Amidbildung). Im Falle von primären Aminen erfolgt die Umsetzung bei Temperaturen oberhalb 100°C (Imidbildung).
    Die Oxalkylierung erfolgt üblicherweise bei Temperaturen zwischen 70 und 170°C unter Katalyse von Basen, wie NaOH oder NaOCH3, durch Aufgasen von Alkylenoxiden, wie Ethylenoxid (EO) und/oder Propylenoxid (PO). Üblicherweise werden pro Mol Hydroxylgruppen 1 bis 500, bevorzugt 1 bis 100 Mol Alkylenoxid zugegeben.
    Als geeignete Alkanolamine seien beispielsweise genannt: Monoethanolamin, Diethanolamin, N-Methylethanolamin, 3-Aminopropanol, Isopropanol, Diglykolamin, 2-Amino-2-methylpropanol und deren Mischungen.
    Als primäre Amine seien beispielsweise die folgenden genannt:
    n-Hexylamin, n-Octylamin, n-Tetradecylamin, n-Hexadecylamin, n-Stearylamin oder auch N,N-Dimethylaminopropylendiamin, Cyclohexylamin, Dehydroabietylamin sowie deren Mischungen.
    Als sekundäre Amine seien beispielsweise genannt:
    Didecylamin, Ditetradecylamin, Distearylamin, Dicocosfettamin, Ditalgfettamin und deren Mischungen.
    Als Alkohole seien beispielsweise genannt:
    Methanol, Ethanol, Propanol, Isopropanol, n-, sek.-, tert.-Butanol, Octanol, Tetradecanol, Hexadecanol, Octadecanol, Talgfettalkohol, Behenylalkohol und deren Mischungen. Geeignete Beispiele sind in EP-A-688 796 aufgeführt.
    Co- und Terpolymere von N-C6-C24-Alkylmaleinimid mit C1-C30-Vinylestern, Vinylethern und/oder Olefinen mit 1 bis 30 C-Atomen, wie z.B. Styrol oder α-Olefinen. Diese sind zum einen durch Umsetzung eines Anhydridgruppen enthaltenden Polymers mit Aminen der Formel H2NR6 oder durch Imidierung der Dicarbonsäure und anschließende Copolymerisation zugänglich. Bevorzugte Dicarbonsäure ist dabei Maleinsäure bzw. Maleinsäureanhydrid. Bevorzugt sind dabei Copolymere aus 10 bis 90 Gew.-% C6-C24-α-Olefinen und 90 bis 10 Gew.-% N-C6-C22-Alkylmaleinsäureimid.
    Das Mischungsverhältnis zwischen A und B kann in weiten Grenzen variieren. So wirken schon geringe Mengen B von 100 ppm bis 50.000 ppm, bevorzugt 1.000 ppm bis 10.000 ppm, in Fettsäurelösungen als Kälteadditiv für A. Sie vermögen dabei die Eigenkristallisation der Fettsäure zu unterbinden, was zu einer Absenkung des Cloud Points führt, bzw. die Sedimentation gebildeter Kristalle zu verhindern und ermöglichen so ein problemloses Handling bei abgesenkten Temperaturen. Für spezielle Problemlösungen können aber auch von 5 % bis zu 50 %, in besonderen Fällen bis zu 90 % des Bestandteils B bezogen auf die Menge des Bestandteils A anwesend sein. Dabei werden insbesondere der Eigenstockpunkt des Additivs abgesenkt und die Schmierfähigkeit des additivierten Öls verbessert. Demzufolge liegt das bevorzugte Mischungsverhältnis von A:B zwischen 1 : 10 und 1 : 0,0001, insbesondere zwischen 1 : 4 und 1 : 0,0005, speziell zwischen 1:1 und 1 : 0,001.
    Die erfindungsgemäßen Additive werden Ölen in Mengen von 0,001 bis 0,5 Gew.-%, bevorzugt 0,001 bis 0,1 Gew.-% zugesetzt. Dabei können sie als solche oder auch gelöst in Lösemitteln, wie z.B. aliphatischen und/oder aromatischen Kohlenwasserstoffen oder Kohlenwasserstoffgemischen wie z.B. Toluol, Xylol, Ethylbenzol, Decan, Pentadecan, Benzinfraktionen, Kerosin oder kommerziellen Lösemittelgemischen wie Solvent Naphtha, ® Shellsol AB, ® Solvesso 150, ® Solvesso 200, ® Exxsol-, ® lsopar- und ® Shellsol D-Typen eingesetzt werden. Bevorzugt enthalten die erfindungsgemäßen Additive 1 - 80 %, speziell 10 - 70 %, insbesondere 25 - 60 % Lösemittel. Die Additive, die auch bei niedrigen Temperaturen von beispielsweise -40°C und niedriger problemlos eingesetzt werden können, verbessern die Schmierfähigkeit der additivierten Öle sowie deren Kälte- und Korrosionsschutzeigenschaften.
    Zur Herstellung von Additivpaketen für spezielle Problemlösungen können die erfindungsgemäßen Additive auch zusammen mit einem oder mehreren öllöslichen Co-Additiven eingesetzt werden, die bereits für sich allein die Kaltfließeigenschaften und/oder Schmierwirkung von Rohölen, Schmierölen oder Brennölen verbessern. Beispiele solcher Co-Additive sind Vinylacetat enthaltende Copolymerisate oder Terpolymerisate des Ethylens, Kammpolymere, Alkylphenol-Aldehydharze sowie öllösliche Amphiphile.
    So haben sich Mischungen der erfindungsgemäßen Additive mit Copolymerisaten hervorragend bewährt, die 10 bis 40 Gew.-% Vinylacetat und 60 bis 90 Gew.-% Ethylen enthalten. Nach einer weiteren Ausgestaltung der Erfindung setzt man die erfindungsgemäßen Additive in Mischung mit Ethylen/Vinylacetat/ Neononansäurevinylester-Terpolymerisaten oder Ethylen-Vinylacetat/ Neodecansäurevinylester-Terpolymerisaten zur Verbesserung der Fließfähigkeit von Mineralölen oder Mineralöldestillaten ein. Die Terpolymerisate der Neononansäurevinylester bzw. der Neodecansäurevinylester enthalten außer Ethylen 10 bis 35 Gew.-% Vinylacetat und 1 bis 25 Gew.-% der jeweiligen Neoverbindung. Weitere bevorzugte Copolymere enthalten neben Ethylen und 10 bis 35 Gew.-% Vinylestern noch 0,5 bis 20 Gew.-% Olefin wie Diisobutylen, 4-Methylpenten oder Norbornen. Das Mischungsverhältnis der erfindungsgemäßen Additive mit den vorstehend beschriebenen Ethylen/Vinylacetat-Copolymerisaten bzw. den Terpolymerisaten aus Ethylen, Vinylacetat und den Vinylestern der Neononan- bzw. der Neodecansäure beträgt (in Gewichtsteilen) 20:1 bis 1:20, vorzugsweise 10:1 bis 1:10.
    So können die erfindungsgemäßen Additive zusammen mit Alkylphenol-Formaldehydharzen eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei diesen Alkylphenol-Formaldehydharzen um solche der Formel
    Figure 00280001
    worin R50 für C4-C50-Alkyl oder -Alkenyl, R51 für Ethoxy- und/oder Propoxy, n für eine Zahl von 5 bis 100 und p für eine Zahl von 0 bis 50 steht.
    Schließlich werden in einer weiteren Ausführungsform der Erfindung die erfindungsgemäßen Additive zusammen mit Kammpolymeren verwendet. Hierunter versteht man Polymere, bei denen Kohlenwasserstoffreste mit mindestens 8, insbesondere mindestens 10 Kohlenstoffatomen an einem Polymerrückgrat gebunden sind. Vorzugsweise handelt es sich um Homopolymere, deren Alkylseitenketten mindestens 8 und insbesondere mindestens 10 Kohlenstoffatome enthalten. Bei Copolymeren weisen mindestens 20 %, bevorzugt mindestens 30 % der Monomeren Seitenketten auf (vgl. Comb-like Polymers-Structure and Properties; N.A. Platé and V.P. Shibaev, J. Polym. Sci. Macromolecular Revs. 1974, 8, 117 ff). Beispiele für geeignete Kammpolymere sind z.B. Fumarat/Vinylacetat-Copolymere (vgl. EP 0 153 176 A1), Copolymere aus einem C6-C24-α-Olefin und einem N-C6-C22-Alkylmaleinsäureimid (vgl. EP 0 320 766), ferner veresterte Olefin/ Maleinsäureanhydrid-Copolymere, Polymere und Copolymere von α-Olefinen und veresterte Copolymere von Styrol und Maleinsäureanhydrid.
    Kammpolymere können beispielsweise durch die Formel
    Figure 00290001
    beschrieben werden. Darin bedeuten
    A
    R', COOR', OCOR', R"-COOR' oder OR';
    D
    H, CH3, A oder R;
    E
    H oder A;
    G
    H, R", R"-COOR', einen Arylrest oder einen heterocyclischen Rest;
    M
    H, COOR", OCOR", OR" oder COOH;
    N
    H, R", COOR", OCOR, COOH oder einen Arylrest;
    R'
    eine Kohlenwasserstoffkette mit 8-150 Kohlenstoffatomen;
    R"
    eine Kohlenwasserstoffkette mit 1 bis 10 Kohlenstoffatomen;
    m
    eine Zahl zwischen 0,4 und 1,0; und
    n
    eine Zahl zwischen 0 und 0,6.
    Das Mischungsverhältnis (in Gewichtsteilen) der erfindungsgemäßen Additive mit Harzen bzw. Kammpolymeren beträgt jeweils 1:10 bis 20:1, vorzugsweise 1:1 bis 10:1.
    Die erfindungsgemäßen Additive sind geeignet, die Schmiereigenschaften von tierischen, pflanzlichen, mineralischen oder synthetischen Brennstoffölen mit nur geringen Dosierraten zu verbessern. Durch ihre verbesserten Kälteeigenschaften kann bei Lagerung und Anwendung auf eine Erwärmung und/oder Verdünnung verzichtet werden. Darüber hinaus verbessern sie gleichzeitig die Kälte- und Korrosionsschutzeigenschaften der additivierten Öle. Dabei werden die Emulgiereigenschaften der additivierten Öle weniger beeinträchtigt als es mit den Schmieradditiven des Standes der Technik der Fall ist. Die erfindungsgemäßen Additive sind für die Verwendung in Mitteldestillaten besonders gut geeignet. Als Mitteldestillate bezeichnet man insbesondere solche Mineralöle, die durch Destillation von Rohöl gewonnen werden und im Bereich von 120 bis 450°C sieden, beispielsweise Kerosin, Jet-Fuel, Diesel und Heizöl. Die Öle können auch Alkohole wie Methanol und/oder Ethanol enthalten oder aus diesen bestehen. Vorzugsweise werden die erfindungsgemäßen Additive in solchen Mitteldestillaten verwendet, die 0,05 Gew.-% Schwefel und weniger, besonders bevorzugt weniger als 350 ppm Schwefel, insbesondere weniger als 200 ppm Schwefel und in speziellen Fällen weniger als 50 ppm Schwefel enthalten. Es handelt sich dabei im allgemeinen um solche Mitteldestillate, die einer hydrierenden Raffination unterworfen wurden, und die daher nur geringe Anteile an polyaromatischen und polaren Verbindungen enthalten, die ihnen eine natürliche Schmierwirkung verleihen. Die erfindungsgemäßen Additive werden weiterhin vorzugsweise in solchen Mitteldestillaten verwendet, die 95 %-Destillationspunkte unter 370°C, insbesondere 350°C und in Spezialfällen unter 330°C aufweisen. Sie können auch als Komponenten in Schmierölen eingesetzt werden.
    Die Mischungen können allein oder auch zusammen mit anderen Additiven verwendet werden, z.B. mit anderen Stockpunkterniedrigern oder Entwachsungshilfsmitteln, mit Korrosionsinhibitoren, Antioxidantien, Schlamminhibitoren, Dehazern, Leitfähigkeitsverbesserern, Lubricity-Additiven, und Zusätzen zur Erniedrigung des Cloud-Points. Des weiteren werden sie erfolgreich zusammen mit Additivpaketen eingesetzt, die u.a. bekannte aschefreie Dispergieradditive, Detergentien, Entschäumer und Korrosionsinhibitoren enthalten.
    Die verbesserte Kältestabilität und die Wirksamkeit der erfindungsgemäßen Additive als Lubricity-Additive wird durch die nachfolgenden Beispiele näher erläutert.
    Beispiele
    Folgende Substanzen wurden eingesetzt:
  • A1) Tallölfettsäure, enthaltend als Hauptbestandteile 30 % Ölsäure, 60 % Linol- und andere mehrfach ungesättigte Fettsäuren und 4% gesättigte Fettsäuren. Jodzahl 155 gJ/100 g.
  • A2) Ölsäure (technisch) enthaltend als Hauptbestandteile 69 % Ölsäure, 12% Linolsäure, 5 % Hexadecensäure und 10 % gesättigte Fettsäuren. Jodzahl 90 gJ/100 g.
  • B1) Umsetzungsprodukt eines Terpolymers aus C14/16-α-Olefin, Maleinsäureanhydrid und Allylpolyglykol mit 2 Equivalenten Ditalgfettamin, 50 %ig in Solvent Naphtha
  • B2) Umsetzungsprodukt eines Dodecenyl-Spirobislactons mit einer Mischung aus primärem und sekundärem Talgfettamin 60 %ig in Solvent Naphtha
  • B3) Nonylphenol-Formaldehydharz, 50 %ig in Solvent Naphtha
  • B4) Mischung aus 2 Teilen B1 und 1 Teil B2
  • B5) Amid-Ammoniumsalz auf Basis Ethylendiamintetraessigsäure mit 3 Equivalenten Ditalgfettamin gemäß EP 0597278.
  • B6) Mischung aus Amid-Ammoniumsalz auf Basis Ethylendiamintetraessigsäure mit 4 Equivalenten Ditalgfettamin und Copolymer aus gleichen Teilen Maleinsäureanhydrid und C20/24-Olefin, imidiert mit N-Talgfettpropylendiamin gemäß EP-0 909 307
  • B7) Amid-Ammoniumsalz aus 1 mol Phthalsäureanhydrid und 2 mol einer Mischung gleicher Teile Ditalg- und Dicocosfettamin
  • B8) Mischung aus gleichen Teilen
  • a) Amid-Ammoniumsalz aus 1 mol Phthalsäureanhydrid und 2 mol Ditalgfettamin und
  • b) Copolymer aus Fumarsäuredi(tetradecylester), 50 %ig in Solvent Naphtha.
  • Zur Beurteilung der Kälteeigenschaften wurde der Pour Point gemäß ISO 3016 (Tabelle 1) und der Cloud Point gemäß ISO 3015 (Tabelle 2) der erfindungsgemäßen Mischungen gemessen. Danach wurden die erfindungsgemäßen Additivmischungen über mehrere Tage bei verschiedenen Temperaturen gelagert und anschließend visuell beurteilt (Tabelle 3 bis 5). V kennzeichnet Vergleichsbeispiele.
    Eigenstockpunkte (Pour Point) der erfindungsgemäßen Additive
    Zusammensetzung (Gew.-Teile) Pour Point
    Beispiel A1 A2 B1 B2 B3 B4
    1 80 20 -9
    2 50 50 -24
    3 20 80 0
    4 80 20 -9
    5 50 50 -24
    6 20 80 -6
    7 80 20 0
    8 50 50 -15
    9 20 80 -48
    10 80 20 -9
    11 50 50 -18
    12 20 80 -15
    13 80 20 -27
    14 50 50 -27
    15 20 80 -6
    16 80 20 -27
    17 50 50 -54
    18 20 80 -45
    19 80 20 -21
    20 50 50 -30
    21 20 80 -21
    22 80 20 -21
    23 50 50 -21
    24 20 80 -9
    25 99,95 0,05 -36
    26 99,95 0,05 -36
    27 99,95 0,05 -15
    V1 100 -9
    V2 100 6
    V3 100 9
    V4 100 -12
    V5 100 0
    V6 100 -6
    V7 100 -36
    Cloud Points der erfindungsgemäßen Additive
    Zusammensetzung (Gew.-Teile) Cloud Point
    Beispiel A1 A2 B1 B2 B3 B4
    V8 100 -27,0
    28 99,9995 0,0005 -33,0
    29 99,9995 0,0005 -30,5
    30 99,998 0,002 -33,5
    31 99,998 0,002 -33,5
    32 99,995 0,005 -31,0
    33 99,995 0,005 -32,2
    34 (B5) 99,998 0,002 -29,0
    35 (B6) 99,998 0,002 -31,0
    36 (B7) 99,998 0,002 -35,5
    37 (B8) 99,998 0,002 -37,0
    Lagerstabilität der Additive (3 Tage Lagerung bei -20°C)
    Beispiel Zusammensetzung (Gew.-Teile) Beurteilung
    A2 B1 B2 B3
    38 50 50 viskos
    39 80 20 flüssig
    40 20 80 flüssig
    41 50 50 flüssig
    42 20 80 flüssig
    V9 100 fest, wachsig
    V10 100 fest
    V11 100 fest
    V12 100 viskos
    Figure 00350001
    Figure 00360001
    MS ist eine Mischung aus einer Reihe von aliphatischen und cyclischen, nichtaromatischen Kohlenwasserstoffen. Die Hauptbestandteile von MS können folgender Tabelle entnommen werden:
    Tabelle 6: Bestandteile von MS
    Bestandteil Konzentrationsbereich (Gew.-%)
    Di-2-ethylhexylether 10 - 25
    2-Ethylhexylsäure-2-Ethylhexylester 10 - 25
    C16-Lactone 4 - 20
    2-Ethylhexylbutyrat 3 - 10
    2-Ethylhexandiol-(1,3)-mono-n-butyrat 5 - 15
    2-Ethylhexanol 4 - 10
    C4- bis C8-Acetate 2 - 10
    2-Ethylhexandiol-(1,3) 2 - 5
    Ether und Ester ≥ C20 0 - 20
    Schmierwirkung in Mitteldestillaten
    Die Schmierwirkung der Additive wurde mittels eines HFRR-Geräts der Firma PCS Instruments an additivierten Ölen bei 60 °C durchgeführt. Der High Frequency Reciprocating Rig Test (HFRR) ist beschrieben in D. Wei, H. Spikes, Wear, Vol. 111, No.2, p.217, 1986. Die Ergebnisse sind als Reibungskoeffizient und Wear Scar (WS1.4) angegeben. Ein niedriger Reibungskoeffizient und ein niedriger Wear Scar zeigen eine gute Schmierwirkung.
    Charakterisierung der Testöle: Zur Prüfung der Schmierwirkung wurden Testöle mit folgender Charakteristik eingesetzt:
    Testöl 1 Testöl 2
    Siedebereich: 170 - 344°C 182-304°C
    Dichte 0,830 g/cm3 0,821 g/cm3
    Cloud Point -9°C -33°C
    Schwefelgehalt 45 ppm 6 ppm
    Die Bestimmung der Siedekenndaten erfolgt gemäß ASTM D-86 und die Bestimmung des Cloud Points gemäß ISO 3015.
    Wear Scar in Testöl 1
    Beispiel Additiv Wear Scar Friction
    V15 Ohne 555 µm 0,33
    63 100 ppm gemäß Bsp. 37 385 µm 0,18
    64 100 ppm A1 + 150 ppm B4 381 µm 0,18
    V16 100 ppm A1 421 µm 0,18
    V17 150 ppm B4 549 µm 0,34
    Wear Scar in Testöl 2
    Beispiel Additiv Wear Scar Friction
    V18 ohne 637 µm 0,30
    65 200 ppm gemäß Bsp. 42 386 0,18
    66 200 ppm gemäß Bsp. 48 395 0,18
    V19 200 ppm gemäß Bsp. V13 405 0,19

    Claims (11)

    1. Kältestabilisierte Additive für Brennstofföle mit bis zu 0,05 Gew.-% Schwefelgehalt, enthaltend Fettsäuregemische aus
      A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
      A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
      sowie
      B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B).
    2. Additive nach Anspruch 1, worin Bestandteil A Carbonsäuren mit 12 bis 22 Kohlenstoffatomen umfaßt.
    3. Additive nach Anspruch 1 und/oder 2, enthaltend 1 bis unter 20 Gew.-% A1) und über 80 bis 99 Gew.-% A2).
    4. Additive nach einem oder mehreren der Ansprüche 1 bis 3, worin die Mischung aus A1) und A2) eine Jodzahl von mindestens 40 g I/100g aufweist.
    5. Additive nach einem oder mehreren der Ansprüche 1 bis 4, worin die Mischung aus A1) und A2) 1 bis 40 Gew.-% Harzsäuren umfaßt.
    6. Additive nach einem oder mehreren der Ansprüche 1 bis 5, worin öllösliche polare Aminsalze oder Amide als Paraffindispergatoren enthalten sind.
    7. Kältestabilisierte Lösungen der Additive nach einem oder mehreren der Ansprüche 1 bis 6 in organischen Lösemitteln, wobei die Lösungen 1 bis 80 Gew.-% Lösemittel enthalten.
    8. Kältestabilisierte Lösungen nach Anspruch 7, wobei als Lösemittel aliphatische und/oder aromatische und/oder sauerstoffhaltige Kohlenwasserstoffe eingesetzt werden.
    9. Kältestabilisierte Fettsäuregemische, enthaltend
      A1) 1 bis 99 Gew.-% mindestens einer gesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
      A2) 1 bis 99 Gew.-% mindestens einer ungesättigten Mono- oder Dicarbonsäure mit 6 bis 50 Kohlenstoffatomen,
      sowie
      B) mindestens einer als Paraffindispergator in Mitteldestillaten wirksamen polaren stickstoffhaltigen Verbindung in einer Menge von 0,01 bis 90 Gew.-% bezogen auf das Gesamtgewicht von A1), A2) und B).
    10. Brennstofföle, enthaltend neben einem Mitteldestillat mit bis zu 0,05 Gew.-% Schwefelgehalt ein Additiv gemäß einem oder mehreren der Ansprüche 1 bis 9.
    11. Verwendung von Additiven gemäß einem oder mehreren der Ansprüche 1 bis 9 zur Verbesserung der Schmiereigenschaften schwefelarmer Mitteldestillate mit bis zu 0,05 Gew.-% Schwefelgehalt.
    EP01126254A 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv Expired - Lifetime EP1209215B1 (de)

    Priority Applications (2)

    Application Number Priority Date Filing Date Title
    EP07005870A EP1803791B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP07005871A EP1801188B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10058359 2000-11-24
    DE10058359A DE10058359B4 (de) 2000-11-24 2000-11-24 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv

    Related Child Applications (2)

    Application Number Title Priority Date Filing Date
    EP07005871A Division EP1801188B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP07005870A Division EP1803791B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv

    Publications (3)

    Publication Number Publication Date
    EP1209215A2 true EP1209215A2 (de) 2002-05-29
    EP1209215A3 EP1209215A3 (de) 2003-08-13
    EP1209215B1 EP1209215B1 (de) 2007-10-10

    Family

    ID=7664508

    Family Applications (3)

    Application Number Title Priority Date Filing Date
    EP01126254A Expired - Lifetime EP1209215B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Festtsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP07005870A Revoked EP1803791B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP07005871A Expired - Lifetime EP1801188B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv

    Family Applications After (2)

    Application Number Title Priority Date Filing Date
    EP07005870A Revoked EP1803791B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP07005871A Expired - Lifetime EP1801188B1 (de) 2000-11-24 2001-11-06 Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv

    Country Status (6)

    Country Link
    US (3) US6610111B2 (de)
    EP (3) EP1209215B1 (de)
    JP (1) JP5317380B2 (de)
    CA (1) CA2363700C (de)
    DE (4) DE10058359B4 (de)
    ES (1) ES2295098T3 (de)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2004013259A1 (en) * 2002-08-05 2004-02-12 Arizona Chemical A fatty acid composition, its production and use
    WO2004085580A1 (de) * 2003-03-27 2004-10-07 Basf Aktiengesellschaft Additivgemisch zur verbesserung der schmierfähigkeitseigenschaften von mineralölprodukten

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7597725B2 (en) * 2002-10-04 2009-10-06 Infineum International Ltd. Additives and fuel oil compositions
    US8287608B2 (en) * 2005-06-27 2012-10-16 Afton Chemical Corporation Lubricity additive for fuels
    EP1770151A1 (de) * 2005-09-30 2007-04-04 Infineum International Limited Zusatzkonzentrat
    US20090165364A1 (en) * 2006-01-18 2009-07-02 Basf Se Use of Mixtures of Monocarboxylic Acids and Polycyclic Hydrocarbon Compounds for Improving the Storage Stability of Fuel Additive Concentrates
    WO2008057624A2 (en) * 2006-04-05 2008-05-15 Baker Hughes Incorporated Fuel additives useful for reducing particulate emissions
    US20080141579A1 (en) * 2006-12-13 2008-06-19 Rinaldo Caprotti Fuel Oil Compositions
    US20110035994A1 (en) * 2008-04-25 2011-02-17 Yuki Sugiura Low-Temperature Fluidity Improver for Biodiesel Fuel
    RU2508394C2 (ru) 2009-04-07 2014-02-27 Басф Се Смесь из полярных маслорастворимых соединений азота и маслорастворимых алифатических соединений для понижения температуры помутнения в среднедистиллятных топливах
    US9012583B2 (en) 2010-02-10 2015-04-21 Nof Corporation Flow improver for oils and fats
    KR101781672B1 (ko) 2011-03-29 2017-09-25 니치유 가부시키가이샤 연료유용 유동성 향상제 및 연료유 조성물
    RU2561279C1 (ru) * 2014-09-19 2015-08-27 Общество с ограниченной ответственностью "Научно-производственное предприятие КВАЛИТЕТ" (ООО "НПП КВАЛИТЕТ") Диспергатор парафинов, способ его получения и топливная композиция, его содержащая
    CN104403706B (zh) * 2014-11-20 2016-06-22 中国石油大学(北京) 一种新型柴油蜡晶分散剂
    WO2017144378A1 (de) * 2016-02-23 2017-08-31 Basf Se HYDROPHOBE POLYCARBONSÄUREN ALS REIBVERSCHLEIß-VERMINDERNDER ZUSATZ ZU KRAFTSTOFFEN
    EP3272837B1 (de) 2016-07-21 2021-01-27 Bharat Petroleum Corporation Limited Kraftstoffzusammensetzung enthaltend schmierfähigkeitsverbesserer und verfahren dafür

    Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0155171A2 (de) * 1984-03-12 1985-09-18 Exxon Research And Engineering Company Zusatzkonzentrate für Destillatkraftstoffe
    EP0780460A1 (de) * 1995-12-22 1997-06-25 Exxon Research And Engineering Company Benzinzusatzkonzentrat
    WO1998004656A1 (fr) * 1996-07-31 1998-02-05 Elf Antar France Carburant pour moteurs diesel a faible teneur en soufre
    EP0829527A1 (de) * 1996-09-12 1998-03-18 Exxon Research And Engineering Company Zusatzkonzentrat für Kraftstoffzusammensetzungen
    US5755834A (en) * 1996-03-06 1998-05-26 Exxon Chemical Patents Inc. Low temperature enhanced distillate fuels
    WO1999036489A1 (en) * 1998-01-13 1999-07-22 Baker Hughes Incorporated Composition and method to improve lubricity in fuels
    WO2000015739A1 (en) * 1998-09-14 2000-03-23 The Lubrizol Corporation Diesel fuel compositions
    WO2001038461A1 (en) * 1999-11-23 2001-05-31 The Associated Octel Company Limited Composition
    EP1116780A1 (de) * 2000-01-11 2001-07-18 Clariant GmbH Mehrfunktionelles Additiv für Brennstofföle

    Family Cites Families (22)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2793A (en) * 1842-09-30 Joel g
    US2487189A (en) * 1946-05-28 1949-11-08 Gulf Oil Corp Diesel fuel oils
    WO1985001496A1 (en) 1983-10-03 1985-04-11 American Telephone & Telegraph Company Protective robot covering
    EP0153177B1 (de) 1984-02-21 1991-11-06 Exxon Research And Engineering Company Mitteldestillat-Zusammensetzungen mit Fliesseigenschaften bei Kälte
    GB8630594D0 (en) * 1986-12-22 1987-02-04 Exxon Chemical Patents Inc Chemical compositions
    US5039437A (en) * 1987-10-08 1991-08-13 Exxon Chemical Patents, Inc. Alkyl phenol-formaldehyde condensates as lubricating oil additives
    DE3742630A1 (de) 1987-12-16 1989-06-29 Hoechst Ag Polymermischungen fuer die verbesserung der fliessfaehigkeit von mineraloeldestillaten in der kaelte
    DE3926992A1 (de) 1989-08-16 1991-02-21 Hoechst Ag Verwendung von umsetzungsprodukten von alkenylspirobislactonen und aminen als paraffindispergatoren
    DE4237662A1 (de) 1992-11-07 1994-05-11 Basf Ag Erdölmitteldestillatzusammensetzungen
    DK0606055T3 (da) 1993-01-06 1998-04-14 Clariant Gmbh Terpolymerer på basis af alfa,beta-umættede dicarboxylsyreanhydrider, alfa-beta-umættede forbindelser og polyoxyalkylenethere af lavere umættede alkoholer
    GB9411614D0 (en) * 1994-06-09 1994-08-03 Exxon Chemical Patents Inc Fuel oil compositions
    JPH08134476A (ja) * 1994-11-14 1996-05-28 Cosmo Sogo Kenkyusho:Kk 低硫黄分軽油組成物
    CA2182993C (en) * 1994-12-13 2001-08-07 Brian William Davies Fuel oil compositions
    GB9502041D0 (en) 1995-02-02 1995-03-22 Exxon Chemical Patents Inc Additives and fuel oil compositions
    JP3829948B2 (ja) * 1995-03-24 2006-10-04 出光興産株式会社 ディーゼル軽油組成物
    JPH09255973A (ja) 1996-03-25 1997-09-30 Oronaito Japan Kk 軽油添加剤及び軽油組成物
    GB9610363D0 (en) * 1996-05-17 1996-07-24 Ethyl Petroleum Additives Ltd Fuel additives and compositions
    DE19620119C1 (de) * 1996-05-18 1997-10-23 Hoechst Ag Terpolymerisate des Ethylens, ihre Herstellung und ihre Verwendung als Additive für Mineralöldestillate
    DE19622052A1 (de) 1996-05-31 1997-12-04 Basf Ag Paraffindispergatoren für Erdölmitteldestillate
    JP3841368B2 (ja) * 1996-10-07 2006-11-01 花王株式会社 低硫黄軽油用油性向上剤及び低硫黄軽油組成物
    JP3968820B2 (ja) * 1997-06-13 2007-08-29 日本油脂株式会社 燃料油組成物
    JP3725347B2 (ja) * 1998-09-09 2005-12-07 三洋化成工業株式会社 燃料油低温流動性向上剤および燃料油組成物

    Patent Citations (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP0155171A2 (de) * 1984-03-12 1985-09-18 Exxon Research And Engineering Company Zusatzkonzentrate für Destillatkraftstoffe
    EP0780460A1 (de) * 1995-12-22 1997-06-25 Exxon Research And Engineering Company Benzinzusatzkonzentrat
    US5755834A (en) * 1996-03-06 1998-05-26 Exxon Chemical Patents Inc. Low temperature enhanced distillate fuels
    WO1998004656A1 (fr) * 1996-07-31 1998-02-05 Elf Antar France Carburant pour moteurs diesel a faible teneur en soufre
    EP0829527A1 (de) * 1996-09-12 1998-03-18 Exxon Research And Engineering Company Zusatzkonzentrat für Kraftstoffzusammensetzungen
    WO1999036489A1 (en) * 1998-01-13 1999-07-22 Baker Hughes Incorporated Composition and method to improve lubricity in fuels
    WO2000015739A1 (en) * 1998-09-14 2000-03-23 The Lubrizol Corporation Diesel fuel compositions
    WO2001038461A1 (en) * 1999-11-23 2001-05-31 The Associated Octel Company Limited Composition
    EP1116780A1 (de) * 2000-01-11 2001-07-18 Clariant GmbH Mehrfunktionelles Additiv für Brennstofföle

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2004013259A1 (en) * 2002-08-05 2004-02-12 Arizona Chemical A fatty acid composition, its production and use
    WO2004085580A1 (de) * 2003-03-27 2004-10-07 Basf Aktiengesellschaft Additivgemisch zur verbesserung der schmierfähigkeitseigenschaften von mineralölprodukten

    Also Published As

    Publication number Publication date
    EP1803791B1 (de) 2009-02-18
    EP1803791A3 (de) 2007-10-03
    US6610111B2 (en) 2003-08-26
    ES2295098T3 (es) 2008-04-16
    DE50114718D1 (de) 2009-04-02
    EP1209215A3 (de) 2003-08-13
    EP1801188A3 (de) 2007-10-03
    EP1801188A2 (de) 2007-06-27
    DE10058359A1 (de) 2002-06-06
    DE50114719D1 (de) 2009-04-02
    CA2363700A1 (en) 2002-05-24
    DE10058359B4 (de) 2005-12-22
    JP5317380B2 (ja) 2013-10-16
    USRE40758E1 (en) 2009-06-23
    CA2363700C (en) 2010-04-06
    EP1209215B1 (de) 2007-10-10
    JP2002167586A (ja) 2002-06-11
    EP1801188B1 (de) 2009-02-18
    US20040083644A1 (en) 2004-05-06
    US20020095857A1 (en) 2002-07-25
    DE50113115D1 (de) 2007-11-22
    EP1803791A2 (de) 2007-07-04

    Similar Documents

    Publication Publication Date Title
    DE10000649C2 (de) Mehrfunktionelles Additiv für Brennstofföle
    EP1116780B1 (de) Mehrfunktionelles Additiv für Brennstofföle
    DE10058359B4 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Mischungen aus Fettsäuren mit Paraffindispergatoren, sowie ein schmierverbesserndes Additiv
    EP1209217B1 (de) Brennstofföle mit verbesserter Schmierwirkung, enthaltend Umsetzungsprodukte aus Fettsäuren mit kurzkettigen öllöslichen Aminen
    DE3886857T2 (de) Fliessverbesserer und Trübungspunkterniedriger.
    DE3873126T2 (de) Rohoel- oder heizoel-zusammensetzungen.
    DE10155774B4 (de) Additive für schwefelarme Mineralöldestillate, umfassend einen Ester alkoxylierten Glycerins und einen polaren stickstoffhaltigen Paraffindispergator
    EP0997517B1 (de) Polymermischungen zur Verbesserung der Schmierwirkung von Mitteldestillaten
    DE10012946B4 (de) Verwendung von öllöslichen Amphiphilen als Lösemittel für hydroxyfunktionelle Copolymere
    EP0909307B1 (de) Paraffindispergatoren für erdölmitteldestillate
    DE10058357B4 (de) Fettsäuremischungen verbesserter Kältestabilität, welche Kammpolymere enthalten, sowie deren Verwendung in Brennstoffölen
    EP1380634B1 (de) Oxidationsstabilisierte Schmieradditive für hochentschwefelte Brennstofföle
    EP1134274B1 (de) Verwendung von Carbonsäuren und deren Derivaten als Lösemittel für hydroxylgruppenhaltige polymere
    EP1446464B1 (de) Additive für schwefelarme mineralöldestillate, umfassend einen ester eines alkoxylierten polyols und ein alkylphenol-aldehydharz
    DE10136828B4 (de) Schmierverbessernde Additive mit verminderter Emulgierneigung für hochentschwefelte Brennstofföle
    DE10252973A1 (de) Oxidationsstabilisierte Schmieradditive für hochentschwefelte Brennstofföle
    DE19856270C2 (de) Polymermischung zur Verbesserung der Schmierwirkung von Mitteldestillaten
    DE10000650C2 (de) Mehrfunktionelles Additiv für Brennstofföle
    DE10048682A1 (de) Mehrfunktionelles Additiv für Brennstofföle

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    17P Request for examination filed

    Effective date: 20040213

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: CLARIANT PRODUKTE (DEUTSCHLAND) GMBH

    17Q First examination report despatched

    Effective date: 20050824

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RIC1 Information provided on ipc code assigned before grant

    Ipc: C10L 10/08 20060101ALI20070226BHEP

    Ipc: C10L 1/188 20060101ALI20070226BHEP

    Ipc: C10L 1/234 20060101ALI20070226BHEP

    Ipc: C10L 10/04 20060101AFI20070226BHEP

    Ipc: C10L 10/14 20060101ALI20070226BHEP

    RBV Designated contracting states (corrected)

    Designated state(s): BE DE ES FI FR GB NL SE

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): BE DE ES FI FR GB NL SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 50113115

    Country of ref document: DE

    Date of ref document: 20071122

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20080213

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2295098

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20080711

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20081021

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20110401

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110322

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20091107

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20151104

    Year of fee payment: 15

    Ref country code: GB

    Payment date: 20151020

    Year of fee payment: 15

    Ref country code: FI

    Payment date: 20151119

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20151014

    Year of fee payment: 15

    Ref country code: BE

    Payment date: 20151029

    Year of fee payment: 15

    Ref country code: NL

    Payment date: 20151015

    Year of fee payment: 15

    Ref country code: FR

    Payment date: 20151030

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161130

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50113115

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: EUG

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MM

    Effective date: 20161201

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20161106

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161106

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20170731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161107

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20170601

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161106

    REG Reference to a national code

    Ref country code: BE

    Ref legal event code: MM

    Effective date: 20161130