EP1166381A1 - Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie - Google Patents
Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterieInfo
- Publication number
- EP1166381A1 EP1166381A1 EP00925042A EP00925042A EP1166381A1 EP 1166381 A1 EP1166381 A1 EP 1166381A1 EP 00925042 A EP00925042 A EP 00925042A EP 00925042 A EP00925042 A EP 00925042A EP 1166381 A1 EP1166381 A1 EP 1166381A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel cell
- reaction
- cell battery
- gas
- process gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2457—Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04007—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
- H01M8/04014—Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
- H01M8/04022—Heating by combustion
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the invention relates to a fuel cell battery with improved cold start performance and a method for cold starting a fuel cell battery in which the heat of reaction of the combustion of the process gases is used to heat the fuel cell during the cold start.
- EP 0 924 163 A2 discloses a method for steam reforming a hydrocarbon or a hydrocarbon derivative, as well as a reforming system that can be operated with it, and a fuel cell operating method in which the heat of an external catalytic burner device is used to warm up the system during a cold start.
- a fuel cell battery has one electrolyte per fuel cell unit, such as an ion exchange membrane in the PEM fuel cell, which contains a sulfonated chemical compound as the main component.
- This group of chemical compounds binds water in the membrane to ensure adequate proton conductivity.
- the membrane resistance suddenly increases by 2-3 powers of ten due to the freezing of the stored water.
- the PAFC Phosphoric Acid Fuel Cell
- PAFC Phosphoric Acid Fuel Cell
- either the battery, even without use, can be operated at minimal load so that the temperature does not drop below the freezing point drops, or a thermal sensor can be installed so that the moment the temperature drops so far that the electrolyte resistance threatens to rise suddenly, the battery starts up and heats up due to operation.
- a disadvantage of short-circuit operation is that an extremely high internal resistance of the electrolyte must be overcome at temperatures below freezing until the cell is started to run and can heat up as a result.
- the object of the present invention is to provide a fuel cell battery with improved cold start performance, which can be started at low temperatures without a drastically increased consumption of process gas. It is also an object of the invention to provide a method by which a fuel cell battery can be started cold.
- the invention relates to a fuel cell battery with at least one fuel cell unit, which comprises a reaction chamber on each side of the centrally arranged electrolyte electrode unit and process gas channels, at least one additional line being provided in at least one reaction chamber and / or to the bipolar plates which metered reaction and / or process gas when starting and / or can be generated there in situ.
- the areas covered with catalyst are thus used as a catalytic burner during a cold start.
- the invention also relates to a method for cold starting a fuel cell battery, in which the waste heat from the combustion of the primary and / or secondary fuel is used to heat the fuel cell stack, reaction and / or process gas from the counter electrode being metered into at least one reaction chamber and / or is generated there in situ, so that on cold start all surfaces which are covered with catalyst and which both reaction gases encounter are used as catalytic burners.
- the additional line establishes a connection between the process gas channel for oxidant and the anode and / or the process gas channel for fuel and the cathode.
- This connection can be equipped with a metering valve, automatic control of the metering valve via a control unit, which is used as a control variable, for example: the temperature in the anode and / or cathode chamber, being advantageous.
- the additional line establishes an electrical contact between the two electrodes and / or the adjacent bipolar plates and an external voltage source, so that oxygen and / or in is targeted in the anode chamber by electrolysis, possibly with periodic polarity reversal of the cell hydrogen can be generated in situ in the cathode chamber.
- the amount of reaction gas generated can be adjusted directly via the amount of electricity added.
- the reaction gas is added in an amount. is metered, which ensures that the temperature at the catalyst does not exceed 100 ° C.
- additional parts such as e.g. Gas inlets and outlets, bipolar plate and / or gas distribution and / or collection channels are coated with catalyst, so that oxidation and / or reduction takes place at these points as soon as reaction gas is metered in, with the development of heat.
- a fuel cell battery comprises at least one stack with a fuel cell unit, which is referred to as a stack, the corresponding process gas supply and disposal channels (axial process gas channel), a cooling system and associated end plates.
- a reformer can be integrated in the fuel cell system or operated externally.
- the process gas channel is e.g. directly connected to an oxygen or fuel tank, with a compressor and / or with a hydrogen and / or reformer gas (intermediate) storage, or also, preferably via a reformer, with a primary fuel line (natural gas line).
- reformer or H 2 gas can be temporarily stored, which is metered into the cathode compartment during cold start.
- the “at least one additional line into a reaction chamber ⁇ (term from the main claim) is preferably connected directly to a process gas channel.
- a PEM fuel cell battery is preferably used, but the application of the invention to other fuel lines, in particular the PAFC, is obvious.
- a fuel cell unit comprises an electrolyte arranged centrally, ie in the middle, which has an electrode on both sides, whereby in the case of PEM it is coated with an electrocatalyst like a sandwich.
- the electrode works like a catalytic burner, which permits controlled combustion of the reaction gas mixture and heats itself and its surroundings.
- a catalytic burner is characterized in that a strongly exothermic reaction takes place there in a controlled manner with the aid of a catalyst, so that the exothermic energy that is released can be used as heat. This does not result in an open flame even when burned, but the catalytic burner only produces heat.
- the gas of the pure reactant is referred to as the reaction gas, whereas the gas / liquid mixture which is introduced into the reaction chamber is referred to as the process gas.
- the process gas comprises several components such as e.g. Steam, inert gas, etc. in addition to the reaction gas and can also include primary fuel (before or after reforming).
- the primary fuel is gasoline, methanol, methane, etc., ie fuels from which a secondary fuel, such as a hydrogen-containing gas mixture or hydrogen, is produced in a reformer.
- Hydrogen can also be primary gas, for example in the case of H 2 storage.
- the reaction chamber is either the cathode or the anode chamber.
- the reaction chamber basically forms the space between the electrode and the bipolar plates.
- At least one process gas supply duct and one process gas discharge duct lead into this chamber, both of which are generally axially mounted in the fuel cell stack and are therefore also called axial process gas ducts.
- From gas inlet to gas outlet one Reaction chambers guide gas distribution and collection channels, which are often integrated in the bipolar plates. All areas of the reaction chamber can be covered with catalyst, so that the areas covered with catalyst can be used as catalytic burners not only in the immediate vicinity of the electrolyte at the electrode, but anywhere in the reaction chamber.
- the stack may flow through heated gases, e.g. from the reformer, or by simply decoupling the reformer heat via a heating circuit, so that not only the combustion and / or oxidation in the reaction chamber itself heats the stack, but also heat is supplied from the outside.
- the use in the mobile and decentralized area is in the foreground, but the use in the stationary area is also obvious.
- the invention for the first time discloses a method for cold starting a fuel cell battery that works simply, inexpensively and effectively.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Eine Brennstoffzellenbatterie mit verbesserter Kaltstartperformance und ein Verfahren zum Kaltstarten einer Brennstoffzellenbatterie; bei der die Reaktionswärme der Knallgasreaktion in der Brennstoffzelle zum Aufheizen genutzt wird. Dazu wird beim Starten einfach Reaktionsgas in die Reaktionskammer zudosiert, so daß die Elektrode der Brennstoffzelleneinheit als Katalytbrenner fungiert.
Description
Beschreibung
Brennstoffzellenbatterie mit verbesserter Kaltstartperformance und Verfahren zum Kaltstarten einer Brennstoffzellen- batterie
Die Erfindung betrifft eine Brennstoffzellenbatterie mit verbesserter Kaltstartperformance und ein Verfahren zum Kaltstarten einer Brennstoffzellenbatterie bei der die Reaktions- wärme der Verbrennung der Prozeßgase zum Aufheizen der Brennstoffzelle beim Kaltstart genutzt wird.
Aus der EP 0 924 163 A2 ist ein Verfahren zur Wasserdampfreformierung eines Kohlenwasserstoffs oder eines Kohlenwasser- stoffderivats sowie eine damit betreibbare Reformierungsanla- ge und ein Brennstoffzellenbetriebsverfahren bekannt, bei dem die Wärme einer externen katalytischen Brennereinrichtung zum Aufwärmen der Anlage beim Kaltstart verwendet wird.
Eine Brennstoffzellenbatterie besitzt pro Brennstoffzellen- einheit einen Elektrolyten, wie beispielsweise bei der PEM- Brennstoffzelle eine Ionenaustauschermembran, die als Hauptbestandteil eine sulfonierte chemische Verbindung enthält. Diese Gruppe chemischer Verbindungen bindet Wasser in der Membran, um eine ausreichende Protonenleitfähigkeit zu gewährleisten. Bei einer Temperatur unter 0°C steigt der Membranwiderstand, bedingt durch das Einfrieren des gespeicherten Wassers, sprunghaft um 2-3 Zehnerpotenzen an. Bei den anderen Nieder- und Mitteltemperatur-Brennstoffzellen, wie z.B. der PAFC (Phosphoric Acid Fuel Cell) gibt es auch einen Elektrolyten, bei dem durch niedrige Temperaturen der Widerstand um ein Vielfaches ansteigt. Dadurch ist das Kaltstarten der Brennstoffzellenbatterie stark erschwert.
Um dieses Problem zu lösen, kann bei niedriger Temperatur der Umgebung, entweder die Batterie, auch ohne Nutzung, bei minimaler Last betrieben werden, damit die Temperatur nicht unter
den Gefrierpunkt fällt, oder es kann ein Thermofühler eingebaut werden, so daß in dem Moment, wo die Temperatur so weit sinkt, daß der Elektrolytwiderstand sprunghaft anzusteigen droht, die Batterie anspringt und sich durch Betrieb auf- heizt.
Es gibt auch den sogenannten Kurzschlußbetrieb, bei dem die Batterie in der Aufheizphase ständig kurzgeschlossen wird, so daß die gesamte Brennstoffzellenleistung zu Beginn des Be- triebs als Kurzschlußwärme zum Aufheizen des Elektrolyten verbraucht wird.
Nachteilig am Kurzschlußbetrieb ist jedoch, daß bei Temperaturen unter dem Gefrierpunkt ein extrem hoher Innenwiderstand des Elektrolyten überwunden werden muß, bis die Zelle zum Laufen gebracht wird und sich dadurch aufheizen kann.
Bekannt sind demnach nur Methoden zum Kaltstarten einer Brennstoffzellenbatterie, die einen drastisch erhöhten Ver- brauch an Reaktionsgas während des Startens haben oder die sehr lange Startzeiten benötigen.
Aufgabe der vorliegenden Erfindung ist es, eine Brennstoffzellenbatterie mit verbesserter Kaltstartperformance zu schaffen, die bei niedrigen Temperaturen auch ohne drastisch erhöhten Verbrauch an Prozeßgas gestartet werden kann. Außerdem ist es Aufgabe der Erfindung, ein Verfahren zur Verfügung zu stellen, mit dem eine Brennstoffzellenbatterie kalt gestartet werden kann.
Gegenstand der Erfindung ist eine Brennstoffzellenbatterie mit zumindest einer Brennstoffzelleneinheit, die eine Reaktionskammer auf jeder Seite der zentral angeordneten Elektrolyt-Elektroden-Einheit und Prozeßgaskanäle umfaßt, wobei zu- mindest eine zusätzliche Leitung in zumindest eine Reaktionskammer und/oder zu den Bipolarplatten vorgesehen ist, durch die beim Starten Reaktions- und/oder Prozeßgas zudosiert
und/oder dort in situ erzeugt werden kann. Die mit Katalysator belegten Flächen werden so beim Kaltstart als Katalyt- brenner genutzt.
Außerdem ist Gegenstand der Erfindung ein Verfahren zum Kaltstarten einer Brennstoffzellenbatterie, bei dem die Abwärme aus der Verbrennung des Primär- und/oder Sekundärbrennstoffs zur Beheizung des Brennstoffzellenstacks genutzt wird, wobei Reaktions- und/oder Prozeßgas der Gegenelektrode dosiert in zumindest eine Reaktionskammer eingeleitet und/oder dort in situ erzeugt wird, so daß beim Kaltstart alle Flächen, die mit Katalysator belegt sind und auf die beide Reaktionsgase auftreffen, als Katalytbrenner genutzt werden.
Nach einer Ausgestaltung stellt die zusätzliche Leitung eine Verbindung zwischen dem Prozeßgaskanal für Oxidans und der Anode und/oder dem Prozeßgaskanal für Brennstoff und der Kathode her. Diese Verbindung kann mit einem Dosierventil ausgestattet sein, wobei eine automatische Steuerung des Dosier- ventils über ein Steuergerät, in das als Regelgröße z.B: die Temperatur in der Anoden- und/oder Kathodenkammer eingeht, vorteilhaft ist.
Nach einer anderen Ausgestaltung stellt die zusätzliche Lei- tung einen elektrischen Kontakt zwischen den beiden Elektroden und/oder den angrenzenden Bipolarplatten und einer äußeren Spannungsquelle her, so daß durch Elektrolyse, gegebenenfalls mit periodischem Umpolen der Zelle, gezielt in der Anodenkammer Sauerstoff und/oder in der Kathodenkammer Wasser- stoff in situ erzeugt werden kann. Dabei kann die Menge an erzeugtem Reaktionsgas direkt über die Menge an zugegebenem Strom eingestellt werden.
Bei der Ausführungsform, bei der die Brennstoffzellenbatterie aus PEM-Brennstoffzellen mit sulfonierter Membran besteht, ist es vorteilhaft, wenn das Reaktionsgas in einer Menge zu-
dosiert wird, die gewährleistet, daß die Temperatur am Katalysator 100 °C nicht überschreitet.
Nach einer Ausgestaltung der Erfindung sind außer den Elek- troden in und/oder außerhalb der Reaktionska mer noch zusätzliche Teile wie z.B. Gasein- und Auslasse, Bipolarplatte und/oder Gasverteilungs- und/oder -Sammelkanäle mit Katalysator belegt, so daß an diesen Stellen, sobald Reaktionsgas zudosiert wird, Oxidation und/oder Reduktion unter Wärmeent- wicklung stattfindet.
Eine Brennstoffzellenbatterie umfaßt zumindest einen Stapel mit einer Brennstoffzelleneinheit, der als Stack bezeichnet wird, die entsprechenden Prozeßgasversorgungs- und Entsor- gungskanäle (axialer Prozeßgaskanal) , ein Kühlsystem und dazugehörige Endplatten. Ein Reformer kann in der Brennstoffzellenanlage integriert sein oder extern betrieben werden.
Der Prozeßgaskanal ist z.B. direkt mit einem Sauerstoff- oder Brennstofftank, mit einem Kompressor und/oder mit einem Wasserstoff- und/oder Reformergas (zwischen) Speicher, oder aber auch, bevorzugt über einen Reformer, mit einer Primärbrennstoffleitung (Erdgasleitung) verbunden.
Für den Kaltstart kann Reformer- oder H2-gas zwischengespeichert werden, das beim Kaltstarten dosiert in den Kathodenraum eingeleitet wird.
Die „zumindest eine zusätzliche Leitung in eine Reaktionskam- merλΛ (Begriff aus dem Hauptanspruch) ist bevorzugt direkt mit einem Prozeßgaskanal verbunden.
Bevorzugt wird eine PEM-Brennstoffzellenbatterie eingesetzt, jedoch ist die Anwendung der Erfindung auf andere Brennstoff- Zeilen, insbesondere die PAFC, naheliegend.
Eine BrennstoffZelleneinheit umfaßt einen zentral, d.h. in der Mitte angeordneten Elektrolyten, der beidseitig eine Elektrode hat, wobei er im Falle der PEM wie ein Sandwich mit Elektrokatalysator belegt ist. Die Elektrode arbeitet, sobald beide Reaktionsgase vorliegen, d.h. sobald in den normalerweise z.B. mit Oxidans gefüllten Reaktionsraum Brennstoff zudosiert wird, wie ein Katalytbrenner, der eine kontrollierte Verbrennung des Reaktionsgasgemisches zuläßt und sich und seine Umgebung dabei erwärmt.
Ein Katalytbrenner zeichnet sich dadurch aus, daß eine stark exotherme Reaktion dort mit Hilfe eines Katalysators kontrolliert abläuft, so daß die exotherme Energie, die frei wird, als Wärme nutzbar ist. Dabei kommt es auch bei einer Verbren- nung nicht zu einer offenen Flamme, sondern der Katalytbrenner produziert nur Wärme.
Als Reaktionsgas wird das Gas des reinen Reaktanden bezeichnet, wohingegen als Prozeßgas das Gas/Flüssigkeitsgemisch be- zeichnet wird, das in die Reaktionskammer eingeleitet wird. Das Prozeßgas umfaßt mehrere Komponenten wie z.B. Wasserdampf, Inertgas etc zusätzlich zum Reaktionsgas und kann auch Primärbrennstoff (vor oder nach der Reformierung) umfassen.
Als Primärbrennstoff wird Benzin, Methanol, Methan etc. verstanden, also Brennstoffe, aus denen in einem Reformer ein Sekundärbrennstoff, wie ein wasserstoffhaltiges Gasgemisch oder Wasserstoff, hergestellt wird. Wasserstoff kann, z.B. bei H2-Speicherung, auch Primärgas sein.
Die Reaktionskammer ist entweder die Kathoden- oder die Anodenkammer. Die Reaktionskammer bildet grundsätzlich der Raum zwischen der Elektrode und den Bipolarplatten. In diese Kammer führt zumindest ein Prozeßgaszufuhr- und ein Prozeßgasab- leitungskanal, die beide in der Regel im Brennstoffzellen- stack axial angebracht sind und deshalb auch axiale Prozeßgaskanäle genannt werden. Vom Gaseinlaß zum Gasauslaß einer
Reaktionskammer führen Gasverteilungs- und -Sammelkanäle, die oft in den Bipolarplatten integriert sind. An allen Flächen der Reaktionskammer ist eine Belegung mit Katalysator möglich, so daß die Nutzung der mit Katalysator belegten Flächen als Katalytbrenner nicht nur in unmittelbarer Nähe des Elektrolyten an der Elektrode, sondern überall in der Reaktionskammer stattfinden kann.
Es ist auch möglich, daß der Stack durch das Durchströmen von erwärmten Gasen, z.B. aus dem Reformer, oder durch einfaches Auskoppeln der Reformerwärme über einen Heizungskreislauf zusätzlich beheizt wird, so daß nicht nur die Verbrennung und/oder Oxidation in der Reaktionskämmer selbst den Stack beheizt, sondern von außen auch noch Wärme zugeführt wird.
Bei der Erfindung steht die Anwendung im mobilen und dezentralen Bereich im Vordergrund, jedoch ist die Anwendung im stationären Bereich auch naheliegend.
Durch die Erfindung wird erstmals ein Verfahren zum Kaltstarten einer Brennstoffzellenbatterie offenbart, das einfach, preiswert und effektiv arbeitet.
Claims
1. Brennstoffzellenbatterie mit zumindest einer Brennstoffzelleneinheit, die eine Reaktionskammer auf jeder Seite der zentral angeordneten Elektrolyt-Elektroden-Einheit und axiale Prozeßgaskanäle umfaßt, wobei zumindest eine zusätzliche Leitung in zumindest eine Reaktionskämmer und/oder zu den Bipolarplatten vorgesehen ist, durch die beim Starten Reaktionsund/oder Prozeßgas der Gegenelektrode zudosiert und/oder dort in situ erzeugt werden kann, so daß die mit Katalysator belegten Flächen als Katalytbrenner genutzt werden.
2.Brennstoffzellenbatterie nach Anspruch 1, bei der die Brennstoffzellen Polymer-Elektrolyt-Membran (PEM) Brennstoff- Zellen sind.
3. Brennstoffzellenbatterie nach einem der vorstehenden Ansprüche, bei der die zusätzliche Leitung eine Verbindung zwischen dem Prozeßgaskanal für Oxidans und der Anode und/oder dem Prozeßgaskanal für Brennstoff und der Kathode herstellt.
4. Brennstoffzellenbatterie nach einem der vorstehenden Ansprüche, bei dem die zusätzliche Leitung einen elektrischen Kontakt zwischen den beiden Elektroden und/oder den angren- zenden Bipolarplatten und einer äußeren Spannungsquelle herstellt, so daß durch Elektrolyse und gegebenenfalls durch periodisches Umpolen der Zelle gezielt Sauerstoff in der Anodenkammer und/oder Wasserstoff in der Kathodenkammer in situ erzeugt werden kann.
5. Brennstoffzelle nach einem der vorstehenden Ansprüche, bei der beliebige Flächen in und/oder außerhalb der Reaktionskammer mit Katalysator belegt sind und so nach Zudosierung von Reaktionsgas Katalytbrenner sind.
6. Verfahren zum Kaltstarten einer Brennstoffzellenbatterie, bei dem die Abwärme aus der Verbrennung des Primär- und/oder Sekundärbrennstoffs zur Beheizung des BrennstoffZellenstacks genutzt wird, wobei Reaktions- und/oder Prozeßgas dosiert in zumindest eine Reaktionskammer eingeleitet und/oder dort in situ erzeugt wird, so daß beim Kaltstart die mit Katalysator belegten Flächen als Katalytbrenner genutzt werden.
7. Verfahren nach Anspruch 6, bei dem das Reaktionsgas so zudosiert wird, daß der Katalysator nicht über 100°C erhitzt wird.
8. Verfahren nach einem der Ansprüche 6 bis 7, bei dem zusätzlich Wärme aus einer Heizung und/oder aus dem Reformer dem Brennstoffzellenstack zugeführt wird.
9. Verfahren nach Anspruch 8, bei dem das heiße Reformergas aus dem Reformer in den Kathodenraum geführt wird.
10. Verfahren nach Anspruch 8, bei dem heißes Reformergas durch den Anodenraum geleitet wird, dem vor- oder hinterher Luft oder Sauerstoff gezielt zudosiert wird.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19910386 | 1999-03-09 | ||
DE19910386 | 1999-03-09 | ||
PCT/DE2000/000742 WO2000054356A1 (de) | 1999-03-09 | 2000-03-09 | Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1166381A1 true EP1166381A1 (de) | 2002-01-02 |
Family
ID=7900275
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00925042A Withdrawn EP1166381A1 (de) | 1999-03-09 | 2000-03-09 | Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie |
Country Status (6)
Country | Link |
---|---|
US (1) | US20020058165A1 (de) |
EP (1) | EP1166381A1 (de) |
JP (1) | JP2002539586A (de) |
CN (1) | CN1343379A (de) |
CA (1) | CA2367134A1 (de) |
WO (1) | WO2000054356A1 (de) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6358638B1 (en) * | 1999-12-22 | 2002-03-19 | General Motors Corporation | Cold start-up of a PEM fuel cell |
DE10023036A1 (de) * | 2000-05-11 | 2001-11-22 | Siemens Ag | Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage |
US6746789B1 (en) | 2000-06-13 | 2004-06-08 | Hydrogenics Corporation | Catalytic humidifier and heater for the fuel stream of a fuel cell |
US6706429B1 (en) | 2000-06-13 | 2004-03-16 | Hydrogenics Corporation | Catalytic humidifier and heater, primarily for humidification of the oxidant stream for a fuel cell |
DE10031062A1 (de) * | 2000-06-26 | 2002-01-17 | Siemens Ag | Polymer-Elektrolyt-Membran(PEM)-Brennstoffzelle mit Heizelement,PEM-Brennstoffzellenanlage und Verfahren zum Betreiben einer PEM-Brennstoffzellenanlage |
JP3731650B2 (ja) | 2001-10-30 | 2006-01-05 | 日産自動車株式会社 | 燃料電池 |
CN1309110C (zh) * | 2001-12-27 | 2007-04-04 | 日产自动车株式会社 | 燃料电池设备的加热 |
US6797421B2 (en) * | 2002-01-11 | 2004-09-28 | Utc Fuel Cells, Llc | Method and apparatus for preventing water in fuel cell power plants from freezing during storage |
DE10213134A1 (de) * | 2002-03-23 | 2003-10-09 | Daimler Chrysler Ag | Brennstoffzelle und Verfahren zum Kaltstarten einer solchen Brennstoffzelle |
DE10340982A1 (de) * | 2003-09-05 | 2005-03-31 | Volkswagen Ag | Brennstoffzellensystem mit Kathodenzuluftvorwärmer und Verfahren für den Betrieb eines Brennstoffzellensystems |
DE102004023057A1 (de) * | 2004-05-11 | 2005-12-01 | Bayerische Motoren Werke Ag | Brennstoffzellen-Stack |
US7807311B2 (en) * | 2006-10-16 | 2010-10-05 | Gm Global Technology Operations, Inc. | Apparatus for hydrogen-air mixing in a fuel cell assembly and method |
US8603654B2 (en) * | 2006-11-22 | 2013-12-10 | GM Global Technology Operations LLC | Supplemental coolant heating for fuel cells with metal plates |
WO2009073452A1 (en) * | 2007-11-30 | 2009-06-11 | Bdf Ip Holdings Ltd. | Recovering performance loss in fuel cells |
US9608284B2 (en) | 2014-07-30 | 2017-03-28 | Microsoft Technology Licensing, Llc | Dynamically controlled heat exchange for cascading startup of fuel cell grids |
KR101713722B1 (ko) * | 2015-08-26 | 2017-03-08 | 현대자동차 주식회사 | 연료 전지 차량의 열관리 시스템 |
CN106784922B (zh) * | 2017-02-15 | 2023-09-22 | 天津大学 | 利用石墨板通直流电加热质子交换膜燃料电池冷启动装置 |
CN109873179B (zh) * | 2017-12-04 | 2022-03-08 | 中国科学院大连化学物理研究所 | 一种燃料电池系统及低温快速启动方法 |
CN108598541B (zh) * | 2018-05-16 | 2021-03-16 | 潍柴动力股份有限公司 | 一种sofc温度控制方法、温度控制系统及车辆 |
DE102019219786A1 (de) * | 2019-12-17 | 2021-06-17 | Psa Automobiles Sa | Verfahren und Anordnung zum Aufwärmen einer Brennstoffzelle |
CN114171744A (zh) * | 2022-02-11 | 2022-03-11 | 北京新研创能科技有限公司 | 一种燃料电池的极板及其制备方法、燃料电池堆、燃料电池系统及其冷启动方法 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58119168A (ja) * | 1982-01-08 | 1983-07-15 | Toshiba Corp | 溶融炭酸塩燃料電池積層体起動方式 |
JPS61118972A (ja) * | 1984-11-13 | 1986-06-06 | Fuji Electric Co Ltd | 燃料電池の起動方法 |
JPS61158672A (ja) * | 1984-12-28 | 1986-07-18 | Fuji Electric Co Ltd | 空冷式燃料電池の昇温方法 |
JPS63205058A (ja) * | 1987-02-20 | 1988-08-24 | Mitsubishi Electric Corp | 燃料電池装置 |
JPS63225477A (ja) * | 1987-03-13 | 1988-09-20 | Mitsubishi Electric Corp | 燃料電池の加熱方法 |
JPS63236262A (ja) * | 1987-03-25 | 1988-10-03 | Hitachi Ltd | 燃料電池 |
JPH01132062A (ja) * | 1987-11-18 | 1989-05-24 | Sanyo Electric Co Ltd | 燃料電池発電システムの起動装置 |
JPH01134870A (ja) * | 1987-11-19 | 1989-05-26 | Sanyo Electric Co Ltd | 燃料電池発電システム |
JPH04106877A (ja) * | 1990-08-28 | 1992-04-08 | Mitsubishi Electric Corp | 燃料電池発電装置 |
DE4033286A1 (de) * | 1990-10-19 | 1991-02-28 | Asea Brown Boveri | Verfahren zur umwandlung von in einem stoff als chemisches potential vorliegender energie in elektrische energie mittels einer brennstoffzelle |
GB9412073D0 (en) * | 1994-06-16 | 1994-08-03 | British Gas Plc | Method of operating a fuel cell |
JPH08148175A (ja) * | 1994-11-25 | 1996-06-07 | Tokyo Gas Co Ltd | 平板型固体電解質燃料電池の起動方法および停止方法 |
US5753383A (en) * | 1996-12-02 | 1998-05-19 | Cargnelli; Joseph | Hybrid self-contained heating and electrical power supply process incorporating a hydrogen fuel cell, a thermoelectric generator and a catalytic burner |
DE59809674D1 (de) * | 1997-12-28 | 2003-10-23 | Klaus Rennebeck | Brennstoffeinspritzdüse |
US6103410A (en) * | 1998-06-05 | 2000-08-15 | International Fuel Cells Corporation | Start up of frozen fuel cell |
-
2000
- 2000-03-09 WO PCT/DE2000/000742 patent/WO2000054356A1/de not_active Application Discontinuation
- 2000-03-09 CA CA002367134A patent/CA2367134A1/en not_active Abandoned
- 2000-03-09 CN CN00804733A patent/CN1343379A/zh active Pending
- 2000-03-09 EP EP00925042A patent/EP1166381A1/de not_active Withdrawn
- 2000-03-09 JP JP2000604480A patent/JP2002539586A/ja not_active Withdrawn
-
2001
- 2001-09-10 US US09/950,426 patent/US20020058165A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO0054356A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20020058165A1 (en) | 2002-05-16 |
WO2000054356A1 (de) | 2000-09-14 |
CN1343379A (zh) | 2002-04-03 |
CA2367134A1 (en) | 2000-09-14 |
JP2002539586A (ja) | 2002-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000054356A1 (de) | Brennstoffzellenbatterie mit verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie | |
DE19608738C1 (de) | Verfahren zur Nutzung der in den Abgasen einer Niedertemperatur-Brennstoffzelle enthaltenen Enthalpie und Anlage zur Durchführung des Verfahrens | |
DE19857398B4 (de) | Brennstoffzellensystem, insbesondere für elektromotorisch angetriebene Fahrzeuge | |
EP1166380A1 (de) | Brennstoffzellenbatterie mit heizung und verbesserter kaltstartperformance und verfahren zum kaltstarten einer brennstoffzellenbatterie | |
CN100379065C (zh) | 可在低温环境下启动与运行的燃料电池发电系统 | |
DE10065459A1 (de) | Gestufte Entlüftung eines Brennstoffzellensystemes bei Schnellabschaltung | |
EP2153485B1 (de) | Mit flüssiggas betriebenes brennstoffzellensystem | |
DE10065458B4 (de) | Verfahren zur Detektion des Abschaltzustandes während der Abschaltung eines Brennstoffzellensystems mit Anodendrucksteuerung | |
DE102016203792B4 (de) | Brennstoffzellenmodul | |
DE10062257B4 (de) | Verfahren zum Betrieb eines Brennstoffzellensystems | |
EP3111499A1 (de) | Brennstoffzellensystem | |
DE102017106900A1 (de) | Brennstoffzellensystem | |
DE112005000041T5 (de) | Brennstoffzellensystem | |
US8092953B2 (en) | Fuel cell system and method of operating the fuel cell system | |
DE102004022052B4 (de) | Brennstoffzelle, System und Verfahren zum Anpassen der Stapeltemperatur | |
CN101682065B (zh) | 燃料电池系统及其运行方法 | |
DE10142578A1 (de) | System zum Erzeugen elektrischer Energie und Verfahren zum Betreiben eines Systems zum Erzeugen elektrischer Energie | |
DE102004015563B4 (de) | Verfahren zum Vorheizen von Brennstoffzellenstapeln | |
DE10023036A1 (de) | Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage | |
DE102016214866B4 (de) | Brennstoffzellen-Kogenerationssystem, Verfahren zum Betriebsstart des Brennstoffzellen-Kogenerationssystems und Verfahren zum Betreiben des Brennstoffzellen-Kogenerationssystems | |
DE202006008898U1 (de) | Brennstoffzellensystem für ein Fahrzeug | |
DE10257212A1 (de) | Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems | |
EP1693916B1 (de) | Vorwärmer für eine Brennstoffzelle | |
DE102016223436A1 (de) | Vorrichtung und Verfahren zum Betrieb eines Brennstoffzellensystems | |
DE19930875B4 (de) | Hochtemperatur-Polymer-Elektrolyt-Membran (HTM)-Brennstoffzellenanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010704 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20020313 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20030927 |