EP1119429B1 - Procede de production de composants par un procede de moulage par injection de poudre metallique - Google Patents

Procede de production de composants par un procede de moulage par injection de poudre metallique Download PDF

Info

Publication number
EP1119429B1
EP1119429B1 EP99950466A EP99950466A EP1119429B1 EP 1119429 B1 EP1119429 B1 EP 1119429B1 EP 99950466 A EP99950466 A EP 99950466A EP 99950466 A EP99950466 A EP 99950466A EP 1119429 B1 EP1119429 B1 EP 1119429B1
Authority
EP
European Patent Office
Prior art keywords
components
metal powder
binder
sintering
powder parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99950466A
Other languages
German (de)
English (en)
Other versions
EP1119429A2 (fr
Inventor
Thomas Hartwig
Thomas Ebel
Rainer Gerling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKSS Forshungszentrum Geesthacht GmbH
Tricumed Medizintechnik GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Tricumed Medizintechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH, Tricumed Medizintechnik GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Publication of EP1119429A2 publication Critical patent/EP1119429A2/fr
Application granted granted Critical
Publication of EP1119429B1 publication Critical patent/EP1119429B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • B22F3/225Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip by injection molding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/22Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces for producing castings from a slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a method for producing components by metal powder injection molding of powder-coated metal powder parts with the characteristics of the in the Preamble of claim 1 genus described.
  • Complex shaped components have long been used in medium and large quantities Automotive engineering, in aviation as moving parts and in off-shore applications and also needed in medical technology, for example for implants. It is about complex components with dimensions that go into the millimeter range can. As a rule, such complexly shaped components are machined Processes prepared, such as by milling, turning and grinding. As materials come, for example, low-alloy, high-alloy or corrosion-resistant Steels, high-speed steels, superalloys, alloys with magnetic properties, Hard metals and other materials not listed in question.
  • Another manufacturing method for producing a complex shaped component with Small dimensions consist in the use of investment casting.
  • the investment casting is for every manufactured component requires a mold production, the production of which is considerable Labor required.
  • complex shaped can be created Components with small and very small structures that are in the range of centimeters, no longer reproduce with certainty. It also responds due to the temperature of the liquid casting, as a rule, the surface of the complex-shaped component produced with the wall surface of the mold. The resulting reaction layer on the surface The complex shaped component must be used to produce a perfect surface for example stripped. This stripping in turn leads to tight Tolerances can no longer be met.
  • the mechanical properties of the casting structure which are produced by means of investment casting, the mechanical properties inferior if the complex shaped component with the help of forging technology has been manufactured.
  • the binder metal powder is injected into a mold with an injection molding machine, after that at least partially removed the binder from the green component obtained and subjected to sintering.
  • Titanium powder for producing heavy-duty components such as in Automotive engineering, etc. used. Titanium is particularly advantageous for complicated molded components with small dimensions in the field of medical technology, there such components have an especially good biocompatibility as an implant. With titanium powder the required strength values of components can be complex achieve shaped structure, but is missing, for example, in safety-relevant areas A safety reserve of titanium powder for both machines and implants manufactured component in terms of functionality and against irreparable Damage due to overloading and against breakage.
  • the invention has for its object an inexpensive and for mass production to create a suitable process for the production of complex shaped components, in particular a safety reserve of the sintered component against inoperability and against irreparable damage in the event of overloading and breakage, which minimizes the uptake of contaminants in the material of the components allows during the manufacture of the components until completion, that for the prefabricated Component has a homogeneous structure, extremely high reproducibility and Has dimensional accuracy that avoids reworking of the manufactured components, which enables a low surface roughness of the finished component, and that during the production of the complex shaped excludes a distortion of the components.
  • the advantages of the invention are, in particular, that individual sections of the method according to the invention for the production of complex shaped components under strict Compliance with a high-purity protective atmosphere consisting of protective gas and / or air exclusion and / or vacuum takes place. This prevents that during the manufacturing process the complex shaped components contaminants with respect to the given Performance data of the component to an intolerable extent from the component be included.
  • these individual manufacturing sections are partially again divided into subsections, these subsections also helping to ensure that the inclusion of contaminants in the material of the component is always a minimum is supplied, such as the metal powder parts of the selected titanium alloy and the constituents of the binder are selected in their composition in such a way that each individual material component already has the property as such has to be low in contaminants.
  • the components of the titanium alloy and the binder becomes the proportion of unwanted contaminants set to the lowest possible starting base value, so that the during the process inevitable increase in the contaminants of the material of the component in the final sum corresponding to the selected low basic contamination of the components the titanium alloy and binder.
  • the mixture of the metal powder parts with the binder components for feedstock production under the influence of high-purity protective gas, such as argon instead of.
  • the sintering itself takes place under a vacuum and the debinding takes place in a commercial debinding bath, for example with hexane and thus under exclusion the presence of air and thus of oxygen, carbon, nitrogen and the like as contaminants.
  • Every single section of the manufacturing process of the complex shaped components is that Subject to the least possible accumulation of contaminants to achieve each manufacturing step, as well as according to the production of the metal powder parts the invention has been made.
  • a titanium alloy was selected which has the composition Ti-6Al-7Nb.
  • the contaminants Poor metal powder parts of this titanium alloy can be made by two methods are generated, namely the Electrode Induction Melting Guiding Gasatomization process or the plasma melting induction guiding gas atomization process.
  • the production the metal powder parts for the titanium alloy mentioned are carried out by an atomization system with argon inert gas atomization, in which the inert gas atomized metal powder parts caught in the powder can flanged gas-tight to the atomization system become.
  • the powder jug itself is designed to be gas-tight and can be sealed in one Glove box system incorporated, which in turn is operated with argon gas, so that in the manufacture of the metal powder parts an absolutely small increase in the contaminants, such as oxygen, carbon, nitrogen, etc. during this manufacturing stage is achieved in the powder components of the component.
  • Binder components are used to carry out partial debinding of the complex shaped components with low melting, decomposition and / or evaporation temperature in a proportion added to the binder that is greater than half of the total binder proportions is.
  • the rest of the entire mixture of binder components consists of higher ones Melting, decomposing and / or evaporating temperature reacting binder components the low-melting binder components.
  • the metal powder parts of the titanium alloy are made with binder components made of thermoplastic or thermoset polymers, with thermal gelling substances, with waxes or surface-active substances or mixtures obtained therefrom.
  • binder components made of thermoplastic or thermoset polymers, with thermal gelling substances, with waxes or surface-active substances or mixtures obtained therefrom.
  • a special binder has been selected to reduce the entry of contaminants such as oxygen and to reduce the residual binder in the Component contributes.
  • the material of the surface of the Sintered base selected so that the material does not contain any contaminants at the sintering temperature emits.
  • This design of the sintered base is a particular advantage of Invention to avoid that the complex components with often very minimal Structure on the sintered base and also not with hot isostatic pressing warp or break by sticking to the surface and also not by contaminants be contaminated with the respective pad.
  • Another advantage of the present invention is the selected manufacturing process of metal powder injection molding, in which the mixing of the metal powder parts with the binder components for feedstock production and also the metal injection molding of the Feedstockes in the injection molding machine take place at low temperatures, so that none Reaction of the feedstock or the binder and metal parts of the feedstock with the mixer itself or in particular not with the injection mold in the injection molding machine, so that no surfaces are created on the complex shaped components, which with the React form or with device parts and therefore do not need to be treated, that means that the surface is already in perfect condition, whereby an extremely high reproducibility and dimensional accuracy and thus a Near-net-shape production of a high-strength component is made possible.
  • the selected titanium alloy Ti-6Al-7Nb by means of its components which for the complex-shaped components to be produced have the required material properties, With the aid of the method according to the invention, it is possible to achieve these alloy properties during manufacture in sections and subsections until completion of the To maintain the final state of the component almost unchanged, while according to the state the technology in the manufacturing process of metal powder injection molding is usually too significant Absorption of contaminants occurs and thus an intolerable Change in the material properties of the component to be manufactured compared to the Original properties of the selected material for the production of metal powder.
  • FIG 1 is in the form of a diagram only sketchy and in partial representation Production of a complex shaped component from the production of metal powder parts about the production of feedstock, metal molding, debinding and sintering shown with the finished component.
  • Figure 1 2 and also in the results in Figure 3 was deliberately dispensed with the representation of a complex shaped component in order to To promote clarity and to be able to achieve clear measurement results.
  • complex shaped components are, however, for their application in motor vehicle construction, aviation, in off-shore applications and in medical technology, e.g. in the form of implants required.
  • the metal powder parts as a material for forming components according to the invention can be manufactured in different ways. Powder can be used once are made by mechanical alloying or mechanical crushing has been.
  • the powder components must be less contaminated than the end product, since one in the manufacturing process of the component Minimization of the contaminants absorbed into the component can be made can, however, completely avoid the absorption of contaminants is practically impossible during the manufacturing process of the component.
  • To the goal of high purity Reaching metal powder parts have been two different manufacturing processes of metal powder parts used for the titanium alloy. On the one hand, there was the electrode Induction melting gas atomization process applied, and on the other hand plasma melting Induction guiding gas atomization process.
  • the oxygen content of 2000 ⁇ g / g is already in the finished product is predetermined, with reference to the predetermined amount of oxygen contamination those% by weight of oxygen contamination and of course also other contaminants add up that occurs during the manufacture of the metal powder parts. Due to the contamination contained in the finished alloy according to the DIN standard with contaminants it is advantageous, even the individual material components the titanium alloy, so as to take special care in the selection and the treatment of the individual components in the initial state to a better result achieve, i.e. a result that minimization already during the manufacture of the metal powder parts for example, the oxygen concentration in the initial state.
  • the spherical shape is for sintering advantageous because a high packing density of the metal powder parts due to the spherical shape of the Powder can be achieved and thus a low residual porosity of the sintered complex built component is achieved.
  • the amount of metal powder produced is then determined by means of a sieve chain according to the particle size of the powdered metal parts.
  • the Use of metal powder parts with a particle size ⁇ 100 ⁇ m is suitable. Especially Favorable results are achieved if one preferably has a particle size of ⁇ 45 ⁇ m used.
  • the resulting loss of material in the production of metal powder is included a use of metal powder parts with a particle size ⁇ 45 microns at about 70 to 75% of the metal powder parts produced in contrast to the often 90% loss of material in the production of the complex shaped components by means of machining processes.
  • the sieved metal powder parts with a particle size> 45 ⁇ m can be used for others Use purposes so that the loss of material can still be reduced.
  • the surface roughness of the finished complex shaped The component depends on the powder size and is when using metal powder parts with a particle size ⁇ 45 ⁇ m typically 1 ⁇ m. This means the surface of the finished, complex-shaped component is basically closed without reworking use.
  • the titanium alloy in rod form 1 is shown by way of example from FIG is processed into metal powder parts 2, which has already been described, that this is only one way of manufacturing the metal powder parts.
  • Figure 1b) follows the feedstock production, i.e. mixing the metal powder parts 2 with the binder 3 in a kneader 4 to the feedstock 5.
  • FIG. 1c) metal molding of the feedstock by means of a block diagram indicated only schematically here Injection molding machine 6, to which the feedstock 5 is fed and under pressure into the injection mold 7 is injected into the shape of the component 8.
  • the green part of the component created in this way 8 is partially delivered in the debinding in FIG. 1d) in a debinding bath 9 and then sintered according to FIG.
  • the kneader 4 must ensure a sufficiently homogeneous mixing without clumping the components. By appropriate selection of the Mixing temperature and the constituents of the binder also find no chemical reaction between the binder and the metal powder during mixing.
  • the binder 3 must also be selected in its components so that during metal injection molding there is no decomposition of the binder.
  • the binder must also be very light can be removed from the component manufactured by means of metal powder injection molding, since he only for the temporary cohesion of the metal powder components after the metal molding serves.
  • the binder which always consists of several components, must be of this type be carried out so that each individual material component in the initial state itself has the property of being low in contaminants such as oxygen, nitrogen and carbon to be. Is very important for the production of a complex shaped component also with regard to the binder and its components, that they contribute to the required Maintain material properties of the component until the component is completed and not to be changed by additional intake of contaminants.
  • the kneader and / or the kneading chamber is preferably of high purity Shielding gas such as argon filled to prevent contamination of the two components of the feedstock, for example with oxygen and nitrogen from the air.
  • Shielding gas such as argon filled to prevent contamination of the two components of the feedstock, for example with oxygen and nitrogen from the air.
  • the binder Due to the addition of external lubricants, the binder forms an envelope around each single metal powder part.
  • shear processes must ensure that that every metal powder part is covered with binder. This usually happens in so-called Z-blade mixers or also in planetary mixers.
  • the feedstock usually shows a share of about 30 to 40 vol.% binder.
  • the temperature range in feedstock production is between 50 degrees and 200 Centigrade.
  • the constituents of the binder have a different melting, decomposition and / or evaporating temperature.
  • Those predominate Binder ingredients that have a low melting, decomposition and / or evaporation temperature have compared to the proportion of binder components in the mixture, which have a higher different melting, decomposition and / or evaporation temperature exhibit.
  • a binder poor in contaminants, its material constituents already have the property of being poor in the initial state to be contaminants consists of polyethylene, stearic acid, paraffin and Carnauba wax.
  • the metal injection molding of component 8 in an injection molding machine closes 6 in the injection mold 7.
  • the feedstock is in the Usually pelletized and inserted as a pellet in the injection molding machine if required.
  • the exact Metal mold injection parameters such as pressure and temperature depend on the geometry of the complex shaped component and the flow properties of the feedstock. The pressure ranges from 30 to 50 bar.
  • Metal injection molding has the advantages on, an inexpensive and excellent reproducibility of the complex shaped To enable components with small tolerances and is especially for medium to high Suitable for quantities. These advantages are particularly due to the extremely long life due to the metal injection mold, which is subject to almost no wear, so that a change in component geometry with the time and duration of use is not expected.
  • the injection mold is manufactured conventionally. Because this manufacture but is only required once, the work involved can be high without itself to have a significant impact on a medium to high unit price. An automatic Manufacturing large numbers of components with such machines is without any Problem easy to carry out. You can also create complex shapes, such as Make threads, bores and the like with only one injection process.
  • the metal injection molding of the complex shaped component for the production of the green body takes place in a low temperature range.
  • This temperature range is for metal injection molding between 60 degrees and 200 degrees Celsius.
  • This low temperature range makes it possible to prevent the surface when selecting the binder components the injected green body reacts in the injection molding machine with the surface of the injection mold 7, which is why the surface is smooth and not again after the component is finished must be processed.
  • This also applies, as already described, to a similar one low temperature manufacturing process in feedstock manufacturing, which is between 50 degrees and 200 degrees Celsius.
  • feedstock manufacturing which is between 50 degrees and 200 degrees Celsius.
  • To the metal injection molding this is followed by the debinding of component 8, see FIG. 1d).
  • the solvent hexane ensures that the debinding with complete exclusion of air, also of contaminants such as carbon, oxygen, nitrogen and so an accumulation of contaminants prevented in the injection molded component.
  • Another removal of the residual binder which can only be removed at a higher temperature and has previously been kept apart of the component prevented by thermal decomposition.
  • thermal decomposition in a high vacuum, but it can also take place in a pure protective gas atmosphere such as argon. After extraction, drying takes place held in argon gas.
  • the handling of the injected components in the form of a green compact and the partially debonded components in the form of a brown must be done carefully to avoid a delay or break.
  • the next step in the completion of the complex-shaped components is sintering, as can be seen in FIG. 1e).
  • the component's browning undergoes a heat treatment in which the individual metal powder parts receive metallurgical contacts in the form of a welding diffusion with one another.
  • a successful sintering process with titanium alloys and the achievement of a perfect material property of the component can only be achieved by avoiding the inclusion of additional contaminants such as oxygen, carbon and nitrogen during the sintering process in the metal powder.
  • the atmosphere of the chamber of the sintering furnace must have an excellent vacuum in the order of magnitude ⁇ 10 -5 mbar, the high temperatures during sintering being unfavorable for maintaining good material properties, since at these high temperatures a particularly good absorption of impurities in the metal powder parts takes place.
  • the temperature interval during sintering is between 1100 degrees and 1400 degrees Celsius. Production tests have shown that preferably the temperature of 1300 degrees Celsius gives an optimal result with regard to the properties of the manufactured component.
  • the complex-shaped component produced after sintering has a density close to the theoretical density, namely 96%.
  • the mechanical properties of the finished component are very similar to those of forged material with a comparable composition.
  • the sinter pad for the complex shaped Components is therefore designed such that while sintering is being carried out of the components the free sliding of the surface of the sintered base for Components remain unchanged.
  • the material of the sinter pad is therefore chosen so that at the sintering temperature the surface of the sintered base against the material of the components consists of reduction-resistant material, such as this is the case with ceramic oxides. It also becomes a material of the sintered base used, which releases no contaminants at the sintering temperature.
  • the sintered components After sintering can be achieved by a subsequent hot isostatic pressing treatment that the residual porosity of the sintered part can be brought to zero in order to thus all theoretically possible mechanical properties from the material of the component get. That is why the sintered components are made into one with high purity Protective gas such as argon equipped chamber and given at a temperature of around 850 degrees Celsius and 2000 bar gas pressure for several hours hot isostatically pressed.
  • the high-purity protective gas argon is necessary because at these high Temperatures the tendency of the titanium alloy to absorb foreign matter is great however must be prevented.
  • the material of the contact surface for the components in isostatic pressing ensure that this requirement the free sliding ability by training from a suitable material such as Ceramic oxides retained during pressing and that the material of the contact surface at the temperature of isostatic pressing no contaminants in the Chamber and to the components.
  • the hot isostatic pressing process is only carried out if either the material inside the components must have no porosity or if the highest possible strengths with a density of 100% and the best possible Ductility is required for the respective application and therefore the necessary for it incurred additional costs are accepted.
  • the titanium alloy Ti-6Al-7Nb was also made previously used elsewhere, but could not be useful in a metal powder injection molding process can be used without the property of stretchability the absorption of contaminants during the manufacturing process again was lost, so that the final product gained the safety reserve of the sintered Component in terms of functionality and against irreparable damage in the event of an overload of the component and against breakage in the prior art was missing. That after State of the art component made with titanium can have high strength, behaves However, the elasticity is not like a metal, it is elastic but not plastic deformable.
  • the titanium alloy Ti-6Al-7Nb together with the features of the Existence of a high-purity protective atmosphere during the manufacture of the metal powder Feedstock production, debinding and sintering with the help of protective gas and / or air exclusion and / or vacuum along with the selection of metal powder parts and binders that are low in contaminants, the manufacturing process metal powder parts of the titanium alloy which are low in contamination by the electrode induction Melting Gasatomization or the Plasma Melting Induction Guiding Gasatomization process, the application of a low temperature range in the manufacture of Mixing of the feedstock and in metal injection molding and also the nature of the Sinter pad with the free sliding ability of its surface and the production of the metal powder parts for the titanium alloy through an atomization system operated with argon with the downstream device for further transport of the metal powder parts in one Protective atmosphere.
  • the oxygen content is approximately 0.25% by weight and the carbon content is approximately 0.06%.
  • the parent alloy used for metal powder production already showed an oxygen content of 0.2% or a carbon content of 0.01%.
  • the respective Growth is due to handling and, above all, the sintering process.
  • the structural examinations showed a homogeneous, fine lamellar structure from the ⁇ and ⁇ phase with an average grain size of about 150 ⁇ m.
  • the pores have a size of maximum 10 ⁇ m, in the case of the samples subjected to a hot isostatic pressing process no pores.
  • samples with the geometry of the Tension rod which was produced by the method according to the invention, cutting made from forged material. This material also served as the starting alloy for metal powder production. It's about the surface treatment not a polish, but only a cut, the possible surface notches should eliminate. Since the material is ductile, the influence of surface quality should be considered the experiments do not play a major role. An electropolish was therefore avoided.
  • the structure in the case of the forged material is fine-grained globular, while that after material of the tension rod produced according to the invention has a fine lamellar structure.
  • the carbon content is approximately 0.06% by weight, the increase compared to the starting alloy is about 0.05% by weight.
  • the oxygen content increases by a maximum of 0.06 % By weight, the starting alloy already had 0.19% by weight.
  • the results of the Tensile tests on the tension rod 8 can be interpreted as follows. All samples show one excellent strength. Except for the case of the heat-treated sample, the measured one is Elongation in the tensile bar samples produced according to the invention is significantly higher than in the forged version.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Claims (22)

  1. Procédé pour la fabrication de pièces par moulage par injection de particules de poudres métalliques enrobées de liant, dans un moule à injection, les pièces fabriquées étant soumises ensuite à une élimination du liant et à un frittage, procédé dans le cadre duquel les particules de poudres métalliques servent d'alliage au titane pour la fabrication des pièces de forme complexe, chacune des étapes suivantes de la fabrication des pièces, de la production des particules de poudres métalliques pour l'alliage au titane, de la fabrication de la matière première avec un liant, de l'élimination du liant et du frittage ayant lieu, exclusivement, dans une atmosphère de protection de grande pureté consistant en gaz protecteur et / ou en l'absence d'air et /ou sous vide, et les particules de poudres métalliques et le liant présentant une faible teneur en impuretés, caractérisé en ce qu'une densification ultérieure des pièces de forme complexe, par compression isostatique à chaud des pièces frittées, est exécutée dans une chambre remplie de gaz protecteur, que la surface d'appui des pièces conserve, pendant la compression isostatique, une libre aptitude au glissement en raison d'une exécution en matière appropriée, et que la matière de la surface d'appui, à la température de compression, ne dégage pas d'impuretés.
  2. Procédé selon la revendication 1, caractérisé en ce que les différents éléments constitutifs de la matière première de l'alliage au titane et du liant sont sélectionnés, quant à leur composition, de sorte que chacun des composants de la matière première, à l'état initial, possède déjà, en soi, la propriété d'une faible teneur en impuretés.
  3. Procédé selon l'une ou plusieurs des revendication 1 à 2, caractérisé en ce que des polymères thermoplastiques ou thermodurcissables, des substances thermogélifiantes, des cires ou des substances tensioactives ou des mélanges de celles-ci, sont ajoutés aux particules de poudres métalliques, en tant que composants du liant.
  4. Procédé selon l'une ou plusieurs des revendications 1 à 3, caractérisé en ce que, pour le liant, on utilise des polyamides, des polyoxyméthylènes, des polycarbonates, des copolymères de styrène-acrylonitrile, des polyimides, des cires et des huiles naturelles, des résines thermodurcissables, des cyanates, des polypropylènes, des polyacétates, des polyéthylènes, des acétates d'éthyle et de vinyle, des alcools de polyvinyle, des chlorures de polyvinyle, des polystyrènes, des polyméthacrylates de méthyle, des anilines, de l'eau, des huiles minérales, de l'agar, de la glycérine, des polybutyryles de vinyle, des polyméthacrylates de butyle, de la cellulose, des acides oléiques, des phtalates, des cires de paraffine, de la cire de carnauba, des polyacrylates d'ammonium, des stéarates et des oléates de diglycéride, des monostéarates de glycéryle, des titanates d'isopropyle, des stéarates de lithium, des monoglycérides, des aldéhydes formiques, des phosphates d'acide octylique, des sulfonates d'oléfines, des esters phosphatiques ou de l'acide stéarique.
  5. Procédé selon l'une ou plusieurs des revendications 1 à 4, caractérisé en ce que, pour l'élimination partielle du liant des pièces de forme complexe, les composants du liant ayant une température de fusion, de décomposition et / ou d'évaporation inférieure présentent une part prédominante du mélange des composants du liant, par rapport aux composants du mélange dont la température de fusion, de décomposition et / ou d'évaporation est plus élevée.
  6. Procédé selon l'une ou plusieurs des revendications 1 à 5, caractérisé en ce que le liant est composé de polyéthylènes, d'acide stéarique, de paraffine et de cire de carnauba
  7. Procédé selon l'une ou plusieurs des revendications 1 à 6, caractérisé en ce que les particules de poudres métalliques de l'alliage au titane présentant une faible teneur en impuretés sont fabriquées selon le procédés d'atomisation de gaz par fusion par induction d'électrode.
  8. Procédé selon l'une ou plusieurs des revendications 1 à 7, caractérisé en ce que les particules de poudres métalliques à faible teneur en impuretés sont fabriquées selon le procédé d'atomisation de gaz par fusion au plasma et guidage par induction
  9. Procédé selon l'une ou plusieurs des revendications 1 à 8, caractérisé en ce que la fabrication des particules de poudres métalliques pour l'alliage au titane est effectuée à l'aide d'une installation d'atomisation avec désintégration par gaz inertes.
  10. Procédé selon l'une ou plusieurs des revendications 1 à 9, caractérisé en ce que les particules de poudres métalliques atomisées par gaz inerte sont collectées dans un récipient à poudre étanche aux gaz, qui est monté sur l'installation d'atomisation, en ce que, ce faisant, ledit récipient à poudre est lui-même conçu façon à pouvoir être fermé de manière étanche aux gaz, et que ledit récipient à poudre est amené dans un système de boíte à gants qui est exploité à l'argon.
  11. Procédé selon l'une ou plusieurs des revendications 1 à 10, caractérisé en ce que la granulométrie des particules de poudres métalliques de l'alliage au titane est située dans la gamme inférieure à 100µ.
  12. Procédé selon l'une ou plusieurs des revendications 1 à 11, caractérisé en ce que la granulométrie des particules de poudres métalliques de l'alliage au titane est de préférence inférieure à 45µ.
  13. Procédé selon l'une ou plusieurs des revendications 1 à 10, caractérisé en ce que le moulage par injection du métal est effectué avec des presses d'injection.
  14. Procédé selon l'une ou plusieurs des revendications 1 à 10, caractérisé en ce que le mélange des particules de poudres métalliques de l'alliage au titane et du liant, lors de la fabrication, et le moulage par injection de la pièce sont effectués, chacun, dans un domaine de températures basses.
  15. Procédé selon l'une ou plusieurs des revendications 1 à 10, 14, caractérisé en ce que le domaine de températures est situé entre 50 et 200 degrés Celsius, lors de la fabrication de la matière première.
  16. Procédé selon l'une ou plusieurs des revendications 1 à 10, 13, 14, caractérisé en ce que le domaine de températures est situé entre 60 et 200 degrés Celsius, lors du moulage par injection.
  17. Procédé selon l'une ou plusieurs des revendications 1 à 16, caractérisé en ce que l'alliage au titane consiste en Ti-6Al-7Nb.
  18. Procédé selon l'une ou plusieurs des revendications 1 à 17, caractérisé en ce que le support de frittage pour les pièces est exécutée de telle sorte que, pendant l'exécution du frittage des pièces, l'aptitude au glissement libre de la surface du support de frittage, qui supporte les pièces, demeure inchangée.
  19. Procédé selon l'une ou plusieurs des revendications 1 à 18, caractérisé en ce que la matière du support de frittage ne dégage pas d'impuretés à la température de frittage.
  20. Procédé selon l'une ou plusieurs des revendications 1 à 19, caractérisé en ce que la surface du support de frittage, à la température de frittage, consiste en une matière première résistant à une réduction par la matière des pièces, comme, par exemple, des oxydes céramiques.
  21. Procédé selon l'une ou plusieurs des revendications 1 à 20, caractérisé en ce que les pièces de forme complexe sont soumis au frittage dans un domaine de températures de 1100 à 1400 degrés Celsius
  22. Procédé selon l'une ou plusieurs des revendications 1 à 21, caractérisé en ce que les pièces de forme complexe sont frittées, de préférence à une température de 1300 degrés Celsius.
EP99950466A 1998-07-29 1999-07-28 Procede de production de composants par un procede de moulage par injection de poudre metallique Expired - Lifetime EP1119429B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19834237 1998-07-29
DE19834237 1998-07-29
PCT/DE1999/002343 WO2000006327A2 (fr) 1998-07-29 1999-07-28 Procede de production de composants par un procede de moulage par injection de poudre metallique

Publications (2)

Publication Number Publication Date
EP1119429A2 EP1119429A2 (fr) 2001-08-01
EP1119429B1 true EP1119429B1 (fr) 2003-07-02

Family

ID=7875765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99950466A Expired - Lifetime EP1119429B1 (fr) 1998-07-29 1999-07-28 Procede de production de composants par un procede de moulage par injection de poudre metallique

Country Status (4)

Country Link
EP (1) EP1119429B1 (fr)
AT (1) ATE244088T1 (fr)
DE (2) DE19935276A1 (fr)
WO (1) WO2000006327A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337672A1 (de) * 2003-08-16 2005-03-17 Tricumed Medizintechnik Gmbh Knochenhohlschraube
EP1621272A2 (fr) * 2004-07-27 2006-02-01 General Electric Company Préparation d'un métal d'apport d'un fil de soudage par moulage par injection d'une poudre
DE102006005034A1 (de) * 2006-02-03 2007-08-16 Maxon Motor Gmbh Implantat und Verfahren zur Herstellung eines Implantats
EP2292806A1 (fr) * 2009-08-04 2011-03-09 GKSS-Forschungszentrum Geesthacht GmbH Procédé de fabrication de composants en titane ou en alliage de titane à l'aide de la technologie MIM
US9145787B2 (en) 2011-08-17 2015-09-29 General Electric Company Rotatable component, coating and method of coating the rotatable component of an engine
EP3231536A1 (fr) 2016-04-14 2017-10-18 Element 22 GmbH Procede de production metallurgie pulverulente de composants en titane ou en alliage de titane

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119246B4 (de) * 2001-04-19 2014-11-27 Joh. Winklhofer & Söhne GmbH und Co. KG Gelenkkette
DE102004010933B4 (de) * 2004-03-05 2011-08-18 Eisenhuth GmbH & Co. KG, 37520 Verbindungselement einer Transportsicherung für eine Fahrzeugtüre
DE102004027815A1 (de) * 2004-06-08 2006-01-12 Hiwin Technologies Corp. Verfahren zum Herstellen eines Schiebers für Linearführung und dieser Schieber
DE102005017378B4 (de) 2005-04-14 2007-06-14 Benteler Automobiltechnik Gmbh Abgasreinigungsvorrichtung für Fahrzeuge
CN100389915C (zh) * 2006-03-21 2008-05-28 北京科技大学 一种高孔隙度镍钛基形状记忆合金的凝胶注模成型方法
DE102006023058B3 (de) * 2006-05-17 2007-10-04 Heinz Kurz Gmbh Medizintechnik Implantat zur Spreizung der Nasenflügel
FR2903415B1 (fr) 2006-07-07 2011-06-10 Commissariat Energie Atomique Procede de fabrication d'un melange-maitre pour moulage par injection ou par extrusion
US7801613B2 (en) * 2007-04-26 2010-09-21 Medtronic, Inc. Metal injection molded titanium alloy housing for implantable medical devices
EP1988744A1 (fr) * 2007-04-30 2008-11-05 Siemens Medical Instruments Pte. Ltd. Elément de liaison pour un crochet d'un appareil auditif
DE102008008219A1 (de) 2008-02-08 2009-10-01 EMPA Eidgenössische Materialprüfungs-und Forschungsanstalt Biokompatibles Bauteil und Verfahren zu dessen Herstellung
EA018035B1 (ru) * 2009-10-07 2013-05-30 Компания Адма Продактс, Инкорпорейтед Способ получения изделий из титановых сплавов
WO2013017140A1 (fr) * 2011-08-02 2013-02-07 Gkn Sinter Metals Holding Gmbh Mélange de liants pour la production de pièces moulées par injection
WO2013126623A1 (fr) 2012-02-24 2013-08-29 Hoeganaes Corporation Système de lubrification améliorée à utiliser dans la métallurgie à poudre
DE102012015127B4 (de) * 2012-07-27 2017-11-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Sinterunterlage
DE202012102922U1 (de) 2012-08-03 2012-08-30 Heinz Kurz Gmbh Medizintechnik Septum-Implantat
DE102012107123B4 (de) 2012-08-03 2015-03-19 Heinz Kurz Gmbh Medizintechnik Septum-Implantat
DE102015210770A1 (de) * 2015-06-12 2016-12-15 Rolls-Royce Deutschland Ltd & Co Kg Bauteilkonstruktion, Bauteil für eine Gasturbine und Verfahren zur Herstellung eines Bauteils einer Gasturbine durch Metallpulverspritzgießen
CN105478776B (zh) * 2015-12-14 2019-09-10 北京科技大学 一种低温烧结制备高致密度纯钨制品的方法
DE102016217508A1 (de) 2016-09-14 2018-03-15 Robert Bosch Gmbh Kraftstoffinjektor
CN109897980B (zh) * 2019-02-22 2020-07-21 北京科技大学 钛或钛合金粉的粉末注射成形方法及钛或钛合金制品
US11229951B2 (en) 2019-05-29 2022-01-25 The Boeing Company Monolithic precursor test coupons for testing material properties of metal-injection-molded components and methods and apparatuses for making such coupons
US10724932B1 (en) * 2019-05-29 2020-07-28 The Boeing Company Monolithic precursor test coupons for testing material properties of metal-injection-molded components
US11219960B2 (en) 2019-05-29 2022-01-11 The Boeing Company Flash-removal tool
CN111606722B (zh) * 2020-05-21 2022-07-05 苏州瑞玛精密工业股份有限公司 一种制备介质滤波器陶瓷制品用的注射成型粘结剂及其应用
CN114951662B (zh) * 2022-06-14 2023-05-05 浙江大学 制备高强度多孔钛合金材料的方法
CN115283678A (zh) * 2022-07-22 2022-11-04 德莱赛稳加油设备(上海)有限公司 一种加油站二次油气回收泵叶轮的制造方法
DE202022104557U1 (de) 2022-08-10 2022-10-10 Heinz Kurz Gmbh Verbessertes Septum-Implantat
DE102022120193B3 (de) 2022-08-10 2023-10-05 Heinz Kurz Gmbh Verbessertes Septum-Implantat mit einem zentralen Rückenabschnitt und drei Teilabschnitten
DE202024100349U1 (de) 2024-01-24 2024-03-26 Heinz Kurz Gmbh Einseitiges Septum-Implantat mit Splint
DE202024100800U1 (de) 2024-02-20 2024-03-26 Heinz Kurz Gmbh Einseitiges Implantat zur Spreizung eines Nasenflügels

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120501C2 (de) * 1981-05-22 1983-02-10 MTU Motoren- und Turbinen-Union München GmbH, 8000 München "Verfahren und Vorrichtung zur Herstellung von Formteilen"
JPH0694282B2 (ja) * 1987-03-27 1994-11-24 株式会社日立製作所 移動体の衝突防止装置
US5084091A (en) * 1989-11-09 1992-01-28 Crucible Materials Corporation Method for producing titanium particles
DE4102101C2 (de) * 1991-01-25 2003-12-18 Ald Vacuum Techn Ag Einrichtung zum Herstellen von Pulvern aus Metallen
DE4408304A1 (de) * 1994-03-11 1995-09-14 Basf Ag Sinterteile aus sauerstoffempfindlichen, nicht reduzierbaren Pulvern und ihre Herstellung über Spritzgießen
US5911102A (en) * 1996-06-25 1999-06-08 Injex Corporation Method of manufacturing sintered compact
JP3707507B2 (ja) * 1996-06-25 2005-10-19 セイコーエプソン株式会社 焼結体の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10337672A1 (de) * 2003-08-16 2005-03-17 Tricumed Medizintechnik Gmbh Knochenhohlschraube
DE10337672B4 (de) * 2003-08-16 2006-05-04 Tricumed Medizintechnik Gmbh Knochenhohlschraube
EP1621272A2 (fr) * 2004-07-27 2006-02-01 General Electric Company Préparation d'un métal d'apport d'un fil de soudage par moulage par injection d'une poudre
EP1621272A3 (fr) * 2004-07-27 2006-03-29 General Electric Company Préparation d'un métal d'apport d'un fil de soudage par moulage par injection d'une poudre
US8021604B2 (en) 2004-07-27 2011-09-20 General Electric Company Preparation of filler-metal weld rod by injection molding of powder
US8206645B2 (en) 2004-07-27 2012-06-26 General Electric Company Preparation of filler-metal weld rod by injection molding of powder
DE102006005034A1 (de) * 2006-02-03 2007-08-16 Maxon Motor Gmbh Implantat und Verfahren zur Herstellung eines Implantats
EP2292806A1 (fr) * 2009-08-04 2011-03-09 GKSS-Forschungszentrum Geesthacht GmbH Procédé de fabrication de composants en titane ou en alliage de titane à l'aide de la technologie MIM
US9145787B2 (en) 2011-08-17 2015-09-29 General Electric Company Rotatable component, coating and method of coating the rotatable component of an engine
EP3231536A1 (fr) 2016-04-14 2017-10-18 Element 22 GmbH Procede de production metallurgie pulverulente de composants en titane ou en alliage de titane
WO2017178289A1 (fr) 2016-04-14 2017-10-19 Element 22 GmbH Procédé de fabrication par métallurgie des poudres de pièces en titane ou en alliages de titane

Also Published As

Publication number Publication date
WO2000006327A2 (fr) 2000-02-10
DE59906204D1 (de) 2003-08-07
EP1119429A2 (fr) 2001-08-01
DE19935276A1 (de) 2000-02-10
WO2000006327A3 (fr) 2000-05-04
ATE244088T1 (de) 2003-07-15

Similar Documents

Publication Publication Date Title
EP1119429B1 (fr) Procede de production de composants par un procede de moulage par injection de poudre metallique
DE69920621T2 (de) Verfahren zur herstellung von sinterteilen
DE10224671C1 (de) Verfahren zur endkonturnahen Herstellung von hochporösen metallischen Formkörpern
DE69915797T2 (de) Verfahren zur herstellung dichter teile durch uniaxiales pressen agglomerierter kugelförmiger metallpulver.
DE602005001248T2 (de) Verfahren zur Reduzierung des Sauerstoffgehalts eines Pulvers und das daraus hergestellte Produkt.
DE2625214A1 (de) Verfahren zur herstellung von gesinterten formkoerpern
DE10308274B4 (de) Herstellungsverfahren für ein eisenhaltiges Schmiedeteil mit hoher Dichte
WO2004039748A1 (fr) Procede de realisation de composants metalliques et/ou ceramiques pres de la cote souhaitee
EP1268868B1 (fr) Procede de metallurgie des poudres en vue de la production de pieces faconnees de haute densite
EP0232336A1 (fr) Elements de construction fabriques par la metallurgie des poudres
DE19944522A1 (de) Herstellungsverfahren für ein gesintertes Kompositmaschinenbauteil mit einem inneren Teil und einem äußeren Teil
DE2625213A1 (de) Verfahren zur herstellung von gesinterten formkoerpern
EP0426101A2 (fr) Elément de cylindre d'une extrudeuse pour un dispositif à deux vis et procédé de fabrication
DE2749215A1 (de) Verfahren zur herstellung eines kupferhaltigen eisenpulvers
DE60317582T2 (de) Verfahren zum sintern von aluminium- und aluminiumlegierungsteilen
DE112011104430B4 (de) Verbessertes Aluminiumlegierungsmetallpulver mit Übergangselementen
DE4104275C2 (de) Formteil und Verfahren zu seiner Herstellung
DE4019305A1 (de) Pulver und produkte von tantal, niob und deren legierungen
DE102009056504B4 (de) Verfahren zur Herstellung einer einschlussfreien Nb-Legierung aus pulvermetallurgischem Vormaterial für eine implantierbare medizinische Vorrichtung
DE19711642A1 (de) Verfahren zur Herstellung eines Stahl-Matrix-Verbundwerkstoffes sowie Verbundwerkstoff, hergestellt nach einem derartigen Verfahren
DE3313736A1 (de) Hochfester formkoerper aus einer mechanisch bearbeitbaren pulvermetall-legierung auf eisenbasis, und verfahren zu dessen herstellung
DE112016001286T5 (de) Maschinenkomponente und herstellungsverfahren dafür
DE19612143B4 (de) Verfahren zur Herstellung eines Spiralkontaktstückes für eine Vakuumkammer und Vorrichtung zur Durchführung des Verfahrens
DE2304731A1 (de) Verfahren zur herstellung von sinterkarbiden und die dabei erhaltenen produkte
DE102014209085B4 (de) Herstellung eines Formkörpers aus einer Dentallegierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20011211

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TRICUMED MEDIZINTECHNIK GMBH

Owner name: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030702

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP, WENGER & RYFFEL AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030728

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030728

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59906204

Country of ref document: DE

Date of ref document: 20030807

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031013

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: *TRICUMED MEDIZINTECHNIK G.M.B.H.

Effective date: 20030731

Owner name: *GKSS-FORSCHUNGSZENTRUM GEESTHACHT G.M.B.H.

Effective date: 20030731

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080724

Year of fee payment: 10

Ref country code: FR

Payment date: 20080715

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080722

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090728

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150529

Year of fee payment: 17

Ref country code: CH

Payment date: 20150721

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59906204

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731