EP1150906B1 - Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium - Google Patents

Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium Download PDF

Info

Publication number
EP1150906B1
EP1150906B1 EP00903753A EP00903753A EP1150906B1 EP 1150906 B1 EP1150906 B1 EP 1150906B1 EP 00903753 A EP00903753 A EP 00903753A EP 00903753 A EP00903753 A EP 00903753A EP 1150906 B1 EP1150906 B1 EP 1150906B1
Authority
EP
European Patent Office
Prior art keywords
toric
aluminium alloy
container
portions
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00903753A
Other languages
German (de)
English (en)
Other versions
EP1150906A1 (fr
Inventor
Jacques Granger
Lionel Cornet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albea Tubes France SAS
Original Assignee
Cebal SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal SAS filed Critical Cebal SAS
Publication of EP1150906A1 publication Critical patent/EP1150906A1/fr
Application granted granted Critical
Publication of EP1150906B1 publication Critical patent/EP1150906B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/42Filling or charging means

Definitions

  • the invention relates to aluminum alloy housings dispensing under pressure liquid, creamy or pasty products. More specifically, it concerns boxes offering a tight separation between the product to be dispensed and the gas propellant, the product being separated from the gas either by an internal pocket or by A piston. While the outer case is made of aluminum alloy, the pocket or the piston can be of any metallic or plastic material. The separation of product and propellant gas in particular avoids the modification of product characteristics due to prolonged contact with gas propellant.
  • the steel housings are made in three parts: a dome, a cylindrical wall and a background.
  • the bottom is a thin stamped disc (less than 0.3mm thick) and shallow which is then crimped onto the cylindrical wall. Formatting a bottom intended to accommodate a nozzle such that the Nicholson nozzle does not pose not too many problems, you can easily make an annular bowl 12 bounded by a cylindrical wall on the outside and another cylindrical wall 13 of low height which constitutes the wall of the hole orifice. Such a form of bowl allows to take full advantage of the particular shape of the tip Nicholson.
  • the Nicholson nozzle has two annular grooves, the diameters of throat bottoms are slightly different.
  • the bottom of the annular groove upper 17, near the end of the end piece, surmounted by the bead upper 16, has a smaller radius than the bottom of the lower groove 22, close to the base of the nozzle, surmounted by the bead 21.
  • the tip is half inserted into the bowl. It is retained by simple contact, possibly with a slight tightening, of the lower wall of the upper bead 16 with the upper end 18 of the cylindrical wall 13.
  • the longitudinal grooves 28 of the endpiece allow a communication between the lower part of the case and the outside. Therefore the box is delivered to the conditioner, that is to say equipped with the Nicholson half sunk into the bottom.
  • the conditioner fills the compartment upper with the product to be dispensed, injects the propellant under pressure in the lower housing of the case - the gas passage being achieved thanks to the longitudinal grooves 28 -, then pushes the end piece all the way.
  • the sealing airtight housing is obtained by plating over its entire height of the cylindrical wall 13 against the bottom of the lower annular groove 22. A slight tightening is ensured by giving the diameter at rest of the end piece elastomer a value slightly greater than that of the diameter of the wall cylindrical 13.
  • Aluminum alloy housings are made in one or two pieces: the bottom and the cylindrical wall are obtained simultaneously by impact spinning of a pawn, possibly followed by stretching.
  • the dome is either attached and set (two parts) is obtained by conification of the upper end of the wall cylindrical (one piece).
  • the Nicholson nozzle used as standard on the steel cases was never able to seal the part hermetically bottom of aluminum alloy housings.
  • the reason main resides in the fact that the bottom in aluminum alloy, obtained by impact spinning, is generally thicker than a deep-drawn bottom steel: it generally has a thickness greater than 0.5 mm. It is not possible under these conditions to achieve a bowl shape such as that described in US 3,522,900. In particular, it is difficult to produce the cylindrical wall 13, which, to be housed over its entire height in the lower annular groove to ensure a tight seal, should have a height ( ⁇ 0.7 mm) at barely greater than the thickness of the bottom.
  • Injecting propellant through the elastomeric strand is more difficult to realize that in the case of steel bottoms provided with their Nicholson tip.
  • the propellant injection devices which must respect a rate of production adapted to the industrial conditions of the conditioners, appear significantly more expensive than those used with steel cases.
  • the nozzle has a diameter which cannot be only slightly higher than that of the hole and, due to this low tightness and of the hole caused by the needle, the tightness offered by the strand is not perfect.
  • the Applicant has sought to remedy these defects by trying to improve the economic position of the aluminum case compared to that of the case steel, already handicapped by the material cost and the transformation cost and while retaining the advantageous aesthetic aspect linked to the absence of a crimping bead at the base of the housing.
  • the object of the invention is an aluminum alloy housing having a new background of particular shape.
  • Another object of the invention is the process which makes it possible to shape such a case.
  • the housing according to the invention has a bottom having a conventional overall shape, that is to say spherical concave, but, in the vicinity of the central hole the wall has a particular shape.
  • a concave spherical portion S similar to the conventional spherical portion of the distributor bases of aluminum alloy distributors, and, successively, three toric portions A, B and C, the first toric portion (A) being convex, the second toric portion (B) being concave, the last toric portion (C) being convex.
  • the portions connect to each other tangentially, the connection point between each pair of adjacent portions is an inflection point.
  • the tangents to the inflection points, border points between the portions S and A on the one hand and B and C on the other hand, are substantially horizontal, preferably rising and inclined by less than 30 ° for the first, descending and inclined less than 10 ° for the second.
  • the tangent to the point of inflection, border between the portions A and B, is substantially parallel to the axis, preferably inclined more than 60 ° relative to the horizontal.
  • the shape which results from the succession of the portions S, A and B constitutes a bowl intended to collect the base of the Nicholson mouthpiece: when the mouthpiece is fully inserted, its base is housed in the bowl, which improves its protection vis-à-vis any brutal lateral movement of a foreign body coming into contact with the bottom.
  • the last toric portion (C) has a frank non-horizontal. The angle or lower edge of this frank, which is on the outer side of the housing, determines the calibrated diameter of the orifice. The latter is a few tenths of a millimeter lower than that of the bottom of the upper groove of the Nicholson endpiece and nearly one millimeter lower than that of the bottom of the lower annular groove of this same endpiece. In both cases, the tightening of the elastomer end piece is aimed at by the bottom angle of the wall of thickness of the bottom, whatever the insertion position of the end piece, the bottom having no cylindrical wall around the hole.
  • the inclination of the thickness wall has the advantage of ensuring good retention of the nozzle and perfect sealing (in the fully depressed position), regardless of the thickness of the bottom, since it is its lower angle that calibrates the hole and acts by clamping on the nozzle. Indeed, thanks to the contact of its thick wall inclined against the bottom wall of one or other of the beads of the end piece and when tightening its inner wall against the bottom of the grooves, a firm hold of the tip on the bottom of the case is ensured, whether the end cap is pressed in half or completely. Thanks to the deformation of the elastomer tip under the effect from the lower corner of the thickness wall, a tight hold is ensured when the tip is pushed in all the way.
  • a complementary layout comprising three stages which do not necessarily follow in time and consisting of a perforation of the central hole of the already domed bottom, in a preforming of the bowl, and in a final shaping of the thick wall bordering the hole.
  • pairs of tools with complementary shapes, of the punch and matrix type so as to properly support and make repetitive the deformation of the bowl and the tilt of the thick wall.
  • the bottom Under the effect of polnUSin, is in support on a bending pad and takes a global shape of a bulge spherical. Immediately afterwards, still held between the punch and the stud, it is perforated by a sliding tool in the bending block. Arriving on the set turning of the coniferous, the bottom is placed on a matrix having, above of the conventional spherical bulge of the bending stud, a appendage corresponding in relief to the bowl to be produced, but with a wall horizontal summit. The compression of the central part of the bottom between punch and die gives a first form of bowl outline, with a horizontal background.
  • the punch and the die being maintained close together to block the spherical wall of the bottom and the outer edge of the bowl, a movable finger sliding in the axis of the matrix, of diameter greater than the diameter of the punch hole, performs an axial movement upward and slightly flips the inner edge of the bowl while calibrating the diameter of the perforated hole.
  • hole diameter depends on the thickness of the bottom and the inclination sought for the thick wall bordering the hole: for a joint Nicholson standard, it is preferably close to 45 °. It goes without saying that could be adapted to any other form of Nicholson type seal, i.e. any joint geometry with at least two annular grooves a longitudinal groove allowing the filling of the propellant gas in a first insertion position then the hermetic storage of said gas propellant in a second driving position. What matters is that the inclination of the wall is such that, even if the bottom is thicker important, the lower angle of the end wall continues to lodge easily at the bottom of the lower annular groove by imposing a tightening close to 1 mm. Such a bottom wall geometry is therefore well suited to the installation of a Nicholson type nozzle, regardless of the thickness of the bottom and, obviously, whatever the material of the bottom.
  • Figure 1 shows above a section through a diametrical plane of the part center of the housing bottom according to the invention and below a section of a nozzle Nicholson standard.
  • Figure 2 shows in section through a diametrical plane the half tip pressed into the bottom, in the position it occupies at the time of injection propellant.
  • Figure 3 shows in section through a diametral plane the tip completely pressed in, hermetically sealing the lower part of the case filled with gas propellant.
  • the Nicholson tip 10 shortly before its insertion into the bottom 1, shown here only by its central part 2, perforated with an orifice 3 at the axis. It has two annular grooves 17 and 22 , the diameters of the bottom of the groove are slightly different.
  • the bottom of the upper annular groove 17 close to the end of the end piece, surmounted by the upper bead 16, has a radius of ⁇ 2.7 mm, smaller than that of the bottom of the lower groove 22, close to the base 27 of the nozzle, surmounted by the bead 21, the latter being approximately 3.05 mm.
  • the lower wall 19 of the upper annular groove 17 is frustoconical, inclined at about 60 °.
  • the lower annular groove 22 has a height of ⁇ 0.7 mm.
  • the base 27 of the endpiece has a diameter of approximately 8.7 mm.
  • the upper bead 16 has a diameter of approximately 6.1 mm and the lower bead 21 has a diameter of 6.6 mm.
  • the central part 2 of the perforated bottom has the following geometric portions: first a spherical portion S , similar to the conventional spherical portion of the distributor housing bottoms made of aluminum alloy, the concavity of which is oriented downwards, then a succession of three toric portions A, B and C.
  • the A ring portion having a concavity upwards has a circular sector-shaped section of thickness 0.5 mm having its center at the axis of 6.705 mm and the outer radius RA is equal to 2 mm.
  • the toric portion B having a downward concavity, has a section in the shape of a circular sector with a thickness of 0.5 mm, the center of which is 3.93 mm from the axis and whose internal radius RB is equal to 1 mm.
  • the toric portion C having an upward concavity, has a section in the shape of a circular sector with a thickness of 0.5 mm, the center of which is 3.725 mm from the axis and the outside radius RC of which is equal to 1.3 mm.
  • the tangent to the inflection point L the border point between the portions S and A makes an angle of 14 ° with the horizontal.
  • the tangent to the inflection point M the border point between the portions A and B makes an angle of 66 ° with the axis.
  • the tangent to the inflection point N, the border point between the portions B and C is descending and makes an angle of 4 ° with the horizontal.
  • the section 4 is inclined by 46 ° relative to the horizontal and its lower edge 5 calibrates the orifice with a diameter of 5.1 mm.
  • the Nicholson nozzle 10 is shown half pressed into the bowl 12 . It is retained with a slight tightening (0.3mm) of the lower edge 5 of the edge 4 on the bottom of the upper annular groove 17 .
  • the Nicholson end piece 10 is shown fully inserted into the bowl 12. It is retained with a tightening of nearly 1 mm from the lower edge 5 of the wafer 4 on the bottom of the lower annular groove 22 . In the vicinity of the clamping zone, the end piece is slightly deformed. The thick wall has a slight inclination, so that the tightening is carried out only at the level of the lower angle. The outer wall of the bottom at the point of inflection N , border point between the toric parts B and C , is almost horizontal, which makes it possible not to deform the base 27 of the Nicholson tip 10 too much .
  • the thickness of the bottom has no influence on the quality of the contact, from the moment when the metallic bottom is clearly more rigid than the elastomer end piece.
  • the bowl we preformed the bowl so that it keeps a horizontal bottom and then we drilled a 4.5 mm diameter hole.
  • the spherical part S , the toric part A and a large part of the spherical part B are kept embedded between die and punch and an axial finger of 5.1 mm in diameter goes up in returning the initially horizontal bottom of the bowl which comes to be pressed against a locally convex part of the generally concave wall of the punch, thus producing the toric portion C.
  • the thickness of the bottom is indifferent as regards the maintenance of the Nicholson tip and the tightness of its closure, it is not indifferent with regard to the shaping conditions and the determination of the diameter initial perforation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)

Description

DOMAINE TECHNIQUE
L'invention concerne les boítiers en alliage d'aluminium distribuant sous pression des produits liquides, crémeux ou pâteux. Plus précisément elle concerne les boítiers offrant une séparation étanche entre le produit à distribuer et le gaz propulseur, le produit étant séparé du gaz soit par une poche interne, soit par un piston. Alors que le boítier externe est en alliage d'aluminium, la poche ou le piston peut être en tout matériau métallique ou plastique. La séparation du produit et du gaz propulseur permet notamment d'éviter la modification des caractéristiques du produit sous l'effet d'un contact prolongé avec le gaz propulseur.
ETAT DE LA TECHNIQUE
La partie supérieure du boítier distributeur étant destinée à être remplie par le produit, l'injection du gaz propulseur est effectuée plus simplement et plus économiquement par le fond. Pour ce faire, on ménage un trou dans le milieu du fond que l'on bouche après injection du gaz propulseur. Beaucoup de bouchons ont été proposés dans le passé et, actuellement, le bouchon le plus couramment utilisé sur les boítiers en acier a été décrit dans le brevet US 3 522 900. Nous appellerons par la suite ce bouchon "embout Nicholson", et pour la description de cet art antérieur, nous utiliserons les références numérotées relatives aux figures 1, 5 et 6 de US 3 522 900.
Les boítiers en acier sont réalisés en trois pièces: un dôme, une paroi cylindrique et un fond. Le fond est un disque embouti mince (moins de 0,3mm d'épaisseur) et peu profond que l'on sertit ensuite sur la paroi cylindrique. La mise en forme d'un fond destiné à accueillir un embout tel que l'embout Nicholson ne pose pas trop de problèmes, on peut réaliser facilement une cuvette annulaire 12 délimitée par une paroi cylindrique à l'extérieur et d'une autre paroi cylindrique 13 de faible hauteur qui constitue la paroi de l'orifice du trou. Une telle forme de cuvette permet de profiter pleinement de la forme particulière de l'embout Nicholson.
L'embout Nicholson possède deux gorges annulaires dont les diamètres de fond de gorge sont légèrement différents. Le fond de la gorge annulaire supérieure 17, proche de l'extrémité de l'embout, surmontée du bourrelet supérieur 16, a un rayon plus faible que le fond de la gorge inférieure 22, proche de la base de l'embout, surmonté du bourrelet 21. Dans un premier temps, l'embout est à moitié enfoncé dans la cuvette. Il est retenu par simple contact, éventuellement avec un léger serrage, de la paroi inférieure du bourrelet supérieur 16 avec l'extrémité supérieure 18 de la paroi cylindrique 13. Dans cette position, les rainures longitudinales 28 de l'embout permettent une communication entre la partie inférieure du boítier et l'extérieur. C'est ainsi que le boítier est livré au conditionneur, c'est-à-dire équipé de l'embout Nicholson à moitié enfoncé dans le fond. Le conditionneur remplit le compartiment supérieur avec le produit à distribuer, injecte le gaz propulseur sous pression dans le logement inférieur du boítier - le passage du gaz étant réalisé grâce aux rainures longitudinales 28 -, puis enfonce l'embout à fond. Le scellage hermétique du boítier est obtenu grâce au plaquage sur toute sa hauteur de la paroi cylindrique 13 contre le fond de la gorge annulaire inférieure 22. Un léger serrage est assuré en donnant au diamètre au repos de l'embout en élastomère une valeur légèrement supérieure à celle du diamètre de la paroi cylindrique 13.
Malheureusement, cet embout, parfaitement adapté aux boítiers en acier, n'a jamais pu être utilisé sur des boítiers en alliage d'aluminium.
Les boítiers en alliage d'aluminium sont réalisés en une ou deux pièces: le fond et la paroi cylindrique sont obtenus simultanément par filage par choc d'un pion, suivi éventuellement d'un étirage. Le dôme est soit rapporté et serti (deux pièces) soit obtenu par conification de l'extrémité supérieure de la paroi cylindrique (une pièce). L'absence de bourrelet de sertissage en partie inférieure du boítier (boítiers une et deux pièces) et en partie supérieure (boítiers une pièce) confère aux boítiers en alliage d'aluminium un aspect esthétique particulièrement apprécié.
Jusqu'à la présente invention, l'embout Nicholson utilisé en standard sur les boítiers en acier, n'a jamais pu assurer le bouchage hermétique de la partie inférieure des boítiers en alliage d'aluminium. On suppose que la raison principale réside dans le fait que le fond en alliage d'aluminium, obtenu par filage par choc, est en général plus épais que ne peut l'être un fond embouti en acier: il a en général une épaisseur supérieure à 0,5 mm. Il n'est pas possible dans ces conditions de réaliser une forme de cuvette telle que celle décrite dans US 3 522 900. En particulier, il est difficile de réaliser la paroi cylindrique 13, qui, devant se loger sur toute sa hauteur dans la gorge annulaire inférieure pour assurer un bouchage étanche, devrait avoir une hauteur (≈ 0,7 mm) à peine supérieure à l'épaisseur du fond.
Les fabricants de boítiers distributeurs sous pression à deux compartiments en alliage d'aluminium ont alors mis au point une solution différente, qui consiste à faire un simple trou au milieu du fond et à le remplir aussitôt par un toron en matière élastomère. Une fois livré ainsi au conditionneur, ce dernier utilise un dispositif d'injection du gaz comprimé qui consiste à faire traverser de part en part le toron à l'aide d'une aiguille creuse. Après injection du gaz propulseur passant par l'aiguille, on enlève cette aiguille, en comptant sur le retour élastique de l'élastomère pour reboucher le trou occasionné par l'aiguille. La demande FR-A-2 141 282 donne un exemple de toron permettant de boucher le fond d'un boítier de distribution sous pression en alliage d'aluminium.
L'injection du gaz propulseur au travers du toron en élastomère est plus difficile à réaliser que dans le cas des fonds en acier munis de leur embout Nicholson. Les dispositifs d'injection du gaz propulseur, devant respecter une cadence de production adaptée aux conditions industrielles des conditionneurs, se révèlent nettement plus coûteux que ceux qui sont utilisés avec les boítiers en acier. De plus, pour être enfoncé dans le trou, l'embout a un diamètre qui ne peut être que légèrement supérieur à celui du trou et, en raison de ce faible serrage et du trou occasionné par l'aiguille, l'étanchéité offerte par le toron n'est pas parfaite.
PROBLEME POSE
La demanderesse a cherché à remédier à ces défauts en essayant d'améliorer la position économique du boítier en aluminium par rapport à celle du boítier en acier, déjà handicapée par le coût matière et le coût de transformation et tout en conservant l'aspect esthétique avantageux lié à l'absence d'un bourrelet de sertissage à la base du boítier.
OBJET DE L'INVENTION
L'objet de l'invention est un boítier en alliage d'aluminium possédant un nouveau fond de forme particulière. Un autre objet de l'invention est le procédé qui permet de mettre en forme un tel boítier.
Le boítier selon l'invention présente un fond ayant une forme globale conventionnelle, c'est-à-dire concave sphérique, mais, au voisinage du trou central la paroi présente une forme particulière. A l'aide de la figure 1, on peut décrire, en partant de l'extérieur et en se dirigeant vers l'axe de la paroi cylindrique, considéré conventionnellement comme étant vertical, la partie centrale du fond perforé par les portions géométriques suivantes: d'abord une portion sphérique concave S, semblable à la portion sphérique conventionnelle des fonds de boítier distributeurs en alliage d'aluminium, et, successivement, trois portions toriques A, B et C, la première portion torique (A) étant convexe, la deuxième portion torique (B) étant concave, la dernière portion torique (C) étant convexe. Les portions se raccordent entre elles tangentiellement, le point de raccord entre chaque couple de portions adjacentes est un point d'inflexion. Les tangentes aux points d'inflexion, points frontières entre les portions S et A d'une part et B et C d'autre part, sont sensiblement horizontales, de préférence montante et inclinée de moins de 30° pour la première, descendante et inclinée de moins de 10° pour la seconde. La tangente au point d'inflexion, frontière entre les portions A et B, est sensiblement parallèle à l'axe, inclinée de préférence de plus de 60° par rapport à l'horizontale.
La forme qui résulte de la succession des portions S, A et B constitue une cuvette destinée à recueillir la base de l'embout Nicholson: lorsque l'embout est enfoncé à fond, sa base est logée dans la cuvette, ce qui améliore sa protection vis-à-vis de tout mouvement latéral brutal d'un corps étranger arrivant en contact avec le fond.
La dernière portion torique (C) présente une franche non horizontale. L'angle ou bord inférieur de cette franche, qui se trouve sur le côté extérieur du boítier, détermine le diamètre calibré de l'orifice. Ce dernier est inférieur de quelques dixièmes de millimètre à celui du fond de la gorge supérieure de l'embout Nicholson et de près de un millimètre à celui du fond de la gorge annulaire inférieure de ce même embout. Dans les deux cas, on vise un serrage de l'embout en élastomère par l'angle inférieur de la paroi d'épaisseur du fond, quelle que soit la position d'enfoncement de l'embout, le fond ne possédant pas de paroi cylindrique autour de l'orifice.
L'inclinaison de la paroi d'épaisseur, de préférence comprise entre 30 et 60°, présente l'avantage d'assurer un bon maintien de l'embout et une parfaite étanchéité (en position totalement enfoncée), quelle que soit l'épaisseur du fond, puisque c'est son angle inférieur qui calibre le trou et qui agit par serrage sur l'embout. En effet, grâce au contact de sa paroi d'épaisseur inclinée contre la paroi inférieure de l'un ou l'autre des bourrelets de l'embout et au serrage de sa paroi intérieure contre le fond des gorges, un maintien ferme de l'embout sur le fond du boítier est assuré, que l'embout soit enfoncé à moitié ou complètement. Grâce à la déformation de l'embout en élastomère sous l'effet de l'angle inférieur de la paroi d'épaisseur, un maintien étanche est assuré lorsque l'embout est enfoncé à fond.
Plusieurs variantes du procédé de fabrication des boítiers en alliage d'aluminium existent, toutes caractérisées par une première phase de filage par choc d'un pion cylindrique. Une phase optionnelle d'étirage permet notamment de calibrer le diamètre et l'épaisseur de la paroi cylindrique. En général le fond est prédéformé à cette phase, lorsqu'elle existe. Ensuite l'extrémité ouverte de la paroi cylindrique est rognée, l'ébauche de boítier est dégraissée, éventuellement recouverte intérieurement de vernis et extérieurement de laque. Dans la dernière phase, appelée globalement "conification", l'ébauche est en général placée sur un plateau tournant, où, par tamponnage en plusieurs passes, la mise en forme du fond est réalisée (filage seul) ou finie (filage-étirage), l'extrémité rognée de la paroi cylindrique est conifiée puis le bord extrême est roulé, de façon à réaliser le bourrelet de fixation de la coupelle de valve.
Il est possible d'introduire en plusieurs endroits de cette chaíne de fabrication aux multiples variantes une mise en forme complémentaire, comportant trois étapes qui ne se suivent pas nécessairement dans le temps et consistant en une perforation du trou central du fond déjà bombé, en un préformage de la cuvette, et en une mise en forme finale de la paroi d'épaisseur bordant le trou. Au cours des étapes de préformage et de mise en forme finale, on utilise des couples d'outils aux formes complémentaires, de type poinçon et matrice de façon à bien accompagner et à rendre répétitive la déformation de la cuvette et l'inclinaison de la paroi d'épaisseur. Chacune de ces étapes supplémentaires peut être introduite au cours du rognage, au cours de l'étirage éventuel ou encore aux premières étapes de la conification
En fin d'étirage par exemple, le fond, sous l'effet du polnçoin, se trouve en appui sur un plot de bombage et prend une forme globale de bombé sphérique. Tout de suite après, encore maintenu entre poinçon et plot, il est perforé par un outil coulissant dans le plot de bombage. Arrivant sur le plateau tournant de la conifieuse, le fond est placé sur une matrice possédant, au-dessus du bombé sphérique conventionnel du plot de bombage, un appendice correspondant en relief à la cuvette à réaliser, mais avec une paroi sommitole horizontale. La compression de la partie centrale du fond entre poinçon et matrice donne une première forme d'ébauche de cuvette, possédant un fond horizontal. Le poinçon et la matrice étant maintenus rapprochés pour bloquer la paroi sphérique du fond et le bord externe de la cuvette, un doigt mobile coulissant dans l'axe de la matrice, de diamètre supérieur au diamètre du trou de perforation, effectue un mouvement axial vers le haut et retourne légèrement le bord interne de la cuvette tout en calibrant le diamètre de l'orifice perforé.
Le choix du diamètre de perforation dépend de l'épaisseur du fond et de l'inclinaison recherchée pour la paroi d'épaisseur bordant le trou: pour un joint Nicholson standard, elle est de préférence voisine de 45°. Il va de soi qu'elle pourrait être adaptée à toute autre forme de joint de type Nicholson, c'est-à-dire toute géométrie de joint possédant deux gorges annulaires et au moins une rainure longitudinale permettant le remplissage du gaz propulseur dans une première position d'enfoncement puis le stockage hermétique dudit gaz propulseur dans une deuxième position d'enfoncement. Ce qui compte, c'est que l'inclinaison de la paroi est telle que, même si le fond a une épaisseur plus importante, l'angle inférieur de la paroi d'extrémité continue à se loger facilement au fond de la gorge annulaire inférieure en imposant un serrage voisin de 1 mm. Une telle géométrie de paroi du fond est donc bien adaptée à la mise en place d'un embout de type Nicholson, quelle que soit l'épaisseur du fond et, évidemment, quelle que soit le matériau constitutif du fond.
L'exemple donné ci-après dans le but de mieux faire comprendre l'invention décrit une géométrie particulière ne devant pas être considérée comme étant limitative.
La figure 1 représente en haut une coupe par un plan diamétral de la partie centrale du fond de boítier selon l'invention et en bas une coupe d'un embout Nicholson standard.
La figure 2 représente en coupe par un plan diamétral l'embout à demi enfoncé dans le fond, dans la position qu'il occupe au moment de l'injection du gaz propulseur.
La figure 3 représente en coupe par un plan diamétral l'embout complètement enfoncé, scellant hermétiquement la partie basse du boítier remplie du gaz propulseur.
EXEMPLE (Figures 1, 2 et 3)
Sur la figure 1, on peut voir l'embout Nicholson 10 peu avant son enfoncement dans le fond 1, représenté ici seulement par sa partie centrale 2, perforée d'un orifice 3 au niveau l'axe. Il possède deux gorges annulaires 17 et 22 dont les diamètres de fond de gorge sont légèrement différents. Le fond de la gorge annulaire supérieure 17, proche de l'extrémité de l'embout, surmontée du bourrelet supérieur 16, a un rayon de ≈2,7 mm, plus faible que celui du fond de la gorge inférieure 22, proche de la base 27 de l'embout, surmontée du bourrelet 21, ce dernier étant égal à 3,05 mm environ. La paroi inférieure 19 de la gorge annulaire supérieure 17 est tronconique, inclinée à 60° environ. La gorge annulaire inférieure 22 a une hauteur de ≈ 0,7 mm. La base 27 de l'embout a un diamètre de 8,7 mm environ. Le bourrelet supérieur 16 a un diamètre de 6,1 mm environ et le bourrelet inférieur 21 a un diamètre de 6,6 mm.
La partie centrale 2 du fond perforé comporte les portions géométriques suivantes: d'abord une portion sphérique S, semblable à la portion sphérique conventionnelle des fonds de boítier distributeurs en alliage d'aluminium, dont la concavité est orientée vers le bas, ensuite une succession de trois portions toriques A, B et C . La portion torique A, présentant une concavité vers le haut, a une section en forme de secteur circulaire d'épaisseur 0,5 mm dont le centre est à 6,705 mm de l'axe et dont le rayon extérieur RA est égal à 2 mm. La portion torique B, présentant une concavité vers le bas, a une section en forme de secteur circulaire d'épaisseur 0,5 mm dont le centre est à 3,93 mm de l'axe et dont le rayon intérieur RB est égal à 1 mm. La portion torique C, présentant une concavité vers le haut, a une section en forme de secteur circulaire d'épaisseur 0,5 mm dont le centre est à 3,725 mm de l'axe et dont le rayon extérieur RC est égal à 1,3 mm.
La tangente au point d'inflexion L, point frontière entre les portions S et A fait un angle de 14° avec l'horizontale. La tangente au point d'inflexion M, point frontière entre les portions A et B fait un angle de 66° avec l'axe. La tangente au point d'inflexion N, point frontière entre les portions B et C est descendante et fait un angle de 4° avec l'horizontale. La tranche 4 est inclinée de 46° par rapport à l'horizontale et son bord inférieur 5 calibre l'orifice au diamètre 5,1 mm.
Sur la figure 2, l'embout Nicholson 10 est montré à moitié enfoncé dans la cuvette 12. II est retenu avec un léger serrage (0.3mm) du bord inférieur 5 de la tranche 4 sur le fond de la gorge annulaire supérieure 17. La paroi inférieure 19 de la gorge annulaire supérieure 17, inclinée à 60° environ, permet de maintenir le contact sur une assez grande distance avec la partie torique C du fond. On voit bien que l'épaisseur du fond n'a aucune influence sur la qualité du contact, à partir du moment où le fond métallique est nettement plus rigide que l'embout en élastomère.
Sur la figure 3, l'embout Nicholson 10 est montré complètement enfoncé dans la cuvette 12. Il est retenu avec un serrage de près de 1 mm du bord inférieur 5 de la tranche 4 sur le fond de la gorge annulaire inférieure 22. Au voisinage de la zone de serrage, l'embout est faiblement déformé. La paroi d'épaisseur a une inclinaison faible, de telle sorte que le serrage ne s'effectue qu'au niveau de l'angle inférieur. La paroi extérieure du fond au niveau du point d'inflexion N, point frontière entre les parties toriques B et C, est presque horizontale, ce qui permet de ne pas trop déformer la base 27 de l'embout Nicholson 10. Ici aussi, on voit bien que l'épaisseur du fond n'a aucune influence sur la qualité du contact, à partir du moment où le fond métallique est nettement plus rigide que l'embout en élastomère.
Pour réaliser le fond de l'exemple, on a préformé la cuvette de telle sorte qu'elle garde un fond horizontal puis on a perforé un trou de diamètre 4,5 mm. Au cours de la mise en forme finale de la cuvette, la partie sphérique S, la partie torique A et une grande partie de la portion sphérique B sont maintenues encastrées entre matrice et poinçon et un doigt axial de 5,1 mm de diamètre remonte en retournant le fond initialement horizontal de la cuvette qui vient se plaquer contre une partie localement convexe de la paroi globalement concave du poinçoin en réalisant ainsi la portion torique C.
Si l'épaisseur du fond est indifférente en ce qui concerne le maintien de l'embout Nicholson et l'étanchéité de sa fermeture, elle n'est pas indifférente vis-à-vis des conditions de mise en forme et de la détermination du diamètre de perforation initial.
AVANTAGES DU PROCEDE SELON L'INVENTION
Possibilité d'utiliser des fonds de boítier en alliage d'aluminium d'épaisseurs différentes avec un embout standard déjà largement diffusé pour équiper les boítiers distributeurs sous pression en acier.

Claims (10)

  1. Boítier en alliage d'aluminium distribuant sous pression des produits liquides à pâteux possédant une paroi cylindrique et un fond (1) formant une seule pièce avec ladite paroi cylindrique, la partie centrale (2) étant perforée d'un orifice (3) caractérisé en ce que ladite partie centrale (2) du fond (1) comprend les portions suivantes, décrites en partant de l'extérieur et en se dirigeant vers l'axe de la paroi cylindrique, considéré conventionnellement comme étant vertical: une portion sphérique (S) concave, et, successivement, trois portions toriques (A), (B) et (C), la première portion torique (A) étant convexe, la deuxième portion torique (B) étant concave, la troisième portion torique (C) étant convexe, les portions se raccordant entre elles tangentiellement, le point de raccord (L, M, N) entre chaque couple de portions adjacentes (S,A; A,B; B.C) étant un point d'inflexion, et en ce que la dernière portion torique (C) présente une franche (4) non horizontale dont le bord inférieur (5), c'est-à-dire se trouvant sur le côté extérieur dudit boítier, délimite ledit orifice (3).
  2. Boítier en alliage d'aluminium selon la revendication 1, caractérisé en ce que la tangente au point d'inflexion (N), frontière entre la deuxième portion torique (B) et la troisième portion torique (C), est inclinée de moins de 10° par rapport à l'horizontale.
  3. Boítier en alliage d'aluminium selon la revendication 1 ou 2, caractérisé en ce que la tranche est inclinée d'un angle compris entre 30 et 60° par rapport à l'horizontale.
  4. Boítier en alliage d'aluminium selon l'une quelconque des revendications 1 à 3 pouvant être relié à un embout de type Nicholson (10), c'est-à-dire un embout dont la géométrie, présentant deux gorges annulaires (17 et 22) et au moins une rainure longitudinale (28), est telle qu'il permet d'une part le remplissage du gaz propulseur dans une première position d'enfoncement où ledit bord inférieur (5) de la tranche non horizontale (4) est en contact avec le fond de la gorge supérieure (17) (figure 2) et d'autre part le stockage hermétique dudit gaz propulseur dans une deuxième position d'enfoncement où ledit bord inférieur (5) de la tranche non horizontale (4) est en contact avec le fond de la gorge inférieure (figure 3), ledit boítier étant caractérisé en ce que le diamètre de son orifice (3) est inférieur de près de 1 mm par rapport au diamètre du fond de la gorge annulaire inférieure (22) dudit embout de type Nicholson.
  5. Boítier en alliage d'aluminium selon la revendication 4, caractérisé en ce qu'il est muni dudit embout de type Nicholson (10) enfoncé à moitié ou complètement dans l'orifice (3) du fond (1) dudit boítier.
  6. Utilisation d'un bouchon sur un boítier selon l'une quelconque des revendications 1 à 5 et 10, caractérisée en ce que ledit bouchon est un embout de type Nicholson (10) dont la géométrie, présentant deux gorges annulaires (17 et 22) et au moins une rainure longitudinale (28), est telle qu'il permet le remplissage du gaz propulseur dans une première position d'enfoncement (figure 2) et le stockage hermétique dudit gaz propulseur dans une deuxième position d'enfoncement (figure 3) et que l'on introduit dans l'orifice (3) du fond (1) dudit boítier.
  7. Procédé de fabrication du boítier en alliage d'aluminium selon l'une quelconque des revendications 1 à 5, comprenant une première phase de filage par choc d'un pion cylindrique, une phase optionnelle d'étirage, un rognage de l'extrémité ouverte de la paroi cylindrique, et une phase de conification, au cours de laquelle, par tamponnage en plusieurs passes, le fond (1) est réalisé, l'extrémité rognée de la paroi cylindrique est conifiée puis le bord extrême est roulé, caractérisé en ce qu'on introduit trois étapes supplémentaires où la partie centrale (2) du fond (1) est perforée, mise en forme de cuvette, et calibrée de telle sorte qu'elle présente les portions suivantes, décrites en partant de l'extérieur et en se dirigeant vers l'axe de la paroi cylindrique, considéré conventionnellement comme étant vertical: une portion sphérique (S) concave, et, successivement, trois portions toriques (A), (B) et (C), la première portion torique (A) étant convexe, la deuxième portion torique (B) étant concave, la troisième portion torique (C) étant convexe, les portions se raccordant entre elles tangentiellement, le point de raccord (L, M, N) entre chaque couple de portions adjacentes (S,A; A,B; B,C) étant un point d'inflexion, et en ce que la dernière portion torique (C) présente une tranche (4) non horizontale dont le bord inférieur (5), c'est-à-dire se trouvant sur le côté extérieur dudit boítier, délimite ledit orifice (3).
  8. Procédé de fabrication d'un boítier en alliage d'aluminium selon la revendication 7, caractérisé en ce que lesdites étapes supplémentaires sont introduites au cours d'une ou plusieurs des phases suivantes: étirage, rognage et conification.
  9. Procédé de fabrication d'un boítier en alliage d'aluminium selon la revendication 7 ou 8, caractérisé en ce que la mise en forme finale de la cuvette est réalisée à l'aide de deux outils de formes complémentaires qui maintiennent la portion sphérique (S), la première portion torique (A) et une grande partie de la deuxième portion torique (B) encastrées tandis qu'un doigt axial coulissant dans la matrice remonte en retournant le fond initialement horizontal de la cuvette qui vient se plaquer contre une partie localement convexe de la paroi globalement concave du poinçon, ce qui met en forme la troisième portion torique (C), ledit doigt passant également au travers de l'orifice (3) en le calibrant.
  10. Boítier selon l'une quelconque des revendications 1 à 5 modifié en ce qu'il comprend un fond dont l'épaisseur est supérieure à 0,5 mm et en ce qu'il n'est pas en alliage d'aluminium.
EP00903753A 1999-02-11 2000-02-09 Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium Expired - Lifetime EP1150906B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9901808A FR2789662B1 (fr) 1999-02-11 1999-02-11 Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium
FR9901808 1999-02-11
PCT/FR2000/000297 WO2000047492A1 (fr) 1999-02-11 2000-02-09 Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium

Publications (2)

Publication Number Publication Date
EP1150906A1 EP1150906A1 (fr) 2001-11-07
EP1150906B1 true EP1150906B1 (fr) 2003-07-16

Family

ID=9542032

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00903753A Expired - Lifetime EP1150906B1 (fr) 1999-02-11 2000-02-09 Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium

Country Status (7)

Country Link
EP (1) EP1150906B1 (fr)
AU (1) AU2554000A (fr)
CZ (1) CZ20012881A3 (fr)
DE (1) DE60003889T2 (fr)
ES (1) ES2202052T3 (fr)
FR (1) FR2789662B1 (fr)
WO (1) WO2000047492A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188649A (zh) * 2018-09-19 2019-01-11 珠海达理宇航科技有限公司 一种多边桶及太空望远镜镜片的保护装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862307B1 (fr) * 2003-11-13 2006-04-28 Commissariat Energie Atomique Polymeres modifies de polyethynylene phenylene ethynylene silylene), compositions les contenant, leurs procedes de preparation et produits durcis.
US10246250B2 (en) 2016-04-21 2019-04-02 Crown Packaging Technology, Inc. Beverage can having a grommet
FR3084065B1 (fr) 2018-07-18 2021-10-01 Lindal France Boitier pour recipient sous pression

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522900A (en) 1967-10-18 1970-08-04 Continental Can Co Valve for product dispensing container
DE2226278A1 (de) 1971-06-09 1973-01-04 Sterigard Corp Druckspruehdose mit einer treibmitteleinfuelleinrichtung und verfahren zu deren herstellung
EP0227049A3 (fr) * 1985-12-24 1988-10-12 S.C. Johnson & Son, Inc. Soupape à simple effet pour la pressurisation de bombe aérosol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188649A (zh) * 2018-09-19 2019-01-11 珠海达理宇航科技有限公司 一种多边桶及太空望远镜镜片的保护装置

Also Published As

Publication number Publication date
EP1150906A1 (fr) 2001-11-07
WO2000047492A1 (fr) 2000-08-17
DE60003889D1 (de) 2003-08-21
CZ20012881A3 (cs) 2002-08-14
ES2202052T3 (es) 2004-04-01
FR2789662A1 (fr) 2000-08-18
FR2789662B1 (fr) 2001-03-16
AU2554000A (en) 2000-08-29
DE60003889T2 (de) 2004-06-03

Similar Documents

Publication Publication Date Title
EP1007424B1 (fr) Capsule de distribution equipee d'un bouchon, et procede de fabrication de cette capsule
EP1644257B1 (fr) Procede de fabrication de capsules de bouchage
EP3122641B1 (fr) Contenant métallique comportant un goulot adapte a recevoir un élément d'obturation du type capsule a vis
WO2015155471A1 (fr) Flacon, système comprenant un tel flacon, et leur procédé de fabrication
WO2015155474A1 (fr) Flacon et son procédé de fabrication
WO2006128993A1 (fr) Amelioration de l'etancheite des emballages a recipients multiples, en particulier des doubles tubes, destines notamment aux preparations extemporanees
EP1150906B1 (fr) Fond de boitier distributeur sous pression a deux chambres en alliage d'aluminium
FR2775959A1 (fr) Bouchon filete inviolable bi-matiere pour bouteilles et son procede de fabrication
EP1038799A1 (fr) Boíte d'aérosol à piston coulissant moulé et procédé de montage d'un tel ensemble
WO2003074373A1 (fr) Conditionnement comportant un contenant deformable par pression et procede de fabrication
EP1441955B1 (fr) Fixation indemontable d'un dispositif de distribution
WO2000003933A1 (fr) Distributeur de produits cremeux sous pression muni d'un piston etanche
EP1317384B1 (fr) Verseur a verrouillage ameliore et capsule munie dudit verseur
FR2752411A1 (fr) Organe de fixation d'un dispositif de distribution sur un col d'un reservoir
CA3107149C (fr) Boitier pour recipient sous pression
WO2020260832A1 (fr) Reservoir de produit fluide
EP4251342A1 (fr) Procédé pour la fabrication d'un emballage métallique en forme de bouteille
FR3139322A1 (fr) Récipient pressurisé à épaule et fond déformables
FR3105033A1 (fr) Procédé de pressage à froid
FR3004428A3 (fr) Dispositif de surbouchage d'un recipient a col contenant un liquide effervescent
WO2015150661A1 (fr) Procédé de bouchage d'un récipient creux, récipient bouché obtenu par un tel procédé et utilisation d'un tel récipient bouché
FR3020979A1 (fr) Moule de fabrication pour gaine d'habillage et procede associe
FR2791285A1 (fr) Procede de fabrication d'un boitier de conditionnement comportant un reservoir annexe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011115

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CEBAL S.A.S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES FI FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030716

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REF Corresponds to:

Ref document number: 60003889

Country of ref document: DE

Date of ref document: 20030821

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20031117

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2202052

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040419

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050208

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060117

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060213

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070209

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20071030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070209

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060119

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 7

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20100401

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20100401