EP1198745A1 - Kühlvorrichtung für elektronische bauelemente - Google Patents

Kühlvorrichtung für elektronische bauelemente

Info

Publication number
EP1198745A1
EP1198745A1 EP01913851A EP01913851A EP1198745A1 EP 1198745 A1 EP1198745 A1 EP 1198745A1 EP 01913851 A EP01913851 A EP 01913851A EP 01913851 A EP01913851 A EP 01913851A EP 1198745 A1 EP1198745 A1 EP 1198745A1
Authority
EP
European Patent Office
Prior art keywords
heat transfer
transfer medium
heat
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01913851A
Other languages
English (en)
French (fr)
Inventor
Ulrich Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKL AG
Original Assignee
EKL AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKL AG filed Critical EKL AG
Publication of EP1198745A1 publication Critical patent/EP1198745A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a cooling device for electronic components, in particular for cooling microprocessors, with at least one passive heat-conducting cooling element.
  • passive heat-conducting cooling elements in particular made of aluminum, are arranged on the surfaces of the electronic components and thus brought into active contact with them.
  • the cooling elements are attached using adhesive or special brackets.
  • An additional active cooling element in the form of a fan is usually attached to the passive cooling elements or integrated into the passive cooling elements.
  • the known cooling systems are all based on the principle of heat transfer by evaporation, condensation, convection and radiation or are distinguished by different material combinations and surface structures with different conductivities or thermal resistances.
  • a disadvantage of the known cooling devices is that due to the ever more powerful electronic components, especially due to the ever higher clock frequencies of microprocessors, the heat development increases sharply. However, since such electronic components can only work in a certain temperature range and become inoperable if the temperature is too high or experience severe performance losses, ever increasing demands are made on the corresponding cooling devices. With the coolers mentioned according to the prior art, the desired and required cooling can no longer be achieved.
  • a generic cooling device with the features of claim 1 is used to achieve this object.
  • a cooling device for electronic components has at least one passive heat-conducting cooling element, at least part of the passive cooling element being in contact with at least one heat transfer medium which is in a solid state of aggregation.
  • the heat transfer medium is a phase transition material (PCM phase change material) with a heat capacity that is many times higher than that of water.
  • the heat transfer medium is designed as a latent heat store, the heat transfer medium storing and storing the amount of heat generated by the load on the electronic component, which can no longer be absorbed and dissipated by the passive cooling element, while maintaining the solid state of the aggregate releases a time of lower load on the electronic component.
  • the heat transfer medium is able to absorb temporarily occurring additional quantities of heat and to release them again under normal load, ie with normal heat development of the electronic component.
  • This avoids thermal peak loads which, in conventional cooling devices, significantly reduce the performance of the electronic component and especially of microprocessors.
  • the cooling device according to the invention thus also ensures an increase in performance of the cooled components. By avoiding harmful heat peaks, the service life and the functionality of the electronic components cooled with the cooling device according to the invention are also increased. Since the phase transition material used as the heat transfer medium also maintains its solid state of aggregation when it absorbs heat, there are advantageously no problems due to expansion of the phase transition material, as is always the case with known materials.
  • the heat transfer medium consists of salts or salt mixtures enriched with organic substances and fine powdered metallic substances to improve the conductivity.
  • the organic component of the heat transfer medium is usually paraffin.
  • Such a heat transfer medium maintains its solid state even when it absorbs heat and can thus be arranged in tablet form and / or as a solid body in and / or on the cooling element. This ensures that the cooling device is inexpensive to manufacture on the one hand and can be kept small on the other.
  • the heat transfer medium is adjusted to the required operating temperature. temperatures when cooling the electronic components is individually adjustable. The setting is made by varying the type and amount of the components of the heat transfer medium. In particular, it is also possible to set the amount of heat that the heat transfer medium is to buffer.
  • the heat transfer medium is advantageously non-toxic and recyclable.
  • At least one active cooling element in particular a fan, is arranged on the passive cooling element. This advantageously ensures that the cooling capacity of the cooling device is increased again.
  • the heat transfer medium is arranged in a container made of heat-conducting material, the container being in contact with the passive cooling element.
  • the arrangement of the heat transfer medium in a container enables the individual heat transfer elements to be easily exchanged within or on the passive cooling element.
  • a heat-conducting film is arranged between a contact surface of the passive cooling element and a corresponding contact surface of the electronic component. This measure ensures that the total cooling capacity with the cooling device is further increased by an optimized heat transfer from the electronic component to the passive cooling element.
  • the invention also relates to a processor with a processor socket and at least one cooling device arranged on the processor, the cooling device having at least one passive heat-conducting cooling element and at least part of the passive cooling element with at least one Heat transfer medium, which is in a solid state of aggregation, is in contact.
  • the heat transfer medium is a phase transition material (PCM phase change material) with a heat absorption capacity that is many times higher than that of water.
  • the heat transfer medium is designed as a latent heat storage device in such a way that the heat transfer medium stores the amount of heat generated by the load on the processor, which can no longer be absorbed and dissipated by the passive cooling element, while maintaining the solid state of the aggregate and at a time when the load on the processor is lower again emits.
  • the invention also relates to the use of a heat transfer medium, which is in a solid state of aggregation, for cooling microprocessors, the heat transfer medium being a phase transition material (PCM phase change material) with a heat absorption capacity that is many times higher than that of water, and is designed as a latent heat store ,
  • PCM phase change material phase transition material
  • the heat transfer medium stores the amount of heat generated by the load on the microprocessor while maintaining the solid aggregate state and releases it again at a time when the load on the microprocessor is lower.
  • Figure 1 is a schematic sectional view through a cooling device according to the invention.
  • Figure 2 is a schematically illustrated plan view of the invention
  • Figure 3 is a schematically illustrated side view of the 1 according to the invention.
  • FIG. 1 shows a sectional view of a cooling device 10 for cooling electronic components, in particular for cooling microprocessors.
  • the cooling device 10 consists of a passive heat-conducting cooling element 12, the cooling element 12 being constructed from a multiplicity of cooling fins 14.
  • the cooling fins 14 are arranged on a base element 16 of the cooling element 12.
  • the base element 16 forms a contact surface 18 which is in contact with the electronic component to be cooled.
  • the passive cooling element 12 consists of aluminum or an aluminum alloy and is usually formed in one piece. It can be seen that a plurality of heat transfer media 20 are arranged within the cooling element 12 between the cooling fins 14.
  • the heat transfer media 20 are in a solid state of aggregation and in heat-conducting contact with the cooling fins 14 and the bottom element 16 or the cooling element 12.
  • the heat transfer medium is a phase transition material with a heat absorption capacity that is many times higher than that of water. Since the heat transfer medium is in a solid state of aggregation and also remains when heat is absorbed, it is not necessary to form the heat transfer medium 20 or the cooling element 12 in a sealing manner. A mounting of the individual heat transfer media 20 within the passive cooling element 12 is sufficient.
  • the heat transfer medium is also designed as a latent heat storage device, such that the heat transfer medium 20 stores the thermal energy generated by the load on the electronic component, which can no longer be absorbed and dissipated by the passive cooling element 18, while maintaining the solid state of aggregation and at a point in time releases less load on the electronic component again.
  • FIG. 2 shows a schematic top view of the cooling device 10 according to FIG. 1. The arrangement of the individual heat transfer media 20 between the individual cooling fins 14 of the cooling element 12 can be seen.
  • FIG. 3 shows a side view of the cooling device according to FIG. 1. It can be seen that fastening devices 22 for fastening the cooling device 10 with the electronic component to be cooled are molded onto the cooling element 12 in the region of the base element 16 and laterally thereon. Furthermore, it can be seen that in the exemplary embodiment shown, the heat transfer media 20 are disc-shaped. However, the size and shape of the heat transfer media 20 can be selected as desired. About the size and number of heat transfer media 20, it is among other things. possible to set the required operating temperatures for the respective electronic components to be cooled.

Abstract

Die vorliegende Erfindung betrifft eine Kühlvorrichtung für elektronische Bauelemente, insbesondere zur Kühlung von Mikroprozessoren, mit mindestens einem passiven wärmeleitenden Kühlelement (12), wobei zumindest ein Teil des passiven Kühlelements (12) mit mindestens einem Wärmeübertragungsmedium (20), welches sich in einem festen Aggregatszustand befindet, in Kontakt ist. Das Wärmeübertragungsmedium (20) ist dabei ein Phasen-Übergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität und ist zudem als Latentwärmespeicher ausgebildet, wobei das Wärmeübertragungsmedium (20) die durch die Belastung des elektronischen Bauelements erzeugte Wärmemenge, welche von dem passiven Kühlelement (18) nicht mehr aufnehmbar und ableitbar ist, unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des elektronischen Bauelements wieder abgibt.

Description

Kühlvorrichtung für elektronische Bauelemente
Beschreibung:
Die vorliegende Erfindung betrifft eine Kühlvorrichtung für elektronische Bauelemente, insbesondere zur Kühlung von Mikroprozessoren, mit mindestens einem passiven wärmeleitenden Kühlelement.
Derartige Kühlvorrichtungen für elektronische Bauelemente sind in einer großen Vielzahl bekannt. Dabei werden insbesondere passive wärmeleitende Kühlelemente, insbesondere aus Aluminium, auf den Oberflächen der elektronischen Bauelemente angeordnet, und somit in Wirkkontakt mit diesen gebracht. Die Befestigung der Kühlelemente erfolgt dabei mittels Klebstoff oder mittels spezieller Halterungen. Den passiven Kühlelementen aufgesetzt oder in die passiven Kühlelemente integriert ist meistens ein zusätzliches aktives Kühlelement in Form eines Lüfters.
Die bekannten Kühlsysteme bauen alle auf dem Prinzip Wärmeübertragung durch Verdampfen, Kondensieren, Konvektion und Abstrahlung auf oder zeichnen sich durch unterschiedliche Materialkombinationen und Oberflächenstrukturen mit unterschiedlichen Leitfähigkeiten bzw. thermischen Widerständen aus.
Nachteilig an den bekannten Kühlvorrichtungen ist jedoch, daß aufgrund der immer leistungsfähigeren elektronischen Bauelemente, insbesondere aufgrund der immer höheren Taktfrequenzen von Mikroprozessoren, die Wärmeentwicklung stark zunimmt. Da derartige elektronische Bauelemente aber nur in einem bestimmten Temperaturbereich arbeiten können und bei zu hohen Temperaturen funktionsunfähig werden oder starke Leistungseinbußen erfahren, werden auch immer höhere Anforderungen an die entsprechenden Kühlvorrichtungen gestellt. Mit den genannten Kühlern gemäß dem Stand der Technik ist die gewünschte und erforderliche Kühlung nicht mehr erreichbar.
Es ist daher Aufgabe der vorliegenden Erfindung, eine Kühlvorrichtung für elektronische Bauelemente, insbesondere zur Kühlung von Mikroprozessoren, mit mindestens einem passiven wärmeleitenden Kühlelement bereitzustellen, die eine ausreichende Kühlung der elektronischen Bauelemente, auch bei hoher Wärmeentwicklung, gewährleistet.
Zur Lösung dieser Aufgabe dient eine gattungsgemäße Kühlvorrichtung mit den Merkmalen des Anspruchs 1.
Vorteilhafte Ausgestaltungen sind in den Unteransprüchen beschrieben.
Eine erfindungsgemäße Kühlvorrichtung für elektronische Bauelemente weist mindestens ein passives wärmeleitendes Kühlelement auf, wobei zumindest ein Teil des passiven Kühlelements mit mindestens einem Wäremeübertra- gungsmedium, welches sich in einem festen Aggregatszustand befindet, in Kontakt ist. Das Warmeubertragungsmedium ist dabei ein Phasen-Übergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmekapazität. Zudem ist das Warmeubertragungsmedium als Latentwarmespeicher ausgebildet, wobei das Warmeubertragungsmedium die durch die Belastung des elektronischen Bauelements erzeugte Wärme- menge, welche von dem passiven Kühlelement nicht mehr aufnehmbar und ableitbar ist, unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des elektronischen Bauelementes wieder abgibt. Dadurch ist gewährleistet, daß elektronische Bauelemente, insbesondere Mikroprozessoren, auch bei einer hohen Belastung und einer entsprechenden hohen Wärmeentwicklung eine ausreichende Kühlung erfahren. Dabei ist das Warmeubertragungsmedium in der Lage, temporär auftretende zusätzliche Wärmemengen aufzunehmen und diese bei normaler Belastung, d.h. bei normaler Wärmeentwicklung des elektronischen Bauelementes, wieder abzugeben. Somit werden thermische Spitzenbelastungen vermieden, die bei herkömmlichen Kühlvorrichtungen die Leistungsfähigkeit des elektronischen Bau- elementes und besonders von Mikroprozessoren deutlich senkt. Mit der erfindungsgemäßen Kühlvorrichtung ist somit auch eine Leistungssteigerung der gekühlten Bauelemente gewährleistet. Über die Vermeidung von schädlichen Wärmespitzen wird zudem die Lebensdauer und die Funktionsfähigkeit der mit der erfindungsgemäßen Kühlvorrichtung gekühlten elektronischen Bauelemente erhöht. Da das als Warmeubertragungsmedium verwendete Phasen-Übergangsmaterial auch bei der Wärmeaufnahme seinen festen Aggregatszustand aufrechterhält, ergeben sich vorteilhafterweise keine Probleme durch eine Ausdehnung des Phasen-Übergangsmaterials, wie dies bei bekannten Materialien immer der Fall ist.
In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Kühlvorrichtung besteht das Warmeubertragungsmedium aus mit organischen Stoffen angereicherten Salzen oder Salzgemischen und feinpulvrigen metallischen Substanzen zur Verbesserung der Leitfähigkeit. Üblicherweise ist der organische Bestandteil des Wärmeübertragungsmediums Paraffin. Ein derartiges Warmeubertragungsmedium behält auch bei Wärmeaufnahme seinen festen Aggregatszustand bei und kann so in Tablettenform und/oder als Massivkörper in dem und/oder an das Kühlelement angeordnet werden. Dadurch ist gewährleistet, daß die Kühlvorrichtung einerseits kostengünstig herstellbar ist und andererseits klein gehalten werden kann. Zudem ist es erfindungsgemäß möglich, daß das Warmeubertragungsmedium auf die geforderten Einsatztem- peraturen bei der Kühlung der elektronischen Bauelemente individuell einstellbar ist. Die Einstellung erfolgt dabei durch Variierung der Art und der Menge der Bestandteile des Wärmeübertragungsmediums. Insbesondere ist es auch möglich, die Wärmemenge einzustellen, die das Warmeubertragungsmedium puffern soll. Zudem ist das Warmeubertragungsmedium vorteilhafterweise nicht-toxisch und recycelbar .
In einer vorteilhaften Ausgestaltung der erfindungsgemäßen Kühlvorrichtung ist an dem passiven Kühlelement mindestens ein aktives Kühlelement, insbe- sondere ein Lüfter, angeordnet. Dadurch ist vorteilhafterweise gewährleistet, daß die Kühlleistung der Kühlvorrichtung nochmals erhöht wird.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Kühlvorrichtung ist das Warmeubertragungsmedium in einem Behälter aus wärmeleitenden Material angeordnet, wobei der Behälter mit dem passiven Kühlelement in Kontakt ist. Die Anordnung des Wärmeübertragungsmediums in einem Behälter ermöglicht die leichte Austauschbarkeit der einzelnen Wärmeübertragungselemente innerhalb oder an dem passiven Kühlelement.
In einer weiteren vorteilhaften Ausgestaltung der erfindungsgemäßen Kühlvorrichtung ist zwischen einer Kontaktfläche des passiven Kühlelementes und einer entsprechenden Kontaktfläche des elektronischen Bauelementes eine wärmeleitende Folie angeordnet. Durch diese Maßnahme ist gewährleistet, daß die Gesamtkühlleistung mit der Kühlvorrichtung durch eine optimierte Wärmeübertragung von dem elektronischen Bauelement auf das passive Kühl- eiement weiter erhöht wird.
Die Erfindung betrifft zudem einen Prozessor mit einem Prozessorsockel und mindestens einer auf dem Prozessor angeordneten Kühlvorrichtung, wobei die Kühlvorrichtung mindestens ein passives wärmeleitendes Kühlelement aufweist und zumindest ein Teil des passiven Kühlelementes mit mindestens einem Wärmeübertragungsmedium, welches sich in einem festen Aggregatszustand befindet, in Kontakt ist. Dabei ist das Warmeubertragungsmedium ein Phasen- Ubergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität. Zudem ist das Warmeubertragungsmedium als Latentwarmespeicher ausgebildet, derart, daß das Warmeubertragungsmedium die durch die Belastung des Prozessors erzeugte Wärmemenge, welche von dem passiven Kühlelement nicht mehr aufnehmbar und ableitbar ist, unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des Prozessors wieder abgibt.
Die Erfindung betrifft zudem die Verwendung eines Wärmeübertragungsmediums, welches sich in einem festen Aggregatszustand befindet, zur Kühlung von Mikroprozessoren, wobei das Warmeubertragungsmedium ein Phasen-Übergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität ist und als Latentwarmespeicher ausgebildet ist. Dabei speichert das Warmeubertragungsmedium die durch die Belastung des Mikroprozessors erzeugte Wärmemenge unter Beibehaltung des festen Aggregatszustandes und gibt diese zu einem Zeitpunkt der geringeren Belastung des Mikroprozessors wieder ab.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus einem in den folgenden Zeichnungen dargestellten Ausführungsbeispiel. Es zeigen:
Figur 1 eine schematisch dargestellte Schnittansicht durch eine erfindungsgemäße Kühlvorrichtung;
Figur 2 eine schematisch dargestellte Aufsicht auf die erfindungsgemäße
Kühlvorrichtung gemäß Fig.1 ; und
Figur 3 eine schematisch dargestellte Seitenansicht der erfindungsgemäßen Kühlvorrichtung gemäß Fig. 1.
Figur 1 zeigt eine Schnittansicht einer Kühlvorrichtung 10 zur Kühlung von elektronischen Bauelementen, insbesondere zur Kühlung von Mikroprozessoren. Die Kühlvorrichtung 10 besteht aus einem passiven wärmeleitenden Kühlelement 12, wobei das Kühlelement 12 aus einer Vielzahl von Kühlrippen 14 aufgebaut ist. Die Kühlrippen 14 sind auf einem Bodenelement 16 des Kühlelementes 12 angeordnet. Auf der den Kühlrippen 14 gegenüberliegenden Seite bildet das Bodenelement 16 eine Kontaktfläche 18 aus, die in Kontakt zu dem zu kühlenden elektronischen Bauelement steht.
Das passive Kühlelement 12 besteht dabei aus Aluminium oder einer Aluminiumlegierung und ist üblicherweise einstückig ausgebildet. Man erkennt, daß innerhalb des Kühlelementes 12 zwischen den Kühlrippen 14 mehrere Wärmeübertragungsmedien 20 angeordnet sind. Die Wärmeübertragungsmedien 20 befinden sich in einem festen Aggregatszustand und in wärmeleitendem Kontakt mit den Kühlrippen 14 und dem Bodenelement 16 bzw. dem Kühlelement 12. Dabei ist das Warmeubertragungsmedium ein Phasen- Übergangsmaterial mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität. Da das Warmeubertragungsmedium sich in einem festen Aggregatszustand befindet und auch bei Wärmeaufnahme verbleibt, ist es nicht notwendig, das Warmeubertragungsmedium 20 oder das Kühlelement 12 dichtend auszubilden. Eine Halterung der einzelnen Wärmeübertragungsmedien 20 innerhalb des passiven Kühleiementes 12 ist ausreichend. Das Wärme- Übertragungsmedium ist zudem als Latentwarmespeicher ausgebildet, derart, daß das Warmeubertragungsmedium 20 die durch die Belastung des elektronischen Bauelements erzeugte Wärmeenergie, welche von dem passiven Kühlelement 18 nicht mehr aufnehmbar und ableitbar ist, unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des elektronischen Bauelements wieder abgibt. Figur 2 zeigt eine schematische Aufsicht auf die Kühlvorrichtung 10 gemäß Fig. 1. Man erkennt die Anordnung der einzelnen Wärmeübertragungsmedien 20 zwischen den einzelnen Kühlrippen 14 des Kühlelementes 12.
Figur 3 zeigt eine Seitenansicht der Kühlvorrichtung gemäß Fig. 1. Man erkennt, daß an dem Kühlelement 12 im Bereich des Bodenelementes 16 und seitlich daran Befestigungsvorrichtungen 22 zur Befestigung der Kühlvorrichtung 10 mit dem zu kühlenden elektronischen Bauelement angeformt sind. Des weiteren erkennt man, daß in dem dargestellten Ausführungsbeispiel die Wärmeüber- tragungsmedien 20 scheibenförmig ausgebildet sind. Die Größe und Form der Wärmeübertragungsmedien 20 ist jedoch beliebig wählbar. Über die Größe und die Anzahl der Wärmeübertragungsmedien 20 ist es u.a. möglich, die geforderten Einsatztemperaturen für die jeweiligen zu kühlenden elektronischen Bauelemente einzustellen.

Claims

Ansprüche:
1. Kühlvorrichtung für elektronische Bauelemente, insbesondere zur Kühlung von Mikroprozessoren, mit mindestens einem passiven wärmeleitenden
Kühlelement (12), dadurch gekennzeichnet, daß zumindest ein Teil des passiven Kühlelements (12) mit mindestens einem Warmeubertragungsmedium (20), welches sich in einem festen Aggregatszustand befindet, in Kontakt ist, wobei das Warmeubertragungsmedium (20) ein Phasen-Übergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität ist und als Latentwarmespeicher ausgebildet ist, wobei das Warmeubertragungsmedium (20) die durch die Belastung des elektronischen Bauelements erzeugte Wärmemenge, welche von dem passiven Kühlelement (2) nicht mehr aufnehmbar und ableitbar ist, unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des elektronischen Bauelements wieder abgibt.
2. Kühlvorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß das Warmeubertragungsmedium (20) aus mit organischen Stoffen angereicherten anorganischen Salzen oder Salzgemischen und feinpulverigen metallischen Substanzen zur Verbesserung der Leitfähigkeit besteht.
3. Kühlvorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß der organische Bestandteil des Wärmeübertragungsmediums (20) Paraffin ist.
4. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Warmeubertragungsmedium (20) auf die geforderten Einsatz- temperaturen einstellbar ist.
5. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Warmeubertragungsmedium (20) in Tablettenform und/oder als Massivkörper in dem und/oder an das Kühlelement (12) angeordnet ist.
6. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Warmeubertragungsmedium (20) nicht-toxisch und recycelbar ist.
7. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das passive Kühlelement (12) aus Aluminium oder einer Aluminiumlegierung besteht.
8. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß an dem passiven Kühlelement (12) mindestens ein aktives Kühlelement angeordnet ist.
9. Kühlvorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß das aktive Kühlelement ein Lüfter ist.
10. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sich das Warmeubertragungsmedium (20) in einem Behälter aus wärmeleitendem Material befindet, wobei der Behälter mit dem passiven
Kühlelement (12) in Kontakt ist.
11. Kühlvorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen einer Kontaktfläche (18) des passiven Kühlelements (12) und einer entsprechenden Kontaktfläche des elektronischen Bauelements eine wärmeleitende Folie angeordnet ist.
12. Prozessor mit einem Prozessorsockel und mindestens einer auf dem Prozessor angeordneten Kühlvorrichtung, dadurch gekennzeichnet, daß die Kühlvorrichtung (10) mindestens ein passives wärmeleitendes
Kühlelement (12) aufweist, wobei zumindest ein Teil des passiven Kühlelements (12) mit mindestens einem Warmeubertragungsmedium (20), welches sich in einem festen Aggregatszustand befindet, in Kontakt ist, wobei das Warmeubertragungsmedium (20) ein Phasen-Übergangs- material (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität ist und als Latentwärme- speicher ausgebildet ist, wobei das Warmeubertragungsmedium (20) die durch die Belastung des Prozessors erzeugte Wärmemenge, welche von dem passiven Kühlelement (18) nicht mehr aufnehmbar und ableitbar ist unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des Prozessors wieder abgibt.
13. Verwendung eines Wärmeübertragungsmediums, welches sich in einem festen Aggregatszustand befindet, zur Kühlung von Mikroprozessoren, wobei das Warmeubertragungsmedium ein Phasen-Übergangsmaterial (PCM Phase Change Material) mit einer im Vergleich zu Wasser vielfach höheren Wärmeaufnahmekapazität ist und als Latentwarmespeicher ausgebildet ist, wobei das Warmeubertragungsmedium die durch die Belastung des Mikroprozessors erzeugte Wärmemenge unter Beibehaltung des festen Aggregatszustandes speichert und zu einem Zeitpunkt der geringeren Belastung des Mikroprozessors wieder abgibt.
EP01913851A 2000-03-16 2001-03-08 Kühlvorrichtung für elektronische bauelemente Withdrawn EP1198745A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10012990 2000-03-16
DE2000112990 DE10012990A1 (de) 2000-03-16 2000-03-16 Kühlvorrichtung für elektronische Bauelemente
PCT/EP2001/002631 WO2001069360A1 (de) 2000-03-16 2001-03-08 Kühlvorrichtung für elektronische bauelemente

Publications (1)

Publication Number Publication Date
EP1198745A1 true EP1198745A1 (de) 2002-04-24

Family

ID=7635072

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913851A Withdrawn EP1198745A1 (de) 2000-03-16 2001-03-08 Kühlvorrichtung für elektronische bauelemente

Country Status (7)

Country Link
EP (1) EP1198745A1 (de)
JP (1) JP2003527753A (de)
CN (1) CN1364251A (de)
CA (1) CA2374008A1 (de)
DE (1) DE10012990A1 (de)
TW (1) TW499749B (de)
WO (1) WO2001069360A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7184265B2 (en) 2003-05-29 2007-02-27 Lg Electronics Inc. Cooling system for a portable computer
US7188484B2 (en) * 2003-06-09 2007-03-13 Lg Electronics Inc. Heat dissipating structure for mobile device
CN102548355B (zh) * 2010-12-31 2015-04-29 联想(北京)有限公司 一种电子设备
TWI484089B (zh) * 2012-03-22 2015-05-11 Univ Nat Cheng Kung 智慧型太陽能窗、帷幕之模組構造
KR102104919B1 (ko) 2013-02-05 2020-04-27 삼성전자주식회사 반도체 패키지 및 이의 제조방법
DE102013204473A1 (de) 2013-03-14 2014-09-18 Robert Bosch Gmbh Kühlanordnung für ein Steuergerät
US10597286B2 (en) * 2017-08-01 2020-03-24 Analog Devices Global Monolithic phase change heat sink

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9505069D0 (en) * 1995-03-14 1995-05-03 Barr & Stroud Ltd Heat sink
DE19805930A1 (de) * 1997-02-13 1998-08-20 Furukawa Electric Co Ltd Kühlvorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0169360A1 *

Also Published As

Publication number Publication date
CN1364251A (zh) 2002-08-14
WO2001069360A1 (de) 2001-09-20
CA2374008A1 (en) 2001-09-20
TW499749B (en) 2002-08-21
DE10012990A1 (de) 2001-10-11
JP2003527753A (ja) 2003-09-16

Similar Documents

Publication Publication Date Title
EP2439774B1 (de) Wärmeverteiler mit flexibel gelagertem Wärmerohr
DE102008004053A1 (de) Spitzenlast-Kühlung von elektronischen Bauteilen durch phasenwechselnde Materialien
DE2647758C3 (de) Kühlungsmodul für elektrische Bauteile
EP0588004A1 (de) Elektrische Speicherbatterie, insbesondere für einen Fahrzeug-Antrieb
EP3235051A1 (de) Elektrischer energiespeicher mit effizienter wärmeabfuhr
WO2003046982A1 (de) Optimierter einsatz von pcm in kühlvorrichtungen
WO1994007094A1 (de) Thermoelektrische heiz- oder kühlvorrichtung
EP3128266B1 (de) Transportbehälter zum transport von temperaturempfindlichem transportgut
EP1892810A1 (de) Kühleinrichtung für ein elektrisches Betriebsmittel
EP1198745A1 (de) Kühlvorrichtung für elektronische bauelemente
AT522314A4 (de) Transportbehälter
EP1864197A1 (de) Gehäuse für einen computer
DE2933088C2 (de) Temperaturstabilisierung für ein wärmeabgebendes Bauteil eines Satelliten
DE102020207150A1 (de) Vorrichtung für das wärmemanagement von elektronikbauteilen
DE112016006606T5 (de) Leistungsspeichervorrichtungspack
DE4327895A1 (de) Stromrichtermodul
DE102017127559A1 (de) Batteriezellen-kühlstruktur, batteriekühlsystem und batteriepack
WO2009033891A2 (de) Elektronische schaltungsanordnung mit einer von der verbauten lage funktional unabhängigen wärmesenke, sowie wärmesenke dafür
WO2014131589A1 (de) Umrichterkühlung mit phasenwechselspeicher
DE102016202750A1 (de) Kühlvorrichtung, Steuergerät, Kühlsystem und Kraftfahrzeug damit
WO2019154694A1 (de) Thermisches kontakt- und füllmaterial und akkumulator-anordnung mit einem thermischen kontakt- und füllmaterial
DE2947000C2 (de) Gehäuse für elektronische Vorrichtungen
DE2624593A1 (de) Halbleiteranordnung
EP1256264A1 (de) Kühlvorrichtung
EP3219179B1 (de) Gehäuse

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030520

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031001