EP1194799A1 - Filtre optique interferentiel a bande etroite - Google Patents

Filtre optique interferentiel a bande etroite

Info

Publication number
EP1194799A1
EP1194799A1 EP00944023A EP00944023A EP1194799A1 EP 1194799 A1 EP1194799 A1 EP 1194799A1 EP 00944023 A EP00944023 A EP 00944023A EP 00944023 A EP00944023 A EP 00944023A EP 1194799 A1 EP1194799 A1 EP 1194799A1
Authority
EP
European Patent Office
Prior art keywords
optical
interference
layers
filter according
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP00944023A
Other languages
German (de)
English (en)
Inventor
Burkhard Danielzik
Rüdiger HENTSCHEL
Ulf Brauneck
Markus Kuhr
Bernd Metz
Stefan Bauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Publication of EP1194799A1 publication Critical patent/EP1194799A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/288Interference filters comprising deposited thin solid films comprising at least one thin film resonant cavity, e.g. in bandpass filters

Definitions

  • the invention relates to an interference optical narrowband filter for a wavelength ⁇ 0 with a plurality of dielectric layers according to the
  • Preamble of claim 1 and the use of such a filter and a plasma pulse CVD method for producing such narrow-band interference optical filters.
  • Narrow band dielectric filters with Fabry-Perot design are made of one
  • Interference-optical narrowband filters are produced by alternately applying high and low refractive index layers of precisely defined layer thickness.
  • the Fabry-Perot design has a symmetrical one
  • the narrow band filter consists of several cavities, e.g. from three cavities.
  • Layers are preferably made using optical means during production Methods monitored and controlled.
  • One possibility for the targeted control of the layer growth is, for example, an extreme value switch-off, which interrupts the coating process precisely when the transmission or reflection of the layer system reaches an extreme value, that is to say when the layer thickness corresponds to that of a ⁇ / 4 layer or an integral multiple thereof.
  • an extreme value switch-off which interrupts the coating process precisely when the transmission or reflection of the layer system reaches an extreme value, that is to say when the layer thickness corresponds to that of a ⁇ / 4 layer or an integral multiple thereof.
  • In order to generate a specified filter characteristic using the classic approach ie from a large number of ⁇ / 4 layers with a specified material selection (ie specified refractive indices), it is often necessary to "overdimension" the layer system. This means that very many layers or very thick layers must be used. This is tantamount to an extension of the manufacturing time for the filter and therefore usually low economy.
  • the interference filter according to US Pat. No. 4,756,602 was produced with the aid of continuous vapor deposition processes using a laser ellipsometric layer thickness monitoring, in which the exact thickness was determined after the layer was deposited and the subsequent layer was then re-optimized.
  • a layer thickness monitoring is extremely complex and can only be used to a limited extent in practice.
  • the object of the invention is to provide a very narrow-band Fabry-Perot filter with a predetermined pass characteristic, without having to accept the disadvantages of the prior art.
  • a narrow-band interference filter is also possible Small overall thickness is aimed for in order to achieve a high level of economy in production.
  • the object is achieved in that, in the case of an interference-optical narrow-band filter for a wavelength ⁇ 0, a number of layers of a multilayer system have an optical layer thickness deviating from ⁇ / 2 or ⁇ / 4.
  • Such an optical narrowband filter according to the invention thus comprises alternately arranged dielectric layers, for example consisting of the materials titanium dioxide and silicon dioxide, preferably niobium oxide and silicon dioxide, the optical layer thicknesses of the individual layers being arbitrary fractions or multiples of ⁇ / 4.
  • Such a design according to the invention offers the advantage that a transmission characteristic corresponding to predetermined specifications can be achieved with a smaller overall thickness than with designs consisting only of ⁇ / 4 layers.
  • Nb 2 0 5 , Ti0 2 , Ta 2 O s , ZrO 2 and HfO 2 are preferably used as materials for the high-index layers.
  • the transmission characteristic can be adapted to specified specifications, since the ratio of the refractive indices, the minimal reflection of the mirror layers and the position of the bandpass on the wavelength scale set narrow limits.
  • the designs according to the invention overcome this disadvantage. Furthermore, by using layers whose optical layer thickness differs from ⁇ / 4 or multiples thereof, so-called non- ⁇ / 4 layers, it is possible to vary, in particular to minimize, indentations in the pass characteristic of the bandpass filter, so-called "ripples" ,
  • the optical layer thickness of the layers deviating from ⁇ / 4 or ⁇ / 2 is selected in such a way that the total layer thickness of the interference-optical narrow-band filter is minimized for a given transmission characteristic.
  • the interference-optical narrow-band filter comprises a plurality of stacks with a plurality of alternately high and low refractive index layers.
  • Layers is arranged and at least one layer whose optical layer thickness deviates from ⁇ / 4 or ⁇ / 2.
  • spacer layers are provided between the stacks, which can comprise one or more ⁇ / 2 layers, or else layers with optical layer thicknesses that deviate from ⁇ / 2.
  • a method is also specified which enables such narrow-band filters to produce.
  • a plasma pulse CVD (PICVD) process is used for this, the production parameters being selected such that, on average, significantly less than one monolayer of the dielectric layer is deposited on a substrate per microwave pulse. This makes it possible to count a predetermined number of pulses
  • the number N of plasma pulses can first be determined in order to achieve a ⁇ / 4 or ⁇ / 2 layer and for producing a layer with optical ones deviating from ⁇ / 4 or ⁇ / 2 Layer thickness, the number of plasma pulses is increased or decreased by n compared to the predetermined number N, so that a somewhat thicker or thinner layer than a ⁇ / 4 layer is produced.
  • a layer material used for the production of a ⁇ / 4 layer by a layer material with slightly different optical constants can be used to produce a layer with a layer thickness different from ⁇ / 4, without the edge steepness of the filter is adversely affected, since the switch to the other material can take place during a pulse pause.
  • a predetermined layer thickness can then be set very precisely by counting the pulses.
  • a change in the optical layer thickness is also possible by changing process parameters such as the substrate temperature or the process gas pressure or the coating rate.
  • process parameters such as the substrate temperature or the process gas pressure or the coating rate.
  • Substrate temperature or the process gas pressure or the coating rate for example, can achieve refractive index differences of 0.05 and more.
  • Exemplary embodiments of Fabry-Perot narrow-band filters are to be described below, which comprise one or more layers with a layer thickness deviating from ⁇ / 4.
  • Figure 1 shows a first target transmission curve of a layer system.
  • Figure 2 shows the refractive index curve of a system that the first
  • the target transmission curve comprises a large number of layers, the optical layers of which
  • Figure 3 shows a second target transmission curve for a narrow band
  • Figure 4 shows the transmission curve of a layer system with a total
  • FIG. 5 shows the refractive index curve of the system according to FIG. 4.
  • Figure 6 shows the transmission curve of a layer system based on ⁇ / 4 and ⁇ / 2 layers, which almost the target values acc.
  • the system consists of 78 layers with a total thickness of approx. 27 ⁇ m.
  • FIG. 7 shows the refractive index curve of the system according to FIG. 6
  • FIG. 1 shows a first possible target transmission curve for a filter according to the invention.
  • FIG. 2 shows the refractive index curve of a system according to the invention, which almost reproduces the curve of the first target transmission curve and comprises a large number of layers, the optical layer thickness of which deviates from ⁇ / 4 or ⁇ / 2.
  • the system consists of a total of 112 layers with the following structure:
  • H denotes a layer with a high refractive index n H , L a
  • Layer with a low refractive index n L As materials for the high-index layers are preferably used Nb 2 O s , Ti0 2 , Ta 2 0 5 , Zr0 2 and Hf0 2 . Niobium oxide is particularly preferably used for the high-index layer and silicon dioxide for the low-index layer.
  • a second target characteristic for a narrow-band interference filter is specified in FIG.
  • FIGS. 4 and 5 show interference filters according to the invention which largely meet the required transmission curve according to the second target characteristic, as specified in FIG. 3.
  • FIG. 4 shows the actual transmission curve of an interference filter according to the invention.
  • the total layer thickness of the system according to FIG. 4 and FIG. 5 is almost 50% lower than the total layer thickness of a system which only comprises ⁇ / 4 and ⁇ / 2 layers.
  • the refractive index curve of the system according to the invention for fulfilling the second target characteristic is shown in FIG. 5.
  • the system according to FIG. 5 consists of a total of 66 individual layers with the following structure:
  • L denotes layers with a low refractive index and H layers with a high refractive index.
  • the refractive index was the high refractive index
  • the material of the high-index layer preferably comprises Nb 2 0 5) the material of the low-index layer Si0 2 .
  • FIG. 5 again shows the refractive index curve versus the layer thickness. The change between high and low refractive layers and the two spacer-like layers can be clearly seen.
  • FIG. 6 shows the transmission curve of a so-called three-cavity filter according to the prior art, comprising exclusively ⁇ / 4 and ⁇ / 2 layers and multiples thereof.
  • stacks 1, 2, 5 and 6 are constructed identically, stacks 3 and 4 have mirror layers consisting of 3/4 ⁇ layers.
  • a stack denotes a multiplicity of ⁇ / 4 layers (or multiples thereof) with alternating high and low refractive index materials.
  • a cavity comprises two stacks that pass through
  • Spacer layers for example a ⁇ / 2 layer of high or low refractive index material, are separated.
  • the coupling layers between the individual cavities can be low-refractive ⁇ / 4 layers, for example.
  • the design according to the prior art also shows a good approximation to the predetermined second target filter characteristic, as can be seen from the comparison of FIG. 3 and FIG. 6.
  • the individual layers and the two spacer layers are made significantly thicker. This leads to an almost 50% higher total layer thickness in the prior art compared to the designs according to the invention.
  • Another advantage of the invention is the high slope and a higher transmission in the pass band.
  • the layer systems shown with a changed optical thickness are preferably produced with the aid of the plasma pulse CVD
  • the optical layer thickness can be changed by changing the process parameters during the pulse pause, which can be variably adjusted.
  • the advantage of using the plasma pulse CVD method is that a very sharp transition can be achieved and it is possible in a simple manner inside the layer system to produce layers with an optical layer thickness deviating from ⁇ / 4. With the current continuous CVD processes, this is not possible without transitions.
  • the very narrow-band filters produced with the invention whose edge steepness can be set in a very controlled manner, can be used as
  • Edge filter with extreme slope or very flat gain flattening Filters are used. Furthermore, due to their precisely controllable transmission curve, the narrowband filters presented are suitable for multiplexers or demultiplexers in WDM (Wavelength Division Multiplex) or DWDM (Dense Wavelength Division Multiplex) systems in communications technology.
  • WDM Widelength Division Multiplex
  • DWDM Dense Wavelength Division Multiplex

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)

Abstract

L'invention concerne un filtre optique interférentiel à bande étroite pour une longueur d'onde μ0 comportant de nombreuses couches diélectriques. Les couches diélectriques présentent en alternance un indice de réfraction élevé (nH) et faible (nL) et un premier nombre de couches diélectriques présente une épaisseur de couche optique égale à μ/4, à μ/2 ou à un multiple entier de ces valeurs. L'invention est caractérisée en ce qu'un deuxième nombre de couches du système de couches présente une épaisseur de couche optique différente de μ/4 et de μ/2, de sorte que l'épaisseur de couche totale du système de couches est diminuée.
EP00944023A 1999-07-12 2000-07-10 Filtre optique interferentiel a bande etroite Withdrawn EP1194799A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE1999132082 DE19932082A1 (de) 1999-07-12 1999-07-12 Interferenzoptisches Schmalbandfilter
DE19932082 1999-07-12
PCT/EP2000/006518 WO2001004668A1 (fr) 1999-07-12 2000-07-10 Filtre optique interferentiel a bande etroite

Publications (1)

Publication Number Publication Date
EP1194799A1 true EP1194799A1 (fr) 2002-04-10

Family

ID=7914238

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00944023A Withdrawn EP1194799A1 (fr) 1999-07-12 2000-07-10 Filtre optique interferentiel a bande etroite

Country Status (7)

Country Link
EP (1) EP1194799A1 (fr)
CN (1) CN1360681A (fr)
AU (2) AU5826800A (fr)
CA (1) CA2379077A1 (fr)
DE (1) DE19932082A1 (fr)
TW (1) TW452666B (fr)
WO (2) WO2001004668A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143145C1 (de) * 2001-09-03 2002-10-31 Fraunhofer Ges Forschung Verfahren und Einrichtung zur Herstellung von Schichtsystemen für optische Präzisionselemente
US20080037127A1 (en) * 2006-03-31 2008-02-14 3M Innovative Properties Company Wide angle mirror system
EP2674513B1 (fr) 2009-05-13 2018-11-14 SiO2 Medical Products, Inc. Revêtement de récipient et inspection
WO2013170052A1 (fr) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Enrobage protecteur en saccharide pour conditionnement pharmaceutique
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
CN103930595A (zh) 2011-11-11 2014-07-16 Sio2医药产品公司 用于药物包装的钝化、pH保护性或润滑性涂层、涂布方法以及设备
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
CN102759768B (zh) * 2012-07-31 2014-12-31 杭州科汀光学技术有限公司 一种光学滤波器
WO2014071061A1 (fr) 2012-11-01 2014-05-08 Sio2 Medical Products, Inc. Procédés d'inspection de revêtement
EP2920567B1 (fr) 2012-11-16 2020-08-19 SiO2 Medical Products, Inc. Procédé et appareil pour détecter des caractéristiques d'intégrité de revêtement de barrière rapide
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
WO2014085346A1 (fr) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Corps creux comportant un revêtement intérieur
WO2014134577A1 (fr) 2013-03-01 2014-09-04 Sio2 Medical Products, Inc. Prétraitement par plasma ou par dépôt chimique en phase vapeur pour kit pharmaceutique lubrifié, procédé de revêtement et appareil
WO2014164928A1 (fr) 2013-03-11 2014-10-09 Sio2 Medical Products, Inc. Emballage muni d'un revêtement
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
WO2014144926A1 (fr) 2013-03-15 2014-09-18 Sio2 Medical Products, Inc. Procédé de revêtement
US11066745B2 (en) 2014-03-28 2021-07-20 Sio2 Medical Products, Inc. Antistatic coatings for plastic vessels
CA3204930A1 (fr) 2015-08-18 2017-02-23 Sio2 Medical Products, Inc. Conditionnement pharmaceutique et autre presentant un faible taux de transmission d'oxygene
CN106597591B (zh) * 2017-01-25 2022-07-26 杭州科汀光学技术有限公司 一种高截止、低波纹的准矩形窄带滤光片
CN111399104B (zh) * 2020-04-26 2021-02-09 腾景科技股份有限公司 一种双峰超窄带陡峭光学干涉滤波器及其制作方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH557546A (de) * 1972-10-19 1974-12-31 Balzers Patent Beteilig Ag Aus einer mehrzahl von einfachen oder zusammengesetzen (lambda)/4-schichten bestehender reflexionsvermindernder belag.
US4373782A (en) * 1980-06-03 1983-02-15 Optical Coating Laboratory, Inc. Non-polarizing thin film edge filter
SU1125588A1 (ru) * 1982-01-27 1984-11-23 Киевское Научно-Производственное Объединение "Аналитприбор" Интерференционный отрезающий фильтр
JPS619604A (ja) * 1984-06-23 1986-01-17 Koshin Kogaku:Kk 誘電体多層膜フイルタ
US4793669A (en) * 1987-09-11 1988-12-27 Coherent, Inc. Multilayer optical filter for producing colored reflected light and neutral transmission
US4896928A (en) * 1988-08-29 1990-01-30 Coherent, Inc. Chromatically invariant multilayer dielectric thin film coating
JP3172537B2 (ja) * 1994-03-29 2001-06-04 カール−ツァイス−スティフツング 湾曲した基材のコーティング用pcvd法及び装置
DE4445427C2 (de) * 1994-12-20 1997-04-30 Schott Glaswerke Plasma-CVD-Verfahren zur Herstellung einer Gradientenschicht
US6011652A (en) * 1997-12-23 2000-01-04 Cushing; David Henry Multilayer thin film dielectric bandpass filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0104668A1 *

Also Published As

Publication number Publication date
WO2001004669A1 (fr) 2001-01-18
DE19932082A1 (de) 2001-01-18
WO2001004668A1 (fr) 2001-01-18
AU6690600A (en) 2001-01-30
TW452666B (en) 2001-09-01
CN1360681A (zh) 2002-07-24
AU5826800A (en) 2001-01-30
CA2379077A1 (fr) 2001-01-18

Similar Documents

Publication Publication Date Title
EP1194799A1 (fr) Filtre optique interferentiel a bande etroite
DE102004005233B4 (de) Infrarotstrahlen-Sperrfilter und Methoden zu dessen Herstellung
EP1537057A1 (fr) Procede de realisation de couches et de systemes de couches, et substrat recouvert
DE2341359B2 (de) Aus einer Mehrzahl von einfachen oder zusammengesetzten lambda/4-Schichten bestehender reflexionsvermindemder Belag
DE3213839A1 (de) Optische wellenlaengen-multiplex- bzw. -demultiplexanordnung
DE102017004828A1 (de) aSi:H Bandpass mit hochbrechendem Zweitmaterial und zweitem Bandpass als Blocker
EP3657222A1 (fr) Système de couches et élément optique avec un système de couches
EP1749222B1 (fr) Miroir dielectrique a haute reflexion et son procede de production
DE69930921T2 (de) Elektrische lampe
EP2839325B1 (fr) Grille de diffraction par réflexion et procédé de fabrication de ladite grille de diffraction par réflexion
DE4442045C2 (de) Interferenzfilter
WO2006063855A2 (fr) Couche de protection barriere laminaire fine
EP1998195B1 (fr) Filtre d'interférence et son procédé de fabrication
DE202011110173U1 (de) Optisches Element mit einer Antireflexionsbeschichtung
DE102005020944A1 (de) Diffraktive Elemente mit Antireflex-Eigenschaften
DE102012101555B4 (de) Beugungsgitter und Verfahren zu dessen Herstellung
DE4100820C2 (de) Vielschicht-Entspieglungsbelag
DE2406890A1 (de) Dichroitischer spiegel
DE102018133062A1 (de) Verfahren zur Herstellung eines linear variablen optischen Filters
WO2023165725A1 (fr) Procédé de production d'un système de couches optiques et système de couches optiques ainsi produit
DE10360539B4 (de) Reflektierende Schichtenfolge mit einer Deckschicht aus Silizium
DE102004034419B4 (de) Verfahren und Vorrichtung zur Herstellung mehrlagiger, strukturierter Farbfilter
DE4444786C2 (de) Interferenz-Bandpaßfilter
DD263836A1 (de) Mehrlinien - schmalbandpassfilter
WO2024120952A1 (fr) Dispositif, système et procédé de fabrication d'un dispositif

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20030527