EP1162368A2 - Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze - Google Patents

Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze Download PDF

Info

Publication number
EP1162368A2
EP1162368A2 EP01112481A EP01112481A EP1162368A2 EP 1162368 A2 EP1162368 A2 EP 1162368A2 EP 01112481 A EP01112481 A EP 01112481A EP 01112481 A EP01112481 A EP 01112481A EP 1162368 A2 EP1162368 A2 EP 1162368A2
Authority
EP
European Patent Office
Prior art keywords
glow plug
heating
glow
switch
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01112481A
Other languages
English (en)
French (fr)
Other versions
EP1162368A3 (de
Inventor
Günther Uhl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BorgWarner Ludwigsburg GmbH
Original Assignee
Beru AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7644928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1162368(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Beru AG filed Critical Beru AG
Publication of EP1162368A2 publication Critical patent/EP1162368A2/de
Publication of EP1162368A3 publication Critical patent/EP1162368A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/021Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs characterised by power delivery controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/028Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs the glow plug being combined with or used as a sensor

Definitions

  • the invention relates to a method and a circuit arrangement for heating a glow plug of a given glow plug type in a given arrangement in an internal combustion engine to a predetermined temperature.
  • Glow plugs are used, for example, in diesel engines Ignition of the fuel when starting or also for ion current detection used in the combustion chamber of a diesel engine.
  • Glow plugs are known which are self-regulating Have heating characteristics. These are timed to one Supply voltage switched and heat due to their self-regulating behavior to the specific temperature.
  • glow plug It is also known to heat a glow plug electronically to regulate.
  • the glow plug supplied electrical power via an electronic control circuit regulated so that the predetermined certain temperature reached as quickly as possible and not exceeded.
  • the object underlying the invention is therefore therein, a method and circuitry for heating specify a glow plug that allows heating within a very short time interval to a relatively high temperature can be achieved.
  • the circuit arrangement according to the invention is the subject of Claim 3.
  • FIG. 1 In the known steel glow plug 1 shown in FIG. 1 is an electrically operated heating device 4 in a glow tube 3 embedded.
  • the glow tube 3 is seated in a glow plug body 5, through which the glow plug 1 is screwed into the engine block.
  • the Power is supplied to the electrical heating device 4 via a electrical connection 7, with the electrical heating device 4 is connected.
  • the second electrical connection of the heater 4 is connected to the glow tube 3, so that on the Glow tube 3 and the glow plug body 5 the circuit to ground 8 is closed.
  • Glow plug 1 can also be designed as a ceramic glow plug be in which the glow tube 3 and the heater 4 in shape a unit are designed as a ceramic heating element.
  • the glow plug 2 shown in FIG. 2 is around an electrically insulated steel glow plug for Ion current detection in the combustion chamber of an internal combustion engine.
  • the Glow tube 3 is electrically insulated from candle body 5 arranged and serves as a measuring electrode in ion current detection.
  • a semiconductor switch 9 and Voltage evaluation circuit 10 arranged depending on the voltage across the glow plug 2 is the semiconductor switch 9 for heating to the conductive state or for ion current detection in the locked state.
  • the self-regulating heating characteristic can be, for example thereby achieve that the heating device from a heating coil and a control coil is built up. These coils are in series switched.
  • the heating coil consists of a material with negligible small temperature coefficient, while the Control coil made of a material with a clear temperature coefficient consists.
  • Heating up a glow plug can also be done electronically regulated take place, in which case that of the glow plug supplied electrical power via an electronic control circuit is regulated so that a predetermined temperature reached as quickly as possible and not exceeded. If the Heating device made of a material with a known resistance temperature behavior is constructed from one Current and voltage measurement of the resistance and thus the Determine the temperature of the heating device.
  • the initial conditions are the initial temperature, the cooling conditions and the heat capacity of the area to be heated Glow plug, which is a delimited area of the Glow plug, that is the glow tube and especially the glow plug tip acts. This area has a defined heat capacity.
  • the cooling conditions are determined by the arrangement or the Installation of the glow plug in the engine is determined and can be done by calculation or determined by measurement.
  • the heat capacity of the Glow plug, that is, its area to be heated on the Glow plug tip is due to the geometry and the material properties determined and can also by calculation or can be determined by measurement. It can be assumed be that with regard to the manufacture of glow plugs in large quantities, the cooling conditions and the heat capacity of glow plugs of the same glow plug type only slight scatter subject to.
  • the energy required for heating a glow plug from an initial temperature to the desired one or predetermined final temperature by measurement and / or by Calculation can be determined and that with glow plugs the same glow plug type in the same arrangement heating can be controlled so that in the heating phase always same predetermined, for heating the glow plug to the predetermined temperature required and by measurement or Calculation determined heating energy is supplied.
  • Others Starting or ending temperatures can be other needed Assign heating energies. If the heating energy supply is electronic is controlled, the supply of heating energy per time that is called the absorption of electrical power, controlled arbitrarily become. For example, the power consumption can be constant can be held or initially more and then less, or conversely, power can be supplied.
  • FIG 3 shows an exemplary embodiment in a schematic arrangement the inventive arrangement for heating a glow plug of a given glow plug type in a given Arranged at a predetermined temperature.
  • a glow plug 1, 2 of the type shown in FIG. 1 or 2 is connected to the supply voltage U B via a switch S11 and a current measuring resistor R M 12.
  • a voltage U M proportional to the glow plug current I GK can thus be tapped at the taps 13, 14 via the resistor R M 12.
  • the voltage U GK at the glow plug can also be measured via the tap 14.
  • the tapped voltages lie on a control and evaluation unit 16, which can be designed, for example, in the form of a microprocessor with an integrated analog / digital converter.
  • This control and evaluation unit 16 controls the switch 11 via its output signal 15.
  • the combination of the switch 11 and the current measuring resistor 12 is preferably implemented as a fully integrated power semiconductor with a load current signal output.
  • a signal for closing the switch 11 is applied via the control and evaluation unit 16.
  • the supply voltage U b is applied to the glow plug.
  • the total heating-up time interval is divided, for example, into individual short part-time intervals T 0 and the taps 13, 14 are used to determine the voltage U A at the glow plug and its current consumption I GK .
  • the total heating energy supplied is then obtained by adding up these individual heating energies in the short part-time intervals T 0 .
  • the supply of heating energy can then be controlled by the fact that, for example, the Bacaufloomzeitintervall in ten component time intervals T is divided 0 and the switch 11 is not closed in all ten time intervals T 0, but for example, only three out of ten time intervals so that the glow plug at constant energy input per Time interval only 30% of the maximum possible heating energy is supplied.
  • the partial heating energy quantity supplied in each partial time interval is determined and added, and the switch 11 remains closed until the required predetermined total heating energy is reached, which is required for heating the glow plug to the predetermined temperature.
  • the supply of heating energy ensures that a Damage to the glow plug when feeding the Heating energy occurring heating power is excluded.
  • a predetermined limit the maximum temperature of the heating element in the glow tube the glow plug for example the heating and control coil, below its melting temperature is not exceeded.
  • the Arrangement of a heating element inside a glow tube and the Embedding the heating element in the glow tube is one possible Form of training that represents a thermal low pass, in which the temperature of the heating element during rapid heating compared to the temperature of the glow tube much faster increases.
  • the energy supply during the rapid heating up will controlled so that the temperature of the heating element never the exceeds the predetermined limit.
  • This low pass behavior of the Glow plug is given by its structure. In this way an energy or performance-time profile can be defined overheating of the heating element during fast Prevents heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Control Of Resistance Heating (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze eines gegebenen Glühkerzentyps in einer gegebenen Anordnung in einer Brennkraftmaschine auf eine vorbestimmte Temperatur. Über einen Meßwiderstand (12) und einen Schalter (11) liegt die Versorgungsspannung an der Glühkerze. Eine Steuer- und Regeleinheit (16) greift den Spannungsabfall über dem Meßwiderstand (12) ab und ermittelt daraus und aus der ebenfalls abgegriffenen Spannung an der Glühkerze die der Glühkerze zugeführte Heizenergie. Das am Ausgang (15) der Einheit (16) auftretende Signal steuert den Schalter (11). Nach Schließen des Schalters (11) durch die Einheit (16) wird die Glühkerze mit Heizenergie versorgt, die in der Einheit (16) aufaddiert wird. Sobald die aus den bekannten Parametern der Glühkerze sowie der Ausgangstemperatur vorher ermittelte und zum Aufheizen auf eine vorbestimmte Temperatur benötigte Heizenergie erreicht ist, wird der Schalter über das Ausgangssignal am Ausgang (15) wieder geöffnet1 <IMAGE>

Description

Die Erfindung betrifft ein Verfahren und eine Schaltungsanordnung zum Aufheizen einer Glühkerze eines gegebenen Glühkerzentyps in einer gegebenen Anordnung in einer Brennkraftmaschine auf eine vorbestimmte Temperatur.
Glühkerzen werden beispielsweise bei Dieselmotoren zur Zündung des Kraftstoffes beim Starten oder auch zur Ionenstromerfassung in der Brennkammer eines Dieselmotors verwandt.
Damit eine derartige Glühkerze ihre Funktion erfüllen kann, muß sie auf eine bestimmte Temperatur in einer Aufheizphase aufgeheizt werden.
Es sind Glühkerzen bekannt, die eine selbstregelnde Aufheizcharakteristik haben. Diese werden zeitgesteuert an eine Versorgungsspannung geschaltet und heizen sich aufgrund ihres selbstregelnden Verhaltens auf die bestimmte Temperatur auf.
Es ist auch bekannt, das Aufheizen einer Glühkerze elektronisch zu regeln. In diesem Fall wird die der Glühkerze zugeführte elektrische Leistung über eine elektronische Steuerschaltung so geregelt, daß die vorgegebene bestimmte Temperatur möglichst schnell erreicht und nicht überschritten wird.
Die bekannten Verfahren der Selbstregelung und der elektronischen Regelung versagen jedoch, wenn eine Glühkerze sehr schnell auf eine hohe Temperatur, beispielsweise in zwei Sekunden auf 1000°C aufgeheizt werden soll. Das liegt bei der elektronischen Regelung beispielsweise daran, daß aufgrund der hohen Dynamik des Aufheizvorgangs unter Berücksichtigung der fertigungsbedingten Exemplarstreuungen große Schwierigkeiten auftreten, da unter allen Umständen vermieden werden muß, daß es zu einer, wenn auch nur kurzzeitigen, Überhitzung der Glühkerzenheizung kommt.
Die der Erfindung zugrundeliegende Aufgabe besteht daher darin, ein Verfahren und eine Schaltungsanordnung zum Aufheizen einer Glühkerze anzugeben, mit denen ein Aufheizen innerhalb eines sehr kurzen Zeitintervalls auf eine relativ hohe Temperatur erzielt werden kann.
Diese Aufgabe wird bei dem erfindungsgemäßen Verfahren dadurch gelöst, daß die zum Aufheizen auf die vorbestimmte Temperatur benötigte Heizenergie aus den Parametern des jeweiligen Glühkerzentyps in der gegebenen Anordnung und der Ausgangstemperatur ermittelt und innerhalb eines gewählten Aufheizzeitintervalls der Glühkerze zugeführt wird.
Ein bevorzugtes Ausführungsbeispiel des erfindungsgemäßen Verfahrens ist Gegenstand des Anspruchs 2.
Die erfindungsgemäße Schaltungsanordnung ist Gegenstand des Anspruchs 3.
Im folgenden wird anhand der zugehörigen Zeichnung ein besonders bevorzugtes Ausführungsbeispiel der Erfindung näher beschrieben. Es zeigen:
  • Fig. 1 in einer schematischen Darstellung ein Ausführungsbeispiel einer bekannten Stahlglühkerze zur Zündung des Kraftstoffgemisches in einem Dieselmotor;
  • Fig. 2 in einer schematischen Darstellung eine bekannte Stahlglühkerze, die als Meßelektrode zur Ionenstromerfassung in einem Dieselmotor verwandt wird, und
  • Fig. 3 in einer schematischen Darstellung das Ausführungsbeispiel der erfindungsgemäßen Schaltungsanordnung zum Aufheizen einer Glühkerze.
  • Bei der in Fig. 1 dargestellten bekannten Stahlglühkerze 1 ist eine elektrisch betriebene Heizeinrichtung 4 in ein Glührohr 3 eingebettet. Das Glührohr 3 sitzt in einem Glühkerzenkörper 5, über den die Glühkerze 1 in den Motorblock geschraubt ist. Die Stromzufuhr zur elektrischen Heizeinrichtung 4 erfolgt über einen elektrischen Anschluß 7, der mit der elektrischen Heizeinrichtung 4 verbunden ist. Der zweite elektrische Anschluß der Heizeinrichtung 4 ist mit dem Glührohr 3 verbunden, so daß über das Glührohr 3 und den Glühkerzenkörper 5 der Stromkreis zur Masse 8 geschlossen ist.
    Die Glühkerze 1 kann auch als Keramikglühkerze ausgebildet sein, bei der das Glührohr 3 und die Heizeinrichtung 4 in Form einer Baueinheit als keramisches Heizelement ausgebildet sind.
    Bei der in Fig. 2 dargestellten Glühkerze 2 handelt es sich um eine elektrisch isoliert aufgebaute Stahlglühkerze zur Ionenstromerfassung im Brennraum einer Brennkraftmaschine. Das Glührohr 3 ist gegenüber dem Kerzenkörper 5 elektrisch isoliert angeordnet und dient bei der Ionenstromerfassung als Meßelektrode. In der Glühkerze 2 sind ein Halbleiterschalter 9 und eine Spannungsauswerteschaltung 10 angeordnet, die in Abhängigkeit von der an der Glühkerze 2 liegenden Spannung den Halbleiterschalter 9 zum Aufheizen in den leitenden Zustand bzw. zur Ionenstromerfassung in den gesperrten Zustand bringt.
    Bei einer Glühkerze mit einer selbstregelnden Aufheizcharakteristik erfolgt in bekannter Weise das Aufheizen dadurch, daß die Glühkerze in der Regel zeitgesteuert an die Versorgungsspannung gelegt wird. Aufgrund des selbstregelnden Verhaltens heizt sich die Spitze der Glühkerze auf eine durch die mechanische und elektrische Dimensionierung vorgegebene Temperatur auf. Die selbstregelnde Aufheizcharakteristik läßt sich zum Beispiel dadurch erreichen, daß die Heizeinrichtung aus einer Heizwendel und einer Regelwendel aufgebaut ist. Diese Wendeln sind in Reihe geschaltet. Die Heizwendel besteht aus einem Material mit vernachlässigbar kleinem Temperaturkoeffizienten, während die Regelwendel aus einem Material mit einem deutlichen Temperaturkoeffizienten besteht. Durch den Stromfluß durch die Heiz- und die Regelwendel kommt es zu einer Erwärmung der beiden Wendeln. Die Regelwendel erhöht dabei ihren Widerstand, so daß die Stromstärke des durch die Heiz- und Regelwendel fließenden Stromes abnimmt. Dabei stellt sich ein Gleichgewichtszustand ein, in dem die Glühkerze auf einer konstanten vorgegebenen Temperatur verbleibt.
    Das Aufheizen einer Glühkerze kann auch elektronisch geregelt erfolgen, wobei in diesem Fall die der Glühkerze zugeführte elektrische Leistung über eine elektronische Steuerschaltung so geregelt wird, daß eine vorgegebene Temperatur möglichst schnell erreicht und nicht überschritten wird. Wenn die Heizeinrichtung aus einem Material mit einem bekannten Widerstandstemperaturverhalten aufgebaut ist, läßt sich aus einer Strom- und Spannungsmessung der Widerstand und damit die Temperatur der Heizeinrichtung ermitteln.
    Die bekannten selbstregelnden Verfahren oder elektronischen Regelungen sind jedoch nicht anwendbar, wenn eine Glühkerze sehr schnell auf eine hohe Temperatur, beispielsweise innerhalb von zwei Sekunden auf 1000°C, aufgeheizt werden soll.
    Bei dem erfindungsgemäßen Verfahren wird daher nicht von einer Leistungsregelung Gebrauch gemacht, sondern erfolgt die Aufheizung der Glühkerze energiegesteuert, indem die zum Aufheizen auf die vorbestimmte Temperatur benötigte Heizenergie aus den Parametern des jeweiligen Glühkerzentyps in seiner gegebenen Anordnung und der Ausgangstemperatur der Glühkerze ermittelt und innerhalb eines gewählten Aufheizzeitintervalls der Glühkerze zugeführt wird.
    Dabei wird davon ausgegangen, daß bei bekannten Anfangsbedingungen immer die gleiche Heizenergie benötigt wird, um eine Glühkerze desselben Glühkerzentyps auf die gewünschte Endtemperatur, das heißt die vorbestimmte Temperatur aufzuheizen. Diese Anfangsbedingungen sind die Ausgangstemperatur, die Abkühlbedingungen und die Wärmekapazität des aufzuheizenden Bereiches der Glühkerze, bei dem es sich um einen abgegrenzten Bereich der Glühkerze, das heißt des Glührohres und vor allem der Glühkerzenspitze handelt. Dieser Bereich hat eine definierte Wärmekapazität. Die Abkühlbedingungen sind durch die Anordnung bzw. den Einbau der Glühkerze im Motor bestimmt und können durch Berechnung oder durch Messung ermittelt werden. Die Wärmekapazität der Glühkerze, das heißt ihres aufzuheizenden Bereiches an der Glühkerzenspitze ist durch die Geometrie und durch die Materialeigenschaften bestimmt und kann ebenfalls durch Berechnung oder durch Messung ermittelt werden. Dabei kann davon ausgegangen werden, daß im Hinblick auf die Fertigung von Glühkerzen in großen Stückzahlen die Abkühlbedingungen und die Wärmekapazität von Glühkerzen desselben Glühkerzentyps nur geringen Streuungen unterliegen.
    Daraus ergibt sich, daß der Energiebedarf zum Aufheizen einer Glühkerze von einer Ausgangstemperatur auf die gewollte oder vorbestimmte Endtemperatur durch Messung und/oder durch Berechnung ermittelt werden kann und daß bei Glühkerzen des gleichen Glühkerzentyps in der gleichen Anordnung das Aufheizen derart gesteuert werden kann, daß in der Aufheizphase immer die gleiche vorbestimmte, für das Aufheizen der Glühkerze auf die vorbestimmte Temperatur benötigte und durch Messung oder Berechnung ermittelte Heizenergie zugeführt wird. Anderen Ausgangs- oder Endtemperaturen lassen sich andere benötigte Heizenergien zuordnen. Wenn die Heizenergiezufuhr elektronisch gesteuert wird, kann die Zufuhr der Heizenergie pro Zeit, das heißt die Aufnahme der elektrischen Leistung, beliebig gesteuert werden. Beispielsweise kann die Leistungsaufnahme konstant gehalten werden oder kann zunächst mehr und dann weniger, oder umgekehrt, Leistung zugeführt werden.
    Fig. 3 zeigt in einer schematischen Anordnung ein Ausführungsbeispiel der erfindungsgemäßen Anordnung zum Aufheizen einer Glühkerze eines gegebenen Glühkerzentyps in einer gegebenen Anordnung auf eine vorbestimmte Temperatur.
    Eine Glühkerze 1,2 des in Fig. 1 oder 2 dargestellten Typs wird über einen Schalter S11 und einen Strommeßwiderstand RM12 an die Versorgungsspannung UB geschaltet. Über den Widerstand RM12 kann somit eine dem Glühkerzenstrom IGK proportionale Spannung UM an den Abgriffen 13, 14 abgegriffen werden. Über den Abgriff 14 kann außerdem die an der Glühkerze liegende Spannung UGK gemessen werden. Die abgegriffenen Spannungen liegen an einer Steuer- und Auswerteeinheit 16, die beispielsweise in Form eines Mikroprozessors mit integriertem Analog/Digitalwandler ausgebildet sein kann. Diese Steuer- und Auswerteeinheit 16 steuert über ihr Ausgangssignal 15 den Schalter 11. Die Kombination des Schalters 11 und des Strommeßwiderstandes 12 ist vorzugsweise als vollintegrierter Leistungshalbleiter mit einem Laststromsignalausgang realisiert.
    Die oben beschriebene Schaltungsanordnung arbeitet in der folgenden Weise:
    Zum Aufheizen der Glühkerze wird über die Steuer- und Auswerteeinheit 16 ein Signal zum Schließen des Schalters 11 angelegt. Dadurch liegt die Versorgungsspannung Ub an der Glühkerze. Das Gesamtaufheizzeitintervall ist beispielsweise in einzelne kurze Teilzeitintervalle T0 unterteilt und es werden über die Abgriffe 13, 14 die Spannung UA an der Glühkerze und deren Stromaufnahme IGK ermittelt. Das Teilzeitintervall T0 kann klein sein und beispielsweise weniger als 1 ms betragen. Es wird davon ausgegangen, daß innerhalb eines derartigen kurzen Zeitintervalls T0 der Strom IGK, der von der Glühkerze aufgenommen wird, konstant bleibt. Dann läßt sich die im Teilzeitintervall T0 zugeführte Energie ET0 ermitteln als: ETO = UGK × IGK × TO
    Die insgesamt zugeführte Heizenergie wird dann durch Aufaddieren dieser einzelnen Heizenergien in den kurzen Teilzeitintervallen T0 erhalten.
    Die Heizenergiezufuhr läßt sich dann dadurch steuern, daß beispielsweise das Gesamtaufheizzeitintervall in zehn Teilzeitintervalle T0 unterteilt wird und der Schalter 11 nicht in allen zehn Zeitintervallen T0, sondern beispielsweise nur in drei von zehn Zeitintervallen geschlossen wird, so daß der Glühkerze bei konstanter Energiezufuhr pro Zeitintervall nur 30 % der maximal möglichen Heizenergie zugeführt wird. Das heißt mit anderen Worten, daß zum Aufheizen der Glühkerze die in jedem Teilzeitintervall jeweils zugeführte Teilheizenergiemenge bestimmt und aufaddiert wird und der Schalter 11 so lange geschlossen bleibt bis die erforderliche vorbestimmte Gesamtheizenergie erreicht ist, die zum Aufheizen der Glühkerze auf die vorbestimmte Temperatur benötigt wird.
    Es versteht sich, daß bei dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Schaltungsanordnung durch beispielsweise eine entsprechende Wahl der Aufheizzeit und/oder der Art der Zuführung der Aufheizenergie dafür gesorgt ist, daß eine Beschädigung der Glühkerze durch die bei der Zuführung der Heizenergie auftretende Heizleistung ausgeschlossen ist. Zu diesem Zweck ist dafür gesorgt, daß ein vorgegebener Grenzwert der maximal auftretenden Temperatur des Heizelementes im Glührohr der Glühkerze, beispielsweise der Heiz- und Regelwendel, unterhalb seiner Schmelztemperatur nicht überschritten wird. Die Anordnung eines Heizelementes im Inneren eines Glührohres und die Einbettung des Heizelementes im Glührohr sind eine mögliche Ausbildungsform, die eine thermischen Tiefpaß darstellt, bei dem während des schnellen Aufheizens die Temperatur des Heizelementes im Vergleich zur Temperatur des Glührohres wesentlich schneller ansteigt. Die Energiezufuhr während des schnellen Aufheizens wird so gesteuert, daß die Temperatur des Heizelementes nie den vorgegebenen Grenzwert überschreitet. Dieses Tiefpaßverhalten der Glühkerze ist durch ihren Aufbau gegeben. In dieser Weise kann ein Energie- bzw. Leistungs-Zeit-Profil festgelegt werden, das eine Überhitzung des Heizelementes während des schnellen Aufheizens verhindert.

    Claims (4)

    1. Verfahren zum Aufheizen einer Glühkerze eines gegebenen Glühkerzentyps in einer gegebenen Anordnung in einer Brennkraftmaschine auf eine vorbestimmte Temperatur, dadurch gekennzeichnet, daß die zum Aufheizen auf die vorbestimmte Temperatur benötigte Heizenergie aus den Parametern des jeweiligen Glühkerzentyps in der gegebenen Anordnung und der Ausgangstemperatur der Glühkerze ermittelt und der Glühkerze zugeführt wird.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ermittelte Heizenergie der Glühkerze innerhalb eines gewählten Aufheizzeitintervalls zugeführt wird.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß das Aufheizzeitintervall in Teilzeitintervalle unterteilt wird und die auf die Glühkerze in den jeweiligen Teilzeitintervallen übertragene Heizenergie bestimmt und aufaddiert wird.
    4. Schaltungsanordnung zum Aufheizen einer Glühkerze eines gegebenen Glühkerzentyps in einer gegebenen Anordnung in einer Brennkraftmaschine auf eine vorbestimmte Temperatur, gekennzeichnet durch einen Schalter (11) und einen Meßwiderstand (12), die in Reihe geschaltet sind und über die eine Versorgungsspannung an der Glühkerze liegt, und eine elektronische Steuerund Auswerteeinheit (16), an der die Spannung über dem Meßwiderstand (12) und die Spannung an der Glühkerze liegen, die daraus die der Glühkerze zugeführte Heizenergie bestimmt und die über ihr Ausgangssignal (15) den Schalter (11) so steuert, daß die benötigte Heizenergie innerhalb eines gewählten Aufheizzeitintervalls der Glühkerze zugeführt wird.
    EP01112481A 2000-06-07 2001-05-22 Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze Withdrawn EP1162368A3 (de)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE10028073 2000-06-07
    DE10028073A DE10028073C2 (de) 2000-06-07 2000-06-07 Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze

    Publications (2)

    Publication Number Publication Date
    EP1162368A2 true EP1162368A2 (de) 2001-12-12
    EP1162368A3 EP1162368A3 (de) 2004-09-15

    Family

    ID=7644928

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP01112481A Withdrawn EP1162368A3 (de) 2000-06-07 2001-05-22 Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze

    Country Status (5)

    Country Link
    US (1) US6635851B2 (de)
    EP (1) EP1162368A3 (de)
    JP (1) JP2002039043A (de)
    KR (1) KR100589222B1 (de)
    DE (1) DE10028073C2 (de)

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1298321A2 (de) 2001-09-27 2003-04-02 Beru AG Verfahren zum Aufheizen eines elektrischen Heizelementes, insbesondere einer Glühkerze für eine Brennkraftmaschine
    WO2007033825A1 (de) * 2005-09-21 2007-03-29 Beru Aktiengesellschaft Verfahren zum ansteuern einer gruppe von glühkerzen in einem dieselmotor
    WO2008043787A1 (de) * 2006-10-11 2008-04-17 Continental Automotive Gmbh Verfahren zur bestimmung einer glühkerzentemperatur.
    WO2008110143A1 (de) * 2007-03-09 2008-09-18 Beru Ag Verfahren und vorrichtung zur glühkerzenerregungssteuerung
    EP2012003A2 (de) * 2007-07-06 2009-01-07 BERU Aktiengesellschaft SUE Verfahren zum Aufheizen einer keramischen Glühkerze und Glühkerzensteuergerät
    CN102022245A (zh) * 2009-09-16 2011-04-20 博格华纳贝鲁系统有限责任公司 通过脉宽调制来操作机动车辆中的加热元件的方法
    DE102012101999A1 (de) 2012-03-09 2013-09-12 Borgwarner Beru Systems Gmbh Verfahren zum Betreiben einer Glühkerze
    US8912470B2 (en) 2009-07-01 2014-12-16 Robert Bosch Gmbh Method and device for controlling a glow plug

    Families Citing this family (31)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19842148C2 (de) * 1998-09-15 2002-02-07 Beru Ag Ionenstrom-Meßglühkerze für Brennkraftmaschinen und Anordnung zum Glühen und/oder Ionenstrommessen mit einer derartigen Glühkerze
    JP2001336468A (ja) * 2000-03-22 2001-12-07 Ngk Spark Plug Co Ltd グロープラグ制御装置、グロープラグ、及びエンジンの燃焼室内のイオン検出方法
    US7018878B2 (en) * 2001-11-07 2006-03-28 Matrix Semiconductor, Inc. Metal structures for integrated circuits and methods for making the same
    US7319208B2 (en) * 2002-05-14 2008-01-15 Ngk Spark Plug Co., Ltd. Controller and glow plug for controlling energization modes
    DE10247042B3 (de) * 2002-10-09 2004-05-06 Beru Ag Verfahren und Vorrichtung zum Steuern der Aufheizung der Glühkerzen eines Dieselmotors
    US20050098136A1 (en) * 2003-11-10 2005-05-12 Visteon Global Technologies, Inc. Architecture to integrate ionization detection electronics into and near a diesel glow plug
    SI21857A (sl) * 2004-07-19 2006-02-28 Cosylab, D.O.O. Zarilna svecka z integriranim krmilnikom
    DE102005029839A1 (de) 2005-06-27 2007-01-04 Robert Bosch Gmbh Glühstiftkerze
    DE102006010194B4 (de) * 2005-09-09 2011-06-09 Beru Ag Verfahren und Vorrichtung zum Betreiben der Glühkerzen einer selbstzündenden Brennkraftmaschine
    US8003922B2 (en) * 2006-02-17 2011-08-23 Phillips & Temro Industries Inc. Solid state switch with over-temperature and over-current protection
    US8981264B2 (en) 2006-02-17 2015-03-17 Phillips & Temro Industries Inc. Solid state switch
    DE102006025834B4 (de) * 2006-06-02 2010-05-12 Beru Ag Verfahren zum Steuern einer Glühkerze in einem Dieselmotor
    KR100817255B1 (ko) * 2006-09-29 2008-03-27 한양대학교 산학협력단 글로우 플러그 제어장치 및 그 제어방법
    DE102007031613B4 (de) * 2007-07-06 2011-04-21 Beru Ag Verfahren zum Betreiben von Glühkerzen in Dieselmotoren
    GB2456784A (en) * 2008-01-23 2009-07-29 Gm Global Tech Operations Inc Glow plug control unit and method for controlling the temperature in a glow plug
    DE102008007398A1 (de) * 2008-02-04 2009-08-06 Robert Bosch Gmbh Verfahen und Vorrichtung zum Erkennen des Wechsels von Glühstiftkerzen in einem Brennkraftmotor
    JP4941391B2 (ja) 2008-04-09 2012-05-30 株式会社デンソー 発熱体制御装置
    JP4956486B2 (ja) * 2008-05-30 2012-06-20 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御システム
    JP4972035B2 (ja) 2008-05-30 2012-07-11 日本特殊陶業株式会社 グロープラグ通電制御装置及びグロープラグ通電制御システム
    US8423197B2 (en) * 2008-11-25 2013-04-16 Ngk Spark Plug Co., Ltd. Apparatus for controlling the energizing of a heater
    GB2471889B (en) * 2009-07-17 2014-03-26 Gm Global Tech Operations Inc A glow plug for a diesel engine
    GB2472811B (en) * 2009-08-19 2017-03-01 Gm Global Tech Operations Llc Glowplug temperature estimation method and device
    JP5660612B2 (ja) * 2011-01-12 2015-01-28 ボッシュ株式会社 グロープラグ先端温度推定方法及びグロープラグ駆動制御装置
    US9453491B2 (en) * 2011-09-20 2016-09-27 Bosch Corporation Method of diagnosing glow plug and glow plug drive control device
    JP6271915B2 (ja) * 2013-08-28 2018-01-31 日本特殊陶業株式会社 燃焼圧センサ付きグロープラグ及びセンサ無しグロープラグを装着した内燃機関
    US10077745B2 (en) 2016-05-26 2018-09-18 Phillips & Temro Industries Inc. Intake air heating system for a vehicle
    US10221817B2 (en) 2016-05-26 2019-03-05 Phillips & Temro Industries Inc. Intake air heating system for a vehicle
    DE102017115946A1 (de) * 2017-07-14 2019-01-17 Borgwarner Ludwigsburg Gmbh Verfahren zum Regeln der Temperatur einer Glühkerze
    US11739693B2 (en) * 2020-11-18 2023-08-29 Pratt & Whitney Canada Corp. Method and system for glow plug operation
    US12031513B2 (en) * 2020-11-18 2024-07-09 Pratt & Whitney Canada Corp. Method and system for glow plug operation
    CN114675625A (zh) * 2022-03-21 2022-06-28 潍柴动力股份有限公司 一种控制器控制方法及装置

    Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4566410A (en) * 1983-07-21 1986-01-28 Mitsubishi Denki Kabushiki Kaisha Diesel engine glow plug controlling device
    US4658772A (en) * 1984-06-01 1987-04-21 Robert Bosch Gmbh System for controlling the temperature of a hot spot or a glow plug in an internal combustion engine
    US4669430A (en) * 1984-09-12 1987-06-02 Robert Bosch Gmbh System and method to control energy supply to an electrically heated zone
    US4934349A (en) * 1987-04-22 1990-06-19 Mitsubishi Denki Kabushiki Kaisha Glow plug controlling apparatus for a diesel engine

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS578360A (en) * 1980-06-19 1982-01-16 Diesel Kiki Co Ltd Glow plug preheating controller
    JPS58135372A (ja) * 1982-02-04 1983-08-11 Isuzu Motors Ltd 予熱栓加熱制御装置
    JPS59108875A (ja) * 1982-12-15 1984-06-23 Toyota Motor Corp デイ−ゼルエンジン用グロ−プラグの制御装置
    JPS627944A (ja) * 1985-07-01 1987-01-14 Daihatsu Motor Co Ltd 自動車用デイ−ゼル機関の運転制御方法
    US4858576A (en) * 1986-11-28 1989-08-22 Caterpillar Inc. Glow plug alternator control
    EP0315934B1 (de) * 1987-11-09 1994-01-19 Siemens Aktiengesellschaft Verfahren zur Temperaturregelung von Glühkerzen bei Dieselmotoren und Schaltungsanordnung zur Durchführung des Verfahrens
    IT1223871B (it) * 1988-10-27 1990-09-29 Marelli Autronica Unita di controllo del funzionamento delle candele di preriscaldamento di un motore diesel
    US6148258A (en) * 1991-10-31 2000-11-14 Nartron Corporation Electrical starting system for diesel engines
    GB9316402D0 (en) * 1993-08-06 1993-09-22 Ford Motor Co Operation of electrical heating elements
    US5469819A (en) * 1994-11-25 1995-11-28 Ford New Holland, Inc. Adaptive engine preheat
    DE19809399C2 (de) * 1997-03-06 2002-06-06 Isad Electronic Sys Gmbh & Co Startanlage für einen Dieselmotor

    Patent Citations (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4566410A (en) * 1983-07-21 1986-01-28 Mitsubishi Denki Kabushiki Kaisha Diesel engine glow plug controlling device
    US4658772A (en) * 1984-06-01 1987-04-21 Robert Bosch Gmbh System for controlling the temperature of a hot spot or a glow plug in an internal combustion engine
    US4669430A (en) * 1984-09-12 1987-06-02 Robert Bosch Gmbh System and method to control energy supply to an electrically heated zone
    US4934349A (en) * 1987-04-22 1990-06-19 Mitsubishi Denki Kabushiki Kaisha Glow plug controlling apparatus for a diesel engine

    Cited By (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1298321A2 (de) 2001-09-27 2003-04-02 Beru AG Verfahren zum Aufheizen eines elektrischen Heizelementes, insbesondere einer Glühkerze für eine Brennkraftmaschine
    EP1298321A3 (de) * 2001-09-27 2005-11-16 Beru AG Verfahren zum Aufheizen eines elektrischen Heizelementes, insbesondere einer Glühkerze für eine Brennkraftmaschine
    WO2007033825A1 (de) * 2005-09-21 2007-03-29 Beru Aktiengesellschaft Verfahren zum ansteuern einer gruppe von glühkerzen in einem dieselmotor
    WO2008043787A1 (de) * 2006-10-11 2008-04-17 Continental Automotive Gmbh Verfahren zur bestimmung einer glühkerzentemperatur.
    WO2008110143A1 (de) * 2007-03-09 2008-09-18 Beru Ag Verfahren und vorrichtung zur glühkerzenerregungssteuerung
    EP2012003A3 (de) * 2007-07-06 2010-12-08 BorgWarner BERU Systems GmbH Verfahren zum Aufheizen einer keramischen Glühkerze und Glühkerzensteuergerät
    EP2012003A2 (de) * 2007-07-06 2009-01-07 BERU Aktiengesellschaft SUE Verfahren zum Aufheizen einer keramischen Glühkerze und Glühkerzensteuergerät
    US8912470B2 (en) 2009-07-01 2014-12-16 Robert Bosch Gmbh Method and device for controlling a glow plug
    CN102022245A (zh) * 2009-09-16 2011-04-20 博格华纳贝鲁系统有限责任公司 通过脉宽调制来操作机动车辆中的加热元件的方法
    EP2299106A3 (de) * 2009-09-16 2012-07-18 BorgWarner BERU Systems GmbH Verfahren zum Betreiben eines Heizelements in einem Kraftfahrzeug durch Pulsweitenmodulation
    CN102022245B (zh) * 2009-09-16 2015-06-03 博格华纳贝鲁系统有限责任公司 通过脉宽调制来操作机动车辆中的加热元件的方法
    DE102012101999A1 (de) 2012-03-09 2013-09-12 Borgwarner Beru Systems Gmbh Verfahren zum Betreiben einer Glühkerze
    DE102012101999B4 (de) * 2012-03-09 2016-01-28 Borgwarner Ludwigsburg Gmbh Verfahren zum Betreiben einer keramischen Glühkerze

    Also Published As

    Publication number Publication date
    EP1162368A3 (de) 2004-09-15
    KR100589222B1 (ko) 2006-06-15
    DE10028073A1 (de) 2001-12-20
    JP2002039043A (ja) 2002-02-06
    DE10028073C2 (de) 2003-04-10
    KR20010110332A (ko) 2001-12-13
    US20010050275A1 (en) 2001-12-13
    US6635851B2 (en) 2003-10-21

    Similar Documents

    Publication Publication Date Title
    EP1162368A2 (de) Verfahren und Schaltungsanordnung zum Aufheizen einer Glühkerze
    DE3007129C2 (de)
    EP0189086B1 (de) Glühelement
    DE19643785C2 (de) Elektrische Zündvorrichtung, insbesondere für Brennkraftmaschinen, und Verfahren zum Betreiben einer Zündvorrichtung
    EP0315934A1 (de) Verfahren zur Temperaturregelung von Glühkerzen bei Dieselmotoren und Schaltungsanordnung zur Durchführung des Verfahrens
    DE2906731C2 (de) Vorrichtung zur Steuerung der Glühkerzen einer Diesel-Brennkraftmaschine
    EP0807312B1 (de) Schaltungsanordnung für ein einrückrelais
    DE19936729C1 (de) Verfahren zum Ansteuern eines Glühstifts für das Zünden eines Fahrzeugheizgeräts
    DE4007699A1 (de) Mit brennstoff gespeiste zusatz-heizeinrichtung fuer kraftfahrzeuge
    EP0455256A2 (de) Glühkerze
    DE2619556A1 (de) Zuendanlage, insbesondere fuer brennkraftmaschinen
    EP0603795B1 (de) Flammglühanlage
    DE10336606B4 (de) Stellverfahren und Stellvorrichtung für einen Aktor
    DE3738055A1 (de) Verfahren zur temperaturregelung von gluehkerzen bei dieselmotoren und schaltungsanordnung zur durchfuehrung des verfahrens
    EP0327900B1 (de) Regeleinrichtung für Brennkraftmaschine
    DE10242606A1 (de) Verfahren und Vorrichtung zur Steuerung eines elektromagnetischen Verbrauchers
    DE19646052A1 (de) Verfahren und Vorrichtung zur Ansteuerung eines Verbrauchers
    DE3309133A1 (de) Flammgluehstiftkerze zum vorwaermen der ansaugluft von brennkraftmaschinen
    DE4309833A1 (de) Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine oder Feuerungsstätte
    DE102019107367A1 (de) Verfahren zum Prüfen des Vorhandenseins einer Rückschlagklappe in einer Heizungsanlage
    DE10127362C2 (de) Zündanlage für eine Brennkraftmaschine
    DE3911492A1 (de) Gluehstiftkerze
    DE68918059T2 (de) Steuerungseinheit der Vorglühkerzen beim Diesel-Motor.
    DE2918613C2 (de)
    DE2733006B2 (de) Temperaturwächter

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    RIC1 Information provided on ipc code assigned before grant

    Ipc: 7F 23Q 7/00 B

    Ipc: 7F 02P 19/02 A

    17P Request for examination filed

    Effective date: 20041014

    17Q First examination report despatched

    Effective date: 20041206

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    17Q First examination report despatched

    Effective date: 20041206

    19A Proceedings stayed before grant

    Effective date: 20100309

    19F Resumption of proceedings before grant (after stay of proceedings)

    Effective date: 20110801

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: BORGWARNER BERU SYSTEMS GMBH

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

    18W Application withdrawn

    Effective date: 20140222