EP1144103A2 - Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant - Google Patents

Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant

Info

Publication number
EP1144103A2
EP1144103A2 EP99942949A EP99942949A EP1144103A2 EP 1144103 A2 EP1144103 A2 EP 1144103A2 EP 99942949 A EP99942949 A EP 99942949A EP 99942949 A EP99942949 A EP 99942949A EP 1144103 A2 EP1144103 A2 EP 1144103A2
Authority
EP
European Patent Office
Prior art keywords
nanofibrils
use according
dispersion
cellulose
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99942949A
Other languages
German (de)
English (en)
Inventor
Sophie Vaslin
José FAYOS
Robert Cantiani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1144103A2 publication Critical patent/EP1144103A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0056Spread compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/027Fibers; Fibrils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/064Water-in-oil emulsions, e.g. Water-in-silicone emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/731Cellulose; Quaternized cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose

Definitions

  • the present invention relates to the use of essentially amorphous cellulose nanofibrils having a crystallinity rate of less than or equal to 50%, as an emulsifying and / or stabilizing agent for a dispersion.
  • a dispersion designates a system consisting of at least two immiscible phases. It can correspond for example:
  • liquid-in-liquid emulsion the liquids being immiscible with each other, in particular an oil-in-water emulsion, or a water-in-oil emulsion;
  • a multiple emulsion consisting for example of three liquids, at least 2 of which are immiscible with one another, in particular a water in oil in water or oil in water in oil emulsion, the water and oil phases possibly being identical or different;
  • an emulsion or suspension of solid in a liquid such as latexes which correspond to colloidal suspensions of polymer particles in a liquid phase
  • a system formed by a gas and two different liquids
  • the object of the present invention applies to any dispersion as defined above, and more particularly to the systems listed without limitation.
  • the term "emulsifier” denotes a compound which lowers the interfacial tension between two immiscible phases (for example water / oil) and thus allows a large increase in the specific surface of the phase to be emulsified. Thus, the mechanical energy required to form the dispersion is reduced.
  • the emulsifier may or may not subsequently stabilize the emulsion in a lasting manner by bringing, for example, charges to the surface of the droplets "electrostatic stabilization".
  • stabilizer any compound which will slow down or even inhibit the phenomena of destabilization of the emulsion or of the dispersion, that is to say the creaming or the flocculation which lead sooner or later to the coalescence of the droplets. or the coagulation of solids in a dispersion.
  • the stabilizer can exercise its function in different ways:
  • the stabilizer exercises its function by forming a kind of mechanical barrier preventing the droplets from cremating or the solids from flocculating. Stabilization and emulsification are therefore two distinct but complementary functions.
  • the operating conditions such as for example the nature of the phases, the concentration, the pH, the ionic strength, the temperatures, etc., favoring the action of an emulsifier, do not necessarily favor that of a stabilizer. .
  • many compounds are known for their function as an emulsifier or as a stabilizer. Fewer are those who optimally perform both functions at the same time, at low concentrations and for a large number of different systems.
  • xanthan gum By way of indication, mention may be made of xanthan gum, carrageenans, alginates or carboxymethylcelluloses, polysaccharides which are known as stabilizers for emulsions but not as emulsifier.
  • a counter example is gum arabic which has an emulsifying and stabilizing power but this at high concentrations.
  • the Applicant has unexpectedly and surprisingly found that the essentially amorphous cellulose nanofibrils whose crystallinity rate is less than or equal to 50% have remarkable emulsifying and / or stabilizing properties.
  • Said nanofibrils according to the invention can be both an emulsifier and / or stabilizer in relatively low amounts, quite comparable to those of the usual emulsifiers such as TWEEN 20 (polyoxyethylene sorbitan monolaurate) and much lower than gum arabic .
  • TWEEN 20 polyoxyethylene sorbitan monolaurate
  • the present invention therefore relates to the use of essentially amorphous cellulose nanofibrils having a crystallinity rate of less than or equal to 50%, as an emulsifying and / or stabilizing agent for a dispersion.
  • the subject of the invention is the use of essentially amorphous cellulose nanofibrils having a crystallinity rate of less than or equal to 50%, as an emulsifying and stabilizing agent for a dispersion.
  • the nanofibrils are used in an amount sufficient to emulsify and / or stabilize.
  • the nanofibrils can be present in an amount of between 0.01 and 5% by weight relative to the total weight of the dispersion.
  • the nanofibrils are present in an amount between 0.05 to 1% by weight, preferably between 0.1 and 0.8% by weight relative to the total weight of the dispersion.
  • essentially amorphous we mean nanofibrils whose crystallinity rate is less than or equal to 50%.
  • the degree of crystallinity is between 15% and 50%.
  • the degree of crystallinity is less than 50%.
  • the cellulose nanofibrils used in the composition of the formulation according to the present invention come from cells preferably made up of at least about 80% of primary walls.
  • citrus fruits such as lemons, grapefruits in particular, or even sugar beet, are plants comprising such cells.
  • the quantity of primary walls is at least 85% by weight. More particularly, cellulose from the sugar beet pulp is used.
  • the nanofibrils of the invention have at least 80% of cells with primary walls.
  • the nanofibrils are advantageously loaded at the surface with carboxylic acids and acidic polysaccharides, alone or as a mixture.
  • carboxylic acids simple carboxylic acids, as well as their salts. These acids are preferably chosen from uronic acids, or their salts. More particularly, said uronic acids are galacturonic acid, glucuronic acid, or their salts. Mention may be made, as acidic polysaccharides, of pectins, which are more particularly polygalacturonic acids. These acidic polysaccharides can be present in mixture with hemicelluloses.
  • a very advantageous embodiment of the invention consists of nanofibrils whose surface is at least loaded with galaturonic acid and / or polygalacturonic acid.
  • nanoofibrils are not completely separated from the fibers but still remain on the surface of the latter, giving them very specific properties.
  • the cellulose nanofibrils also have a section of between approximately 2 and approximately 10 nm. More particularly, the section of the microfibrils is between approximately 2 and approximately 4 nm.
  • microfibrils used in the composition of food formulations have such characteristics due to the implementation of a very specific preparation process, which will now be described.
  • said process is more particularly carried out on sugar beet pulp after it has undergone a step of prior extraction of sucrose, according to the methods known in the art.
  • the preparation process comprises the following stages: (a) first acid or basic extraction, at the end of which a first solid residue is recovered, (b) possibly a second extraction carried out under alkaline conditions from the first solid residue, following from which, a second solid residue is recovered,
  • step (e) diluting the third solid residue obtained at the end of step (d) so as to obtain a dry matter content of between 2 and 10% by weight
  • step (a) the term “pulp” means moist, dehydrated pulp, preserved by silage or partially defected.
  • the extraction step (a) can be carried out in an acid medium or in a basic medium.
  • the pulp is suspended in a solution of water for a few minutes so as to homogenize the acidified suspension at a pH between 1 and 3, preferably between 1, 5 and 2.5.
  • This operation is carried out with a concentrated solution of an acid such as hydrochloric acid or sulfuric acid.
  • This step can be advantageous for removing the calcium oxalate crystals which may be present in the pulp, and which, because of their significant abrasive nature, can cause difficulties in the homogenization step.
  • the pulp is added to an alkaline solution of a base, for example sodium hydroxide or potassium hydroxide, of concentration less than 9% by weight, more particularly less than 6% by weight.
  • a base for example sodium hydroxide or potassium hydroxide
  • concentration of the base is between 1 and 2% by weight.
  • Step (a) is generally carried out at a temperature between about 60 ° C and 100 ° C, preferably between about 70 ° C and 95 ° C.
  • step (a) The duration of step (a) is between approximately 1 hour and approximately 4 hours.
  • step (a) a partial hydrolysis takes place with release and solubilization of most of the pectins and hemiceltuloses, while preserving the molecular mass of the cellulose.
  • the solid residue is recovered from the suspension originating from stage (a) using known methods.
  • the first solid residue obtained is optionally subjected to a second extraction step, carried out under alkaline conditions.
  • a second extraction step is carried out when the first has been carried out under acidic conditions. If the first extraction was carried out under alkaline conditions, the second step is only optional.
  • this second extraction is carried out with a base preferably chosen from soda or potash, the concentration of which is less than about 9% by weight, preferably between about 1% and about 6% by weight.
  • the duration of the alkaline extraction step is between approximately 1 and approximately 4 hours. It is preferably equal to approximately 2 hours.
  • step (c) the residue from step (a) or (b) is washed thoroughly with water in order to recover the residue of cellulosic material.
  • step (d) The cellulosic material of step (c) is then optionally bleached, in step (d), according to conventional methods.
  • treatment can be carried out with sodium chlorite, sodium hypochlorite, hydrogen peroxide at a rate of 5-20% relative to the amount of dry matter treated.
  • Different concentrations of bleach can be used, at temperatures between about 18 ° C and 80 ° C, preferably between about 50 ° C and 70 ° C.
  • the duration of this step (d) is between approximately 1 hour and approximately 4 hours, preferably between approximately 1 and approximately 2 hours.
  • a cellulosic material is then obtained containing between 85 and 95% by weight of cellulose.
  • this bleaching step it may be preferable to wash the cellulose thoroughly with water.
  • the resulting suspension, optionally bleached, is then rediluted in water at a rate of 2 to 10% of dry matter, then undergoes a homogenization step.
  • This corresponds to a mixing, grinding or any high mechanical shearing operation, followed by one or more passages of the cell suspension through a small diameter orifice, subjecting the suspension to a pressure drop of at least 20 MPa and to a shearing action at high speed followed by a deceleration impact at high speed.
  • the mixing or grinding is, for example, carried out by passage (s) in the mixer or grinder for a period ranging from a few minutes to about an hour, in a device of the type such as a WARING BLENDOR equipped with a four-blade propeller or grinder grinding wheel or any other type of grinder, such as a colloid mill.
  • the actual homogenization will advantageously be carried out in a homogenizer of the MANTON GAULIN type in which the suspension is subjected to a shearing action at high speed and pressure in a narrow passage and against a shock ring.
  • a homogenizer of the MANTON GAULIN type in which the suspension is subjected to a shearing action at high speed and pressure in a narrow passage and against a shock ring.
  • the MICRO FLUIDIZER which is a homogenizer mainly consisting of a compressed air motor which creates very high pressures, an interaction chamber in which the homogenization operation takes place (elongational shear, shocks and cavitations) and a low pressure chamber which allows the depressurization of the dispersion.
  • the suspension is introduced into the homoqmbiisseur preferably after preheating at a temperature ranging between 40 and 120 ° C, preferably ranging between 85 and 95 ° C.
  • the temperature of the homogenization operation is maintained between 95 and 120 ° C, preferably above 100 ° C.
  • the suspension is subjected in the homogenizer to pressures between 20 and 100 MPa, and preferably greater than 50 MPa.
  • the homogenization of the cellulosic suspension is obtained by a number of passages which can vary between 1 and 20, preferably between 2 and 5, until a stable suspension is obtained.
  • the homogenization operation can advantageously be followed by a high mechanical shearing operation, for example in a device such as the ULTRA TURRAX from SYLVERSON.
  • Example 20 of this text gives in particular a method of preparing a suspension of essentially amorphous cellulose nanofibrils.
  • the nanofibrils can be used in the form of an aqueous suspension, as obtained by the process described above.
  • the cellulose nanofibrils can be associated with at least one polyhydroxylated organic compound (polyOH).
  • polyhydroxy compound is chosen from carbohydrates and their derivatives, and polyols.
  • carbohydrates mention may be made particularly of linear or cyclic monosaccharides in C-3 to C-6, and preferably in C-5 or C- 6, oligosaccharides, polysaccharides and their fatty derivatives such as fatty acid sucroesters or sucroesters, alcohol carbohydrates and mixtures thereof.
  • monosaccharides fructose, mannose, galactose, glucose, talose, gulose, allose, altrose, idose, arabinose, xylose, lyxose are suitable. and ribose.
  • oligosaccharides inter alia, of sucrose, maltose and lactose.
  • the polysaccharides can be of animal, plant or even bacterial origin.
  • Xantha ⁇ e gum, succinoglycans, carrageenans, alginates are representative elements of anionic polysaccharides.
  • nonionic polysaccharides mention may in particular be made of galactomannans, such as guar gum, locust bean gum, starch and its nonionic derivatives, nonionic cellulose derivatives.
  • the fatty acid sucroesters the fatty acid esters
  • the carbohydrates of sorbitol-type alcohols mannitol
  • carbohydrates of acids such as gluconic acid, uronic acids, such as galacturonic acid, glucuronic acid, as well as their salts
  • carbohydrates of ethers such as carboxymethylated cellulose.
  • polyols it is possible to use in food formulations, glycerol, pentaerythritol, propylene glycol, ethylene glycol and or polyvinyl alcohols.
  • the compounds described above can be used alone or as a mixture.
  • the polyhydroxylated organic compound (s) (polyOH) (s) is associated with the cellulose nanofibrils in a weight ratio (polyOH) ( s) x 100 / [(polyOH) (s) + (NFC)] between 5 and 50%, and preferably between 5 and 30%. Quite advantageously, this ratio is between 10 and 30% and preferably between 15 and 30% by weight.
  • the polyhydroxylated compound is at least carboxymethylee cellulose.
  • Cellulose is a polymer made up of monomeric units of glucose. The carboxyl group is introduced in a manner known per se, by reacting chloroacetic acid with cellulose.
  • the degree of substitution corresponds to the number of carboxymethyl groups per unit of glucose.
  • the maximum theoretical degree is 3.
  • the degree of substitution is greater than 0.95, or less than or equal to this value, it is specified that the carboxymethylee cellulose is, respectively, at high or at low degree of substitution.
  • the carboxymethylcellulose has a degree of substitution is greater than 0.95.
  • the polyhydroxylated compound is a combination of carboxymethylated cellulose with at least one of the compounds chosen from monosaccharides, oligosaccharides, nonionic and anionic polysaccharides and their derivatives, carbohydrate derivatives such as carbohydrates alcohols, acids and ethers.
  • carboxymethylee cellulose is used in combination with at least one of the following compounds: xanthan gum, sorbitol, sucrose.
  • the cellulose nanofibrils can be combined, in addition to the aforementioned polyhydroxy compound, with at least one co-additive chosen from:
  • the carboxylated cellulose having a degree of substitution less than or equal to 0.95, preferably carboxymethylated cellulose, ⁇ the osidic monomers or oligomers,
  • A represents hydrogen, an alkyl radical at C- 1 to C-10, preferably at C-1 to C-5, or also the group R "iR ' 2N with R ' 1 ,
  • R'2 identical or different, representing hydrogen or a C-1 to C-10, preferably C-1 to C-5, alkyl radical,
  • the compounds of the (RtR2N) COA type it is preferred to use the compounds comprising two amide functions.
  • urea is used as a co-additive.
  • the cellulose nanofibrils falling within the scope of the present invention result from the drying of a dispersion of nanofibrils, preferably in the presence of an additive and optionally a co-additive.
  • the cellulose nanofibrils of the present invention can be used in dry dispersible form.
  • Another object of the present invention is the use of nanofibrils according to the invention, where appropriate in combination with an additive, and optionally a co-additive as an emulsifying and / or stabilizing agent in the fields of cosmetics, food, concrete constructions, drilling fluids, radical polymerization such as direct or reverse emulsion polymerization, microemulsion, suspension, dispersion ...
  • This example relates to the preparation of cellulose nanofibrils (NFC) in the form of mother suspension, and in dry form comprising carboxymethylcellulose (CMC).
  • NFC cellulose nanofibrils
  • CMC carboxymethylcellulose
  • the mother dispersion of cellulose nanofibrils is obtained according to the process described in Example 20 of patent application EP 726 356; it comprises 2.3% of cellulose nanofibrils and is prehomogenized with Ultra-Turrax at 14,000 rpm -1 min for 100 g of dispersion).
  • the mother dispersion of cellulose nanofibrils is obtained according to the process described in Example 20 of patent application EP 726 356; she understands 2.3% in cellulose microfibrils and is prehomogenized with Ultra-Turrax at 14,000 rpm - 1 min for 100 g of dispersion).
  • the carboxymethylcellulose used has a degree of substitution equal to 1, 2; medium viscosity (BLANOSE 12M8P product from AQUALON).
  • the CMC is dissolved in distilled water and then added to the mother dispersion of (NFC) and the whole is stirred with a deflocculating paddle at 1000 rpm for 30 min.
  • the amount of carboxymethylcellulose added is 30% relative to the weight of CMC.
  • the mixture is then poured into cups and then dried in a ventilated oven at 40 ° C, to a dry extract of 77%, controlled by dosing the water using an infrared thermobalance.
  • the dried mixture is then ground in a coffee grinder, then sieved through a 500 ⁇ m sieve.
  • the purpose of this example is to demonstrate the emulsifying power of cellulose nanofibrils (NFC).
  • the surface tensions are measured with a KREUSS automatic tensiometer (Type K 14) and a WILHELMY blade.
  • cellulose nanofibrils without additive The cellulose nanofibrils are predispersed with moderate stirring in distilled water in order to have a mass concentration of 0.28%. This dispersion is then stirred for 15 minutes at 1000 rpm, then homogenized at atmospheric pressure with Ultra Turrax for 2 minutes at 13500 rpm.
  • a control of the water quality and the cleanliness of the equipment makes it possible to check the theoretical value of the surface tension of the distilled water of 71.1 mN / m at 23 ° C.
  • This dispersion is then stirred for 15 minutes at 1000 rpm, then homogenized at atmospheric pressure with Ultra Turrax for 2 minutes at 13500 rpm.
  • the measurement of the surface tension is carried out as previously.
  • CMC dry CMC powder
  • the dry CMC powder (the references of which are given in Example 1) is predispersed with moderate stirring in distilled water in order to obtain a solution whose mass concentration is 0.12%. This dispersion is then stirred for 15 minutes at 1000 rpm, then homogenized at atmospheric pressure with Ultra Turrax for 2 minutes at 13500 rpm. The surface tension measurement is carried out as above (cf.
  • the gum arabic is predispersed with moderate stirring in distilled water in order to obtain a solution whose mass concentration is 20%. This dispersion is then stirred for 15 minutes at 1000 rpm, then homogenized at atmospheric pressure with Ultra Turrax for 2 minutes at 13500 rpm.
  • the surface tension measurement is carried out as above (see Table I).
  • the interfacial tensions are measured with a hanging dropper of the LAUDA TVT11 type.
  • the principle of handling consists in forming a drop of liquid 1 (water) containing the emulsifier in a continuous medium containing the second liquid 2 (oil) or vice versa (drop formed with the oil phase).
  • the weight of the drop will be compensated by the interfacial tension of the liquid.
  • An optical detection system measures the volume of the drop, the value of which can be linked to the interfacial tension. The measurements are carried out in quasi-static mode, in order to allow the emulsifying agent time to migrate to the interface. The interfacial tension values are determined after an equilibrium time of 30 minutes.
  • Example 3 The purpose of this example is to demonstrate the stabilizing power of cellulose nanofibrils (NFC).
  • oil in water emulsions (m / w) were prepared and measured in droplet size by particle size and light microscopy. Preparation of emulsions
  • the dispersions of NFCs optionally additive are carried out in distilled water at the required concentration as in Example 2.
  • soybean oil RISSO brand
  • n-hexadecane from MERCK
  • the appropriate amount of soybean oil (RISSO brand) or n-hexadecane (from MERCK) is then added to the water phase (30% by mass relative to the aqueous phase) and the whole is prehomogenized with a homogenizer of Ultra type. Turrax IKA T25 for 1 minute at 9500 rpm.
  • This prehomogenization is intended to guarantee a uniform passage through the Microfluidizer.
  • 1 pass is made to the M 110T microfluidizer at 500 bars: the emulsions obtained are beautiful, homogeneous and stable over time.
  • Stable 47 V 100 silicone oil emulsions (Rhodorsil) are also prepared.
  • the granulometry is determined by laser granulometry (HORIBA device of reference LA 910) and by optical microscopy (OLYMPUS device of reference BH-2). The measurements are taken immediately after emulsification, then at the regular interval after storage.
  • * l corresponds to the polydispersity index: the closer I is to 1 the more the droplets are monodisperse.
  • the purpose of this example is to show that the NFCs together with the CMC as an emulsifying and stabilizing agent can lead to obtaining a multiple water in oil in water (w / w / w) emulsion, of relatively narrow particle size, of 50 microns and stable over time.
  • the sugar is then added with stirring at 500 rpm, then the NFC / CMC with water.
  • the stirring is brought to 1000 rpm and is maintained for 15 min.
  • Then add the vinegar and salt and keep stirring for 3 minutes.
  • the whole is homogenized first for 1 minute at 9500 rpm with the Ultra Turrax IKA T25, and then by passing to the Microfluidizer M 110T at 500 bars.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cosmetics (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet l'utilisation de nanofibrilles de cellulose essentiellement amorphe possédant un taux de cristallinité inférieur ou égal à 50 %, comme agent émulsifiant et/ou stabilisant d'une dispersion. Les nanofibrilles peuvent être utilisées sous la forme d'une suspension aqueuse, ou sous la forme sèche dispersable. Les nanofibrilles selon l'invention peuvent également être utilisées en association avec au moins un additif et éventuellement au moins un co-additif.

Description

UTILISATION DES NANOFIBRILLES DE CELLULOSE ESSENTIELLEMENT AMORPHE COMME AGENT EMULSIFIANT ET/OU STABILISANT
La présente invention est relative à l'utilisation de nanofibrilles de cellulose essentiellement amorphe possédant un taux de cristallinité inférieur ou égal à 50 %, comme agent émulsifiant et/ou stabilisant d'une dispersion.
Elle concerne également l'utilisation des nanofibrilles précitées avec au moins un additif et éventuellement avec au moins un co-additif.
Au sens de l'invention, une dispersion désigne un système constitué d'au moins deux phases non miscibles. Elle peut correspondre par exemple :
- à une émulsion liquide dans liquide, les liquides étant non miscibles l'un dans l'autre, notamment une émulsion huile dans eau, ou une émulsion eau dans huile ;
- à une émulsion multiple constituée par exemple de trois liquides dont au moins 2 sont non miscibles entre eux, notamment une émulsion eau dans huile dans eau ou huile dans eau dans huile, les phases eau et huiles pouvant être identiques ou différentes ;
- à une mousse constituée de gaz dispersé dan un liquide ou une émulsion ;
- à une émulsion ou suspension de solide dans un liquide, comme les latex qui correspondent à des suspensions colloïdales de particules de polymères dans une phase liquide ; - à un système formé d'un gaz et de deux liquides différents.
L'objet de la présente invention s'applique à toute dispersion telle que définie plus haut, et plus particulièrement aux sytèmes énumérés de façon non limitative.
A ce stade, il est important de définir les termes "émulsifiant" et "stabilisant".
Dans le cadre de la présente invention, le terme "émulsifiant" désigne un composé qui abaisse la tension interfaciale entre deux phases non miscibles (par exemple eau/huile) et permet ainsi une forte augmentation de la surface spécifique de la phase à émulsionner. Ainsi, l'énergie mécanique nécessaire pour former la dispersion est diminuée.
L'émulsifiant peut ou non par la suite stabiliser de façon durable l'émulsion en apportant par exemple des charges à la surface des gouttelettes "stabilisation électrostatique".
Par "stabilisant", on entend tout composé qui va ralentir, voire inhiber les phénomènes de déstabilisation de l'émulsion ou de la dispersion, c'est-à-dire le crémage ou la floculation qui conduisent tôt ou tard à la coalescence des gouttelettes ou à la coagulation des solides dans une dispersion. Le stabilisant peut exercer sa fonction de différentes manières :
- soit en s'adsorbant à la surface des gouttelettes sans nécessairement abaisser leur tension interfaciale et en les stabilisant stériquement, - soit en structurant et en viscosant le milieu de telle sorte que la vitesse de crémage des gouttelettes ou la floculation des solides soit ralentie.
On peut ainsi dire que le stabilisant exerce sa fonction en formant une sorte de barrière mécanique empêchant les gouttelettes de crémer ou les solides de floculer. La stabilisation et l'émulsification sont donc deux fonctions distinctes mais complémentaires.
Il est à noter que les conditions opératoires, comme par exemple la nature des phases, la concentration, le pH, la force ionique, la températures etc., favorisant l'action d'un émulsifiant, ne favorisent pas forcément celle d'un stabilisant. Ainsi, de nombreux composés sont connus pour leur fonction en tant qu'émulsifiant ou en tant que stabilisant. Plus rares sont ceux qui exercent de façon optimale les deux fonctions à la fois, et ce à des concentrations faibles et pour un grand nombre de systèmes différents.
A titre indicatif, on peut citer la gomme xanthane, les carraghénanes, les alginates ou les carboxymethylcelluloses, polysaccharides qui sont connus comme agents stabilisants des émulsions mais pas comme émulsifiant.
Un contre exemple est la gomme arabique qui a un pouvoir émulsifiant et stabilisant mais ce à des concentrations élevées.
Or, la Demanderesse a constaté de façon inattendue et surprenant que les nanofibrilles de cellulose essentiellement amorphes dont le taux de cristallinité est inférieur ou égal à 50 % possédaient des propriétés émulsifiantes et/ou stabilisantes remarquables.
Lesdites nanofibrilles selon l'invention peuvent être à la fois agent émulsifiant et/ou stabilisant à des quantités relativement basses, tout à fait comparables à celles des émulsifiants usuels tels que le TWEEN 20 (polyoxyethylene sorbitan monolaurate) et bien moins élevées que la gomme arabique.
D'autres avantages et caractéristiques de la présente invention apparaîtront plus clairement à la lecture de la description et les exemples qui vont suivre.
La présente invention a donc pour objet l'utilisation de nanofibrilles de cellulose essentiellement amorphes possédant un taux de cristallinité inférieur ou égal à 50 %, comme agent émulsifiant et/ou stabilisant d'une dispersion.
Plus particulièrement, l'invention a pour objet l'utilisation de nanofibrilles de cellulose essentiellement amorphes possédant un taux de cristallinité inférieur ou égal à 50 %, comme agent émulsifiant et stabilisant d'une dispersion Dans la présente invention, les nanofibrilles sont mises en oeuvre en une quantité suffisante pour émulsifier et/ou stabiliser.
En particulier, les nanofibrilles peuvent être présentes en une quantité comprise entre 0,01 à 5 % en poids par rapport au poids total de la dispersion. Selon un mode de réalisation avantageux de l'invention, les nanofibrilles sont présentes en quantité comprise entre 0,05 à 1% en poids, de préférence entre 0,1 et 0,8 % en poids par rapport au poids total de la dispersion.
Par essentiellement amorphes, on entend des nanofibrilles dont le taux de cristallinité est inférieur ou égal à 50 %. Selon une variante particulière de la présente invention, le taux de cristallinité est compris entre 15 % et 50 %. De préférence, le taux de cristallinité est inférieur à 50 %.
Les nanofibrilles de cellulose entrant dans la composition de la formulation selon la présente invention sont issues de cellules constituées, de préférence, d'au moins environ 80% de parois primaires.
On a de telles caractéristiques avec de la cellulose à base de cellules de parenchyme. Par exemple, les citrus, comme les citrons, pamplemousses notamment, ou encore la betterave sucrière, sont des végétaux comprenant de telles cellules.
De préférence, la quantité de parois primaires est d'au moins 85 % en poids. Plus particulièrement, on met en oeuvre de la cellulose issue de la pulpe de betterave sucrière.
Selon une variante préférée, les nanofibrilles de l'invention présentent au moins 80 % de cellules à parois primaires.
Les nanofibrilles sont avantageusement chargées en surface en acides carboxyliques et en polysaccharides acides, seuls ou en mélange.
Par acides carboxyliques, on entend les acides carboxyliques simples, ainsi que leurs sels. Ces acides sont de préférence choisis parmi les acides uroniques, ou leurs sels. Plus particulièrement, lesdits acides uroniques sont l'acide galacturonique, l'acide glucuronique, ou leurs sels. En tant que polysaccharides acides, on peut citer les pectines, qui sont plus particulièrement des acides polygalacturoniques. Ces polysaccharides acides peuvent être présents en mélange avec des hémicelluloses.
Un mode de réalisation très avantageux de l'invention est constitué par des nanofibrilles dont la surface est au moins chargée en acide galaturonique et/ou en acide polygalacturonique.
Il est à noter qu'il ne s'agit pas ici d'un simple mélange entre lesdites nanofibrilles et les acides et polysaccharides, mais plutôt d'une combinaison étroite entre ces deux types de composés. En effet, le procédé de préparation des nanoofibrilles est tel que les acides et polysaccharides ne sont pas totalement séparés des fibres mais restent encore en surface de ces dernières, leur conférant des propriétés bien spécifiques. Ainsi, on a constaté qu'il n'était pas possible d'obtenir les mêmes propriétés si ces acides et/ou polysaccharides étaient totalement séparés des nanofibrilles lors de leur préparation pour leur être rajoutés par la suite. Les nanofibrilles de cellulose présentent, par ailleurs, une section comprise entre environ 2 et environ 10 nm. Plus particulièrement, la section des microfibrilles est comprise entre environ 2 et environ 4 nm.
Les microfibrilles particulières entrant dans la composition de formulations alimentaires présentent de telles caractéristiques du fait de la mise en oeuvre d'un procédé de préparation bien particulier, qui va maintenant être décrit.
Il est à noter que ce procédé fait entre autres l'objet de la demande de brevet EP 726 356, à laquelle on pourra se référer pour plus de détails.
Tout d'abord, ledit procédé est plus particulièrement effectué sur de la pulpe de betterave sucrière après que celle-ci a subi une étape d'extraction préalable du saccharose, selon les méthodes connues de la technique.
Le procédé de préparation comprend les étapes suivantes : (a) première extraction acide ou basique, à l'issue de laquelle on récupère un premier résidu solide, (b) éventuellement seconde extraction effectuée dans des conditions alcalines du premier résidu solide, à la suite de quoi, est récupéré un second résidu solide,
(c) lavage du premier ou du second résidu solide,
(d) éventuellement blanchiment du résidu lavé,
(e) dilution du troisième résidu solide obtenu à l'issue de l'étape (d) de manière à obtenir un taux de matières sèches compris entre 2 et 10 % en poids,
(f) homogénéisation de la suspension diluée.
Dans l'étape (a), on entend par "pulpe" de la pulpe humide, déshydratée, conservée par ensilage ou partiellement dépectinée.
L'étape d'extraction (a) peut être effectuée en milieu acide ou en milieu basique. Pour une extraction acide, la pulpe est mise en suspension dans une solution d'eau pendant quelques minutes de façon à homogénéiser la suspension acidifiée à un pH compris entre 1 et 3, de préférence entre 1 ,5 et 2,5.
Cette opération est mise en oeuvre avec une solution concentrée d'un acide tel que l'acide chlorhydrique ou l'acide sulfurique. Cette étape peut être avantageuse pour éliminer les cristaux d'oxalate de calcium qui peuvent être présents dans la pulpe, et qui, du fait de leur caractère abrasif important, peuvent causer des difficultés dans l'étape d'homogénéisation.
Pour une extraction basique, la pulpe est ajoutée à une solution alcaline d'une base, par exemple de la soude ou de la potasse, de concentration inférieure à 9 % en poids, plus particulièrement inférieure à 6 % en poids. De préférence, la concentration de la base est comprise entre 1 et 2 % en poids.
On pourra ajouter une faible quantité d'un agent antioxydant soluble dans l'eau, tel que le sulfite de sodium Na2Sθ3, afin de limiter les réactions d'oxydation de la cellulose. L'étape (a) est effectuée en général à une température comprise entre environ 60°C et 100°C, de préférence comprise entre environ 70°C et 95°C.
La durée de l'étape (a) est comprise entre environ 1 heure et environ 4 heures. Lors de l'étape (a), il se produit une hydrolyse partielle avec libération et solubilisation de la majeure partie des pectines et des hémiceltuloses, tout en préservant la masse moléculaire de la cellulose.
Le résidu solide est récupéré à partir de la suspension provenant de l'étape (a) en mettant en oeuvre des méthodes connues. Ainsi, il est possible de séparer le résidu solide par centrifugation, par filtration sous vide ou sous pression, avec les toiles filtrantes, ou les filtres-presses par exemple, ou encore par évaporation.
On soumet éventuellement le premier résidu solide obtenu à une seconde étape d'extraction, effectuée dans des conditions alcalines.
On met en oeuvre une seconde étape d'extraction lorsque la première a été conduite dans des conditions acides. Si la première extraction a été effectuée dans des conditions alcalines, la seconde étape n'est que facultative.
Selon le procédé, cette seconde extraction est effectuée avec une base de préférence choisie parmi la soude ou la potasse, dont la concentration est inférieure à environ 9 % en poids, de préférence comprise entre environ 1 % et environ 6 % en poids. La durée de l'étape d'extraction alcaline est comprise entre environ 1 et environ 4 heures. Elle est de préférence égale à environ 2 heures.
A l'issue de cette seconde extraction, si elle a lieu, on récupère un second résidu solide.
Dans l'étape (c) le résidu provenant de l'étape (a) ou (b) est lavé abondamment à l'eau afin de récupérer le résidu de matériau cellulosique.
Le matériau cellulosique de l'étape (c) est ensuite facultativement blanchi, dans l'étape (d), selon les méthodes classiques. Par exemple, on peut effectuer un traitement au chlorite de sodium, à l'hypochlorite de sodium, au peroxyde d'hydrogène à raison de 5-20 % par rapport à la quantité de matières sèches traitée. Différentes concentrations d'agent de blanchiment peuvent être utilisées, à des températures comprises entre environ 18°C et 80°C, de préférence entre environ 50°C et 70°C.
La durée de cette étape (d) est comprise entre environ 1 heure et environ 4 heures, de préférence entre environ 1 et environ 2 heures. On obtient alors un matériau cellulosique contenant entre 85 et 95 % en poids de cellulose.
A l'issue de cette étape de blanchiment, il peut être préférable de laver abondamment la cellulose avec de l'eau. La suspension résultante, éventuellement blanchie, est ensuite rediluée dans de l'eau à raison de 2 à 10 % de matières sèches, puis subit une étape d'homogénéisation. Celle-ci correspond à un mixage, broyage ou toute opération de cisaillement mécanique élevé, suivie d'un ou plusieurs passages de la suspension de cellules à travers un orifice de petit diamètre, soumettant la suspension à une chute de pression d'au moins 20 MPa et à une action de cisaillement à vitesse élevée suivie d'un impact de décélération à vitesse élevée.
Le mixage ou broyage est, par exemple, effectué par passage(s) au mixeur ou broyeur pendant une durée allant de quelques minutes à environ une heure, dans un appareil de type tel un WARING BLENDOR équipé d'une hélice à quatre pales ou broyeur à meule ou tout autre type de broyeur, tel un broyeur colloïdal.
L'homogénéisation proprement dite sera avantageusement effectuée dans un homogénéiseur du type MANTON GAULIN dans lequel la suspension est soumise à une action de cisaillement à vitesse et à pression élevées dans un passage étroit et contre un anneau de choc. On peut aussi citer le MICRO FLUIDIZER qui est un homogénéiseur principalement constitué d'un moteur à air comprimé qui crée de très fortes pressions, d'une chambre d'interaction dans laquelle s'effectue l'opération d'homogénéisation (cisaillement élongationnel, chocs et cavitations) et d'une chambre basse pression qui permet la dépressurisation de la dispersion. La suspension est introduite dans l'homoqénéiseur de préférence après préchauffage à une température comprise entre 40 et 120°C, de préférence comprise entre 85 et 95°C.
La température de l'opération d'homogénéisation est maintenue entre 95 et 120°C, de préférence supérieure à 100°C. La suspension est soumise dans l'homogénéiseur à des pressions comprises entre 20 et 100 MPa, et de préférence supérieures à 50 MPa.
L'homogénéisation de la suspension cellulosique est obtenue par un nombre de passages pouvant varier entre 1 et 20, de préférence entre 2 et 5, jusqu'à obtention d'une suspension stable. L'opération d'homogénéisation peut avantageusement être suivie d'une opération de cisaillement mécanique élevé, par exemple dans un appareil tel l'ULTRA TURRAX de SYLVERSON.
Il est à noter que ce procédé a été décrit dans la demande de brevet européen EP 726 356 déposée le 07/02/96, on pourra donc s'y référer si nécessaire. L'exemple 20 de ce texte donne notamment un mode de préparation de suspension de nanofibrilles de cellulose essentiellement amorphes.
Dans le cadre de la présente invention, on peut utiliser les nanofibrilles sous forme de suspension aqueuse, telle qu'obtenue par le procédé décrit ci-dessus. Selon un mode particulier de réalisation de l'invention les nanofibrilles de cellulose peuvent être associées à au moins un composé organique polyhydroxylé (polyOH).
Plus particulièrement, le composé polyhydroxylé (polyOH) est choisi parmi les hydrates de carbone et leurs dérivés, et les polyols. En ce qui concerne les hydrates de carbone, on peut tout particulièrement citer les monosaccharides linéaires ou cycliques en C-3 à C-6, et de préférence en C-5 ou C- 6, les oligosaccharides, les polysaccharides et leurs dérivés gras comme les sucroesters ou sucroesters d'acides gras, les hydrates de carbone alcool et leurs mélanges. A titre d'exemples non limitatifs des monosaccharides, conviennent le fructose, le mannose, le galactose, le glucose, le talose, le gulose, l'allose, l'altrose, l'idose, l'arabinose, le xylose, le lyxose et le ribose.
A titre d'oligosaccharides, on peut mentionner entre autres, le saccharose, le maltose et le lactose. Les polysaccharides peuvent être d'origine animale, végétale ou encore bactérienne.
En outre, ils peuvent être mis en oeuvre sous une forme anionique ou non ionique.
La gomme xanthaπe, les succinoglycanes, les carraghénanes, les alginates sont des éléments représentatifs des polysaccharides anioniques.
Pour ce qui a trait aux polysaccharides non ioniques, on peut citer notamment les galactomannannes, comme la gomme de guar, la gomme de caroube, l'amidon et ses dérivés non ioniques, les dérivés non ioniques de la cellulose.
Quant aux dérivés des hydrates de carbone, on peut mentionner sans intention de s'y limiter, les sucroesters d'acides gras, les esters d'acides gras, les hydrates de carbone d'alcools de type sorbitol, mannitol ; les hydrates de carbone d'acides comme l'acide gluconique, les acides uroniques, tels que l'acide galacturonique, l'acide glucuronique, ainsi que leurs sels, et les hydrates de carbone d'éthers comme la cellulose carboxyméthylée. En ce qui concerne les polyols, on peut mettre en oeuvre dans les formulations alimentaires, du glycérol, du pentaérythritol, du propylèneglycol, de l'éthylène glycol et ou des alcools polyvinyliques.
Il est à noter que les composés précédemment décrits peuvent être utilisés seuls ou en mélange. Lorsque ce mode particulier de réalisation est mis en oeuvre, le(s) composé(s) organique(s) polyhydroxylé(s) (polyOH)(s) est associé(s) aux nanofibrilles de cellulose dans un rapport pondéral (polyOH)(s) x 100 / [(polyOH)(s) +(NFC)] compris entre 5 et 50 %, et de préférence entre 5 et 30 %. De manière tout à fait avantageuse, ce rapport est compris entre 10 et 30% et de préférence entre 15 et 30 % en poids.
Selon une première variante particulièrement avantageuse, le composé polyhydroxylé est au moins de la cellulose carboxymethylee. La cellulose est un polymère constitué d'unités monomériques de glucose. Le groupement carboxylé est introduit de manière connue en soi, en faisant réagir l'acide chloro-acétique avec la cellulose.
Le degré de substitution correspond au nombre de groupements carboxyméthylés par unité de glucose. Le degré théorique maximal est de 3. Selon que le degré de substitution est supérieur à 0,95, ou inférieur ou égal à cette valeur, on précise que la cellulose carboxymethylee est, respectivement, à haut ou à bas degré de substitution. De préférence, la carboxyméthylcellulose présente un degré de substitution est supérieur à 0,95.
Selon une seconde variante, le composé polyhydroxylé est une combinaison de cellulose carboxymethylee avec l'un au moins des composés choisis parmi les monosaccharides, oligosaccharides, les polysaccharides non ioniques et anioniques et leur dérivés, les dérivés des hydrates de carbone comme les hydrates de carbone d'alcools, d'acides et d'éthers.
En particulier, la cellulose carboxymethylee est mise en oeuvre en combinaison avec l'un au moins des composés suivants : la gomme xanthane, le sorbitol, le saccharose.
Eventuellement, les nanofibrilles de cellulose peuvent être associées, outre le composé polyhydroxylé précité, avec au moins un co-additif choisi parmi :
° la cellulose carboxylée présentant un degré de substitution inférieur ou égal à 0,95, de préférence de la cellulose carboxymethylee, π les monomères ou oligomères osidiques,
° les composés de formule (R1R2N)C0A, formule dans laquelle R1 ou R2, identiques ou différents, représentent l'hydrogène ou un radical alkyle en C-1 à C-
10, de préférence en C-1 à C-5, A représente l'hydrogène, un radical alkyle en C- 1 à C-10, de préférence en C-1 à C-5, ou encore le groupement R"iR'2N avec R'1 ,
R'2, identiques ou différents, représentant l'hydrogène ou un radical alkyle en C-1 à C-10, de préférence en C-1 à C-5,
° les tensioactifs cationiques ou amphotères.
En ce qui concerne les composés du type (RtR2N)COA, on préfère utiliser les composés comprenant deux fonctions amides. De préférence on utilise l'urée comme co-additif. Les nanofibrilles de cellulose entrant dans le cadre de la présente invention, sont issues du séchage d'une dispersion de nanofibrilles, de préférence en présence d'un additif et éventuellement d'un co-additif.
Ainsi, les nanofibrilles de cellulose de la présente invention peuvent être employées sous forme sèche dispersable.
Un autre objet de la présente invention est l'utilisation des nanofibrilles selon l'invention, le cas échéant en association avec un additif, et éventuellement un co-additif comme agent émulsifiant et/ou stabiliant dans les domaines de la cosmétique, de l'alimentaire, des constructions en béton, des fluides de forage, de la polymérisation radicalaire comme la polymérisation en émulsion directe ou inverse, en microémulsion, en suspension, en dispersion...
L'invention a en outre pour objet des compositions dans les domaines de la cosmétique, de l'alimentaire, des constructions en béton, des fluides de forage, ou des compositions à base de polymère issu d'une polymérisation radicalaire, comprenant des nanofibrilles selon l'invention, le cas échéant en association avec un additif, et éventuellement un co-additif, comme agent émulsifiant et/ou stabilisant.
Des exemples concrets mais non limitatifs de l'invention vont maintenant être présentés.
EXEMPLES Exemple 1
Cet exemple a pour objet la préparation de nanofibrilles de cellulose (NFC) sous forme de suspension-mère, et sous forme sèche comprenant de la carboxyméthylcellulose (CMC).
1. Préparation de la dispersion-mère de nanofibrilles :
La dispersion-mère de nanofibrilles de cellulose est obtenue conformément au procédé décrit dans l'exemple 20 de la demande de brevet EP 726 356 ; elle comprend 2,3 % en nanofibrilles de cellulose et est préhomogénéisée à l'Ultra-Turrax à 14000 tr/mn -1 mn pour 100 g de dispersion).
2. Préparation de nanofibrilles séchées comprenant de la carboxyméthylcellulose (CMC)
La dispersion-mère de nanofibrilles de cellulose est obtenue conformément au procédé décrit dans l'exemple 20 de la demande de brevet EP 726 356 ; elle comprend 2,3 % en microfibrilles de cellulose et est préhomogénéisée à l'Ultra-Turrax à 14000 tr/mn - 1 mn pour 100 g de dispersion).
La carboxyméthylcellulose mise en oeuvre présente un degré de substitution égal à 1 ,2 ; de viscosité moyenne (produit BLANOSE 12M8P d'AQUALON). La CMC est mise en solution dans de l'eau distillée puis ensuite ajoutée à la dispersion-mère de (NFC) et l'ensemble est agité à la pale défloculeuse à 1000 tr/mn pendant 30 mn.
La quantité de carboxyméthylcellulose ajoutée est 30 % par rapport au poids de CMC. Le mélange est ensuite versé dans des coupelles puis séché dans une étuve ventilée à 40°C, jusqu'à un extrait sec de 77 %, contrôlé par dosage de l'eau à l'aide d'une thermobalance à infrarouge.
Le mélange séché est ensuite broyé au moulin à café, puis tamisé sur un tamis de 500 μm.
Exemple 2
Cet exemple a pour objet de mettre en évidence le pouvoir émulsifiant des nanofibrilles de cellulose (NFC).
1. Mesure de la tension superficielle (eau/air)
Les tensions superficielles sont mesurées avec un tensiomètre automatique de KREUSS (Type K 14) et une lame de WILHELMY.
Mesure de la tension superficielle des nanofibrilles de cellulose sans additif (dispersion- mère) : Les nanofibrilles de cellulose sont prédispersée sous agitation modérée dans l'eau distillé afin d'avoir une concentration massique de 0,28 %. Cette dispersion est ensuite agitée pendant 15 minutes à 1000 tr/mn, puis homogénéisée à pression atmosphérique à l'Ultra Turrax pendant 2 minutes à 13500 tr/mn.
Un contrôle de la qualité de l'eau et de la propreté du matériel permet de vérifier la valeur théorique de la tension superficielle de l'eau distillée de 71 ,1 mN/m à 23°C.
50 ml de dispersion sont placés dans un cristallisoir du tensiomètre et laissés au repos pendant 30 minutes. La plate-forme est ensuite remontée pour immerger la lame. On laisse la solution s'équilibrer pendant 30 secondes. La valeur de la tension superficielle est alors déterminée (cf Tableau I)
Mesure de la tension superficielle des nanofibrilles de cellulose comprenant 30 % de CMC Les nanofibrilles de cellulose séchées de l'exemple 1 sont prédispersée sous agitation modérée dans l'eau distillée afin d'avoir une concentration massique de 0,4 %.
Cette dispersion est ensuite agitée pendant 15 minutes à 1000 tr/mn, puis homogénéisée à pression atmosphérique à l'Ultra Turrax pendant 2 minutes à 13500 tr/mn.
La mesure de la tension superficielle est réalisée comme précédemment.
Essai Comparatif : Mesure de la tension superficielle de la carboxyméthylcellulose
(CMC) La poudre sèche de CMC (dont les références sont données dans l'exemple 1 ) est prédispersée sous agitation modérée dans l'eau distillée afin d'obtenir une solution dont la concentration massique est de 0,12 %. Cette dispersion est ensuite agitée pendant 15 minutes à 1000 tr/mn, puis homogénéisée à pression atmosphérique à l'Ultra Turrax pendant 2 minutes à 13500 tr/mn. La mesure de la tension superficielle est réalisée comme précédemment (cf
Tableau I).
Essai Comparatif : Mesure de la tension superficielle de la gomme arabique
La gomme arabique est prédispersée sous agitation modérée dans l'eau distillée afin d'obtenir une solution dont la concentration massique est de 20 %. Cette dispersion est ensuite agitée pendant 15 minutes à 1000 tr/mn, puis homogénéisée à pression atmosphérique à l'Ultra Turrax pendant 2 minutes à 13500 tr/mn.
La mesure de la tension superficielle est réalisée comme précédemment (cf Tableau I).
2. Mesure de la tension interfaciale (eau/huile)
Les tensions interfaciales sont mesurées avec un tensiomètre à goutte pendante de type LAUDA TVT11.
Aucune calibration n'est nécessaire avec cet appareil, seule une vérification préalable de la propreté de l'eau doit être réalisée.
Le principe de la manipulation consiste à former une goutte de liquide 1 (eau) contenant l'émulsifiant dans un milieu continu contenant le deuxième liquide 2 (huile) ou vice versa (goutte formée avec la phase huile).
A l'équilibre, le poids de la goutte sera compensé par la tension interfaciale du liquide. Un système de détection optique mesure le volume de la goutte dont la valeur peut être reliée à la tension interfaciale. Les mesures sont effectuées en mode quasi-statique, afin de laisser à l'agent émulsifiant le temps de migrer à l'interface. Les valeurs de tension interfaciale sont déterminées après un temps d'équilibre de 30 minutes.
Les résultats rassemblés dans le Tableau I montrent que les NFC abaissent de manière significative les tensions superficielles et interfaciales d'huiles de polarité très différente.
Tableau I
Les résultats du Tableau I montrent bien que les NFC ont un pouvoir émulsifiant
(en terme de tensions interfaciale et superficielle) comparable à la gomme arabique, mais à des concentrations beaucoup plus faibles que la gomme arabique.
Exemple 3 Cet exemple a pour objet de mettre en évidence le pouvoir stabilisant des nanofibrilles de cellulose (NFC).
Pour cela, on a préparé des émulsions huile dans eau (h/e) et mesurés de la taille des gouttelettes par granulométrie et microscopie optique. Préparation des émulsions
Les dispersions de NFC éventuellement additivées sont réalisées dans de l'eau distillée à la concentration requise comme dans l'exemple 2.
La quantité adéquate d'huile de soja (marque RISSO) ou n-hexadécane (de MERCK) est ensuite ajoutée à la phase eau (30 % massique par rapport à la phase aqueuse) et l'ensemble est préhomogénéisé avec un homogénéiseur de type Ultra Turrax IKA T25 pendant 1 minute à 9500 tr/mn.
Cette préhomogénéisation est destinée à garantir un passage uniforme dans le Microfluidiseur. En effet, on effectue 1 passage au Microfluidiseur M 110T à 500 bars : les émulsions obtenues sont belles, homogènes et stables dans le temps.
Des émulsions stables d'huile silicone de type 47 V 100 (Rhodorsil) sont également préparées.
Caractérisation des émulsions
La granulométrie est déterminée par granulométrie laser (appareil HORIBA de référence LA 910) et par microscopie optique (appareil OLYMPUS de référence BH-2). Les mesures sont effectuées immédiatement après émulsification, puis à l'intervalle régulier après stockage.
Les valeurs des diamètres moyens figurant dans le Tableau II montrent que l'utilisation de NFC permet l'obtention d'émulsions stables de granulomét es relativement resserrés.
Aucune émulsion stable n'a pu être obtenue avec la CMC car les émulsions coalescent immédiatement après homogénéisation.
Tableau II : Evaluation des émulsions d'huile de soja, d'hexadécane et de silicone
*D correspond au diamètre moyen en μm.
*l correspond à l'indice de polydispersité : plus I estproche de 1 plus les gouttelettes sont monodisperse.
Exemple 4
Cet exemple a pour but de montrer que les NFC conjointement avec la CMC comme agent émulsifiant et stabilisant peut conduire à l'obtention d'une émulsion multiple eau dans huile dans eau (e/h/e), de granulométrie relativement étroite, de 50 microns et stable dans le temps.
Composition huile de soja 30 % eau de ville 48 % vinaigre à 12 % 13 % sucre 6 %
NaCI 2,5 %
NFC/CMC 0,5 % Mode opératoire
On ajoute sous agitation à 500 tr/mn le sucre puis les NFC/CMC à l'eau. On porte l'agitation à 1000 tr/mn et on la maintient pendant 15 min. On ajoute ensuite le vinaigre et le sel et maintient l'agitation pendant 3 minutes.
L'huile est alors ajoutée et le tout est agité pendant 3 minutes.
L'ensemble est homogénéisé d'abord pendant 1 minute à 9500 tr/mn à l'Ultra Turrax IKA T25, et ensuite par passage au Microfluidiseur M 110T à 500 bars.
Une émulsion e/h/e belle, homogène et stable dans le temps est obtenue.

Claims

REVENDICATIONS
1. Utilisation de nanofibrilles de cellulose essentiellement amorphe possédant un taux de cristallinité inférieur ou égal à 50 %, comme agent émulsifiant et ou stabilisant d'une dispersion.
2. Utilisation selon la revendication 1 , caractérisée en ce que la dispersion est une émulsion liquide dans liquide.
3. Utilisation selon la revendication 2, caractérisée en ce que la dispersion est une émulsion huile dans eau.
4. Utilisation selon la revendication 2, caractérisée en ce que la dispersion est une émulsion eau dans huile.
5. Utilisation selon la revendication 1 , caractérisée en ce que la dispersion est une émulsion multiple constituée de trois liquides.
6. Utilisation selon la revendication 1 , caractérisée en ce que la dispersion est une mousse constituée de gaz dispersé dan un liquide ou une émulsion.
7. Utilisation selon la revendication 1 , caractérisée en ce que la dispersion est une émulsion ou suspension de solide dans liquide.
8. Utilisation selon la revendication 1 , caractérisée en ce que la dispersion est formée d'un gaz et de deux liquides différents.
9. Utilisation selon l'une quelconque des revendications 1 à 8, caractérisée en ce que les nanofibrilles sont présentes en une quantité comprise entre 0,01 à 5 % en poids par rapport au poids total de la dispersion.
10. Utilisation selon l'une des revendications 8 ou 9, caractérisé en ce que les nanofibrilles sont présentes en quantité comprise entre 0,05 à 1 % en poids, de préférence entre 0,1 et 0,8 % en poids par rapport au poids total de la dispersion.
11. Utilisation selon l'une quelconque des revendications 1 à 10, caractérisée en ce que les nanofibrilles possèdent un taux de cristallinité compris entre 15 et 50 %, de préférence inférieur à 50 %.
12. Utilisation selon l'une quelconque des revendications 1 à 11 , caractérisée en ce que les nanofibrilles sont issues de cellules constituées d'au moins 80 % de parois primaires.
13. Utilisation selon l'une quelconque des revendications 1 à 12, caractérisée en ce que les nanofibrilles de cellulose présentent au moins 80 % de cellules à parois primaires.
14. Utilisation selon l'une quelconque des revendications 1 à 13, caractérisée en ce que les nanofibrilles sont chargées en surface en acides carboxyliques et en polysaccharides acides, seuls ou en mélange.
15. Utilisation selon l'une quelconque des revendications 1 à 14, caractérisée en ce que les nanofibrilles de cellulose sont associées à au moins un composé organique polyhydroxylé (polyOH).
16. Utilisation selon la revendication 15, caractérisée en ce que le composé organique polyhydroxylé (polyOH) est choisi parmi les hydrates de carbone et leurs dérivés, et les polyols.
17. Utilisation selon l'une des revendications 15 ou 16, carcatérisée en ce que le composé organique polyhydroxylé est associé aux nanofibrilles de cellulose dans un rapport pondéral (polyOH) x 100 / [(polyOH) +(NFC)] compris entre 5 et 50 %, de préférence entre 5 et 30 %.
18. Utilisation selon l'une quelconque des revendications 1 à 17, caractérisée en ce que les nanofibrilles de cellulose, et le cas échéant le composé organique polyhydroxylé (polyOH), sont associés à au moins un co-additif choisi parmi :
° la cellulose carboxylée présentant un degré de substitution inférieur ou égal à 0,95, de préférence de la cellulose carboxymethylee,
° les monomères ou oligomères osidiques,
° les composés de formule (R1R2N)C0A, formule dans laquelle R1 ou R2, identiques ou différents, représentent l'hydrogène ou un radical alkyle en C-1 à C-
10, de préférence en C-1 à C-5, A représente l'hydrogène, un radical alkyle en C- 1 à C-10, de préférence en C-1 à C-5, ou encore le groupement R'1R'2N avec R'1 ,
R'2, identiques ou différents, représentant l'hydrogène ou un radical alkyle en C-1 à C-10, de préférence en C-1 à C-5, α les tensioactifs cationiques ou amphotères. ces co-additifs étant utilisés seuls ou en mélange.
19. Utilisation selon l'une quelconque des revendications 1 à 18, caractérisée en ce que les nanofibrilles sont employées sous forme d'une suspension aqueuse.
20. Utilisation selon l'une quelconque des revendications 1 à 18, caractérisée en ce que les nanofibrilles sont employées sous forme sèche dispersable.
21. Utilisation des nanofibrilles selon l'une quelconque des revendications 1 à 14, le cas échéant en association avec un additif selon l'une quelconque des revendications 15 à
17 et éventuellement un co-additif selon la revendication 18, comme agent émulsifiant et/ou stabiliant dans les domaines de la cosmétique, de l'alimentaire, des constructions en béton, des fluides de forage, polymérisation radicalaire.
22. Composition dans les domaines de la cosmétique, de l'alimentaire, des constructions en béton, des fluides de forage, ou des compositions à base de polymère issu d'une polymérisation radicalaire, comprenant des nanofibrilles selon l'une quelconque des revendications 1 à 14 le cas échéant en association avec un additif selon l'une quelconque des revendications 15 à 17 et éventuellement un co-additif selon la revendication 18 comme agent émulsifiant et/ou stabilisant.
EP99942949A 1998-09-22 1999-09-10 Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant Withdrawn EP1144103A2 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9811902 1998-09-22
FR9811902A FR2783437B1 (fr) 1998-09-22 1998-09-22 Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant
PCT/FR1999/002159 WO2000016889A2 (fr) 1998-09-22 1999-09-10 Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant

Publications (1)

Publication Number Publication Date
EP1144103A2 true EP1144103A2 (fr) 2001-10-17

Family

ID=9530770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99942949A Withdrawn EP1144103A2 (fr) 1998-09-22 1999-09-10 Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant

Country Status (8)

Country Link
EP (1) EP1144103A2 (fr)
JP (1) JP2002526247A (fr)
CN (1) CN1438918A (fr)
AU (1) AU5627099A (fr)
BR (1) BR9913907A (fr)
CA (1) CA2345326A1 (fr)
FR (1) FR2783437B1 (fr)
WO (1) WO2000016889A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081209A1 (fr) 2015-04-13 2016-10-19 Borregaard AS Compositions de soins pour la peau contenant de la cellulose microfibrillée
EP3081208A1 (fr) 2015-04-13 2016-10-19 Borregaard AS Compositions de pulvérisation pour soins de la peau contenant de la cellulose microfibrillée

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI124724B (fi) * 2009-02-13 2014-12-31 Upm Kymmene Oyj Menetelmä muokatun selluloosan valmistamiseksi
FI123503B (fi) * 2009-10-02 2013-06-14 Upm Kymmene Corp Materiaali käytettäväksi betonin lisäaineena
CN102553470B (zh) * 2011-11-10 2014-06-25 海南光宇生物科技有限公司 一种生物纤维素微粉及其应用
US9999235B2 (en) * 2012-12-19 2018-06-19 Conopco, Inc. Ready-to-drink tea beverage comprising cellulose microfibrils derived from plant parenchymal tissue
PL2934163T3 (pl) 2012-12-19 2020-07-27 Unilever N.V. Napój na bazie herbaty
FI125856B (fi) 2013-09-06 2016-03-15 Upm Kymmene Corp Seosaine sementtimäisille koostumuksille
JP6363340B2 (ja) * 2013-11-19 2018-07-25 中越パルプ工業株式会社 ナノ微細化した繊維状多糖を含むエマルション、材料及びそれらの製造方法
JP6360408B2 (ja) * 2014-01-21 2018-07-18 株式会社スギノマシン 乳化剤とその製造方法、及びオーガニック化粧料
WO2016086951A1 (fr) * 2014-12-05 2016-06-09 Empa Eidgenössische Materialprüfungs- Und Forschungsanstalt Procédé de fabrication de nanofibres cellulosiques hydrophiles dans des environnements à faible polarité et matériaux comprenant lesdites nanofibres
JP7369379B2 (ja) * 2018-03-29 2023-10-26 国立研究開発法人産業技術総合研究所 柑橘果皮由来ナノファイバー及びその製造方法
KR102136717B1 (ko) * 2018-10-01 2020-07-22 롯데정밀화학 주식회사 소수성 실리카를 포함하는 시멘트 모르타르용 첨가제 및 그의 제조방법
WO2023187180A1 (fr) 2022-04-01 2023-10-05 Minasolve Sas Suspension stable de cellulose microfibreuse

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69716917T2 (de) * 1996-07-15 2003-07-17 Rhone Poulenc Chimie Zusammensetzung von nanofibrillen von cellulose mit carboxyliertem cellulose mit hohem substitutionsgrad
DK0912633T3 (da) * 1996-07-15 2001-04-23 Rhodia Chimie Sa Additivering af nanofibriller af cellulose med carboxyleret cellulose med lav substitutionsgrad

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0016889A2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3081209A1 (fr) 2015-04-13 2016-10-19 Borregaard AS Compositions de soins pour la peau contenant de la cellulose microfibrillée
EP3081208A1 (fr) 2015-04-13 2016-10-19 Borregaard AS Compositions de pulvérisation pour soins de la peau contenant de la cellulose microfibrillée

Also Published As

Publication number Publication date
AU5627099A (en) 2000-04-10
JP2002526247A (ja) 2002-08-20
CN1438918A (zh) 2003-08-27
FR2783437B1 (fr) 2001-02-02
BR9913907A (pt) 2001-07-03
WO2000016889A3 (fr) 2001-09-07
FR2783437A1 (fr) 2000-03-24
WO2000016889A2 (fr) 2000-03-30
CA2345326A1 (fr) 2000-03-30

Similar Documents

Publication Publication Date Title
EP0726356B1 (fr) Cellulose microfibrillée et son procédé d'obtention à partir de pulpe de végétaux à parois primaires, notamment à partir de pulpe de betteraves sucrières
EP0912633B1 (fr) Additivation de nanofibrilles de cellulose avec de la cellulose carboxylee a bas degre de substitution
WO2000016889A2 (fr) Utilisation des nanofibrilles de cellulose essentiellement amorphe comme agent emulsifiant et/ou stabilisant
EP1026960B1 (fr) Utilisation de microfibrilles de cellulose sous forme seche dans des formulations alimentaires
EP0912634B1 (fr) Additivation de nanofibrilles de cellulose essentiellement amorphes avec de la cellulose carboxylee a haut degre de substitution
CA2805687C (fr) Composition sous forme d'emulsion, comprenant une phase hydrophobe dispersee dans une phase aqueuse
CA2231512A1 (fr) Formulations detartrantes et nettoyantes a base de microfibrilles de cellulose
FR2729160A1 (fr) Cellulose micro-dimensionnee dispersable
CA2833673C (fr) Procede d'obtention d'une emulsion comprenant une phase interne hydrophobe dispersee dans une phase continue hydrophile
EP1208898A1 (fr) Formulation désémulsionnante organique et son utilisation dans le traitment des puits forés en boue à l'huile
EP0130891B1 (fr) Compositions de biopolymères et leur procédé de préparation
EP0658596A2 (fr) Composition à base de biopolymères à hydratation rapide
EP0509924B1 (fr) Procédé d'amélioration de la dispersibilité et de la filtrabilité des poudres de polymères hydrosolubles
FR2730251A1 (fr) Cellulose microfibrillee et son procede d'obtention a partir de pulpe de betteraves sucrieres
EP1222018B1 (fr) Utilisation de galactomannanes comme agent emulsifiant
MXPA01002983A (en) Use of essentially amorphous cellulose nanofibrils as emulsifying and/or stabilising agent
FR2753995A1 (fr) Additivation de microfibrilles de cellulose avec de la cellulose carboxylee a bas degre de substitution
FR2811911A1 (fr) Dispersions comprenant au moins un agent emulsifiant choisi parmi les polysaccharides, le polysaccharide etant un heteroxylane
FR2751659A1 (fr) Additivation de microfibrilles de cellulose avec de la cellulose carboxylee a haut degre de substitution
FR2750994A1 (fr) Additivation de microfibrilles de cellulose avec de la cellulose carboxylee a bas degre de substitution
FR2753994A1 (fr) Additivation de microfibrilles de cellulose avec de la cellulose carboxylee a haut degre de substitution
Akhtar et al. Emulsion-stabilizing Properties of Depolymerized Pectin: Effects of pH, Oil Type and Calcium Ions zyxwvutsrqpon
WO1995034363A1 (fr) Nouveau procede de traitement d'une emulsion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010413

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20021024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20031209